KELT-22Ab: A Massive Hot Jupiter Transiting a Near Solar Twin

Type of content
Journal Article
Publisher's DOI/URI
Thesis discipline
Degree name
Publisher
Journal Title
Journal ISSN
Volume Title
Language
Date
2018
Authors
Labadie-Bartz J
Rodriguez JE
Stassun KG
Ciardi DR
Johnson MC
Gaudi BS
Penev KM
Bieryla A
Latham DW
Pepper J
Abstract

We present the discovery of KELT-22Ab, a hot Jupiter from the KELT-South survey. KELT-22Ab transits the moderately bright (V∼11.1) Sun-like G2V star TYC 7518-468-1. The planet has an orbital period of $P = 1.3866529 \pm 0.0000027 $ days, a radius of RP=1.285−0.071+0.12 RJ, and a relatively large mass of MP=3.47−0.14+0.15 MJ. The star has R⋆=1.099−0.046+0.079 R⊙, M⋆=1.092−0.041+0.045 M⊙, Teff=5767−49+50  K, log⁡g⋆=4.393−0.060+0.039  (cgs), and [m/H] = +0.259−0.083+0.085 , and thus, other than its slightly super-solar metallicity, appears to be a near solar twin. Surprisingly, KELT-22A exhibits kinematics and a Galactic orbit that are somewhat atypical for thin disk stars. Nevertheless, the star is rotating quite rapidly for its estimated age, shows evidence of chromospheric activity, and is somewhat metal rich. Imaging reveals a slightly fainter companion to KELT-22A that is likely bound, with a projected separation of 6\arcsec ($\sim$1400 AU). In addition to the orbital motion caused by the transiting planet, we detect a possible linear trend in the radial velocity of KELT-22A suggesting the presence of another relatively nearby body that is perhaps non-stellar. KELT-22Ab is highly irradiated (as a consequence of the small semi-major axis of a/R⋆=4.97), and is mildly inflated. At such small separations, tidal forces become significant. The configuration of this system is optimal for measuring the rate of tidal dissipation within the host star. Our models predict that, due to tidal forces, the semi-major axis of KELT-22Ab is decreasing rapidly, and is thus predicted to spiral into the star within the next Gyr.

Description
Citation
Keywords
planets and satellites: detection, planets and satellites: gaseous planets, stars: binaries: techniques: photometric, techniques: spectroscopic, techniques: radialvelocities, methods: observational
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Field of Research::02 - Physical Sciences
Rights