University of Canterbury Home
    • Admin
    UC Research Repository
    UC Library
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    1. UC Home
    2. Library
    3. UC Research Repository
    4. Faculty of Science | Te Kaupeka Pūtaiao
    5. Science: Theses and Dissertations
    6. View Item
    1. UC Home
    2.  > 
    3. Library
    4.  > 
    5. UC Research Repository
    6.  > 
    7. Faculty of Science | Te Kaupeka Pūtaiao
    8.  > 
    9. Science: Theses and Dissertations
    10.  > 
    11. View Item

    7,8-Dihydroneopterin-mediated protection of low density lipoprotein, but not human macrophages, from oxidative stress (2006)

    Thumbnail
    View/Open
    thesis_fulltext.pdf (3.483Mb)
    Type of Content
    Theses / Dissertations
    UC Permalink
    http://hdl.handle.net/10092/1317
    http://dx.doi.org/10.26021/6713
    
    Thesis Discipline
    Biochemistry
    Degree Name
    Doctor of Philosophy
    Publisher
    University of Canterbury. Biological Sciences
    Collections
    • Science: Theses and Dissertations [4655]
    Authors
    Firth, Carole Anne
    show all
    Abstract

    Any lipoproteins and cells present in the inflammatory environment of atherosclerotic plaques are likely to be exposed to high levels of oxidative stress. As 7,8-dihydroneopterin (7,8-NP) is synthesized by interferon-γ (IFN-γ)-activated macrophages, this pteridine is also thought to exist at sites of inflammation. 7,8-NP s in vivo role remains controversial, but numerous in vitro studies have identified a radical scavenging activity. The possibility of 7,8-NP protecting against oxidative damage in inflammatory environments like plaque was investigated in this thesis. Both human monocyte-derived macrophages (HMDMs) and low density lipoprotein (LDL) were used as substrates. The extent of protein hydroperoxide formation in each model, and 7,8-NP s effect on this process, were specifically studied since most previous research has focussed on lipid rather than protein peroxidation. For the first time, neopterin (including oxidized 7,8-NP) was also directly detected by high performance liquid chromatography in the inflammatory environments of 19 pus and two atherosclerotic plaque samples. Peak concentrations even reached the low micromolar range. The positive correlation identified in the pus between neopterin and a well known antioxidant, vitamin E, further hinted at a potential antioxidant function. However, no significant association was noted between neopterin and markers of protein or lipid oxidation. Exposure of HMDMs to the AAPH peroxyl radical generator resulted in significant quantities of lipid hydroperoxides but not protein hydroperoxides, as detected by the FOX assays. This is likely due to the large accumulation of polyunsaturated fatty acidrich lipid in the primary HMDMs during differentiation in 10% human serum and is of relevance to atherosclerotic plaque, where macrophages also become lipid-loaded. The addition of up to 200μM 7,8-NP failed to prevent AAPH-induced lipid peroxidation and was also unable to inhibit a loss of cellular thiols or viability. This lack of effect suggests the damaging peroxyl radicals are not being scavenged by 7,8-NP. The high lipid content of HMDM cells appears to cause the AAPH and/or 7,8-NP to localize to a cellular site, where they are unable to interact. Macrophage-mediated oxidation of LDL in iron(II)-supplemented Hams F10 was associated with the formation of 30-40 moles of protein hydroperoxides per mole of LDL. The close parallel between protein and lipid peroxidation supports the theory that lipid-derived radicals are involved in protein hydroperoxide formation on LDL and indicates that protein hydroperoxides are an early product of LDL oxidation. Their detection during exposure of LDL to both the THP-1 macrophage cell line and primary HMDM cells confirms that protein hydroperoxides are also a normal consequence of macrophage-mediated LDL oxidation. Incubation of LDL with micromolar 7,8-NP prevented macrophage-mediated protein hydroperoxide formation in a concentration-dependent manner. Lipid oxidation and vitamin E loss were similarly inhibited by 7,8-NP during the cell-mediated attack of LDL. Kinetic analysis revealed protection due to extension of the lag phase, with 7,8-NP depletion and initiation of the propagation phase coinciding. This supports a radical scavenging activity for 7,8-NP, resulting in protection of the entire LDL particle. By contrast, the release of nanomolar quantities of 7,8-NP by IFN-γ-stimulated THP-1 macrophages failed to prevent LDL oxidation. HMDMs activated by IFN-γ did significantly inhibit LDL oxidation, including protein hydroperoxide formation, for up to 48 hours but this antioxidant effect was not due to the de novo synthesis of 7,8-NP. These results indicate that both the prevalence of protein hydroperoxides, and the ability of 7,8-NP to act as an antioxidant, depend on the system under investigation. Neopterin exists in inflammatory environments but, considering the lack of protection against AAPH-mediated HMDM oxidation and the 7,8-NP concentration required to inhibit macrophage-mediated LDL oxidation, strong evidence for an antioxidant activity of 7,8-NP in atherosclerotic plaque is currently lacking.

    Keywords
    atherosclerosis; 7; 8-dihydroneopterin; low density lipoprotein; macrophage; oxidation
    Rights
    Copyright Carole Anne Firth
    https://canterbury.libguides.com/rights/theses

    Related items

    Showing items related by title, author, creator and subject.

    • A model of complex plaque formation: 7,8-Dihydroneopterin protects human monocyte-derived macrophages from oxidised low density lipoprotein-induced death 

      Amit, Zunika (University of Canterbury. School of Biological Sciences, 2008)
      Plasma neopterin is an excellent marker of inflammation and is found in elevated levels in plasma of patients with cardiovascular disease. Neopterin originates as the oxidation product of 7,8-dihydroneopterin (7,8-NP), ...
    • Identification of the kinase cascades mediating oxidised low density lipoprotein-induced intracellular oxidative stress. 

      Steyn, Nina (University of Canterbury, 2018)
      The oxidation of low density lipoprotein (LDL) to form cytotoxic oxidised LDL (oxLDL) is a central atherogenic process. Exposure to oxLDL triggers an oxidative stress response in various immune and vascular cell types ...
    • Low density lipoprotein induction of intracellular oxidants production 

      Othman, Mohd Izani (University of Canterbury. School of Biological Sciences, 2015)
      Atherosclerosis is a complex cardiovascular disease characterized by chronic progressive inflammation of the arteries. The progression of atherosclerosis from fatty streak to advance atherosclerotic plaque involves the ...
    Advanced Search

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThesis DisciplineThis CollectionBy Issue DateAuthorsTitlesSubjectsThesis Discipline

    Statistics

    View Usage Statistics
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer