University of Canterbury Home
    • Admin
    UC Research Repository
    UC Library
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    1. UC Home
    2. Library
    3. UC Research Repository
    4. College of Engineering
    5. Engineering: Theses and Dissertations
    6. View Item
    1. UC Home
    2.  > 
    3. Library
    4.  > 
    5. UC Research Repository
    6.  > 
    7. College of Engineering
    8.  > 
    9. Engineering: Theses and Dissertations
    10.  > 
    11. View Item

    A Sequential Steady-State Detection Method for Quantitative Discrete-Event Simulation (2012)

    Thumbnail
    View/Open
    hons_1205.pdf (1.612Mb)
    Type of Content
    Theses / Dissertations
    UC Permalink
    http://hdl.handle.net/10092/14858
    http://dx.doi.org/10.26021/3400
    Degree Name
    Other
    Publisher
    University of Canterbury
    Language
    English
    Collections
    • Engineering: Theses and Dissertations [2462]
    Authors
    Freeth, Adamshow all
    Abstract

    In quantitative discrete-event simulation, the initial transient phase can cause bias in the estimation of steady-state performance measures. Methods for detecting and truncating this phase make calculating accurate estimates from the truncated sample possible, but no methods proposed in the literature have proved to work universally in the sequential online analysis of output data during simulation. This report proposes a new automated truncation method based on the convergence of the cumulative mean to its steady-state value. The method uses forecasting techniques to determine this convergence, returning a truncation point when the cumulative mean time-series becomes sufficiently horizontal and flat. Values for the method’s parameters are found that adequately truncate initialisation bias for a range of simulation models. The new method is compared with the sequential MSER-5 method, and shows to detect the onset of steady-state more effectively and consistently for almost all simulation models that are tested. This rule thus appears to be a good candidate as a robust sequential truncation method and for implementation in sequential simulation research packages such as Akaroa2.

    Rights
    All Right Reserved
    https://canterbury.libguides.com/rights/theses
    Advanced Search

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThesis DisciplineThis CollectionBy Issue DateAuthorsTitlesSubjectsThesis Discipline

    Statistics

    View Usage Statistics
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer