High above-ground carbon stock of African tropical montane forests

Type of content
Journal Article
Thesis discipline
Degree name
Publisher
Springer Science and Business Media LLC
Journal Title
Journal ISSN
Volume Title
Language
eng
Date
2021
Authors
Cuni-Sanchez A
Sullivan MJP
Platts PJ
Lewis SL
Marchant R
Imani G
Hubau W
Abiem I
Adhikari H
Albrecht T
Abstract

Tropical forests store 40–50 per cent of terrestrial vegetation carbon1. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests2. Owing to climatic and soil changes with increasing elevation3, AGC stocks are lower in tropical montane forests compared with lowland forests2. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1–164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network4 and about 70 per cent and 32 per cent higher than averages from plot networks in montane2,5,6 and lowland7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa8. We find that the low stem density and high abundance of large trees of African lowland forests4 is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse9,10 and carbon-rich ecosystems.

Description
Citation
Cuni-Sanchez A, Sullivan MJP, Platts PJ, Lewis SL, Marchant R, Imani G, Hubau W, Abiem I, Adhikari H, Albrecht T, Altman J, Amani C, Aneseyee AB, Avitabile V, Banin L, Batumike R, Bauters M, Beeckman H, Begne SK, Bennett AC, Bitariho R, Boeckx P, Bogaert J, Bräuning A, Bulonvu F, Burgess ND, Calders K, Chapman C, Chapman H, Comiskey J, de Haulleville T, Decuyper M, DeVries B, Dolezal J, Droissart V, Ewango C, Feyera S, Gebrekirstos A, Gereau R, Gilpin M, Hakizimana D, Hall J, Hamilton A, Hardy O, Hart T, Heiskanen J, Hemp A, Herold M, Hiltner U, Horak D, Kamdem MN, Kayijamahe C, Kenfack D, Kinyanjui MJ, Klein J, Lisingo J, Lovett J, Lung M, Makana JR, Malhi Y, Marshall A, Martin EH, Mitchard ETA, Morel A, Mukendi JT, Muller T, Nchu F, Nyirambangutse B, Okello J, Peh KSH, Pellikka P, Phillips OL, Plumptre A, Qie L, Rovero F, Sainge MN, Schmitt CB, Sedlacek O, Ngute ASK, Sheil D, Sheleme D, Simegn TY, Simo-Droissart M, Sonké B, Soromessa T, Sunderland T, Svoboda M, Taedoumg H, Taplin J, Taylor D, Thomas SC, Timberlake J, Tuagben D, Umunay P, Uzabaho E, Verbeeck H, Vleminckx J, Wallin G, Wheeler C, Willcock S (2021). High above-ground carbon stock of African tropical montane forests. Nature. 596(7873). 536-542.
Keywords
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Fields of Research::30 - Agricultural, veterinary and food sciences::3007 - Forestry sciences
Rights
All rights reserved unless otherwise stated