University of Canterbury Home
    • Admin
    UC Research Repository
    UC Library
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    1. UC Home
    2. Library
    3. UC Research Repository
    4. Faculty of Science | Te Kaupeka Pūtaiao
    5. Science: Journal Articles
    6. View Item
    1. UC Home
    2.  > 
    3. Library
    4.  > 
    5. UC Research Repository
    6.  > 
    7. Faculty of Science | Te Kaupeka Pūtaiao
    8.  > 
    9. Science: Journal Articles
    10.  > 
    11. View Item

    Framework for developing volcanic fragility and vulnerability functions for critical infrastructure (2017)

    Thumbnail
    View/Open
    Published version (1.980Mb)
    Type of Content
    Journal Article
    UC Permalink
    http://hdl.handle.net/10092/15082
    
    Publisher's DOI/URI
    https://doi.org/10.1186/s13617-017-0065-6
    
    ISSN
    2191-5040
    Collections
    • Science: Journal Articles [1101]
    Authors
    Wilson G
    Wilson TM
    Deligne NI
    Blake DM
    Cole JW
    show all
    Abstract

    Volcanic risk assessment using probabilistic models is increasingly desired for risk management, particularly for loss forecasting, critical infrastructure management, land-use planning and evacuation planning. Over the past decades this has motivated the development of comprehensive probabilistic hazard models. However, volcanic vulnerability models of equivalent sophistication have lagged behind hazard modelling because of the lack of evidence, data and, until recently, minimal demand. There is an increasingly urgent need for development of quantitative volcanic vulnerability models, including vulnerability and fragility functions, which provide robust quantitative relationships between volcanic impact (damage and disruption) and hazard intensity. The functions available to date predominantly quantify tephra fall impacts to buildings, driven by life safety concerns. We present a framework for establishing quantitative relationships between volcanic impact and hazard intensity, specifically through the derivation of vulnerability and fragility functions. We use tephra thickness and impacts to key infrastructure sectors as examples to demonstrate our framework. Our framework incorporates impact data sources, different impact intensity scales, preparation and fitting of data, uncertainty analysis and documentation. The primary data sources are post-eruption impact assessments, supplemented by laboratory experiments and expert judgment, with the latter drawing upon a wealth of semi-quantitative and qualitative studies. Different data processing and function fitting techniques can be used to derive functions; however, due to the small datasets currently available, simplified approaches are discussed. We stress that documentation of data processing, assumptions and limitations is the most important aspect of function derivation; documentation provides transparency and allows others to update functions more easily. Following our standardised approach, a volcanic risk scientist can derive a fragility or vulnerability function, which then can be easily compared to existing functions and updated as new data become available. To demonstrate how to apply our framework, we derive fragility and vulnerability functions for discrete tephra fall impacts to electricity supply, water supply, wastewater and transport networks. These functions present the probability of an infrastructure site or network component equalling or exceeding one of four impact states as a function of tephra thickness.

    Citation
    Wilson G, Wilson TM, Deligne NI, Blake DM, Cole JW (2017). Framework for developing volcanic fragility and vulnerability functions for critical infrastructure. Journal of Applied Volcanology. 6(14).
    This citation is automatically generated and may be unreliable. Use as a guide only.
    Keywords
    tephra fall; volcano; risk; hazard; critical infrastructure; electricity; water supply; wastewater; transportation
    ANZSRC Fields of Research
    37 - Earth sciences::3705 - Geology::370512 - Volcanology
    37 - Earth sciences::3709 - Physical geography and environmental geoscience::370903 - Natural hazards
    40 - Engineering::4010 - Engineering practice and education::401005 - Risk engineering
    Rights
    Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

    Related items

    Showing items related by title, author, creator and subject.

    • Volcanic hazard impacts to critical infrastructure: A review 

      Wilson, G.; Wilson, T.M.; Deligne, N.I.; Cole, J.W. (University of Canterbury. Geological Sciences, 2014)
      Effective natural hazard risk assessment requires the characterisation of both hazards and vulnerabilities of exposed elements. Volcanic hazard assessment is at an advanced state and is a considerable focus of volcanic ...
    • Impact of Volcanic Ash on Road and Airfield Surface Skid Resistance 

      Blake DM; Wilson TM; Cole JW; Deligne NI; Lindsay JM (2017)
      Volcanic ash deposited on paved surfaces during volcanic eruptions often compromises skid resistance, which is a major component of safety. We adopt the British pendulum test method in laboratory conditions to investigate ...
    • Quantifying the Vulnerability of High Voltage Power Transmission Systems to Volcanic Ashfall Hazards 

      Wardman, J.B.; Wilson, T.M.; Cole, J.W.; Bodger, P.S.; Johnston, D.M. (University of Canterbury. Electrical and Computer EngineeringUniversity of Canterbury. Geological Sciences, 2010)
      Insulator flashover initiated by volcanic ashfall contamination compromises the reliability of high voltage transmission systems. Research at the University of Canterbury has identified the properties of volcanic ash ...
    Advanced Search

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThesis DisciplineThis CollectionBy Issue DateAuthorsTitlesSubjectsThesis Discipline

    Statistics

    View Usage Statistics
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer