• Admin
    UC Research Repository
    View Item 
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Science
    • Science: Theses and Dissertations
    • View Item
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Science
    • Science: Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    The synthesis and mode of action of NPPB and related compounds

    Thumbnail
    View/Open
    thesis_fulltext.pdf (1.226Mb)
    Author
    Muto, Yukiyo
    Date
    2006
    Permanent Link
    http://hdl.handle.net/10092/1522
    Thesis Discipline
    Biochemistry
    Degree Grantor
    University of Canterbury
    Degree Level
    Masters
    Degree Name
    Master of Science

    5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) was normally recognised as a Cl- channel inhibitor, but its specificity is in question, since an inhibitory effect against K⁺ channels has been reported. To identify the significance of the molecules structural components, NPPB and related compounds, such as 2-(3-phenylpropylamino) benzoic acid (PPAB), 5- nitro-2-heptylamino benzoic acid (HANB) and 2-nitro-5-heptylamino benzoic acid (HANB-2) were synthesised by reductive amination using various aldehydes and amines. Using internodal cells of the giant green Characean algae, Nitella hookeri, the effects of NPPB and related compounds on cytoplasmic streaming and turgor regulation were determined. Previous experiments stated that cytoplasmic streaming was sensitive to NPPB, PPAB and HANB with IC₅₀ values of 24µmol/L, 455µmol/L, and 6.4mmol/L, respectively. In this report, the IC₅₀ values of purchased NPPB and niflumic acid were found to be 88.65µmol/L and 121.82µmol/L, respectively. Although the IC₅₀ value of purchased NPPB showed a slight difference from that of synthesised NPPB, the results of the cytoplasmic streaming experiment indicated the possibility of this analysis to be a simple assay system for analysing the effects of structural modification to ion channel inhibitors on their biological activity. Moreover, NPPB and PPAB seem to stimulate regulation of turgor pressure under hyperosmotic shock, which can be explained by a blockage of K⁺ efflux during osmotic stress leading to faster recovery of turgor regulation. Additionally, the results of cytosolic free Ca²⁺ analysis using aequorin technology also suggested that the possibility of this analysis to be used as a more direct measure of the inhibitory effect, while the cytoplasmic streaming analysis is a more indirect method. The preliminary results from this research suggest the significance of the simple assay systems for analysing the effects of structural modification ion channel inhibitors, which can be used for future study regarding ion channel structures.

    Subjects
    membrane transport
     
    ion channels
     
    inhibitors
     
    protein channel
     
    NPPB
     
    chemical synthesis
    Collections
    • Science: Theses and Dissertations [3298]
    Rights
    http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml

    UC Research Repository
    University Library
    University of Canterbury
    Private Bag 4800
    Christchurch 8140

    Phone
    364 2987 ext 8718

    Email
    ucresearchrepository@canterbury.ac.nz

    Follow us
    FacebookTwitterYoutube

    © University of Canterbury Library
    Send Feedback | Contact Us