Atmospheric trace gases support primary production in Antarctic desert surface soil

Type of content
Journal Article
Publisher's DOI/URI
Thesis discipline
Degree name
Publisher
Journal Title
Journal ISSN
Volume Title
Language
Date
2017
Authors
Ji M
Greening C
Carere CR
Bay S
Steen J
Montgomery K
Lines T
Beardall J
van Dorst J
Snape I
Abstract

Cultivation-independent surveys have shown that the desert soils of Antarctica harbour surprisingly rich microbial communities. Given that phototroph abundance varies across these Antarctic soils, an enduring question is what supports life in those communities with low photosynthetic capacity. Here we provide evidence that atmospheric trace gases are the primary energy sources of two Antarctic surface soil communities. We reconstructed 23 draft genomes from metagenomic reads, including genomes from the candidate bacterial phyla WPS-2 and AD3. The dominant community members encoded and expressed high-affinity hydrogenases, carbon monoxide dehydrogenases, and a RuBisCO lineage known to support chemosynthetic carbon fixation6. Soil microcosms aerobically scavenged atmospheric H2 and CO at rates sufficient to sustain their theoretical maintenance energy and mediated substantial levels of chemosynthetic but not photosynthetic CO2 fixation. We propose that atmospheric H2, CO2 and CO provide dependable sources of energy and carbon to support these communities, which suggests that atmospheric energy sources can provide an alternative basis for ecosystem function to solar or geological energy sources. Although more extensive sampling is required to verify whether this process is widespread in terrestrial Antarctica and other oligotrophic habitats, our results provide new understanding of the minimal nutritional requirements for life and open the possibility that atmospheric gases support life on other planets.

Description
Citation
Ji, M., Greening, C., Vanwonterghem, I., Carere, C., Bay, S., Steen, J., Montgomery, K., Lines, T., Beardall, J., van Dorst, J., Snape, I., Stott, M., Hugenholtz, P., Ferrari, B. (2017). Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature, volume 552, pages 400–403 (21 December 2017) doi:10.1038/nature25014
Keywords
metagenomics, microbial ecology, soil microbiology
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Fields of Research::31 - Biological sciences::3107 - Microbiology::310703 - Microbial ecology
Field of Research::05 - Environmental Sciences::0503 - Soil Sciences::050303 - Soil Biology
Field of Research::06 - Biological Sciences::0604 - Genetics::060411 - Population, Ecological and Evolutionary Genetics
Rights