Investigations into long-standing problems in radical polymerization kinetics : chain-length-dependent termination rate coefficient and mode of termination.

Type of content
Theses / Dissertations
Publisher's DOI/URI
Thesis discipline
Chemistry
Degree name
Doctor of Philosophy
Publisher
University of Canterbury. Chemistry
Journal Title
Journal ISSN
Volume Title
Language
Date
2014
Authors
Alghamdi, Majed Mohammed
Abstract

The present thesis investigates some long standing problems in radical polymerization (RP). The major aim is to consider the feasibility of using simple techniques to provide more insight into the kinetics of RP. This can contribute to fundamental knowledge of radical polymerizations, particularly with respect to the mode of termination (λ), average termination rate coefficient (), chain-length dependence of termination (CLDT) and chain transfer through in-depth investigations of the rate of polymerization (Rp) and molar mass distribution (MMD), the latter especially via mass spectrometric (MS) analysis. The termination process was first investigated. Observation of changes of (or equivalently Rp) and MMD by a variety of factors such as solvent, monomer and initiator concentrations, temperature, pressure and growing radical size were explored. Non-classical kinetics and chain-length dependency of termination were confirmed. Accessibility of CLDT information was clearly evident. Although observed results meet fully with composite-model expectations, issues such as chain transfer were found to have an effect on the CLDT parameters determined from rate measurements. Specifically, dilute-solution polymerization of methyl methacrylate (MMA) in methyl isobutyrate (MIB) showed evidence of such an effect. Scaling of quantities that are experimentally accessible such as with DPn yield CLDT parameters in good agreement with what has been reported from recent PLP experiments. This was confirmed for several monomers. The temperature dependence of termination was also investigated and found to show evidence for CLDT. In contrast, the variation of with pressure did not demonstrate similarly strong CLDT effects. Evidence for and determination of chain transfer to MIB was also obtained. This was followed up by investigations into the important parameter λ using the MS technique. Surprisingly little is known about λ despite its long history and its apparent importance to polymer properties. Firstly, the robustness of using MS was explored, with the method passing numerous consistency checks. Although no large dependence of MS instrument was found, electrospray-ionization mass spectrometry (ESI-MS) provided best resolution. Second, the type of initiator, the initiator concentration and the solvent were found to have no measurable effect on λ, even when chain transfer occurred. In further work, increasing temperature seemed to have an influence on λ, leading to an increase in the proportion of disproportionation. However, pressure was found to have only a small influence on λ. The effect of monomer on λ was also studied. In the final part of this work, a preliminarily investigation into the viability of using Raman spectroscopic techniques to study auto-acceleration, also called the gel effect, for bulk MMA radical polymerization was presented. The results showed the possibility of using such a technique to follow the reaction to high conversion. The effect of temperature and initiator concentration on auto-acceleration were also presented. The outstanding results of this thesis are: (1) The application of CLDT theory to better understand rate results from low-conversion polymerizations. (2) In particular, the use of CLDT principles to explain termination activation energies across a range of monomers. (3) The validation of the MS method for quantitative determination of mode of termination by carrying out an array of consistency checks. (4) Showing that MS results are consistent with CLDT theory. (5) Utilization of the MS method for the first ever reliable measurement of the variation of mode of termination with temperature, pressure and monomer.

Description
Citation
Keywords
Radical polymerization, Termination rate, Chain-length dependence of termination, Mode of termination, Chain transfer, Mass spectrometry
Ngā upoko tukutuku/Māori subject headings
ANZSRC fields of research
Rights
Copyright Majed Mohammed Alghamdi