University of Canterbury Home
    • Admin
    UC Research Repository
    UC Library
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    1. UC Home
    2. Library
    3. UC Research Repository
    4. College of Engineering
    5. Engineering: Journal Articles
    6. View Item
    1. UC Home
    2.  > 
    3. Library
    4.  > 
    5. UC Research Repository
    6.  > 
    7. College of Engineering
    8.  > 
    9. Engineering: Journal Articles
    10.  > 
    11. View Item

    CO temperature-programmed desorption of a hexameric copper hydride nanocluster catalyst supported on functionalized MWCNTs for active site characterization in a low-temperature water-gas shift reaction (2018)

    Thumbnail
    View/Open
    1-s2.0-S1385894718321740-main.pdf (3.031Mb)
    Published version (2.928Mb)
    Type of Content
    Journal Article
    UC Permalink
    http://hdl.handle.net/10092/16204
    DOI
    https://doi.org/10.1016/j.cej.2018.10.215
    ISSN
    1385-8947
    Collections
    • Engineering: Journal Articles [1304]
    Authors
    Baharudin, L., Golovko, V., Polson, M.I.J., Watson, M.J., Yip, A.C.K.show all
    Abstract

    A family of novel catalysts was generated using chemically synthesised, atomically precise hexameric copper hydride nanoclusters (Cu6) deposited on carboxyl-pre-functionalized multi-walled carbon nanotubes (MWCNTCOOH). The Cu6/MWCNTCOOH catalysts were synthesized by wet impregnation of MWCNTCOOH with varying copper loading contents (0.5–15 wt%). The study of the interaction between active sites in these materials with CO at low temperatures using CO temperature-programmed desorption in conjunction with the elementary steps in the Langmuir-Hinshelwood mechanism of low-temperature water–gas shift (LTWGS) reaction allowed us to predict the potential catalytic performance of the synthesized catalysts in the LTWGS. The hypothetical activities were correlated with the catalyst surface characterization by CO chemisorption (Cu dispersion, crystallite size and surface area) and characterization of the active phase composition by XRD, showing good agreement. Optimal copper loading was identified to be 1 wt% based on the highest Cu surface area per sample weight and dispersion, and the amount of CO adsorbed per sample weight. The predicted catalytic performance was analysed as a function of support type: MWCNTCOOHcf. non-functionalized MWCNTs and alumina with fixed Cu loading of 1 wt%. The CO reactivity was analysed on Cu2O crystallites as the active phase, with a focus on the most dominant facets: (1 1 0), (1 1 1), (2 0 0) and (2 2 0). A comparison was made with a sample consisting of Cu nanoparticles (CuNP) supported on MWCNTCOOH, and a reference commercial catalyst, 51%CuO/31%ZnO-Al2O3. It is expected that the optimal catalyst, 1%Cu6/MWCNTCOOH, is active for LTWGS reaction from temperatures as low as 120 °C (governed by dew point of water) up to temperatures well below industrial operating temperatures (constrained by temperature rise due to the exothermic reaction that leads to Cu6 sintering).

    ANZSRC Fields of Research
    09 - Engineering::0904 - Chemical Engineering
    Rights
    Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
    Advanced Search

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThesis DisciplineThis CollectionBy Issue DateAuthorsTitlesSubjectsThesis Discipline

    Statistics

    View Usage Statistics
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer