University of Canterbury Home
    • Admin
    UC Research Repository
    UC Library
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    1. UC Home
    2. Library
    3. UC Research Repository
    4. Research Centres
    5. Quake CoRE
    6. 2020
    7. Posters
    8. View Item
    1. UC Home
    2.  > 
    3. Library
    4.  > 
    5. UC Research Repository
    6.  > 
    7. Research Centres
    8.  > 
    9. Quake CoRE
    10.  > 
    11. 2020
    12.  > 
    13. Posters
    14.  > 
    15. View Item

    Seismic performance of a 9-storey pre-1970's reinforced concrete wall building in Wellington (2020)

    Thumbnail
    View/Open
    POSTER - Chandramohan_Seismic performance of a 9-story pre-1970s reinforced concrete wall building in Wellingon.pdf (2.284Mb)
    Type of Content
    Posters
    UC Permalink
    https://hdl.handle.net/10092/101444
    Collections
    • Posters [45]
    Authors
    Chandramohan, Reagan, Dashti, Farhad, Dhakal, Rajesh, Elwood, Kenshow all
    Abstract

    Reconnaissance reports have highlighted the poor performance of non-ductile reinforced concrete buildings during the 2010-11 Canterbury earthquakes. These buildings are widely expected to result in significant losses under future earthquakes due to their seismic vulnerability and prevalence in densely populated urban areas. Wellington, for example, contains more than 70 pre-1970s multi-storey reinforced concrete buildings, ranging in height from 5 to 18 storeys. This study seeks to characterise the seismic performance and evaluate the likely failure modes of a typical pre-1970s reinforced concrete building in Wellington, by conducting advanced numerical simulations to evaluate its 3D nonlinear dynamic response. A representative 9-storey office building constructed in 1951 is chosen for this study and modelled in the finite element analysis programme DIANA, using a previously developed and validated approach to predict the failure modes of doubly reinforced walls with confined boundary regions. The structure consists of long walls and robust framing elements resulting in a stiff lateral load resisting system. Barbell-shaped walls are flanked by stiff columns with sufficient transverse reinforcement to serve as boundary regions. Curved shell elements are used to model the walls and their boundary columns, for which the steel reinforcement is explicitly modelled. Line elements are used to model the frame elements. The steel reinforcement in each member is explicitly modelled. The floor slabs are modelled using elastic shell elements. The model is analysed under short and long duration ground motions selected to match site specific targets in Wellington at the DBE and MCE intensity levels. The observed response of the building including drift profiles at each intesity level, strain localization effects around wall openings, and the influence of bidirectional loading are discussed.

    Advanced Search

    Browse

    All of the RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThesis DisciplineThis CollectionBy Issue DateAuthorsTitlesSubjectsThesis Discipline

    Statistics

    View Usage Statistics
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer
    • SUBMISSIONS
    • Research Outputs
    • UC Theses
    • CONTACTS
    • Send Feedback
    • +64 3 369 3853
    • ucresearchrepository@canterbury.ac.nz
    • ABOUT
    • UC Research Repository Guide
    • Copyright and Disclaimer