• Admin
    UC Research Repository
    View Item 
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Journal Articles
    • View Item
       
    • UC Home
    • Library
    • UC Research Repository
    • College of Engineering
    • Engineering: Journal Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    Statistics

    View Usage Statistics

    Reproductive characteristics of invasive hyperparasitoid Baeoanusia albifunicle have implications for the biological control of eucalypt pest Paropsis charybdis

    Thumbnail
    View/Open
    12656226_Final version for repository.pdf (501.6Kb)
    Author
    Murray, T.J.
    Mansfield, S.
    Date
    2015
    Permanent Link
    http://hdl.handle.net/10092/11085

    Hyperparasitoids can impede the establishment of primary parasitoid biological control agents or limit their control capacity. Although modern quarantine practices generally prevent hyperparasitoids being introduced with biological control agents, introductions can occur via natural pathways or accidentally with incoming passengers and cargo. In New Zealand, Baeoanusia albifunicle Girault is a self-introduced hyperparasitoid of Enoggera nassaui Girault, an intentionally introduced control agent of the eucalypt pest Paropsis charybdis Stål. A self-introduced primary parasitoid, Neopolycystus insectifurax (Girault), also parasitises P. charybdis in New Zealand. We assessed B. albifunicle biology to better understand its potential to disrupt P. charybdis control. It was determined that B. albifunicle is an obligate solitary hyperparasitoid with a longer lifespan, lower fecundity and longer generation time than its host. The hyperparasitoid reduced effective parasitism by E. nassaui to <10% in the lab, indicating it may limit control of the first P. charybdis generation by slowing spring population growth. It was confirmed that N. insectifurax is not hyperparasitised by B. albifunicle and therefore has some potential to substitute for any hyperparasitoid-driven decline in E. nassaui.

    Subjects
    Hyperparasitoid interactions
     
    Encyrtidae
     
    Pteromalidae
     
    Enoggera
     
    Neopolycystus
     
    New Zealand
     
    Field of Research::07 - Agricultural and Veterinary Sciences::0705 - Forestry Sciences::070505 - Forestry Pests, Health and Diseases
    Collections
    • Engineering: Journal Articles [1026]
    Rights
    https://canterbury.libguides.com/rights/ir

    UC Research Repository
    University Library
    University of Canterbury
    Private Bag 4800
    Christchurch 8140

    Phone
    364 2987 ext 8718

    Email
    ucresearchrepository@canterbury.ac.nz

    Follow us
    FacebookTwitterYoutube

    © University of Canterbury Library
    Send Feedback | Contact Us