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Abstract 

Mastreviruses (family Geminiviridae) are plant-infecting viruses with circular single-

stranded (ss) DNA genomes (~2.7kb). The genus Mastrevirus is comprised of thirty-two 

species which are transmitted by leafhoppers belonging to the genus Cicadulina. 

Mastreviruses are widely distributed and have been found in the Middle East, Europe, 

Asia, Australia, Africa and surrounding islands. Only one species, dragonfly-associated 

mastrevirus has so far been identified in the Americas, isolated from a dragonfly in 

Puerto Rico. Species can be group based on the host(s) they infect, those which infect 

monocotyledonous (monocot) plants and those which infect dicotyledonous (dicot) 

plants. In recent years many new mastrevirus species have been discovered. Several of 

these new discoveries can largely been attributed to the development of new molecular 

tools. The current state of sequencing platforms has made it affordable and easier to 

characterise mastreviruses at a genome level thus allowing scientists to delve deeper 

into understanding the dynamics of mastreviruses. A few mastrevirus species have been 

identified as important agricultural pathogens and as a result have been the focus of 

much of the mastrevirus research. Maize streak virus, strain A (MSV-A) has been the 

most extensively studied due to the devastating impact it has on maize production in 

Africa. Studies have shown that MSV-A likely emerged as a pathogen of maize less 

than 250 years following introduction of maize in Africa by early European settlers. 

There is compelling evidence to suggest that MSV-A is likely the result of 

recombination events between wild grass adapted MSV strains. It therefore is equally 

important to monitor viruses infecting non-cultivated plants in order to gain a greater 

understanding of the epidemiological dynamics of mastreviruses, which in turn is 

essential for implementing disease management strategies.  

 

The objective of the research undertaken as part of this PhD thesis was to investigate 

global mastrevirus dynamics focusing on diversity, host and geographic ranges, 

mechanisms of evolution, phylogeography and possible origins of these viruses. In 

addition to this a viral metagenomic approach was used in order to identify novel 

mastreviruses or mastrevirus-like present in New Zealand. 
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The dynamics of the monocot-infecting mastreviruses are investigated in Chapter Two 

and Three. The work described in these two chapters focus mainly on mastreviruses 

which infect non-cultivated grasses in Africa and Australia, a total of 161 full 

mastrevirus genomes were recovered collectively in the two studies. Chapter Two 

reveals a high level of mastrevirus diversity present in Australia with the discovery of 

four new species and several new strains of previously characterised species. An 

extensive sampling effort in Africa undertaken in Chapter Three reveals a broader host 

range and geographic distribution of the African monocot-infecting mastreviruses than 

previously documented. Mosaic patterns of recombination are evident among both the 

Australian and African monocot-infecting mastreviruses.  

 

In Chapters Four, Five and Six a comprehensive investigation was undertaken focusing 

on the dicot-infecting mastreviruses. The study undertaken in Chapter Four entailed the 

recovery of 49 full mastrevirus genomes from Australia, the Middle East, Africa, 

Turkey and the Indian Subcontinent to investigate the diversity of dicot-infecting 

mastreviruses from a global context. Analyses revealed a high degree of CpCDV strain 

diversity and extended the known geographic range of CpCDV. For the first time 

phylogeographic analysis was able to investigate the origins of the dicot-infecting 

mastreviruses. Results revealed the likely origin of the most recent common ancestor 

(MRCA) of these viruses is likely closer to Australia than anywhere else that dicot-

infecting mastreviruses have been sampled and illuminated a supported series of 

historical movements following the emergence of the MRCA. In Chapter Five two 

novel mastreviruses Australian-like mastreviruses were isolated from chickpea material 

from Pakistan. A comprehensive analysis of CpCDV isolates in the major pulse 

growing regions of Sudan in Chapter Six reveals that this region harbours a high degree 

of strain diversity. Complex patterns of intra-species recombination indicate these 

strains are evidently circulating in these regions and infecting the same hosts, driving 

the emergence of new CpCDV strains.  

Collectively the results discussed in Chapters Two through Six extended the current 

knowledge of mastrevirus diversity. The natural host range of many mastreviruses has 
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proven to be more extensive than previously documented, with many species having 

overlapping host ranges and hence these hosts could be acting as ‘mixing vessels’ 

enabling inter-species recombination. Patterns of recombination and selection were 

observed in both the monocot-infecting and the dicot-infecting mastreviruses further 

elucidating the mechanisms these viruses employ to evolve rapidly. Extensive sampling 

in a wide range of geographic regions provides insights into the true geographic range 

of species such as MSV and CpCDV. 

 

Given that mastreviruses have been able to move globally and Australia has been 

identified as a major mastrevirus diversity hotspot it is conceivable that mastreviruses 

are also present in New Zealand. In Chapter Seven and Eight this is explored by using a 

viral metagenomic approach to investigate the ssDNA viral populations associated with 

wild grasses and sewage material in New Zealand. Although no mastreviruses were 

recovered, this endeavour resulted in the discovery of more than 50 novel circular Rep-

encoding ssDNA (CRESS DNA) viruses associated with non-cultivated grasses and 

treated sewage material, many of which are similar to mastreviruses and other 

geminiviruses. These discoveries expand current knowledge on the diversity of ssDNA 

viruses present in New Zealand and further highlight this viral metagenomic approach 

as an effective method for ssDNA virus discovery.  

 

Overall the results discussed in this thesis provide insights into mastrevirus diversity 

and dynamics as well as revealing a wealth of novel CRESS DNA viruses, some of 

which share similarities to geminiviruses.  
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1.1 Introduction 

Viruses infect organisms from all kingdoms of life and are found in all ecosystems, from the 

thermal vents at the bottom of the ocean (Geslin et al., 2003; Ortmann & Suttle, 2005; 

Williamson et al., 2008) to the Dry valleys of Antarctica (Kepner Jr et al., 1998; Laybourn 

Parry et al., 2001; Swanson et al., 2012; Takacs & Priscu, 1998; Zawar-Reza et al., 2014), 

the Sahara Desert (Prigent et al., 2005) and even hyper saline environments (Atanasova et al., 

2012; Krupovic et al., 2011; Roine et al., 2010). The diverse nature of viruses and their 

abundance is apparent from the daily discoveries of novel viruses, however, it is evident 

when considering the quantity of novel viruses being discovered through viral metagenomic 

studies (Labonté & Suttle, 2013; Ng et al., 2011a; Ng et al., 2012; Rosario et al., 2009a; 

Roux et al., 2012; Whon et al., 2012) that the true extent of the global viral diversity is 

immensely underestimated with possibly less than 1% of all viruses on earth being 

catalogued and/or characterised. The classification of viruses, proposed by David Baltimore, 

broadly categorises viruses into seven groups based on their genetic make-up, their approach 

to generate mRNA and replication strategy (Brown et al., 2011). Following this the 

international committee for virus taxonomy (ICTV) was established to implement taxonomic 

guidelines for the classification of viruses. A grouping which in recent years has seen 

increased activity in terms of discovery of novel viruses is the single-stranded DNA (ssDNA) 

viruses. Advances in molecular techniques and sequencing technologies have enable 

scientists to unravel some of the genetic diversity within the ssDNA virus group from a broad 

range of environments and hosts. Novel ssDNA viruses have been discovered in a wide range 

of plants, animals, fungi, bacteria, Archea and environmental samples. To date members of 

two families of ssDNA viruses are known to infect plants, the Nanoviradae family and the 

Geminiviridae family. Whereas members of four families infect animals, Anelloviridae, 

Circoviridae Parvoviridae and Bidnaviridae, and those of two families infect prokaryotes, 

Inoviridae and Microviridae. Only one family is comprised of members which have been 

identified in Archaea, known as Spiraviridae. All these ssDNA viruses have circular ssDNA 

genomes with the exception of parvoviruses and bidnaviruses which have linear genomes.  

 

In recent years the discovery of several novel viruses which share significant similarities to 

circoviruses (family Circoviridae) has led to the proposal of a new genus known as the 

cyclovirus genus, which is also falls in the Circoviridae family. Cycloviruses were first 
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discovered in animal faecal samples (Ge et al., 2011; Li et al., 2010; Victoria et al., 2009) 

and have since been discovered in dragonflies (Dayaram et al., 2013; Rosario et al., 2012a; 

Rosario et al., 2011), human cerebral fluid and nasopharyngeal aspirates (de Jong et al., 

2014; Phan et al., 2014; Smits et al., 2012; van Doorn et al., 2013).  

 

Another group which has been proposed as a new genus is the Gemycircularviruses. Their 

replication-associated proteins (Reps) share similarities with those encoded by members of 

geminiviruses and viral sequences integrated in fungal genomes. The first member was 

isolated from the fungus Sclerotinia sclerotiorum, a host in which the virus was shown to 

induce hypovirulence. Other members of this group have been discovered and are associated 

with insects, animal faecal material, river sediment and plant material (Dayaram et al., 2012; 

Du et al., 2014; Kraberger et al., 2013b; Ng et al., 2011b; Sikorski et al., 2013; van den 

Brand et al., 2012). 

 

Among the recently discovered viruses is a range of novel ssDNA viruses which are yet to be 

officially indexed at a taxonomic level. A large proportion of these have been discovered 

using viral metagenomic approaches from environmental samples. Those which do not fall 

within any of the designated ssDNA families but contain Reps with conserved ssDNA motifs 

are referred to as circular Rep-encoding single-stranded (CRESS) DNA viruses (Rosario et 

al., 2012a; Rosario et al., 2012b).  

 

Of all the ssDNA viruses known, the Geminivirdae family has been the most studied with 

more than 300 recognised species and new species being discovered continuously. The large 

effort towards geminivirus research has primarily been due to the major crop losses they 

cause and rapid spread as result of their insect vector dynamics. 

 

1.2 Geminiviruses 

Geminiviridae is a family of plant infecting viruses. Geminiviruses are found in most regions 

of the world, with the highest incidence and diversity found within tropical and subtropical 

regions. These pathogens infect both monocotyledonous (monocot) and dicotyledonous 
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(dicot) plants and are recognised as a major threat to several economically important crops 

including tomato, maize, cotton, chickpea and cassava (Varma & Malathi, 2003). Typical 

disease symptoms can include foliar crinkling, curling, yellowing, stunting, mosaic and/or 

striations, often resulting in major yield losses. 

 

The circular ssDNA genomes of geminiviruses (~2.7 kilobases (kb) -5.4 kb) are encapsidated 

in ‘twinned icosahedral’ or ‘geminate’ virions that are ~18-30 nm in size, made up of 22 

pentameric capsomers (Fig 1.1) (Zhang et al., 2001). Currently there are seven recognised 

geminivirus genera: Begomovirus, Curtovirus, Topocuvirus, Mastrevirus, Turncurtovirus, 

Eragrovirus, and Becurtovirus (King et al., 2012; Muhire et al., 2013; Varsani et al., 2014a; 

Varsani et al., 2014b). Additionally, there are four highly divergent geminivirus which are 

yet to be classified are Euphorbia caput-medusae latent virus (EcmLV; (Bernardo et al., 

2013), Citrus chlorotic dwarf associated virus (CCDaV; (Loconsole et al., 2012) and 

Grapevine cabernet franc-associated virus (GCFaV; (Krenz et al., 2012) and French bean 

severe leaf curl virus (unpublished) (Fig. 1.2, 1.3 and Table 1.1). Genera within the 

Geminiviridae family are classified based on insect vector that transmits them, genome 

organisation and host range (Fauquet & Stanley, 2003) 

 

Begomoviruses can have genomes which consist of either one circular ssDNA component 

(monopartite) or two circular ssDNA components (bipartite), 2.6-3.2 kb in length, whereas all 

other geminivirus have been found to be monoparite. Monopartite begomoviruses are often 

associated with a satellite DNA (alphasatellites and betasatellites), which can increase 

virulence (Amin et al., 2011; Nawaz-ul-Rehman et al., 2010). A recent study has also shown 

the mastrevirus species Wheat dwarf India virus (WDIV) can also be associated with 

alphasatellites and betasatellites (Kumar et al., 2014).  

 

Only two genes, those encoding a coat protein (Cp) and the Rep are common to all 

geminiviruses. Geminivirus genomes encode between four to eight genes depending on 

species and all have genomes with bidirectionally oriented genes.  
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Figure 1.1: Cryo-EM reconstruction of a MSV geminate capsid. A) Outside view of capsid. B) Cross 
section view of capsid (Shepherd et al., 2010). 
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Figure 1.2: Full genome neighbour-joining phylogenetic tree of representative species and strains 
from geminivirus genera. Viral genomes of geminiviruses across genera are too diverse to be able to 
credibly align and hence this tree is simply an overview of the phylogenetic relationship between the 
different genera. Colours shown in key denote each genus and the four unclassified highly diverse 
geminivirus. aLRT branch support <90% was collapsed. Adapted from Varsani et al. (2014b).
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Genus No of ICTV 
approved species 

Type species Natural host range Vector Nonanucleotide motif 

Begomovirus ~300 Bean golden mosaic virus Dicotyledon plant sp. Whitefly TAATATTAC 

Curtovirus 3 Beet curly top virus Dicotyledon plant sp. Leafhopper 
(Circulifer 
tenellus Baker) 

TAATATTAC 

Topocuvirus 1 Tomato pseudo-curly top virus Tomato (Solanum lycopersicum) Treehopper 
(Micrutalis 
malleifera) 

TAATATTAC 

Becurtovirus 2 Beet curly top Iran virus Dicotyledon plant sp. Leafhopper TAAGATTCC 

Eragrovirus 1 Eragrostis curvula streak virus African lovegrass (Eragrostis curvula) Unknown TAAGATTCC 

Turncurtovirus 1 Turnip curly top virus Turnip (Brassica rapa), Radish (Raphanus 
sativus) Diuxweed (Descurainia Sophia), 
(Anchusa sp.), American nightshade (Solanum 
americanum) and Bladder hibiscus (Hibiscus 
trionum) 

Leafhopper 
(Cicrulifer 
haematoceps) 

TAATATTAC 

Mastrevirus 31 Maize streak virus Poaceae sp., Fabaceae sp. and Solanaceae sp. Leafhopper TAAT(A/G)TTAC 
Unclassified highly divergent Geminivirus  

Citrus chlorotic dwarf associated 
virus 

1 N/A Citrus (Rutsceae sp.)  Unknown TAATATTAC 

Euphorbia caput-medusae latent 
virus 

1 N/A Medusa’s head (Euphorbia caput-medusae) Unknown TAATATTAC 

Grapevine cabernet franc-
associated virus 

1 N/A Grape (Vitis vinifera) Unknown TAATATTAC 

French bean severe leaf curl 
virus 

1 N/A French bean (Phaseolus vulgaris) Unknown TAATATTAC 

Table 1.1 Summary of the key features of the seven classified geminivirus genera and four unclassified highly divergent species.  
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The Geminiviridae family is comprised of seven genera and four unclassified divergent 

viruses, that will most likely be assigned to new genera. A brief descriptive overview of each 

genus and unclassified divergent species follows (see Fig. 1.2, 1.3 and Table 1.1 for 

phylogenetic overview, genome organisation, and general information genus within the 

Geminiviridae family, respectively).  

1.2.1 The genus Begomovirus 

The type species of the genus Begomovirus is Bean golden mosaic virus (and this is one of 

more than 200 ICTV recognised species (based on a nucleotide sequence identity of <89% 

for new demarcation of a new species) (Fauquet et al., 2008). This is the only genus within 

the Geminiviridae family that have members that have either bipartite (two ~2.6 kb 

components) or monopartite (one ~2.7 kb component) genomes. Begomoviruses infect a 

wide range of dicot plants, however, individual species often have a narrow natural host 

range (Fauquet et al., 2008). Geographical distribution of begomoviruses extends into the Old 

World (Africa and Eurasia) and New World (The Americas). Monopartite begomoviruses are 

thought to have originated in the Old World and are often associated with satellite DNA 

molecules known as alphasatellites or betasatellites (approximately 1350 nucleotides (nt) in 

size) and can affect pathogenicity and symptomology in the host (Zhou, 2013). 

Alphasatellites encode a single protein which is a Rep that is most closely related to the Rep 

encoded by members of the Nanoviridae family. These are capable of self-replicating but 

need an associated begomovirus for encapsidation and movement. Alphasatellites and 

betasatellites have been shown to interfere with RNA silencing by targeting a step in the 

RNA-silencing pathway (Amin et al., 2011; Nawaz-ul-Rehman et al., 2010). Betasatellites 

share a nonanucleotide motif sequence (TAATATTAC) with helper begomovirus and 

encodes a single gene which is a pathogenicity determinant. Although satellites are not 

usually associated with or needed for increased virulence in bipartite begomoviruses, some 

have been found co-infecting the same host (Mansoor et al., 2003). All begomoviruses have a 

nonanucleotide motif sequence of “TAATATTAC”. Monopartite begomovirus genomes 

encode six genes and bipartite begomovirus encode six to eight genes. The genome 

organisation of monopartite and DNA-A of bipartite begomoviruses is similar, both encoding 

the following genes: coat protein gene (cp, V1), replication-associated protein gene (rep, C1), 

transcriptional activator protein gene (trap/ss, C2), a replication enhancer gene (ren, C3) and 

a symptom determinant gene (sd, C4) (Fig. 1.3). In addition, monopartite and DNA-A 
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components of Old World begomoviruses also encode a pre-coat gene (V2). The DNA-B of 

bipartite begomoviruses encodes a nuclear-shuttle protein (nsp, V1) and a movement protein 

(mp, C1). All begomoviruses are transmitted by the whitefly Bemicia tabaci, with the 

exception of most Abutilon mosaic virus strains which have been vegetatively propagated in 

ornamental plants for a long period of time and a mutation in the CP has rendered this virus 

unable to be transmitted by whiteflies (Höhnle et al., 2001). 

1.2.2 The genus Curtovirus 

The Curtovirus genus is comprised of three species, the type species Beet curly top virus 

(BCTV), Spinach severe curly top virus (SpSCTV) and Horseradish curly top virus (HrCTV) 

a taxonomy classification that was recently revised by Varsani et al. (2014a), as determined 

by a nucleotide sequence identity of <77% for demarcation of a new species. Members of this 

genus are known to infect more than 300 dicot plant species and classical symptoms include 

leaf curling and distortion, yellowing of leaves, vein swelling, stunting and necrosis. To date 

curtoviruses have only been identified in the northern hemisphere (Baliji et al., 2004; 

Creamer et al., 2005; Velásquez-Valle et al., 2012). Many isolate sequences of BCTV have 

been deposited in GenBank, with a total of 9 strains identified (Briddon et al., 1998; Chen et 

al., 2011; Hormuzdi & Bisaro, 1993; Lam et al., 2009; Stanley et al., 1986; Stenger, 1993; 

Varsani et al., 2014a). Curtoviruses have a nonanucleotide motif sequence of 

“TAATATTAC” and can encode up to seven genes (BCTV, Fig. 1.3). Genes encoded include 

three on the virion-sense strand, mp (V2), reg (V3) and the cp (V1), and four on the 

complementary-sense strand, the rep (C1), ren (C2), trap/ss (C3) and sd (C4). The 

complementary-sense genes are most similar to that of the begomoviruses and those in the 

virion-sense to other monopartite geminiviruses. Curtoviruses are transmitted by the leaf 

hopper Circulifer tenellus Baker (Chen & Gilbertson, 2008). 

 

1.2.3 The genus Topocuvirus 

The sole member of the genus Topocuvirus is the species Tomato pseudo-curly top virus 

(TPCTV). A single isolate was recovered from a tomato (Solanum lycopersicum) plant 

collected in Florida presenting leaf curling symptoms (Briddon et al., 1996). The symptoms 

presented are very similar to those caused by BCTV, which lead to the initial thought that this 

was the cause of the disease. Subsequent discovery that BCTV was not the causal agent the 
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disease led to this virus being named pseudo-curly top which was soon followed by 

characterisation of the TPCTV. TPCTV has a nonanucleotide motif sequence of 

“TAATATTAC”. Genome organisation consists of six open reading frames (ORFs), two 

virion-sense ORFs encoding a mp (V2) and a cp (V1), and four complementary-sense, a 

unknown (C4), rep (C1), possible trap/ss (C2) and a ren (C3) (Fig. 1.3). The vector of this 

virus is most likely the treehopper species Micrutalis malleifera which was shown to be able 

to transmit the disease agent causing pseudo-curly top disease in tomato before the virus was 

molecularly characterised (Simons & Coe, 1958).  

1.2.4 The genus Becurtovirus 

The Becurtovirus genus name is derived from the first species identified Beet curly top Iran 

virus (BCTIV) (Heydarnejad et al., 2013; Soleimani et al., 2013; Varsani et al., 2014b; Yazdi 

et al., 2008). The other recognised species is Spinach curly top Arizona virus (SCATV) 

(Hernández-Zepeda et al., 2013). So far BCTIV has only been found in Iran infecting dicot 

plants (Gharouni Kardani et al., 2013; Heydarnejad et al., 2013; Yazdi et al., 2008), and 

SCATV in the United States of America infecting spinach (Spinacia oleracea) (Hernández-

Zepeda et al., 2013). The nonanucleotide sequence for all members of this genus is 

“TAAGATTCC”, which is different from the conserved sequence seen among most 

geminivirus. Becurtoviruses have five ORFs, three virion sense ORFs and two complement 

sense ORFs (Fig. 1.3). Those that are virion sense oriented, encode for a mp, possible reg and 

a cp, and are most closely related to those in a similar position in the curtoviruses. The 

complementary sense ORFs encode for a rep (mostly likely derived from a spliced transcript) 

and a repA. Symptoms in infected hosts include leaf deformation, rolling, yellowing, stunting 

and vein swelling (Gharouni Kardani et al., 2013; Hernández-Zepeda et al., 2013). BCTIV is 

transmitted by the leaf hopper species Circulifer haematoceps (Heydarnejad et al., 2013). 

The vector for SCATV is still unknown however it is thought to most likely be the leaf 

hopper species C. tenellus as this is responsible for spreading the Curtovirus species 

SpSCTV, which was found co-infecting spinach plants along with SCATV. 

1.2.5 The genus Eragrovirus 

The Eragrovirus genus thus far consists solely of the species Eragrostis curvula streak virus 

(ECSV) (Varsani et al., 2009b). There are two strains ECSV-A and -B. ECSV has so far only 

been found in South Africa infecting the perennial grass Eragrostis curvula which presented 
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mild streak symptoms, similar to that caused in maize infected with Maize streak virus 

(MSV). Members of this species all have an atypical nonanucleotide sequence motif of 

“TAAGATTCC”, the same motif which is seen in the becurtoviruses. Based on current 

annotation of ECSV genome encodes for four ORFs, two transcripts in each orientation (Fig. 

1.3). On the complementary-sense strand are two ORFs encoding the rep and possible trap 

and on the virion-sense strand are two ORFs encoding a possible mp and a cp. The Rep and 

CP both share similarity to other geminiviruses, whereas the possible MP and Trap share no 

homology to other geminiviruses, the latter do however correspond in positioning in genome 

to other geminivirus (Varsani et al., 2014b; Varsani et al., 2009b). Based on phylogeny the 

Rep is most closely related to begomoviruses, topocuviruses and curtoviruses whereas the CP 

is most closely related to the mastreviruses, alluding to the fact that this recently proposed 

genus is the progeny of an ancient recombination event. 

1.2.6 The genus Turncurtovirus 

Turncurtovirus is another genus which only has a single recognised species Turnip curly top 

virus (TCTV) (Briddon et al., 2010a; Razavinejad & Heydarnejad, 2013; Razavinejad et al., 

2013). There are currently four strains of TCTV (A – D) (Razavinejad et al., 2013). TCTV 

has been found only in Iran and through molecular methods (full genome isolation or 

screening PCR) a broad host range has been identified including Brassica rapa, Raphanus 

sativus, Descurainia sophia, Anchusa sp., Solanum americanum and Hibiscus trionum 

(Briddon et al., 2010a; Razavinejad et al., 2013). Symptoms in turnips include leaf cupping 

and vein swelling. The nonanucleotide motif sequence is the characteristic “TAATATTAC” 

present in the majority of geminiviruses. The TCTV genome has six ORFs, similar to some 

begomoviruses. Two ORFs in the virion-sense encode a possible mp (V2) and a cp (V1) and 

four ORFs in the complementary-sense encode a possible sd (C4), rep, possible trap/ss (C2) 

and a ren (C3). The genome organisation TCTV is more similar to topocuviruses, however, 

its biological properties are more similar to curtoviruses. This virus is vectored by the leaf 

hopper species C. haematoceps (Razavinejad & Heydarnejad, 2013). 

1.2.7 The genus Mastrevirus  

The type member of the Mastrevirus genus is Maize streak virus. MSV particles were first 

visualised in 1974 (Bock et al., 1974). Mastreviruses infect either mono or dicot plant species 

and have been found only in the old world. An exceptions to this are three unclassified 
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Mastrevirus species, two of which were isolated from dragonflies collected in Puerto Rico, 

with the nomoncladure Dragonfly-associated mastrevirus (Rosario et al., 2013) and a 

mastrevirus-like sequences identified in sweet potato samples from Peru (Kreuze et al., 

2009). Thirty-two species constitute the Mastrevirus genus, five of which were discovered in 

studies undertaken as part of this thesis, see Chapter 2 and 5 (based on a nucleotide sequence 

identity of <78% for new demarcation of a new species) (Ali et al., 2004; Briddon et al., 

2010b; Chatani et al., 1991; Geering et al., 2011; Greber, 1989; Hadfield et al., 2011; 

Hadfield et al., 2012; Halley-Stott et al., 2007; Kraberger et al., 2012; Kumar et al., 2012; 

Lawry et al., 2009; MacDowell et al., 1985; Martin et al., 2001; Nahid et al., 2008; 

Oluwafemi et al., 2008; Pande et al., 2012; Rybicki, 1994; Schnippenkoetter et al., 2001; 

Schubert et al., 2007; Shepherd et al., 2008b; Thomas et al., 2010). Until recently the only 

geminivirus genus known to be associated with an alphasatellite or a betasatellite was 

begomoviruses, Kumar et al. (2014) have identified both types of satellites associated with 

the mastrevirus species WDIV. Mastreviruses have the nonanucleotide motif sequence 

“TAAT(A/G)TTAC”. All species have four ORFs, with a mp (V2) and a cp (V1) encoded on 

the virion-sense strand and a rep and repA encoded on the complementary-sense strand (Fig. 

1.3). The rep is expressed from a spliced ORF C1 and C2 and repA is expressed from ORF 

C1 alone (Dekker et al., 1991; Mullineaux et al., 1990; Schalk et al., 1989; Wright et al., 

1997). All four ORFs are necessary for systemic infection (Liu et al., 1998). The different 

mastrevirus members are each transmitted by leafhopper species from the family 

Cicadellidae. 

1.2.8 Unclassified highly divergent geminivirus 

Four highly divergent, yet to be classified, geminiviruses are EcmLV (HF921459, HF921460 

and HF921477; (Bernardo et al., 2013), CCDaV (JQ920490 and KF561253; (Loconsole et 

al., 2012), GRLaV (KC427993-96; (Krenz et al., 2012; Poojari et al., 2013) and FbSLSV 

(JX094280-81; unpublished) (Fig. 1.2). EcmLV was isolated from Euphobia caput-medusa, a 

host which was non-symptomatic, CCDaV from several citrus sp., GRLaV from grapevine 

and FbSLSV from a common french bean. All have the highly conserved geminivirus 

nonanucleotide motif “TAATATTAC” and all potentially have a spliced rep. Full genome 

comparison shows FbSLSV and EcmLV are most closely related to each other (~72% 

nucleotide pairwise identity). EcmLV and FbSLSV have similar genome organisation 

however EcmLV has seven ORF’s and FbSLSV only has six. Both have three ORFs in the 
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complementary-sense orientation, which encode a spliced rep (C1:C2), a repA (C1) and an 

unknown ORF. In the virion-sense orientation FbSLSV has three ORFs encoding; a cp (V1) 

and two unknown (V2 and V3), whereas EcmLV has four ORFs encoding a cp (V1), a 

possible mp (V4 and/or V3) and an unknown expressed from a spliced transcript (V3 and 

V4). CCDaV which contains five ORFs, in the complementary-sense orientation has a spliced 

rep (C1:C2) and a repA (C1), and in the virion-sense a cp (V1) and possible mp (V4 and/or 

V3). Lastly GCFaV has six ORFs, in the complementary-sense orientation, a spliced rep 

(C1:C2), a repA (C1) and an unknown (C3), in the virion-sense orientation, a cp (V1) and 

two unknown (V2 and V3) ORFs. The Reps of FbSLSV and EcmLV are most closely related 

to GCFaV (~79% amino acid pairwise identity) (Bernardo et al., 2013). Full genome 

nucleotide analysis of GCFaV indicates it is most closely related to the mastreviruses and 

ECSV (~50% nucleotide pairwise identity). CCDaV has a genome of ~3640 nt, which is the 

largest genome of all geminiviruses.  
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Figure 1.3: Genome organisations of representatives from each geminivirus genus and four highly divergent uncharacterised geminiviruses. 
Arrows denote direction in which each ORF is transcribed. The protein encoded by each ORF is represented by colours shown in key. The 
following are acronyms and genes or elements they represent, CR (common region), LIR (long intergenic region), SIR (short intergenic 
region), rep (replication-associated protein), ren (replication enhancer gene), trap (transcription activator protein gene), ss, (silencing 
suppressor), sd (symptom determinant), cp (coat protein), mp (movement protein), reg (regulatory gene) and nsp (nuclear shuttle protein).  
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1.2.9 Replication of geminiviruses 

Geminiviruses replicate through a mechanism known as rolling circle replication (RCR) (Fig 

1.4) (Heyraud et al., 1993; Jeske et al., 2001; Koonin & Ilyina, 1992; Saunders et al., 1991) 

and the less studied recombination-dependent replication (RDR) (Jeske et al., 2001; Saunders 

et al., 1991). Geminivirus replication occurs in the plant host cell nucleus through a double 

stranded DNA (dsDNA) intermediate. The small genome size of these viruses means their 

genomes encode for only a few proteins and do not encode their own DNA polymerases, 

therefore relying largely on the plant host replication machinery and cell cycle for its own 

replication. RCR in geminiviruses can be broken down into stages referred to as initiation, 

elongation and termination; reviewed by (Gutierrez, 1999; Hanley-Bowdoin et al., 2013; 

Martin et al., 2011a). The following is a collective overview of RCR of geminiviruses 

through experimental information from a variety of geminivirus species; however it is worth 

noting that this may not be the exact series of events for all geminiviruses. Following entry 

into the cell via the insect vectors stylet the viral DNA is transported to the infected cell 

nucleus presumably by the host transport systems. Several lines of evidence show that the CP 

is involved in the localisation of viral DNA to host nucleus (Liu et al., 2001; Liu et al., 

1999a; Qin et al., 1998; Unseld et al., 2001), in mastreviruses it has been shown that the CP 

also enters the nucleus (Liu et al., 2001). Details of when and how the viral capsid is shed 

prior to replication are still to be fully elucidated. Once in the nucleus, the viral ssDNA 

becomes covalently closed circular double-stranded DNA (cccdsDNA) by the host DNA 

polymerase. This is primed either by a sequence of oligonucleotides of host origin or in the 

case of mastreviruses a primer exists which is annealed to the parent viral DNA and 

encapsidated (Andersen et al., 1988; Donson et al., 1984; Hayes et al., 1988). Following 

conversion into cccdsDNA, this molecule most likely associates with host histone proteins 

and is packaged into mini-chromosomes ready for gene transcription. Expression of the Rep 

protein is crucial for initiation of RCR (Gröning et al., 1990; Pilartz & Jeske, 1992; Saunders 

et al., 1991). To then initiate RCR replication the Rep protein binds to repeating cis-acting 

elements known as “iterons” (Argüello-Astorga & Ruiz-Medrano, 2001; Londoño et al., 

2010), in close proximity to the stem-loop which contains the highly-conserved 

nonanucleotide 5’-TAATATTAC-3,’ known as the origin of replication (v-ori) (among 

geminivirus species there are a few variations of the nonanucleotide) and Rep cleaves the 

positive viral DNA strand. Viral DNA in an open circular state becomes a template for a 

continuous coil-like production of a new virion DNA strand while displacing the old strand. 
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Following one or more cycles the ends of the old virion DNA strand are completely displaced 

and subsequently ligated, resulting circular virion ssDNA can consist of a single copy or 

several copies of the original circular ssDNA molecule. If monomeric, these molecules can 

either then be encapsidated into virions or re-enter the replication cycle. 
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1. Insect transmits geminivirus particles
via feeding into a plant cell

2. Viral ssDNA makes its way to the nucleus of the cell
viral ssDNA

viral ssDNA

mastrevirus primer

3. Host DNA polymerase converts viral
ssDNA into dsDNA

4. Rep proteins are expressed
and bind to ssDNA nicking the
virion strand at th v-ori

5. Replication takes place
and parental strand
is displaced

6. On completion of
a cycle the parental
strand is displaced and
released, followed by:
a) encapsidation
and cell-to-cell movement
for a systemic infection
b) re-enters the
replication cycle

 

Figure 1.4: Summary of rolling circle replication of mastreviruses. Following entry into the cell via a 
feeding leafhopper (step 1), viral DNA is transported to the nucleus (step 2) where it is converted to 
dsDNA, a replicative intermediate form (step 3). The Rep is transcribed and binds to the v-ori where 
it nicks the virion strand (step 4). The Rep remains bound to the nicked end while the new strand is 
synthesised by the host replication machinery (step 5). Once a cycle of replication is completed the 
parental strand is displaced (step 6) and released this can then be encapsidated and move cell-to-cell 
to establish a systemic infection (step 6A) or re-enter the replication cycle in increase viral load in the 
cell (step 6B). 
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1.2.10 Theories behind the evolutionary origin of geminiviruses 

A common hypothesis regarding the origin of viruses is that they were present in the early 

stages of life on earth and possibly even pre-dated the divergence of cellular life (Forterre, 

1992; Forterre, 2006; Koonin et al., 2006). One of the major roots of this theory is that 

viruses which infect a range of hosts from the three domains of life often share genomic and 

morphological features. Other discussed theories are; 1) viruses were formed from unicellular 

organisms as part of a reduction evolution and 2) they originated from genetic material which 

separated from its cellular host during replication or other cell cycle stages and then became 

parasitic (Hendrix et al., 2000). It is also possible that the emergence of viral families was 

polyphyletic.  

 

The origin of geminiviruses is a well theorised topic. Like geminiviruses, several families of 

circular ssDNA viruses replicate through RCR. These includes families which infect plants 

(Nanoviridae), animals (Circoviridae) and bacteria (Microviridae) because these viruses most 

likely replicate in a similar manner and share homologous genetic features, mostly in the Rep, 

which suggests they may have originated from a common ancestor (Ilyina & Koonin, 1992; 

Koonin et al., 2006; Rojas et al., 2005). Two lines of evidence lead to the theory that 

geminiviruses originated from bacterial plasmids, referred to as the plasmid-to-virus 

hypothesis (Krupovic et al., 2009); 1) Geminiviruses are able to replicate efficiently in 

Agrobacterium tumefaciens and to some degree in Escherichia coli (Rigden et al., 1996; 

Selth et al., 2002). Showing that bacterial cell cycle factors can be hijacked by geminiviruses 

for viral replication. 2) Identification of ssDNA Rep-like sequences in gram-positive bacteria 

and bacterial plasmids known as extrachromosomal DNA replicons (EcDNA) (Krupovic et 

al., 2009). Specifically plasmids from the insect transmitted plant pathogens phytoplasmas 

(Nishigawa et al., 2001; Nishigawa et al., 2002; Oshima et al., 2001; Rekab et al., 1999; 

Tran-Nguyen & Gibb, 2006). Krupovic et al. (2009) also discuss the observation that the CP 

of geminiviruses has similar features to ssRNA viruses, in particular Satellite tobacco 

necrosis virus. Therefore the proposed simplified scenario is that ssRNA viruses and 

phytoplasma occupied the same host and a recombination event occurred between the 

phytoplasma plasmid and ssRNA virus for acquisition of a CP, ultimately leading to the 

emergence of early geminiviruses.  

 



Chapter 1  

20 

This hypothesis was rejected by Saccardo et al. (2011), based on evidence that the Rep 

features in EcDNA are not of phytoplasmal origin and ancestral geminivirus-like CPs have 

been found in viruses from marine environments in which similarity analysis shows is a more 

likely origin than a recombination event with a ssRNA virus. There are actually three types of 

EcDNA associated with phytoplasma, two of which type I and II replicate through RCR. 

Type I is more closely related to plasmids which employ RCR from the pLS1 family 

(Bergemann et al., 1989). Type II is the only group which shares similarity to the geminivirus 

Reps, evidence given by Saccardo et al. (2011) indicates that the original type II Rep was 

swapped through recombination for a Rep from a geminivirus-like replicon. Additionally 

geminivirus Rep-like protein sequences have been identified in eukaryotic genomes; plants 

(Kenton et al., 1995; Murad et al., 2004), fungi and entomoeba. Phylogenetically, the Rep-

like sequences of plant origin cluster more closely to those of fungal origin (Liu et al., 2011). 

Integrated geminiviral DNA has been identified in plant genomes, for example ancient 

germlines of Nicotiana sp. with integrated geminivirus-related DNA has led to the suggestion 

that geminiviruses probably originated >10 million years ago (Ashby et al., 1997; Bejarano et 

al., 1996; Lefeuvre et al., 2011; Lim et al., 2000; Murad et al., 2004).  

 

A ssDNA virus which infect fungi, Sclerotinia sclerotiorum hypervirulence-associated DNA 

virus 1, has a Rep which is most closely related to those of geminiviruses. This virus is 

member of the proposed Gemycircularviruses genus (Rosario et al., 2012a; Sikorski et al., 

2013; Yu et al., 2010; Yu et al., 2013). It is believed that these two groups, the geminiviruses 

and gemycircularviruses most likely evolved independently but may have a common ancestor 

which existed before the split off between plants and fungi (Liu et al., 2011). 

 

1.2.11 Geminivirus evolution 

1.2.11.1 Genetic drift 

For some time it was thought that RNA viruses evolve much faster than DNA viruses, 

However, several studies have shown that small ssDNA viruses are able to evolve at rates 

similar to those of RNA viruses, and used this information to date and ascertain possible 

origins of geminiviruses (De Bruyn et al., 2012; Duffy & Holmes, 2008; 2009; Duffy et al., 
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2008; Firth et al., 2009; Grigoras et al., 2010; Harkins et al., 2014; Harkins et al., 2009b; 

Kraberger et al., 2013a; Van der Walt et al., 2008a).  

 

Mutation rates in geminiviruses has been shown to be relatively high and comparable to those 

determined for RNA viruses (Duffy & Holmes, 2008; 2009; Duffy et al., 2008; Roossinck, 

1997). For example, mastreviruses have been shown to have substitution rates of between 2 

and 3 × 10-4 substitutions/site/year (Harkins et al., 2009a). It is surprising that this is the case 

as geminiviruses are replicated by a presumed high fidelity host polymerase which has a 

much lower error rate than the error prone RNA-polymerase encoded by RNA viruses. There 

are several possible explanations for this, such as the host exonucleases may not repair errors 

in the viral DNA because it is not methylated unlike the plant host DNA or it may be that the 

virus is double stranded for a short period during replication. Mutation rates can also be 

affected by base deamination which is the spontaneous conversion of a cytosine (C) to a 

uracil and a guanine (G) to a xanthine (Caulfield et al., 1998; Duffy & Holmes, 2008; 

Inamdar et al., 1992). This is more likely to occur when DNA is in a single-stranded form for 

long periods of time prior to replication (Duffy & Holmes, 2008). It is unknown to what 

degree deamination affects mutation rates.  

 

Van der Walt et al. (2008a) investigated mutation rates on both strands to identify 

substitution biases in MSV and found that G to thymine (T) mutations were most common 

across the whole genome. It was proposed that the cause of this is not due to deamination but 

possibly oxidation of guanine. Oxidation is a defence mechanism employed by the host (Van 

der Walt et al., 2008a). Furthermore substitution biases seem to be strand specific with C to 

adenine (A) mutations most commonly occurring on the complementary strand whereas G to 

T mutations most commonly occurring on the virion strand. Recombination has been 

affiliated with mutational changes in ssDNA genomes (Shcherbakov et al., 2011) however, in 

geminiviruses, controlled short term experiments showed no association (Monjane et al., 

2012).  

 

Both Tomato yellow leaf curl virus (TYLCV) and MSV seem to be evolving predominantly 

under negative selection (Duffy & Holmes, 2008; Monjane et al., 2012; Van der Walt et al., 

2008a). Data on geminivirus mutation rates from both field and lab experiments as well as 
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those from different natural hosts are suggesting that selection pressures may not, to a large 

degree, be influencing substitution rates (Isnard et al., 1998; Monjane et al., 2012; Van der 

Walt et al., 2008a). Harkins et al. (2009a) showed through long-term evolution experiments 

that mastrevirus are under a similar level of negative pressure to other geminiviruses and 

therefore rejects the hypothesis put forward by Wu et al. (2008) that mastrevirus coevolved 

with their hosts. In order to investigate geminiviral evolution and timelines it is necessary to 

estimate basal substitution rates. Sampling of geminivirus isolates in nature at various time 

points such as those from archived samples with known collection dates has enabled the 

fairly accurate estimation of some geminivirus timelines. Additionally, this information has 

enabled studies to infer the possible geographical origin of various geminivirus species most 

recent common ancestor (MRCA), with most of these studies focusing on begomovirus (De 

Bruyn et al., 2012; Lefeuvre et al., 2010) and mastrevirus species (Harkins et al., 2009b; 

Kraberger et al., 2013a; Monjane et al., 2011b). 

1.2.11.2 Recombination and reassortment 

Recombination is the swapping of genetic material from one virus to another, a mechanism 

which accelerates geminivirus evolution. Recombination of eukaryote-infecting ssDNA 

viruses has been reviewed by Martin et al. (2011a). It has also been extensively analysed in 

geminiviruses and evidence of recombination has been identified amongst strains, species and 

even between genera of geminiviruses. Bipartite geminiviruses pseudo-recombination (also 

known as reassortment) is the swapping of entire components among strains or species, has 

also been documented. An obvious prerequisite for recombination to occur is that two viruses 

co-infect the same cell. Recombination enables the repair of deleterious mutations and can 

preserve positive mutations in a population. There is homologous recombination which can 

allow two closely related defective viral isolates to form a “fitter” virus and non-homologous 

recombination that can enable the shuffling of viral genes as well as insertion of new genes or 

intergenic regions. Recombination detected in most geminiviruses shows that there are two 

recombination hotspots, one at the interface between the CP and SIR, and the other in the LIR 

close to the v-ori (Lefeuvre et al., 2009; Martin et al., 2011b; van der Walt et al., 2009; 

Varsani et al., 2009a; Varsani et al., 2008b).  

 

The mechanisms facilitating recombination are still not very well understood, however, a 

common theory is that it may occur following the disruption of replication when transcription 
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and replication factors collide. This is supported by recombination hotspots at the interfaces 

between ORF and intergenic regions as discussed earlier (Jeske et al., 2001). Premature 

detachment of the replication complex or various other factors may also result in the 

reattachment of to a new viral template to produce a recombinant. Secondary structures are 

most likely a contributing attribute to facilitating recombination as they will likely cause the 

replication machinery to stall, reinforced by the evidence of a recombination hotspot close to 

the v-ori, which forms a hairpin. It is also possible that while the virus is in a dsDNA 

replicative state, a DNA breakage may occur or it may be in the covalently closed or open 

circular form and the host repair systems could match this template strand with strand from 

another similar virus. The likelihood of two strands being repaired will most likely depend on 

the level of similarity shared in the repair region. This mechanism is known as 

“recombination dependent replication” which results in high frequencies of sub-genomes 

length DNA molecules and been shown to be a mode of viral genome replication in 

geminiviruses (Alberter et al., 2005; Casado et al., 2004; Erdmann et al., 2010; Jeske et al., 

2001; Martin et al., 2011a; Preiss & Jeske, 2003). 

 

By recombining, geminiviruses are able to rapidly explore sequence space and therefore may 

have the ability to adapt to new hosts and vectors more quickly than through mutation alone. 

The ability to adapt rapidly through recombination has been demonstrated in controlled lab 

experiments using chimeric defective MSV clones constructed from wild-type “fit” MSV 

genome. Combining these defective MSV genomes in a mixed infection resulted in a rich 

tapestry of recombinant progeny (van der Walt et al., 2009) and in an experiment where the 

genomes were originally detrimentally defective, these viruses were able to recombine to 

produce viable progeny (Monjane et al., 2014).  Studies of geminiviruses outside of the 

controlled lab experiments have implicated recombination as a possible driving force behind 

increase pathogenicity, host range and emergence of new geminiviruses (Klute et al., 1996; 

Monjane et al., 2011b; Padidam et al., 1999; Pita et al., 2001; Ribeiro et al., 2003; Sanz et 

al., 2000; Saunders et al., 2002; van der Walt et al., 2009; Varsani et al., 2008b; Zhou et al., 

1997; Zhou et al., 1998). 

1.2.12 Genome secondary structure 

Geminivirus single-stranded genomic DNA forms secondary structures which play important 

roles in replication and potentially other biological functions. The most studied secondary 
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structure in geminivirus and other circular ssDNA viruses is the stem-loop structure which 

contains the v-ori central to replication (Muhire et al., 2014; Orozco & Hanley-Bowdoin, 

1996; Stanley, 1995). A recent review looked at secondary structures across geminivirus in 

order to identify if any other highly conserved secondary structures could potentially play a 

role in biological functions of the virus (Muhire et al., 2014). This study identified three 

highly conserved secondary structures. The first of which is located in the Rep intron which 

has been previously reported in MSV by Shepherd et al. (2006). The second identified 

structure is associated with the mp intron of mastrevirus, this structure is suggested to play a 

role in splicing of the mp. The third structure was identified near the end of the cp gene in 

begomovirus and encompasses the predicted polyadenylation signals for transcription of both 

strands therefore making it a likely element associated with transcription factors. It is likely 

that there are many undocumented secondary structures throughout the geminivirus genome, 

which play a part in influencing biological features which we are yet to elucidate. 

 

1.3 Mastreviruses 

1.3.1 Genomes of mastreviruses 

The mastrevirus genomes consists of a LIR and SIR and four ORFs (Fig. 1.3 and 1.5). The 

following is a summary of the molecular features in the mastrevirus genomes and functions 

the proteins encoded. Several reviews discuss geminiviral protein structure and function 

(Boulton, 2002; Fondong, 2013; Gafni & Epel, 2002; Gutierrez et al., 2004). Two 

mastreviruses, Wheat dwarf virus (WDV) and Maize streak virus (MSV) have been 

extensively studied and hence the following summary is based on them. Although there are 

differences amongst mastreviruses the key features are most likely very similar. 

1.3.2 Intergenic regions 

Located within the SIR is the complementary strand origin of replication site, initiating 

negative viral DNA strand synthesis, this site it is primed by a tightly bound ~80 nt primer 

which is encapsidated along with the viral DNA (Donson et al., 1984; Hayes et al., 1988; 

Kammann et al., 1991) (Fig. 1.5). The other main features within SIR are the termination and 

polyadenylation signals for complementary-sense and large virion-sense transcripts (Fig. 1.5). 
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The LIR is the more studied intergenic region of the two and has several important features 

which include the v-ori, viral rep and host protein recognition/binding sites as well as virion-

sense and complementary-sense promoter sites and transcription regulatory elements. 

Initiation of RCR commences following the nicking of DNA at the v-ori which is in the 

conserved nonanucleotide motif TAAT(A/G)TTAC between nucleotides 7 and 8. This motif 

is in the loop of a stem-loop which is situated approximately in the middle of the LIR in 

mastreviruses.  

 

In geminiviruses iterative cis-acting sequence elements close to the v-ori and upstream of the 

rep gene TATA evidently act as specific binding or recognition sites for the rep in order to 

commence RCR (Argüello-Astorga et al., 1994; Argüello-Astorga & Ruiz-Medrano, 2001; 

Castellano et al., 1999; Fontes et al., 1992; Orozco et al., 1998; Orozco & Hanley-Bowdoin, 

1998). These iterative elements are referred to as iterons. Several studies highlight potential 

iterons in begomovirus and rep interactions with these sites support a similar interaction in 

mastreviruses (Sanz-Burgos & Gutiérrez, 1998; Willment et al., 2007). Unlike in 

begomoviruses where these iterons are conserved, they are highly variable in mastreviruses 

(Argüello-Astorga et al., 1994). Nonetheless, Willment et al. (2007) demonstrated that Reps 

of different mastrevirus species can replicate each other with a relatively high level of 

efficiency. These authors concluded that although iterons are important Rep 

recognition/binding sites some variability in sequence is acceptable in order for adequate 

levels of replication to occur. 

 

First discovered in WDV is a sequence consisting of a series of A-T’s, found between the 

stem-loop and beginning of the mp ORF. This A-T sequence series is an intrinsic bent DNA 

region in mastreviruses proposed to be a replication regulatory element (Gutiérrez et al., 

1995; Suärez-López et al., 1995). Upstream of the stem-loop is a GC-rich region (GC boxes) 

which binds host nuclear factors shown in vitro by Fenoll et al. (1990). Both intergenic 

regions play an important role in viral replication and expression of viral genes. 
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Figure 1.5: Overview of functional regions within the long intergenic (LIR) and short intergenic 
regions (SIR) of mastrevirus (based on WDV and MSV). The key feature identified in the LIR are the 
stemloop containing the nicking site for initiation of rolling circle replication, a GC box which is a 
repetitive sequence shown to bind host factors (Fenoll et al., 1990) and TATA boxes are thought to be 
transcription promoters (Dekker et al., 1991; Mullineaux et al., 1984; Willment et al., 2007). Also 
present are A-tracts which are a series of A-T’s that potentially play a role in regulating replication 
(Gutiérrez et al., 1995; Suärez-López et al., 1995). The key features within the SIR are the bound 
primer which is only found in mastrevirus (Donson et al., 1984; Hayes et al., 1988; Kammann et al., 
1991) and polyadenylation sites for the C-sense and large V-sense gene(s). 
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1.3.3 Movement protein (V2) 

Encoded by the V2 ORF is the mp which is the smallest of the four genes (Fig. 1.3). Wright 

et al. (1997) showed that the transcript of this gene can sometimes be spliced. The mp is 

responsible for the movement of viral DNA from the nucleus to the cell periphery and from 

cell-to-cell via the plasmodesmata. Experiments using green fluorescent protein (GFP):MP 

constructs resulted in fluorescence present in both the original injected and adjacent cells 

advocating the fact that this protein is integral in cell-to-cell movement of viral DNA 

(Kotlizky et al., 2000). Studies using mp gene mutants (single base deletion(s), mutation(s) or 

total gene replacement) were able to demonstrate that the MP is not required for replication 

or encapsidation of the viral DNA (Boulton et al., 1989; Liu et al., 1998).  

 

It has been shown that the movement proteins of Bean dwarf mosaic virus (genus 

Begomovirus) can recognise DNA based on size and structural properties, and facilitate 

enlargement of mesophyll plasmodesmata to enable the movement of viral DNA from one 

cell to the next (Noueiry et al., 1994; Rojas et al., 1998; Sudarshana et al., 1998). It is most 

likely that the MP of mastrevirus functions similarly, supporting this is a study by Dickinson 

et al. (1996) which shows localisation of the protein to plasmodesmata. Unlike in 

monopartite begomoviruses, the MP of mastreviruses has not been shown to directly interact 

with viral DNA, instead it most likely binds to the CP-DNA complex (Boulton, 2002; Liu et 

al., 2001). Structural analysis of MP highlights a hydrophobic region that may interact with 

plant cell membrane proteins (Boulton et al., 1993). The MP of MSV is implicated in 

symptom severity in their hosts (van der Walt et al., 2008b). 

1.3.4 Capsid protein (V1) 

The gene which encodes the capsid protein is transcribed in the virion sense direction. This 

was first determined in MSV by the mapping of RNA transcripts to the MSV genome 

(Morris-Krsinich et al., 1985). When encapsidating viral DNA this protein forms twinned 

icosahedral virions (Zhang et al., 2001). Zhang et al. (2001) used both cryo-electron 

microscopy and in silico protein modelling of MSV CP to show this geminate particle has 

dimensions of 220 x 380 Å and is made up of 22 capsomers (each capsomer in turn is made 

up of five CPs). Modelling illustrated the CP structure has an eight-stranded, antiparalell β-

barrel motif that is said to be common in known ssDNA viruses and an N-terminal α-helix. 
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Furthermore the study showed that the twinned geminate particle structure is very stable. 

Although no studies have looked at CP assembly dynamics of mastreviruses, a study looking 

at the CP of TYLCV showed they self-interacted and that the N-terminal region is needed for 

this interaction (Hallan & Gafni, 2001). The CP in mastreviruses has multiple functions other 

than simply encapsidating and protecting viral DNA. This protein also plays an essential role 

in accumulation of ssDNA, movement of viral DNA to the nucleus for replication (Boulton et 

al., 1993; Liu et al., 1997a; Liu et al., 2001; Liu et al., 1999a), and vector transmission and 

specificity (Boulton, 2002).  

 

The CP of MSV binds to viral DNA (Liu et al., 1997a) mediating both delivery to the nucleus 

and following replication of viral DNA. The CP-DNA complex interacts with the MP for 

movement from the nucleus to the cell periphery and for cell-to-cell movement (Kotlizky et 

al., 2000; Lazarowitz et al., 1989; Liu et al., 2001; Liu et al., 1999a). The CP however is not 

needed for viral replication (Boulton et al., 1993; Boulton et al., 1989). 

 

In order for the virus to be transmitted by a vector it must be able to move through the 

alimentary canal into the midgut, followed by movement from the haemolymph to the 

salivary glands and then transmitted to the plant when the insect next feeds. The importance 

of the ability of the virus to cross the midgut and salivary gland barriers for transmission is 

evident in a study which showed MSV could be found in the head, gut and hemolymph of the 

known MSV vector Cicadulina mbila following acquisition, whereas Digitaria streak virus 

(CSMV) which cannot be transmitted by C. mbila was only found in the gut (Lett et al., 

2002). Although no one has yet shown any experimental evidence for the mechanisms behind 

viral movement in the vector or possible specificity determinants on the CP of mastrevirus, 

other studies on various geminiviruses have implicated the CP in vector specificity (Briddon 

et al., 1990; Briddon et al., 1989; Höfer et al., 1997). It has been hypothesised that the CP has 

a recognition site that allows for receptor-mediated entry into the host epithelial cells 

(Lapierre & Signoret, 2004). Mastrevirus species seem to be leafhopper species specific in 

terms of transmission and therefore it is most likely the CP holds the key to this specificity. A 

study undertaken by Greber (1989) showed that although the leafhopper species Nesoclutha 

pallida was able to transmit two species of monocot-infecting mastrevirus, Paspalum striate 

mosaic virus (PSMV) and Chloris striate mosaic virus (CSMV), Cicadulina bimaculata was 



Chapter 1  

29 

unable to transmit either of these viruses. A localisation study of WDV in its leafhopper 

vector demonstrated that the viral particles move from the midgut through to the salivary 

glands and are transmitted to the plant within five minutes from initial acquisition (Wang et 

al., 2014b). Further, an experiment using antiserum raised against WDV CP showed a 

reduction in accumulation of WDV throughout the insect providing evidence that the CP is 

central in the vector-virus interactions enabling the acquisition to transmission process (Wang 

et al., 2014b). 

1.3.5 Replication-associated protein and RepA (C1 and C1:C2) 

Two replication-associated proteins known as the Rep and RepA are encoded in 

mastreviruses, both in the complementary sense. The Rep is produced from a splicing event 

which removes an intron ~85 nt (intron size varies among species) with acceptor and donor 

sites of GT and AG, respectively (Schalk et al., 1989; Wright et al., 1997). The two 

complementary-sense transcripts have the same start codon and share the same N-terminal 

sequence of ~200 amino acid (each species is slightly different), whereas the C-terminal 

amino acid sequence composition of each protein is different. Promoter sites for transcription 

of these ORFs known as TATA boxes are located within the LIR (Dekker et al., 1991; 

Mullineaux et al., 1984; Willment et al., 2007). The Rep is responsible for the initiation of 

RCR by binding close to the origin of replication situated in the LTR and nicking the virion-

sense DNA strand in the conserved nonanucleotide (TAAT[A/G]TTAC) stem loop sequence 

(Heyraud et al., 1993). Gene modification experiments showed both Rep and RepA are 

essential for replication (Liu et al., 1998). This study also produced a Rep mutant lacking an 

intron which in turn inhibited a systemic infection. 

 

Three conserved RCR initiator motifs within the Rep are known as motif I [FLTY(P/S)], 

motif II [HxHxx] and motif III [YxxKx] (Ilyina & Koonin, 1992; Rosario et al., 2012b) (see 

Fig 1.6 for overview of motifs present in representative from each mastrevirus species). The 

specific function of motif I is not fully understood, however, there is some evidence to 

suggest that it may be a Rep recognition site for iterons found in the LIR (Argüello-Astorga 

& Ruiz-Medrano, 2001). These authors also describe a subdomains that are associated with 

motif I known as iteron-related domain (IRD) and two groups of residues within this domain 

known as DNA-binding specificity determinants (SPD-r1 and SPD-r2). The IRD domain 

forms the core structure of a DNA-binding domain, consisting of a β-sheet subdomain, 
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empirically supported by three-dimensional protein structure analysis of a Tomato yellow leaf 

curl Sardinia virus Rep (Londoño et al., 2010; Mauricio-Castillo et al., 2014). A second line 

of evidence supports the role of IRD-motif I as an intrinsic replication specificity 

determinant, experimentally IRD-motif I Tomato golden mosaic virus (TGMV) mutants were 

shown to lose the ability to bind to DNA specifically (Orozco et al., 1998).  

 

The importance of motif II has been shown using a TYLCV model and it contains conserved 

histidine residues which can bind Mg2+ or Mn2+ ions and therefore is thought to play a part in 

metal ion coordination which is required for Rep cleavage reaction (Laufs et al., 1995a). 

These authors also used a TYLCV model to demonstrate the importance of Motif III which is 

involved in cleaving the bond at the v-ori and subsequent joining activity of the Rep protein 

to the cleaved 5’ end (Laufs et al., 1995a; Laufs et al., 1995b; Orozco & Hanley-Bowdoin, 

1998) 

 

A fourth large conserved motif known as the geminivirus Rep sequence (GRS) domain was 

first identified by Nash et al. (2011), who noted that the highest degree of conservation was at 

either end of the domain and therefore this may actually be two motifs with different 

functions. These authors investigated functionality of this domain using GRS-mutants of the 

begomovirus species TGMV. These mutants were non-infectious and were unable to 

undertake RCR and therefore they concluded this domain is intrinsic for initiation of RCR.  

 

Downstream of motif III are three putative conserved helicase domains known as walker-A 

[G(P/D)(T/S)(R/S)TGK(S/T/K)(S/T/A)], walker-B [(V/I)(I/V/L)DD(I/V)] and motif C 

[(I/V)LxN)]. These dNTP-binding domains are analogous to those in other viruses known to 

play a role in helicase activity (Gorbalenya & Koonin, 1993; Gorbalenya et al., 1990). Amino 

acid sequences in this C-terminal region of WDV, MSV and CSMV also share similarities to 

plant transcription factor genes, known as the myb-like domain (Hofer et al., 1992; Zhan et 

al., 1993). Horváth et al. (1998) transformed yeast cells with vectors containing MSV Rep 

fragments and demonstrated that domains within the C-terminal can act as trans-activators in 

yeast cells, and therefore most likely in plant cells. Furthermore, RepA and Rep proteins have 

been shown to have two domains, the oligomerisation domain and N-terminal interaction 

domain which interact (Horváth et al., 1998). 



Chapter 1  

31 

Preceding the walker-A is a conserved motif in mastreviruses with the amino acids sequence 

LxCxE. This motif is referred to as the retinoblastoma-related protein interaction domain 

(RBR interaction domain) because it has been shown to have function importance in binding 

the plant host retinoblastoma-related protein (Rb proteins), which would otherwise interfere 

with replication of the virus (Xie et al., 1995). This mechanism is similar to that used by 

some animal viruses which have an analogous RBR interaction domain for binding the 

retinoblastoma protein in their animal host. RBR interaction domain mutants are unable to 

infect mesophyll cells of mature leaves, unlike the wild type (McGivern et al., 2005). A fully 

intact RBR interaction domain was shown to be necessary for WDV to be able to infect 

wheat cells in culture (Xie et al., 1995). It is worth mentioning, although a RBR interaction 

domain amino acid sequence of LxCxE is conserved in all dicot-infecting mastreviruses, 

MSV and WDV, it does however vary among other species of mastrevirus (see Fig. 1.6 and 

Additional fig. 1.1 for overview). Only a few amino acids downstream of this motif is a 

newly identified motif known as the RxL motif. Mutations in the RxL motif of the 

begomovirus African cassava mosaic virus (ACMV) Rep have been shown to render the 

virus unable to cause a symptomatic infection in tobacco plants. In yeast this mutant inhibited 

re-replication following introduction of a wildtype ACMV Rep (Hipp et al., 2014). This 

evidence implicates the RxL motif as an interaction site for a novel mechanism linking the 

Rep to host proteins involved in the cell cycle. 

 

The RepA protein in particular has been shown to bind to Rb proteins unlike the Rep (Collin 

et al., 1996; Liu et al., 1999b). The C-terminal region that is unique to RepA has been 

experimentally shown, using yeast cells, to interact with a member from a specific group of 

host factor proteins known as Geminivirus Rep A-binding (GRAB) proteins with this region 

is referred to as the GRAB interaction domain (Xie et al., 1999). Small alterations in the 

amino acid sequence of this motif in Chickpea chlorotic dwarf virus (CpCDV; formerly 

known Bean yellow dwarf virus (BeYDV), and MSV resulted in the retention of virus 

infectivity and symptom induction (although at a reduced efficiency in planta (Liu et al., 

1999b; Shepherd et al., 2005). Collin et al. (1996) demonstrated that RepA is required for V-

sense gene expression (trans-activation domain) and that an interaction between RepA and 

Rb proteins may be essential for expression. The rep of WDV has been shown to inhibit both 

local and systemic RNA silencing by binding small interfering siRNA’s in transgenic 

Nicotiana benthamiana (Wang et al., 2014a).  
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Figure 1.6 Summary of the functional motifs identified in the Rep and RepA of representatives of 
each mastrevirus species. A) The Rep and RepA share the N-terminal sequence whereas the C-
terminal for each is unique. In the shared N-terminal of both Reps are three motifs (I, II and III) which 
are rolling circle replication motifs (Argüello-Astorga & Ruiz-Medrano, 2001; Gutierrez, 1999; Laufs 
et al., 1995b; Nash et al., 2011; Orozco & Hanley-Bowdoin, 1998). An iteron-related domain which 
likely binds to iterons in the LIR precedes motif I (Argüello-Astorga & Ruiz-Medrano, 2001). Also 
found in both proteins are two domains which interact, the N-terminal interaction domain and the 
oligomerisation domain (Horváth et al., 1998), and the RBR interaction domain which interacts with 
the host retinoblastoma-related proteins (Xie et al., 1995). Unique to RepA is the trans-activation 
domain which is involved in activating transcription of the virion-sense genes (Collin et al., 1996), 
and a GRAB interaction domain which interacts with host factors (Xie et al., 1999). Those motifs 
which are unique to the Rep, located in the C-terminal region are walker-A, walker-B and motif-C, 
are dNTP binding motifs, thought to be involved in the Rep helicase activity (Gorbalenya & Koonin, 
1993; Gorbalenya et al., 1990). The RXL motif is a possible cyclin-interacting motif. Also in the C-
terminal region is the myb-like domain which is also thought to interact with cellular proteins (Hofer 
et al., 1992). B) To show the level of conservation of each motif amino acid sequence within the Rep 
of mastreviruses, representatives from each mastrevirus species were aligned and using amino acid 
sequence logo the degree of which a specific amino acid is present at each position is shown by the 
relative size of each letter. The GRS domain of three species, WDV, ODV and EMSV contain 
sequence insertions not found in any other species, these are shown by brackets and the species this 
insertion is found in is noted underneath each bracketed sequence. Colour of amino acid designates 
hydrophobicity; blue is hydrophobic, green is neutral and black hydrophobic. 
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1.3.6 Monocot-infecting mastreviruses 

The majority of mastrevirus infect members of the Poaceae family, to date twenty-five 

species have been documented, all from the old world (Fig. 1.2; Table 1.2). Twelve species, 

have been found in Africa and the south-west Indian Ocean islands (SWIO) and nine in 

Australia. Three species have been documented in Eurasia. One species has been identified in 

Japan and one in Vanuatu. Symptoms induced by monocot-infecting mastrevirus are similar 

across hosts. These symptoms are chlorosis in the form of striations and/or mosaic patterns, 

however, symptoms in maize and cereal crops can be more severe resulting in reduction of 

crop yield and sometimes cause stunting of plant.  

1.3.6.1 African streak mastreviruses 

Of the twelve species identified in Africa, MSV has been the most extensively studied. This 

is largely due to the devastating impact this virus has on maize, a stable crop throughout 

Africa. Maize was introduced to the continent of Africa in the 16th century where it became a 

staple crop, with the first description of the effects of MSV on crops was by Storey (1925). 

MSV infects not only maize but sugarcane and a wide range of wild grass species. A total of 

eleven strains of MSV have been described MSV-A to MSV-K. All eleven strains have been 

found infecting a wide range of grass species, however, MSV-A is the only strain which has 

been identified to infect maize in the field (Monjane et al., 2011a; Oluwafemi et al., 2011; 

Shepherd et al., 2008a; Shepherd et al., 2010; Varsani et al., 2008b). Strains MSV-B – -K are 

all adapted to infect wild-grass species in the genera Digitaria, Urochloa and Setaria. Many 

recombination events among the different strains are evident which has led to the 

diversification of MSV (Monjane et al., 2011a; Owor et al., 2007; Varsani et al., 2009a). An 

recombination event which occurred between ancestral MSV-B and MSV-G/-F variants is 

attributed to have resulted in the emergence of the maize-adapted MSV-A (Varsani et al., 

2008b). Dating analysis of this events indicates it most likely occurred mid-19th century, ~20 

years prior to the first documented reports of maize streak disease in South Africa (Harkins et 

al., 2009b). Subsequent movement of MSV-A subtypes throughout the African continent has 

been reconstructed with various subtypes identified in distinct geographical regions (Monjane 

et al., 2011b). MSV is vectored by the leafhopper genus Cicadulina (Bosque-Pérez, 2000), 

with nine species within this genus being known to transmit MSV (Bigirwa et al., 1995; 

Dabrowski, 1987; Okoth et al., 1987; Rose, 1962; Storey, 1924; 1936; Webb, 1987). Maize 

streak Reunion virus (MSRV) is the only other known mastrevirus species to infect maize. It 
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was first identified in maize plants on the island of La Réunion (Pande et al., 2012) and has 

subsequently been found in Setaria barbata and Rottboellia sp. from Nigeria (Oluwafemi et 

al., 2014). 

 

Five species from Africa which are known only to infect wild grass species are Panicum 

streak virus (PanSV), Axonopus compressus streak virus (ACSV), Eragrostis minor streak 

virus (EMSV), Eragrostic streak virus (ESV) and Urochloa streak virus (USV). Of these 

species PanSV has been the most extensively sampled with nine characterised strains, this 

species has a similar level of diversity to that seen in MSV and is known to infect five wild 

grass species. It is vectored by one of the same leafhopper species as MSV, C. mbila 

(Briddon et al., 1992). ACSV is a newly described species from Nigeria isolated from A. 

compressus (Oluwafemi et al., 2014). Two species EMSV and ESV both infect Eragrostis sp. 

and USV infects Urochloa deflexa. 

 

SacSV, SacSV, SWSV, SSRV, SSV are collectively known as the sugarcane-infecting streak 

viruses, these viruses are all from Africa and the SWIO and have predominantly been isolated 

from sugarcane. Two species, SSV and SSRV have also been isolated from wild grasses. 

Two strains have been identified in the species SSV and SSRV, and three in the newly 

discovered species, SWSV(Candresse et al., 2014).  

1.3.6.2 Australian striate mosaic mastreviruses 

All species of monocot-infecting mastrevirus from Australia have been recovered from wild 

grasses. Bromus catharticus striate mosaicvirus (BCSMV), Digitaria ciliaris striate mosaic 

virus (DCSMV), Digitaria didactyla striate mosaic virus (DDSMV), Sporobolus striate 

mosaic virus (SSMV) -1 and -2 have each only ever been recovered from a single Poaceae 

sp., PDSMV, Paspalum striate mosaic virus (PSMV) and Chloris striate mosaic virus 

(CSMV) infect a wide range of Poaceae sp. (Kraberger et al., 2012) (see Table 1 in Chapter 

Two for a full list of host species). PSMV and DCSMV both have two designated strains, 

PSMV-A and B, and DCSMV-A and B, respectively. The leaf hopper vector Neoclutha 

pallida is known to transmit PSMV, BCSMV, DDSMV and CSMV with varying efficiency. 

This information is based on a single study undertaken by Greber (1989) and no other 
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investigations have been undertaken into possible vectors of Australian monocot-infecting 

mastrevirus. 
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1.3.6.3 Japan-Pacific mastreviruses 

Both Miscanthus streak virus (MiSV) from Japan and Digitaria streak virus (DSV) from 

Vanuatu have single representatives genomes deposited in GenBank with each being named 

after their single known hosts, Miscanthus sacchariflorus and Digitaria sanguinalis, 

respectively. No vector is yet known for either virus. 

1.3.6.4 Eurasian mastreviruses 

WDV, WDIV and ODV are important pathogens of wheat, barley and oat in Europe and 

Asia. The most economically damaging of the cereal-infecting mastrevirus is WDV, of which 

there are five strains, WDV-A to WDV-E which are known to infect wheat (T. aestivum), 

barley (Hordeum vulgare), oat (Avena sativa) and two wild grass species Lolium sp., Secale 

sp. and are transmitted by the leafhopper species Psammotettix alienus and Psammotettix 

provincialis (Ekzayez et al., 2011; Schubert et al., 2007; Schubert et al., 2013; Wang et al., 

2014b). WDIV has only been isolated from wheat (Triticum aestivum) in India and has 

recently been associated with a satellite molecules (Kumar et al., 2014; Kumar et al., 2012). 

ODV is also vectored by P. alienus and has only been documented in Germany infecting oats 

(Schubert et al., 2007). 

1.3.7 Dicot-infecting mastreviruses 

There are six species of mastreviruses which infect dicotyledonous plants. One species is 

found outside of Australia, Chickpea chlorotic dwarf virus (CpCDV) (Horn et al., 1993; 

Kraberger et al., 2013a; Liu et al., 1997b; Nahid et al., 2008) which is found in South Africa, 

North-east Africa, the Middle East, Turkey and the Indian subcontinent. The other five 

species, Chickpea chlorosis virus (CpCV) (Hadfield et al., 2012; Kraberger et al., 2013a; 

Thomas et al., 2010), Chickpea chlorosis Australia virus (CpCAV) (Hadfield et al., 2011) 

and Tobacco yellow dwarf virus (TYDV) (Hadfield et al., 2012; Morris et al., 1992), 

Chickpea redleaf virus (CpRLV) (Thomas et al., 2010), Chickpea yellows virus (CpYV) 

(Hadfield et al., 2012) have all only been found in Australia (Fig. 1.2 and Table 1.2). 

 

CpCDV, through molecular techniques, has thus far been identified in chickpeas (Cicer 

arietinum) (Horn et al., 1993; Kraberger et al., 2013a; Mumtaz et al., 2011; Nahid et al., 
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2008), lentils (Lens culinaris) (Kraberger et al., 2013a), faba bean (Vicia faba) (Kraberger et 

al., 2013a), french bean (Phaseolus sp.) (Halley-Stott et al., 2007; Liu et al., 1997b), field 

pea (Pisum sativum) (Kraberger et al., 2013a), sugarbeet (Beta vulgaris) (Farzadfar et al., 

2008), the weed host Sesbenia bispinosa (Nahid et al., 2008) and most recently capsicum 

(Capsicum annuum) (Akhtar et al., 2013), and cotton (Manzoor et al., 2014). CpCDV in 

sugar beet has only been identified by partial genome sequencing. Symptoms in legumes can 

include stunting, chlorosis and/or reddening of the leaves. Sugar beet presents mild chlorosis 

and stunting and capsicum upwards leaf cupping and stunting. CpCDV has only been isolated 

from cotton with a mixed infection (begomovirus; Cotton leaf curl Burewala virus) therefore 

symptoms caused by CpCDV alone are unclear. There are twelve characterised strains of 

CpCDV, CpCDV-A–CpCDV- L. CpCDV is known to be vectored by the leafhopper species 

Orosius orientalis (Horn et al., 1994; Horn et al., 1993) and Orosius albicinctus (Akhtar et 

al., 2011).  

 

Four species of Australian dicot-infecting mastreviruses, CpCV, CpCAV, CpRLV and CpYV 

are all known to infect chickpeas (Hadfield et al., 2012; Kraberger et al., 2013a; 

Schwinghamer et al., 2010; Thomas et al., 2010), the first two species have also been isolated 

from French bean (Hadfield et al., 2012). Classical symptoms in chickpeas include chlorosis 

or reddening of leaves, stunting and often browning of the phloem. Five strains of CpCV are 

currently known, CpCV-A–CpCV-F. No vector is known for CpCV, CpCAV, CpRLV or 

CpYV. TYDV has been isolated from tobacco, french bean and chickpea. A partial Rep 

sequence has been identified from turnip weed (Rapistrum rugosum) which potentially is a 

distinct strain of TYDV based on nucleotide pairwise identity comparison of this partial 

sequence with other known TYDV sequences (Schwinghamer et al., 2010; Thomas et al., 

2010). Symptoms in tobacco include down-curling of leaves, chlorosis, stunting and 

sometimes necrotic areas in ageing leaves. The leafhopper vector O. orientalis which is 

known to vector CpCDV, is also present in Australia (Fletcher, 2009). A study sampled 

leafhoppers from the species Orosius orientalis and Anzygina zealandica in south-east 

Australia which tested positive for TYDV (Trębicki et al., 2010), however, no transmission 

experiments have been done to confirm either of these species are able to transmit TYDV.  
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Species Strain [GenBank no.] Host Country References 

Axonopus compressus streak 
virus  

ACSV [KJ437671]  Axonopus compressus Nigeria (Oluwafemi et al., 2014) 

Bromus catharticus striate 
mosaic virus  

BCSMV [HQ113104] Bromus catharticus Australia (Gafni & Epel, 2002; Greber, 1989; Hadfield et al., 2011) 

Chickpea Australia virus  CpCAV [JN989420] Cicer arietinum 
Phaseolus sp. 

Australia (Hadfield et al., 2012) 

Chickpea chlorotic dwarf virus  CpCDV-A [FR687959] Cicer arietinum,  
Pisum sativum 

Syria, Turkey, Iran (Akhtar et al., 2013; Ali et al., 2004; Halley-Stott et al., 2007; 
Kraberger et al., 2013a; Manzoor et al., 2014; Mumtaz et al., 
2011; Nahid et al., 2008) CpCDV-B [Y11023] Cicer arietinum,  

Phaseolus vulgaris 
Pakistan, South Africa  

CpCDV-C [AM849097] Cicer arietinum Pakistan 
CpCDV-D [FR687960] Cicer arietinum,  

Pisum sativum 
Pakistan, India 

CpCDV-E [AM933135] Cicer arietinum Sudan 
CpCDV-F [KC172666] Cicer arietinum,  

Capsicum annuum 
Pakistan, Yemen, Syria, Oman 

CpCDV-G [KC172674] Cicer arietinum Eritrea 
CpCDV-H [KC172676] Cicer arietinum Eritrea 
CpCDV-I [KC172677] Cicer arietinum Eritrea 
CpCDV-J [KC172678] Cicer arietinum Eritrea 
CpCDV-K [KM229905] Cicer arietinum Eritrea 
CpCDV-L [HE864164] Gossypium hirsutum Pakistan 

Chickpea chlorosis virus  CpCV-A [JN989415] Cicer arietinum Australia (Hadfield et al., 2012; Kraberger et al., 2013a; Thomas et al., 
2010) CpCV-B [GU256531] Cicer arietinum Australia 

CpCV-C [JN989416] Cicer arietinum Australia 
CpCV-E [JN989426] Cicer arietinum, Phaseolus sp. Australia 

Chickpea redleaf virus  CpRLV [GU256532] Cicer arietinum Australia (Thomas et al., 2010) 

Chickpea yellows virus CpYV [JN989439] Cicer arietinum Australia (Hadfield et al., 2012) 

Chloris striate mosaic virus  CSMV [M20021] Chloris gayana, Eriochloa polystachya, 
Paspalum dilatatum, Triticum aestivum, 
Panicum sp., Sporobolus sp., Digitaria ciliaris 

Australia (Andersen et al., 1988; Greber, 1989) 

Digitaria ciliaris striate mosaic 
virus 

DCSMV-A [JQ948091] Digitaria ciliaris Australia (Kraberger et al., 2012) 
DCSMV-B [JQ948088] Digitaria ciliaris Australia 

Digitaria didactyla striate 
mosaic virus

DDSMV [HM122238] Digitaria didactyla Australia (Briddon et al., 2010b; Greber, 1989) 

Digitaria streak virus  DSV [M23022] Digitaria sanguinalis Vanuatu (Donson et al., 1987) 

Eragrostis minor streak virus  EMSV [JF508490] Eragrostis minor Namibia (Martin et al., 2011c) 

Eragrostis streak virus  ESV [EU244915] Eragrostis curvula Zimbabwe (Shepherd et al., 2008b) 

Table 1.2 Details of representative mastrevirus species and strains for which full genomes have been recovered. Accession numbers, host species, 
country and associated reference are included. Adapted from Muhire et al. (2013)
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Species Strain [GenBank no.] Host Country References 

Miscanthus streak virus  MiSV [E02258] Miscanthus sacchariflorus Japan (Chatani et al., 1991) 

Maize streak reunion virus MSRV [JQ624879] Zea mays, Setaria barbata, Rottboellia sp La Reunion and Nigeria (Oluwafemi et al., 2014; Pande et al., 2012) 

Maize streak virus  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSV-A [Y00514] Zea mays 
Axonopus compressus 
Cenchrus myosuroides 
Digitaria sp. 
Eragrostis curvula 
Ehrharta calycina 
Eustachys petraea 
Pennisetum sp. 
Rattraya petiolata 
Rottboellia cochinchinensis, 
Saccharum sp. 
Setaria sp. 
Saccharum sp. 
Urochloa maxima 

Burkina Faso, Cameroon, Central 
African Republic, Chad, Kenya, La 
Reunion, Lesotho, Mozambique, 
Nigeria, South Africa, Uganda, 
Zambia, Zimbabwe 

(Harkins et al., 2009b; Martin et al., 2001; Monjane et al., 2011b; 
Owor et al., 2007; Pande et al., 2012; Shepherd et al., 2010; 
Shepherd et al., 2008b) 

MSV-B [EU628597] Avena sativa 
Cenchrus myosuroides 
Digiteria sp. 
Ehrharta calcycina 
Hordeum vulgare 
Lolium rigidum 
Rattraya petiolata 
Setaria grisebachii 
Urochloa maxima 
Urochloa plantaginea 

La Reunion, Uganda, Rwanda, Kenya, 
South Africa, Mozambique 

MSV-C [AF007881] Setaria sp. South Africa, Uganda 
MSV-D [AF329889] Urochloa sp. South Africa 
MSV-E [EU628626] Digitaria ciliaris 

Seteria barbata 
Mozambique, South Africa, Uganda 

MSV-F [EU628629] Urochloa maxima 
Digitaria ciliaris 

Burundi, Uganda, Nigeria 

MSV-G [EU628631] Brachiaria deflexa 
Brachiaria lata 
Digitaria sp. 
Panicum maximum 
Paspalum notatum 

Nigeria, Mali 

MSV-H [EU628638] Setaria barbata Nigeria 
MSV-I [EU628639] Digitaria ciliaris South Africa 
MSV-J [EU628641] Pennisetum sp Zimbabwe 
MSV-K [EU628643] Eustachys petraea, Setaria verticillata Uganda, Zimbabwe 

Oat dwarf virus ODV-[AM296025] Avena sativa Germany (Schubert et al., 2007) 
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Species Strain [GenBank no.] Host Country References 

Panicum streak virus  PanSV-A [L39638] Ehrharta calycina 
Panicum maximum 

Zimbabwe, South Africa, 
Mozambique 

(Rybicki, 1994; Varsani et al., 2009a; Varsani et al., 2008a) 

 PanSV-B [X60168] Panicum maximum Kenya  
 PanSV-C [EU224264] Urochloa plantaginea Zimbabwe  
 PanSV-D [EU224265] Urochloa maxima Nigeria  
 PanSV-E [GQ415389] Panicum maximum Kenya  

 PanSV-F [GQ415392] Panicum maximum Kenya  
 PanSV-G [GQ415396] Panicum maximum Mayotte  
 PanSV-H [GQ415397] Panicum maximum, Brachiaria deflexa Nigeria, Central African Republic  
 PanSV-I [GQ415401] Panicum tricholadumBrachiaria deflexa Kenya  

Paspalum dilatatum striate 
mosaic virus 

PDSMV [JQ948087] Paspalum dilatatum 
Digitaria ciliaris 

Australia (Kraberger et al., 2012) 

Paspalum striate mosaic virus  PSMV-A [JF905486] Paspalum dilatatum 
Digitaria ciliaris 
Ehrharta erecta 

Australia (Geering et al., 2011; Greber, 1989; Kraberger et al., 2012) 

PSMV-B [JQ948069] Paspalum dilatatum Australia 

Saccharum streak virus SacSV [GQ273988] Saccharum sp. South Africa (Lawry et al., 2009) 

Sugarcane streak Egypt virus  SSEV [AF239159] Saccharum sp. Egypt (Bigarré et al., 1999) 

Sugarcane white streak virus SWSV-A [KJ187746] Saccharum sp. Egypt  
SWSV-B [KJ187747] Saccharum sp. Sudan 
SWSV-C [KJ187749] Saccharum sp. Sudan 

Sporobolus striate mosaic virus 
1  

SSMV 1 [JQ948051] Sporobolus australasicus Australia (Kraberger et al., 2012) 

Sporobolus striate mosaic virus 
2  

SSMV 2 [JQ948052] Sporobolus australasicus Australia (Kraberger et al., 2012) 

Sugarcane streak reunion virus  SSRV-A [AF072672] Saccharum sp., Setaria barbata La Reunion (Bigarré et al., 1999; Shepherd et al., 2008b) 
SSRV-B [EU244916] Paspalum conjugatum Zimbabwe 

Sugarcane streak virus SSV-A [M82918] Saccharum South Africa (Hughes et al., 1993; Shepherd et al., 2008b) 
SSV-B [EU244914] Cenchrus myosuroides La Reunion 

Tobacco yellow dwarf virus TYDV-A [M81103] Nicotiana sp., Phaseolus sp., Cicer arietinum Australia (Hadfield et al., 2012; Kraberger et al., 2013a; Morris et al., 1992) 

Urochloa streak virus USV-[EU445697] Urochloa deflexa Nigeria (Oluwafemi et al., 2014; Oluwafemi et al., 2008) 

Wheat dwarf India virus  WDIV [JQ361910] Triticum aestivum India (Kumar et al., 2012) 

Wheat dwarf virus  WDV-A [AJ783960] Hordeum vulgare, , Avena sativa Bulgaria, Czech Republic, Germany, 
Hungary, Turkey, Ukraine 

(Kacprzak et al., 2005; Köklü et al., 2007; Kvarnheden et al., 
2002; MacDowell et al., 1985; Tobias et al., 2011) 

WDV-B [FJ620684] Hordeum vulgare Iran 
WDV-C [JQ647455] Triticum aestivum China, Hungary, Tibet 
WDV-D [JN791096] Hordeum vulgare Iran 
WDV-E [AM040732] Triticum aestivum 

Lolium sp. 
Secale sp. 

China, Czech Republic, Hungary, 
France, Germany, Iran, Sweden, 
Ukraine 

C
hapter 1
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1.4 Mastrevirus detection methods 

1.4.1 Serology 

Serological assays have long been a common method for diagnostic testing of samples from 

the field (Cenchrus & Coix, 1991; Greber, 1989; Kumari et al., 2006; Kumari et al., 2004; 

Kumari et al., 2008; Makkouk et al., 2003a; Makkouk et al., 2003b; Thomas et al., 2010). 

Polyclonal antiserum has typically been used for different serological tests such as double-

antibody sandwich enzyme-linked immunosorbent assays (ELISA), direct antigen-coating 

ELISA and dot-blot ELISA (Greber, 1989; Kumari et al., 2006; Liu et al., 1997b; Thomas et 

al., 2010). MSV monoclonal antibodies have also been used for identification of serologically 

different MSV isolates (Cenchrus & Coix, 1991). Although serological assays can be a rapid 

and an effective way to perform diagnostic testing, some assays have been shown to cross 

react. For example anti bodies raised against CpCDV can also cross react with Australian 

dicot-infecting mastreviruses, and therefore cannot always give an unequivocal diagnosis 

(Horn et al., 1993; Liu et al., 1997b). Due to the cross reactivity this is also not an effective 

method for identification of different species of mastrevirus. 

1.4.2 Polymerase chain reaction 

An early method for investigating mastrevirus diversity was PCR amplification using 

degenerative primers which are able to be used on a range of genotypes within closely related 

mastreviruses followed by restriction fragment length polymorphism (RFLP) and/or partial 

genome sequencing (Martin et al., 2001; Willment et al., 2001). RFLP, to certain extent can 

be used to determine variants of various species and strains based on the restriction patterns. 

This method can be time consuming and is not ideal for classification of new variants in the 

current environment where sequencing is relative cheap. 

1.4.3 Rolling circle amplification 

Phi29 is a proof reading polymerase with 3’-5’ exonuclease activity, this enzyme is derived 

from a bacteriophage which infects the bacteria Bacillus subtillis. This polymerase binds 

strongly to ssDNA and has a strand displacement mechanism enabling the replication of 

circular DNA (Nelson et al., 2002). Phi29 polymerase in conjunction with random hexamers 
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enables the amplification of low levels of viral DNA without any prior knowledge of 

template sequence. This has revolutionised the molecular approaches to geminivirus 

discovery and molecular experimental approach to circular DNA viral research in general 

(Haible et al., 2006; Inoue-Nagata et al., 2004; Niel et al., 2005; Shepherd et al., 2008a). This 

method has been the foundation for the rapid increase in our knowledge of mastrevirus 

diversity (Harkins et al., 2009b; Owor et al., 2007; Shepherd et al., 2008a; Shepherd et al., 

2010; Varsani et al., 2009b; Varsani et al., 2008b) and is often used to enrich circular 

molecules prior to performing next NGS on a sample for the discovery of novel ssDNA 

viruses, plasmids and circular genetic elements (Jørgensen et al., 2014; Labonté & Suttle, 

2013; Ng et al., 2011a; Roux et al., 2012; Sikorski et al., 2013; Zawar-Reza et al., 2014) 

1.5 Next-Generation sequencing (NGS) 

Advances in sequencing technology over the last decade have hugely expanded the scope and 

capabilities of what scientists can now achieve in a shorter time and for a fraction of the cost. 

High-throughput sequencing, also known as next-generation sequencing allows scientists not 

only to sequence a large number of reads in a short time, but non-specific amplification 

means no prior knowledge of target DNA sequences is necessary (Metzker, 2010). Several 

NGS platforms exist, each with their own advantages and disadvantages. Template 

preparation regardless of platform generally begins with the shearing of purified DNA 

sequences into smaller DNA fragments and in turn these fragments are ligated to oligo 

adapter(s) with the whole process, being referred to as preparation of a DNA library 

(Shendure & Ji, 2008). The DNA adapters are used to tether the fragmented DNA to a surface 

in order to immobilise it for the next stage. Although the chemistry and mechanisms behind 

the next steps vary between platforms, the central chemistry of most platforms involves 

nucleotides which are dye labelled and have a terminating functional group which is 

reversible (Metzker, 2010). There are several NGS platforms, however, the three platforms 

most universally used are Roche/454’s GS FLX system, Illumina/Solexa’s GA HiSeq system 

and Applied Biosystems/SOLiD system. The following is a brief overview of the processes 

and chemistry of these three platforms.  

1.5.1 Roche/454’s GS FLX system 

A library of small DNA fragments ligated to oligo adapters are resuspended into an oil 

emulsion where they are bound to DNA-capture beads that have complementary sequences to 
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the oligo adapters on their surface. Each oil immersed capsule contains a DNA template for 

sequencing which is bound to a bead and reagents for amplification by PCR. Individual oil 

emulsion capsules containing a single bead are put through PCR temperature cycling to 

amplify each template. Emulsion is broken and the untethered complementary strands are 

washed away leaving the beads enriched. These beads are incubated with polymerase and 

then along with a solution containing single-stranded binding proteins and are then added to a 

454 picotiter plate where each bead is fixed to the plate in an individual well. Smaller beads 

with bound active enzymes needed for the biochemical reactions (containing ATP sulfurylase 

and luciferase, required for pyrosequencing) are added to the plate. In each well a single 

nucleotide is added at a time and if incorporated the pyrophosphate is freed when ATP 

sulfurylase and luciferase are incorporated and a light signal is generated. This light signal is 

registered live in each well by a fibre-optic bundle. Reads produced by 454 pyrosequencing 

generally produces reads of ~600 bp, with a maximum of ~1000 bp, which are the longest 

reads out of these three NGS systems. The major downside when using this system is when 

the machine is measuring a stretch of the same base incorporations in a row signal strength 

can be difficult to gage and therefore is prone to insertion or deletion errors (Mardis, 2008; 

Shendure & Ji, 2008; Zhang et al., 2011). 

1.5.2 Illumina/Solexa’s GA HiSeq system 

Library prepared template DNA fragments of approximately 300 bp in size have oligo 

adapters ligated to each end. One of the adapters is then bound to linker that is fixed to a 

surface made up of channels so that each template will remain fixed in a cluster throughout 

process. Bridge PCR then takes place and denaturation using formamide occurs after each 

cycle, resulting in several 1,000 copies from an individual (single-stranded) template are 

produced in a cluster. Universal primers are added which bind to adapters preceding the 

template. A single reversible terminator base is then added per cycle, the fluorescent label is 

cleaved off and a burst of light unique to each of the four bases is captured. This system has 

high raw base accuracy of >99.5 %, resulting in single pair-end reads ranging from 2 x 100 

bp to 2 x 300 bp, dependent on which model of machine. The resulting reads are much 

smaller than those from Roche 454 sequencing (Metzker, 2010; Shendure & Ji, 2008; Zhang 

et al., 2011). 
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1.5.3 Biosystems/SOLiD system 

Following library preparation, a SOLiD system sequencing workflow is as follows. Template 

DNA fragments, PCR reaction components, beads and primers are combined in an oil 

emulsion to produce clonal populations of each DNA template attached to a single bead. 

Following the PCR, each emulsion is dissolved and beads with clonally amplified DNA 

fragments are recovered. Each bead is then covalently fixed to the surface of a glass slide and 

a universal primer which is complementary to the adapter is added. The primer hybridises to 

adapters on each bead and is followed by the addition of DNA ligase and four fluorescently 

labelled di-based probes (octamer oligonucleotides), each labelled with a unique florescent 

dye. There are 16 possible di-nucleotides sequences containing different two base 

combinations, four of these are added at a time. The probes complementary to the template 

hybridise to it and are ligated to the universal primer. Following ligation the probe fluoresces 

and this is captured for all templates using an imaging system. The dye is then cleaved off 

leaving a 5’ phosphate group open for the next probe. This process is repeated for several 

cycles, resulting in every fifth base being sequenced. The universal primer and synthesised 

strand are then removed through washing steps and a second round (referred to as primer 

reset) of this process is initiated by the addition of a another universal primer which binds one 

position in front of the last universal primer for sequencing of the next frame as well as 

probes and DNA ligase. Primer reset is repeated five times in total. This method of 

sequencing allows for high quality sequencing results because each base is checked twice in 

separate cycles. Reads can be between 60 and 75 bp in length, a lot shorter than with other 

systems which can make them hard to assemble without a scaffold (Mardis, 2008; Shendure 

& Ji, 2008).  

 

1.6 NGS approaches for the discovery of novel geminiviruses and other Rep encoding 

ssDNA viruses 

In recent years NGS has proven to be a useful tool in the discovery of novel geminiviruses, 

some of which are highly divergent. Emerging geminiviruses can pose a serious threat to 

agriculture and prior to the availability of NGS the surveillance of these viruses was biased to 

those species that were known. Several studies have shown that NGS can be used to identify 

novel geminiviral genomes using viral DNA or short interfering RNA (siRNA) analyses 
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methods (Kreuze et al., 2009; Loconsole et al., 2012; Massart et al., 2014; Seguin et al., 

2014). The initial process of sample preparation of viral DNA and siRNA templates differs; 

purified viral DNA is enriched using bacteriophage Phi29 DNA polymerase (a high fidelity 

enzyme which preferentially amplifies circular DNA through strand displacement) and 

random hexamer primers whereas siRNA is first converted to cDNA. Following these two 

processes, templates can be library prepped for the desired NGS platform. Illumina/Solex and 

Roche 454 systems are the most commonly used platforms for the discovery of novel viruses. 

Examples of newly discovered geminivirus using a NGS informed approaches are the highly 

divergent geminiviruses, CCDaV (Loconsole et al., 2012) and GCFaV (Poojari et al., 2013) 

and a new sugarcane infecting mastrevirus species, SWSV, of which three new strains were 

identified (Candresse et al., 2014). Kreuze et al. (2009) was one of the pioneering studies for 

the use of small RNAs as a template in NGS identification of mastrevirus-like sequences in 

sweet potato (Kreuze et al., 2009), however, a full genome was never recovered. 

 

NGS has also been used as a tool for the discovery of novel circular ssDNA viruses. A 

metagenomic approach allows for sequencing of all nucleic acid molecules within a sample. 

It is a combination of traditional molecular techniques, rolling circle amplification 

enrichment with bacteriophage Phi29 DNA polymerase and NGS that is now commonly used 

for identification of novel circular ssDNA viruses. This is even more the case as NGS 

sequencing becomes significantly affordable, especially if samples are multiplexed.  

 

Viral metagenomic approaches using NGS have led to the discovery of novel circular ssDNA 

viral genomes that share some similarity to the known families Geminiviridae, Nanoviridae, 

Circoviridae, and the recently proposed genera cyclovirus within the Circoviridae family and 

a potential new family gemycircularvirus. These novel viruses in most cases only share 

similarities to known viruses based on common motifs found in the Rep and these novel 

viruses are currently referred to as circular Rep-encoding ssDNA (CRESS DNA) viruses. A 

large number of diverse CRESS DNA viruses has been discovered in environmental samples, 

such as animal faecal material (Blinkova et al., 2010; Kim et al., 2012; Sikorski et al., 2012; 

van den Brand et al., 2012), water (Labonté & Suttle, 2013; López-Bueno et al., 2009; Ng et 

al., 2012; Rosario et al., 2009a; Roux et al., 2012), sewage (Cantalupo et al., 2011; Ng et al., 

2012), air (Whon et al., 2012), soil (Kim et al., 2008) and ocean sediment (Yoshida et al., 
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2013). Interestingly, insects have also been a valuable source for investigating ssDNA viral 

diversity, for example a study undertaken by Rosario et al. (2013) identified ssDNA viruses 

in the gut of dragonflies with the rational that dragonflies prey on insects that vector 

geminiviruses. In this study a new species of mastrevirus (DfaMV) and a alpha satellite were 

isolated from dragonflies (Erythrodiplax fusca and Erythrodiplax vesiculosa) from Puerto 

Rico. Since this study many CRESS-DNA viruses have also been isolated from dragonflies 

(Rosario et al., 2012a; Rosario et al., 2011). Other studies have looked at insect vectors such 

as mosquitoes and whiteflies which feed on animals and plants, respectively and these have 

proven to be a useful way of sampling ssDNA viral diversity circulating in a region (Ng et 

al., 2011a; Ng et al., 2011b). 

 

Amongst the CRESS-DNA viruses identified over the past five years are ssDNA viruses 

whose Reps are most similar to geminiviruses. Many of these are members of the proposed 

gemycircularvirus genus. Gemycircularviruses have been isolated from a variety of sources 

which include, the fungi Sclerotinia sclerotiorum (Yu et al., 2010; Yu et al., 2013), river 

sediment (Kraberger et al., 2013b), animal faeces (Sikorski et al., 2013), dragonflies (Rosario 

et al., 2012a), mosquitoes (Ng et al., 2011b) and plant material (Dayaram et al., 2012; Du et 

al., 2014). SsHADV-1, the first member of the gemycircularviruses infects the fungus S. 

sclerotiorum and is the only member whose host has been identified. Based on this and the 

fact that numerous Rep-like sequences have been identified in fungal genomes that are most 

closely related to gemycircularviral Reps, it is postulated that other members may also infect 

fungi. Other CRESS-DNA viral genomes have been isolated which are most closely related 

to geminivirus and the gemycircularviruses, these have been recovered from raw sewage 

material and have been named Baminivirus, Niminivirus and Nephavirus (Ng et al., 2012). 

Several studies have collected NGS data on environmental samples reporting that a portion of 

the resulting DNA fragments share similarity to geminiviruses, these studies however have 

not recovered full viral genomes (Kim et al., 2008; López-Bueno et al., 2009; McDaniel et 

al., 2013; Rosario et al., 2009a; Soffer et al., 2013; Whon et al., 2012). The discovery of 

these geminivirus-like viruses as well as a rich diversity of other CRESS-DNA viruses in 

environmental samples highlights the fact that viral diversity of ssDNA viruses has been 

greatly underestimated. 
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1.7 Aims and rational of this study 

The main objective of this thesis was to gain insight into the dynamics of mastreviruses by 

investigating the diversity, host range, geographic distribution, evolution and global 

movements of mastreviruses. In addition to this, use a viral metagenomic approach to identify 

mastreviruses or similar viruses that may be present in wild Poaceae sp. and treated sewage 

material in New Zealand.  

 

The focus of mastrevirus research has predominantly been on two mastrevirus species, MSV 

and WDV, due to the economic impact these two viruses have on maize and cereal crops, 

respectively. Additionally some studies have investigated diversity and recombination 

patterns of wild grass-infecting mastreviruses such as PanSV (Varsani et al., 2009a; Varsani 

et al., 2008a), however, little is known about the diversity and dynamics of wild grass-

infecting mastreviruses. Only one strain of MSV, MSV-A is known to infect maize. This 

maize adapted strain also infects grasses and has a wide geographical range within Africa. 

Recombination patterns have been documented among MSV strains and there is evidence that 

ancestors of MSV-A variants were the result of recombination events between MSV-B and 

MSV-G/F variants (Varsani et al., 2008b). It is therefore important not only monitor viral 

populations in crops but also those in weeds that may act as viral reservoirs where mixed 

infections can occur and facilitating recombination. By understanding natural diversity we 

can be better equipped for dealing with emerging viral pathogens.  

 

The majority of monocot-infecting mastreviruses identified outside of Africa have been 

found in Australia. Prior to studies undertaken as part of this thesis, four species originating 

from Australia have been identified and only a single isolate of each was available in the 

public databases. In Chapter Two monocot-infecting mastreviruses infecting wild Poaceae 

sp. in Australia is researched, to investigate for the first time mastrevirus dynamics in 

Australia.   

 

The study carried out in Chapter Three builds on previous studies (Shepherd et al., 2008b; 

Varsani et al., 2009a; Varsani et al., 2008a; Varsani et al., 2009b; Varsani et al., 2008b) by 

undertaking an extensive survey of mastreviruses infecting wild Poaceae sp. in Africa and 
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the SWIO and aims to expand on current knowledge of monocot-infecting mastrevirus 

diversity, host range and evolution through recombination.  

 

Among dicot-infecting mastreviruses, CpCDV has been the most extensively studied due to 

the agricultural impact to pulses in the major growing regions of the Middle East, north-east 

Africa, Pakistan and India. Most of the studies on CpCDV prevalence and host range have 

used serological assays and only a handful of full genomes were available on GenBank prior 

to the work undertaken in this thesis. As a result little information regarding the diversity of 

dicot-infecting mastreviruses globally, including those species found in Australia which are 

distinct from CpCDV, was available. Studies have dated the origin of the mastrevirus MSV-

A and highlighted the possible movements of this virus throughout Africa (Harkins et al., 

2009b; Monjane et al., 2011b). In Chapter Four analysis of dicot-infecting mastrevirus 

samples spanning 27 year period from eight countries (Australia, Eritrea, India, Iran, 

Pakistan, Syria, Turkey and Yemen) was undertaken to gain a better understanding of the 

most likely geographic origin of the dicot-infecting mastreviruses and subsequent global 

dispersal. 

 

Pakistan is a major pulse growing region where CpCDV has been documented. In Chapter 

Five an attempt is made to investigate CpCDV diversity within a major pulse growing 

regionto further elucidate CpCDV strain dynamics on a more localised scale. 

 

Building on the work undertaken in Chapter Five a further attempt is made to investigate 

CpCDV diversity and dynamics within a country in Chapter Six. Chapter Six is a 

comprehensive investigation of CpCDV within the major pulse growing regions of Sudan. In 

this study more than 140 CpCDV genomes isolated from pulse material are examined to 

allow some important insights into dicot-infecting mastrevirus dynamics, strain diversity on a 

regional scale and investigations into CpCDV evolution. 

 

Geminiviruses are found in all growing regions of the world. In New Zealand however, there 

have been no reports of geminiviruses other than of two species which infect ornamental 

plants, Abutilon mosaic virus and Honey suckle mosaic virus (Lyttle & Guy, 2004). The 
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question on the presence of geminiviruses in New Zealand coupled with the recent 

discoveries of several gemini-like ssDNA viruses in a variety of sample types (Dayaram et 

al., 2012; Labonté & Suttle, 2013; Ng et al., 2012; Ng et al., 2011b; Sikorski et al., 2013; Yu 

et al., 2010) prompted the study described in Chapter Seven. In this study a viral 

metagenomic approach was used to investigate the presence of potential mastreviruses or 

related ssDNA viruses in wild Poaceae sp. been shown to harbour a rich diversity of 

mastreviruses, particularly in Africa and Australia (Kraberger et al., 2012; Martin et al., 

2011c; Shepherd et al., 2008b; Varsani et al., 2008a; Varsani et al., 2009b) and it is therefore 

highly plausible that there may be mastreviruses or similar viruses present in New Zealand 

grasses. New Zealand also cultivates many monocot crops such as maize, wheat and barley 

which are potential naive hosts for emerging viruses and therefore it may be prudent to gain 

insights to what potential viral pathogens are present in native/endemic Poaceae populations.  

 

In Chapter Eight treated sewage material is used as a sample source to identify mastreviruses 

or novel gemini-like viruses. The rationale behind investigating sewage material is that 

humans consume a variety of plants which harbour plant viruses. The RNA virus Pepper mild 

mottle virus has been shown to be highly prevalent in wastewater across the USA and as a 

result this virus has been proposed as a possible indicator of human faecal contamination in 

water systems (Rosario et al., 2009b). This demonstrates that plant viruses can be identified 

in sewage material and therefore it may be possible to use sewage material to investigate 

local ssDNA viral populations, particularly those potentially infecting plants. 
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              Motif I       Motif II 
FR687959 CpCDV-A------------------------------------------MPSANKNFRFQSKYVFLTYPKCSSQRDALLEFLWEKLT-PFLIYFIGVATELHQDGTTHYHALIQLDKRPHIRDPSFF [120] 
JN989415 CpCV-A----------------------------------------MPSSSKRQNNFRLQTKYVFLTYPHCSSTATSLRDFLWEKLS-RFAIFFIAVATELHQDGTPHLHCLLQLDKRGDIRDPSFF [120] 
JN989420 CpCAV-----------------------------------------MPQTKKPSSSFRLQTKYVFLTYPRCSSDAESLRDFLWEKLS-RFAIFFIAVATELHQDGTPHLHCLLQLDKRSNIRDPSFF [120] 
GU256532 CpRLV-----------------------------------------MPRLNKKTSNFRFQSKYVFLTYPHCNSNPEALRDYLWEKLT-RFIIFFIAVASEVHQDGSPHLHCLIQLTNKPNISDASFF [120] 
JN989439 CpYV------------------------------------------MPSPSKKSPSFRLQTKYVFLTYPHCSSSAEGLRDFLWDKLS-RFAIFFIAIATELLPA---HLHCLLQLDKRSNIRDPSFF [120] 
M81103 TYDV-A------------------------------------------MPSAPQKTKSFRLQTKYVFLTYPRCSSSAENLRDFLWDKLS-RFAIFFIAIATELHQDGTPHLHCLIQLDKRSNIRDPSFF [120] 
Y00514 MSV-A--------------------------------------------MASSSSNRQFSHRNANTFLTYPKCPENPEIACQMIWELVV-RWIPKYILCAREAHKDGSLHLHALLQTEKPVRISDSRFF [120] 
JQ624879 MSRV---MSAFGNHFVHMPSVQAGVFNPMPGSDYPSEEEDLHQQNTPVGPDPPRRNFQFKSANAFLTYPRCLLTPFEAGQHLWEVAR-HWTPSYVLASSESHQDGTPHLHVLM---RPMSTRDPSFF [120] 
KJ437671 ACSV-----------------------------------------MNNTEHGGPSGFRFQSRNIFLTYPRCNLAPELIGSFLLSLLS-PYHVMFITVTSELHKDGTPHIHALAQTDKRVHTYSPGFF [120] 
L39638 PanSV-A----------------------------------MSTSLSITSDGRHSVRSFRHRNANTFLTYSKCPLEPEFIGEHLFRLTK-DFEPAYILVVRETHQDGTWHCHALLQCIKPVTTRDERYF [120] 
AF072672 SSRV-A-------------------------------------MPSQEDSTVASRPFKHRNANTFLTYSRCRLDPEAVGLILWQLIS-HWSPAYILVSREAHADGEWHLHALVQSVRPVQTTNQGFF [120] 
M82918 SSV-A--------------------------------------MSTVGSTVSSTPSRRFKHRNVNTFLTYSRCPLEPEAVGLHIWSLIA-HWTPVYVLSVRETHEDGGYHIHVLAQSAKPVYTTDSGFF [120] 
EU244915 ESV--------------------------------------MSSIASTVPSAPTRRFKHRNVNTFLTYPHCTLEPEVVGLVLWSLLE-SWTPAYIVVSREAHQDGSWHLHALAQSVKPVYTHDERFF [120] 
EU445697 USV--------------------------------------MATVGSSSNSVASRSFKHRNANTYLTYPKCPLEPEAIGLTLWSLIA-PWEPAYIIVCREAHQDGTWHCHALAQSVKPVTTRNSRFF [120] 
FJ665632 ECSV---------------------------------------------MASSSHRFRIQGRAFFLTYSQCPREPKDVGEFLTSHSTLASHVVYVRVQQEKHQDGNNHLHAIVCTSERRDIRDPRIF [120] 
GQ273988 SacSV-----------------------------------MAYANSTSTESNSSRSFRHRNANTFLTYSKCSLDPEILGLSLWSKLA-PWTPAYILVAREAHQDGTWHCHALAQSVRPVTTSDPRFF [120] 
JF508490 EMSV------------------------------------MSQDQDTLGSSSDGSRFRISSKQLFLTYPRCDLSPKDLGLELLQLLI-QNKPKYIHVTQELHKDGFPHLHALVQLEKKLFTRRQTFF [120] 
AF239159 SSEV-------------------------------------MTTVGSAESGSAIRSFKHRNVNTFLTYPKCHLEPEAVGLHLWSLIG-HWNPAYIVVSREAHADGSWHIHALAQSVKPVQTTNPRFF [120] 
KJ210622 SWSV-------------MSTESSNEGIAAQRLSTGLEEFTTTWPDPRAGSTSNPRVFQFKAQNIFLTYPRCDISVDVAARNLLTLCH-RFQPLYILCSQEHHADGSNHLHILLQTDKTMYTRNPHYF [120] 
JQ948091 DCSMV-A--------------------MAPPVSDTESANSANCRLAERAPGAAEASFEVRAKNIFLTYSKCLLDPQEALRDITHKLR-KFEPTYVYVARELHQDGTFHLHCFVQCKKHVRTTRARFF [120] 
JF905486 PSMV-A--------------- MSSLVSETSNSEVGSQMESPGRGGQSIDAPSSSCFKVRARNLFLTYSKCNLTAVFLLEYISSLLK-KYCPTYIYVAQEAHKDGSHHLHCIIQCSKYVRTTSAKFF [120] 
M20021 CSMV---------------------MSSLPVSESEGEGSGTSVQVPSRGGQVTPGEKAFSLRTKHVFLTYPRCPISPEEAGQKIADRLK-NKKCNYIYISREFHADGEPHLHAFVQLEANFRTTSPKYF [120] 
JQ948051 SSMV-1---------------------------MSGPSRPPSPFAISSSDEESVDGFHFRGKNIFLTYSRCEIDPALITDALWDKFS-SHKPLYILSVRELHQDSGFHVHCLVQLTDQYRSRDSSFA [120] 
JQ948052 SSMV-2------------------------------------MSSQSNSTEASPANFRFRARSAFLTYPKCTLEPRDVVEHLYSKFR-KYGPKYCLVTREHHSDGDYHLHCLFQLDKAFSTNDSSTF [120] 
HQ113104 BCSMV-----------------MASFVSETSDARGQTGAPRSPSGEVGAPGAVAACFEVRSRNIFLTYSKCHLDPVFMQEHLSSLLR-RFEPTYVYVAREEHQDGSYHLHCLVQCKKYVRTKSAKFF [120] 
HM122238 DDSMV-------------------MSSQLVSDSVMFDPRSYGEYPSSESAASLPLSFNVRSQHVFLTYPRCPIPPKDAGSFLKKLCK-RYNIQYMYIAQELHQDGEPHLHAFLQFDKVFRTTSAKYF [120] 
JQ948087 PDSMV-----------------MASHVSETEGARGQVGAPPLQGEEVGAPGAVEACFEVRSRNVFLTYSRCHLEPSFMLERLSRLLK-KWDPTYSYVAREEHKDGSYHLHCLVQCRKYIRTKSAKFF [120] 
AJ783960 WDV-A-------------------------------------------MASSSAPRFRVYSKYLFLTYPQCILEPQYALDSLRTLLA-KYEPLYIAAVRELHEDGSPHLHVLVQNKLRASITNPNAL [120] 
JQ361910 WDIV---------------------------------MSQTSAENNSANPKASSSTFRYRSNNCFLTFPHCNSCPYGMVQHFWDLIS-TWSPIYAVASVELHQDGTPHLHALLQTRKQISTNDPHFF [120] 
AM296025 ODV-------------------------------------------MATVASSSTRFRVYSKYLFLTYPQCILEPQYALDSLRSLLQ-KYKPLYICSVRERHEDNSPHLHVLVQCEKRASITNPNAL [120] 
M23022 DSV-------------------------------------------------MAANRSFRHRNANTFLTYSKCDHSPQLIADHLWDLLK-SWNPIYILVASEHHADGSLHSHALVQTEKQVNTTNQRFF [120] 
E02258 MiSV----------------------------------MRAPASSAASNRPGPSNHPTPRWNSKQFFLTYPHCNLTPSELMKELFSRLT-EKIPGYIKVSQEFHKDGDPHLHVLIQLNTKLCTRNPKFF [120] 
JX458741 DfasMV--------------------------------------MSSSSAQSGPSHFRIRAQNIFLTYPRCDLDPKDAGEIIQSKMQ-SHEPKYILFSRELHSDGEYHLHGLLQLSRQFSSNNPRIF [120] 

Additional figure 1.1 (continued below) 

C
hapter 1 



 

 

51 

 

