Solving Shortest Paths Efficiently on Nearly Acyclic Directed Graphs

Type of content
Theses / Dissertations
Publisher's DOI/URI
Thesis discipline
Degree name
Other
Publisher
University of Canterbury
Journal Title
Journal ISSN
Volume Title
Language
English
Date
2006
Authors
Saunders, Shane
Takaoka, Tadao
Abstract

Shortest path problems can be solved very efficiently when a directed graph is nearly acyclic. Earlier results defined a graph decomposition, now called the 1-dominator set, which consists of a unique collection of acyclic structures with each single acyclic structure dominated by a single associated trigger vertex. In this framework, a specialised shortest path algorithm only spends delete-min operations on trigger vertices, thereby making the computation of shortest paths through non-trigger vertices easier. A previously presented algorithm computed the 1-dominator set in O(mn) worst-case time, which allowed it to be integrated as part of an O(mn + nr log r) time all-pairs algorithm. Here m and n respectively denote the number of edges and vertices in the graph, while r denotes the number of trigger vertices. A new algorithm presented in this paper computes the 1-dominator set in just O(m) time. This can be integrated as part of the O(m+r log r) time spent solving single-source, improving on the value of r obtained by the earlier tree-decomposition single-source algorithm. In addition, a new bi-directional form of 1-dominator set is presented, which further improves the value of r by defining acyclic structures in both directions over edges in the graph. The bi-directional 1-dominator set can similarly be computed in O(m) time and included as part of the O(m + r log r) time spent computing single-source. This paper also presents a new all-pairs algorithm under the more general framework where r is defined as the size of any predetermined feedback vertex set of the graph, improving the previous all-pairs time complexity from O(mn + nr2 ) to O(mn + r 3 ).

Description
Citation
Keywords
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Rights
All Right Reserved