University of Canterbury Home
    • Admin
    UC Research Repository
    UC Library
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    1. UC Home
    2. Library
    3. UC Research Repository
    4. Faculty of Science | Te Kaupeka Pūtaiao
    5. Science: Journal Articles
    6. View Item
    1. UC Home
    2.  > 
    3. Library
    4.  > 
    5. UC Research Repository
    6.  > 
    7. Faculty of Science | Te Kaupeka Pūtaiao
    8.  > 
    9. Science: Journal Articles
    10.  > 
    11. View Item

    Compact expressions for spherically-averaged position and momentum densities (2009)

    Thumbnail
    View/Open
    Published version (458.5Kb)
    Type of Content
    Journal Article
    UC Permalink
    https://hdl.handle.net/10092/105278
    
    Publisher's DOI/URI
    http://doi.org/10.1063/1.3204011
    
    Publisher
    AIP Publishing
    ISSN
    0021-9606
    1089-7690
    Language
    eng
    Collections
    • Science: Journal Articles [1192]
    Authors
    Bernard YA
    Crittenden, Deborah cc
    show all
    Abstract

    Compact expressions for spherically averaged position and momentum density integrals are given in terms of spherical Bessel functions (jn) and modified spherical Bessel functions (in), respectively. All integrals required for ab initio calculations involving s, p, d, and f -type Gaussian functions are tabulated, highlighting a neat isomorphism between position and momentum space formulae. Spherically averaged position and momentum densities are calculated for a set of molecules comprising the ten-electron isoelectronic series (Ne- CH4) and the eighteen-electron series (Ar- SiH 4, F2 - C2 H6). © 2009 American Institute of Physics.

    Citation
    Crittenden DL, Bernard YA (2009). Compact expressions for spherically-averaged position and momentum densities. Journal of Chemical Physics. 131(5). 7pp-.
    This citation is automatically generated and may be unreliable. Use as a guide only.
    Keywords
    ab initio calculations; argon; Bessel functions; fluorine; Gaussian processes; isoelectronic series; molecular configurations; neon; organic compounds
    ANZSRC Fields of Research
    34 - Chemical sciences::3407 - Theoretical and computational chemistry::340701 - Computational chemistry
    34 - Chemical sciences::3407 - Theoretical and computational chemistry::340704 - Theoretical quantum chemistry
    Rights
    All rights reserved unless otherwise stated
    http://hdl.handle.net/10092/17651

    Related items

    Showing items related by title, author, creator and subject.

    • Coupled cluster calculations provide a one-to-one mapping between calculated and observed transition energies in the electronic absorption spectrum of zinc phthalocyanine 

      Wallace AJ; Crittenden, Deborah; Williamson, Bryce (Wiley, 2017)
      © 2017 Wiley Periodicals, Inc. All transitions in the experimentally designated and numbered Q, B, and N bands ( < 4.8 eV) of the electronic absorption spectrum of zinc phthalocyanine (ZnPc) are assigned on the basis of ...
    • The PyPES library of high quality semi-global potential energy surfaces 

      Sibaev, Marat; Crittenden, Deborah (WILEY-BLACKWELL, 2015)
      In this article, we present a Python‐based library of high quality semi‐global potential energy surfaces for 50 polyatomic molecules with up to six atoms. We anticipate that these surfaces will find widespread application ...
    • An efficient and numerically stable procedure for generating sextic force fields in normal mode coordinates 

      Sibaev, Marat; Crittenden, Deborah (AMER INST PHYSICS, 2019)
      In this paper, we outline a general, scalable, and black-box approach for calculating high-order strongly coupled force fields in rectilinear normal mode coordinates, based upon constructing low order expansions in curvilinear ...
    Advanced Search

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThesis DisciplineThis CollectionBy Issue DateAuthorsTitlesSubjectsThesis Discipline

    Statistics

    View Usage Statistics
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer