• Admin
    UC Research Repository
    View Item 
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Science
    • Science: Journal Articles
    • View Item
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Science
    • Science: Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    What is general relativity?

    Thumbnail
    View/Open
    whatisgr.pdf (196.0Kb)
    Author
    Coley AA
    Wiltshire DL
    Date
    2017
    Permanent Link
    http://hdl.handle.net/10092/13435

    General relativity is a set of physical and geometric principles, which lead to a set of (Einstein) field equations that determine the gravitational field, and to the geodesic equations that describe light propagation and the motion of particles on the background. But open questions remain, including: What is the scale on which matter and geometry are dynamically coupled in the Einstein equations? Are the field equations valid on small and large scales? What is the largest scale on which matter can be coarse grained while following a geodesic of a solution to Einstein’s equations? We address these questions. If the field equations are causal evolution equations, whose average on cosmological scales is not an exact solution of the Einstein equations, then some simplifying physical principle is required to explain the statistical homogeneity of the late epoch Universe. Such a principle may have its origin in the dynamical coupling between matter and geometry at the quantum level in the early Universe. This possibility is hinted at by diverse approaches to quantum gravity which find a dynamical reduction to two effective dimensions at high energies on one hand, and by cosmological observations which are beginning to strongly restrict the class of viable inflationary phenomenologies on the other. We suggest that the foundational principles of general relativity will play a central role in reformulating the theory of spacetime structure to meet the challenges of cosmology in the 21st century.

    Subjects
    Field of Research::02 - Physical Sciences::0201 - Astronomical and Space Sciences::020105 - General Relativity and Gravitational Waves
     
    Field of Research::01 - Mathematical Sciences::0105 - Mathematical Physics::010505 - Mathematical Aspects of Quantum and Conformal Field Theory, Quantum Gravity and String Theory
    Collections
    • Science: Journal Articles [906]

    UC Research Repository
    University Library
    University of Canterbury
    Private Bag 4800
    Christchurch 8140

    Phone
    364 2987 ext 8718

    Email
    ucresearchrepository@canterbury.ac.nz

    Follow us
    FacebookTwitterYoutube

    © University of Canterbury Library
    Send Feedback | Contact Us