    GRS Domain         Motif III 
FR687959 CpCDV-A D-------FEG--NHPNIQPARNSKQVLDYISKD---G-DIKTRGDF--R-----------------------------DHKISPSK----------SDARWRTIIQTATTKEEYLDMIK [240] 
JN989415 CpCV-A  D-------FEG--NHPNIQPAKNSEQVLDYISKD---G-NVITRGDF--R-----------------------------KHKVSPTK----------HDKRWRTIIQTATTKEEYLGMIR [240] 
JN989420 CpCAV   D-------FQG--NHPNIQPAKNSEQVLDYISKD---G-SVITRGDF--R-----------------------------KHKVSPTK----------SDDRWRTIIQTATTKEDYLEMIK [240] 
GU256532 CpRLV   D-------FEG--NHPNIQPARNSEQVLDYISKD---G-NIITKGEF--K-----------------------------KHRVSPTK----------HDERWRTIINTATSKEHYLGMIR [240] 
JN989439 CpYV    D-------FEG--NHPNIQPAKNSEQVLDYISKD---E-NVITKGEF--R-----------------------------KHKVSPTK----------TDERWRNIINTATSKEEYLGMIK [240] 
M81103 TYDV-A    D-------LEG--NHPNIQPAKNSEQVLEYISKD---G-NVITKGEF--K-----------------------------KHRVSPSK----------SDERWRTIIQTATSKEEYLDMIK [240] 
Y00514 MSV-A     D-------ING--FHPNIQSAKSVNRVRDYILKE---PLAVFERGTFIPR-----------------------------KSPFLGKSDSEVKEKKPSKDEIMRDIISHATSKAEYLSMIQ [240] 
JQ624879 MSRV    D-------IQG--YHPNIQASRSPNKTREYILKS---PITVYSRGTFIPR-----------------------------AGTSGAGY---GSTPVPKRNEIMRGIIETTTNKAEYLSEVQ [240] 
KJ437671 ACSV    D-------VQG--FHPNIQSARSPQTVLSYILKS---PTGTFNYGSLRPRGTRADAACGIGEDTAGGGASSSSSPPQADQRRGSRSRELANDPGRDRKDVLMTSILAGSSSKQEFLNGVK [240] 
L39638 PanSV-A   D-------IDR--YHPNIQSAKSTDKVREYILKD---PKDKWEKGTYIPR-----------------------------KKSFVPPG-KENSEKKPSKDEVMKEIMTHATSRAEYLSLVQ [240] 
AF072672 SSRV    D-------IES--FHPNIQSAKSANKVREYILKN---PIAKWEKGTFIPR-----------------------------KQCFVSSS-SESKNSKPSKDDIVRDIIEHSTSKEEYLSMLQ [240] 
M82918 SSV-A     D-------IDG--FHPNIQSAKSANKVRAYAMKN---PVTYWERGTFIPR-----------------------------KTSFLGDS-TEPNSKKQSKDDIVRDIIEHSTNKQEYLSMIQ [240] 
EU244915 ESV     D-------IED--YHPNIQAAKSANKVRDYVLKN---PLKVWERGTFIPR-----------------------------KKTFLGST-SEGNTTKQSKDDIVRDIIEHSTSKQEYLSMIQ [240] 
EU445697 USV     D-------IED--HHPNIQSAKSVDKVRAYILKD---PIALWERGTFIPR-----------------------------KKSFVPHQ-GDEHTPKPTKDDIVRDIIEHSTSKQEYLSRLQ [240] 
FJ665632 ECSV    D-------FGE--FHPKIETCRSVSKSLKYIQKE---AGSFYEHGT-VPC-----------------------------DKRLTGRK------RKAEQDEWWHQAVNSG-SIEEALQLVK [240] 
GQ273988 SacSV   D-------VNE--YHPNIQSAKSVDRVREYILKD---PLCQWEKGTFVPR-----------------------------KKPFVPQI-GESSNTRASKDDIVRDIIQHSTNKHEYLSMLQ [240] 
JF508490 EMSV    D-----QFLHGTKFHPNIQPARDASKVLGYITKQ---NGEEYIFGKPTLP-----------------------------KKKKTAQE---------GRDQRMRAIIESSTSKQEYLSMVR [240] 
AF239159 SSEV    D-------IED--FHPNIQSAKSADRVKEYVLKN---PIKQWEKGTFIPR-----------------------------KKSFATTS-SEDRQPKPTKDDIVRDIIEHSTSKQEYLSMIQ [240] 
JQ948091 DCSMV-A D-------LEE--YHPNVQNARMPHKVLAYCKKS---PVSYAEEGAYTES-----------------------------DVRKRKID------ASTTKDAKMADIIRSSKSKEEYLSMVR [240] 
JF905486 PSMV-A  D-------IKE--FHPNVQNPRMPKKALSYCKKS---PISEAEYGVFQEI-----------------------------KRPRKKKA-----DAPSTKDAKMAEIIKSSTNKEDYLSMVR [240] 
KJ210622 SSNV    D-------ICG--HHPNIQPAKSPDNVRAYILKD---PITSFEEGSFQPR-----------------------------GSRSNTSA-IPRSGNSGTKDSLMRDIINTSTSKDDYLTRVR [240] 
M20021 CSMV      D-------LDE--FHPNIQAARQPASTLKYCMKH---PESSWEFGKFLKP-----------------------------KVNRSPTQ-------SASRDKTMKQIMANATSRDEYLSMVR [240] 
JQ948051 SSMV-1  D-------LGG--NHPNIQTVRSATKVKEYILKE---PVSQSARGKFVAP------------------------------GGRPPKHTDRRRSDSAVKDERMRYILRTATTRDDYLGMVR [240] 
JQ948052 SSMV-2  N-------ILD--YHPNIQTAKSPTNVRDYCLKN---PVSKAERGTFIPL-----------------------------KGRTPKNT------ESKAKDSVMRSIINTSTDRASYLSMVR [240] 
HQ113104 BCSMV   D-------VEE--FHPNVQNARMPHKVLAYIKKN---PLCFVETGVFQAS-----------------------------TKQKKKKV-----DAPSTKDAKMAEIIKSSTCKEDYLSMVR [240] 
HM122238 DDSMV   D-------FFE--FHPNIQAARNPEKTLEYCQKN---PADFYEDGVFVKP-----------------------------KASRKRKL------ASFTRDKKMKQIMANATSRDEYLSMIR [240] 
JQ948087 PDSMV   D-------VEE--FHPNVQNARVPHKVLAYIRKG---PVCFVEHGAFKDE-----------------------------AKEKKKKA-----DAPSTKDAKMASIISQSTSREDYLGMVK [240] 
AJ783960 WDV-A   NLRMNTSPFSI--FHPNIQAAKDCNQVRDYITKEVDSDVNTAEWGTFIAV--------------------------------TTPGR--------KDRDADMKQIIESSTSREEFLSMVC [240] 
JQ361910 WDIV    D-------FDG--HHPHIQAAKNPTLCRDYILKG---PITFSEKGAFIPR-----------------------------GRNAGTSP---RHSNKRSRDDIMKDIIENSTNKSDYLSKVR [240] 
AM296025 ODV     NLRMDLSPFTT--YHPNIQPANNCNDVREYITKEVDSHEHTAEWGTFIHH-----------------------------TTSGRPDK-----------DEAMKQIIESATSKEEFISMVR [240] 
M23022 DSV       D-------ILE--FHPNIQSAKSVNKVRTYILKN---PVEKFERGTFVPR-----------------------------KSPFLGES--SSSEKKHNKDDVMRDIIDHATSKEEYLSMVQ [240] 
E02258 MiSV      D ------VQG--FHPNIQPVRDAEKVFGYISKT---NGDSDEMGELQLR------------------------------NKKPEK---------PTRDQRMAMIIASSTNRNEYLSMVR [240] 
JX458741 DfasMV  D-------IGA--HHPNIQSAISPKSVRDYILKN---PITQFCIGTYVPA-----------------------------KKGRKLGS----RFEENIRNNIMRSIISTATSKESYLSMVR [240] 
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         RBR interaction domain   Walker-A     Walker-B 
FR687959 CpCDV-A  EEFPHEWATKLQWLEYSANKLFPPQPEPYVSPFT--ESDLRCHEDLAAWRDKHLYHDDGRSG-IRHPSLYICGPTRTGKTTWARSLG--RHNYWNGTIDF--TTYDDHATYNIIDDIPFK [360] 
JN989415 CpCV-A   DQFPHEWATKLQWLEYSANKLFPDIEPPYENPFS--PIDLQCHEEIQEWLNRDLYVEPEQLQ-HRRNSLYICGPTRTGKTSWARSLG--RHNYFNGGVDF--TTYDINATYNIVDDIPFK [360] 
JN989420 CpCAV    TEFPHEWATKLQWLEYSANKLFPDIEPPYSSPFP--NEFLQCDEEITEWLNRDLYQEPEQLQ-HRRRSLYICGPTRTGKTTWARSLG--RHNYFNGGIDF--TTYDPNATFNIIDDIPFK [360] 
GU256532 CpRLV    DQFPHEWASKLQWFEYSANKLFPDVEPPYQSPFP--EASLQCHEEIQDWLNRDLYLEPEQLR-HRRKSLYICGPTRTGKTSWARSLG--RHNYFNGGVDF--TTYDEQAAYNIIDDIPFK [360] 
JN989439 CpYV     EEFPHEWATKLQWLEYSANKLFPEIEPPYQSPFT--SCSLQCHEKITDWLNRDLYLEPEQLR-HRRRSLYICGPTRTGKTSWARSLG--LHNYFNGGVDF--TTYNPLATYNIIDDIPFK [360] 
M81103 TYDV-A     DEFPHEWATKLQWLEYSANKLFPPQPEIYQATFT--EEDLQCHEDLQLWRDQHLYHEPRRAG-TRIPSLYICGPSRTGKTTWARSLG--RHNYWNGTIDF--TVYDDHATYNVIDDIPFK [360] 
Y00514 MSV-A      KELPFDWSTKLQYFEYSANKLFPEIQEEFTNPHPPSSPDLLCNESINDWLQPNIFQSSDER--SRKQSLYIVGPTRTGKSTWARSLG--VHNYWQNNVDW--SSYNEDAIYNIVDDIPFK [360] 
JQ624879 MSRV     KAFPFEWATKLQQFEYSAERLFPTLPSPFVPPHPPSEPDLHCYETIRSWKDENIFQGDAASRTSRPRSLYIVGPTRTGKTTWARSIDPVNHNYWQNGVDF--LKYRKSAKYNVLDDIPFK [360] 
KJ437671 ACSV     KAFPYDFCARLQNWEYAANKLF-DTPAVYQPPFP--DSYFHCHENIHDWVRDNIYEITPE---ARPLSLYICGPTRTGKSTWARSLG--RHNYWQNNVDF--TSYDVEAKYNVIDDIPFK [360] 
L39638 PanSV-A    TSLPYDWATKLSYFEYSASRLFPDIAEPYSNPHPATDPDLLCNETLQDWLEPNIYQIIPG---ARKRSLYIVGPTRTGKTSWARSLG--RHNYWQNNIDW--SSYDEEAAYNVVDDIPFK [360] 
AF072672 SSRV-A   KALPYDWATKLQYFEYSASKLFPDTVEEYTSPHPTTTPLLRDPTTIDNWVQPNLFQNNTG---TRKLSLYILGPTRTGKSTWARSLG--RHNYWQNNVDW--SCYDEDAVYNVIDDIPFK [360] 
M82918 SSV-A      KALPYEWATKLQYFEYSANKLFPDIQEIYTSPFPQSTPALLDPTAINTWLENNLYQNSNS---NRKLSLYILGPTRTGKSSWARSLG--RHNYWQNNVDW--SSYDEDAEYNIIDDIPFK [360] 
EU244915 ESV      KALPYEWATKLQYFEYSANRLFPEIQETYTNPHPPTAPQLQDGETIQSWVYTNIYQNIPG---TRKQSLYILGPTRTGKSTWARSLG--RHNYWQNNVDW--TSYDEDAVFNIIDDIPFK [360] 
EU445697 USV      NELPYEWATKLQYFEYSANKLFPDIPEPYIHPHPQTEPELHCKETIDDWLKPNIFQQLPS---DRKQSLYIVGPTRTGKSTWARSLG--RHNYWQNNVDW--TSYDEEAMYNIVDDIPFK [360] 
FJ665632 ECSV     DNEPRTFWLQHHNLVTNARRIWSEVRAEFVPKYS--ESSFSVPRVLSDWVANNLRADPLP---DRPLSLIIEGDSRTGKTAWARSLG--RHNYLSGHLDLNGAVFDNEASYNVIDDVNPK [360] 
GQ273988 SacSV    KELPYEWATKLQYFEYSANKLFPEIAEPYTNPHPPTQPDLHCYERIEEWLNFNVYQQPQEA--GRARSLYIVGPTRTGKSTWARSLG--RHNYWQNNVDW--SSYDEEAVLNVIDDIPFK [360] 
JF508490 EMSV     KEFPFDWATRLMQFEYSASSLFPEPPVEYTSPFP--VDQLLCPEDITEIINSEWFQHGAPG--GRPRSIYICGPTRTGKTTWARSLG--RHNYYNSVLDF--THYDPQAEYNVIDDVPFK [360] 
AF239159 SSEV     KALPYEWATKLQYFEYSASRLFPETAEVYTNPHPPTEPDLINFETIEDWLNPNIYQNIPG---HRKQSLYILGPTRTGKSTWARSLG--RHNYWQNNVDW--SSYDEEAVYNIIDDIPFK [360] 
KJ210622 SSNV     NTFPFDWATRLQQFEYSASKLFPEPVREYVNPFPPSEPDLFCREIIDRWDITDAFDAA-----QRRRSLYIVGPTRTGKSTWARSLG--RHNYWQHMVDF--TAYDTHAKYNILDDVPFK [360] 
JQ948091 DCSMV-A  KTFPFDWATRLQNFEYSAERLFPSTPPPYVSPFN--MPSQEEHPVLGAWLRAELYTGRNPA--ERRKSLYICGPTSTGKTTWARSLG--KHNYWQHSVDF--LNIIPDAEYNVIDDIPFK [360] 
JF905486 PSMV-A   KSFPFDWATRLQQFQFSAESLFPSTPPPYVDPFG--MPSQDTHPVIGAWLRDELYTDRSPT--ERRRSLYICGPTRTGKTSWARSLG--SHNYWQHSVDF--LHVIQNARYNVIDDIPFK [360] 
M20021 CSMV       KSFPFEWAVRLQQFQYSANALFPDPPQTYSAPYA--SRDMSDHPVIGEWLQQELYTVWSPG--VRRRSLYICGPTRTGKTSWARSLG--THHYWQHSVNFL-EEWNCQAQFNIIDDIPFK [360] 
JQ948051 SSMV-1   KSFPFEWATRLAQFEYSASKLFPDITPQYQSQYQ--TTDLTCHENLLDWYQENLQCYIDGA--GRRKSLYICGPTRTGKKSWARVLG--RHNYYNMQVDW--ATYDQEAQYNVIDDIPFK [360] 
JQ948052 SSMV-2   KAFPFDWATKLQQFEYSASKLFPDVIPEYTSPFP--TENLMCNERITDWLDNTLYSADHPR--TRKSGLYICGPNRTGKTSWARSLG--KHNYWQMNLDF--ANYNNEAQYNVIDDIPFK [360] 
HQ113104 BCSMV    NTFPFDWATRLQQFQYSAESLFPSVPTPYMDPFG--MPAQDEHPVIGAWLQAELFSDRRPD--ERRRSLYICGPTRTGKTSWARSLG--AHNYWQHSVDF--LNLVANATYNVIDDIPFK [360] 
HM122238 DDSMV    KAFPFDWAIRLQQFEYSAKALFPEAPIQYQPQFV--SNDMSDHPVIGEWLDTEFFTERGPH--HRRRSLYICGPTRTGKTSWARSLG--THHYWQHSVDFL-TEWNKNAIYNVIDDIPFK [360] 
JQ948087 PDSMV    KEFPFDWATRLQQFEYSAQALFPCLPPPYVDPFG--MPSQAEHQVLGAWLREELYSDRSPA--ERRRSLYICGPTRTGKTTWARSLG--CHNYWQHSVDF--LHVIPTARYNIIDDIPFK [360] 
AJ783960 WDV-A    HRFPFEWSIRLKDFEYTARHLFPDPVNTYTPEFP--IESLMCHETIESWKNEHLYSSP-----GRHKSIYICGPTRTGKTSWARSLG--IHNYYNSLVDF--TTYDVNAKYNIIDDIPFK [360] 
JQ361910 WDIV     RNFPYDWATKLYNFEYSASKLFPEQQPEYSNPHGQSVPDLYCYETIQDWIDSNLFQDPSAG--TRPKSLYIVGPTRTGKSTWARSLG--RHNYWQNNVDF--TVYDPEAAYNIIDDIPFK [360] 
AM296025 ODV      SRFPFEWSINLQRFQYTANYLFPDPIPQYTPEFP--TESLICHETIQNWANTELFTV------RRHRSLYICGPTRTGKTSWARSLG--IHNYYNSQVDF--TNYNADALYNIIDDIPIK [360] 
M23022 DSV        KALPYDWATKLSYFEYSADRLFPVEAAPFINPHPPSEPDLLCQETITDWLQNDLFQVVTDG--VRKRSLYILGPTRTGKSTWARGLG--RHNYWQNNVDW--ASYDEEAQFNVIDDIPFK [360] 
E02258 MiSV       KEFPFDWAIRLQQFEYSAAALFTEPPPVYQSPFP--NEQIVCPPELVDIIDQEWNQPNGP---RRPRSIYICGPSRTGKTTWARNIG--RHNYYNSTVDF--THYDKDAIYNVIDDVPFK [360] 
JX458741 DfasMV   KSFPFEWATKLSQFEYSASKLFPEVTPEYKSPFP--TESLICNENIQDWVDNTLYQPNRT---SRGLSLYICGPTRTGKTSWARSLG--VHNYWQNNIDF--SVYNDNATYNVIDDIPFK [360] 
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             Motif C 
FR687959 CpCDV-A  FVPLWKQLIGCQSDFTVNPKYGKKKKI-KGGIPSIILCNPDEDW---VPSMSSQQKEYFEDNCITHYMYSGDNF----FA------------RESSSH---------- [468] 
JN989415 CpCV-A   FCPNWKQLVGSQKDFTVNPKYGKKKRI-KGGIPCIILVNNDDDW---LLDMSSSQKEYFESNYKIHYMDSEETF----IA------------PESSSH---------- [468] 
JN989420 CpCAV    FCPNWKQLVGSQKDFTVNPKYGKKKRV-KGGIPTIILVNNDDDW---IKDMSSSQNEYFESNCLIHYMTEGETF----IA--ARRQVTQRASPPSENI---------- [468] 
GU256532 CpRLV    FCPNWKQLVGSQLDFTVNPKYGKKRRI-KGGVPCIILVNNDDDW---MKDMSSHQKEYFQHNCMIHYMDEGETF----IA------------PVSSSH---------- [468] 
JN989439 CpYV     FCPNWKQLIGSQLDFTVNPKYGKKRRI-KGGIPCIILVNNDDDW---MNDMSPAQNDYFQANCCIHYMEEGETF----IA------------LQSSSH---------- [468] 
M81103 TYDV-A     FVPLWKQLIGCQSDFTVNPKYGKKKKI-KGGVPCIILCNDDEDW---LKNMSPAQIEYFEANCITHFMYAAETF----FA------------PESSSH---------- [468] 
Y00514 MSV-A      FCPCWKQLVGCQRDFIVNPKYGKKKKVQKKSKPTIILANSDEDW---MKEMTPGQLEYFEANCIIYIMSPGEKW----YS--------PPVLPPTEEV---------- [468] 
JQ624879 MSRV     FCPCWKQLVGGQKDYTVNPKYARRMEV-PGGIPSIILVNYDEDW---LKVMTPAQLEYFYDNCVVYQMELHEKF----YT------------PS-------------- [468] 
KJ437671 ACSV     YCPCWKALIGGQKDFTVNPKYGKKKLI-KGGIPSIVIVNDDEDW---MRAMTASQRSYFERNCVVVYLYEGDSF----IK------------DDVSSTSEECI----- [468] 
L39638 PanSV-A    FCPCWKQLVGCQKDYIVNPKYGKRRKVASKSIPTIILANEDEDW---LKDMTPAQYDYFYANCEIYVMQAGEKW----FT------------PA-------------- [468] 
AF072672 SSRV-A   FCPCWKQLIGCQENYVVNPKYGKKRRVAKKSISTIVLANEDEDW---MKVMSPGQLDYFHQNCVVYIMEEGERF----FG-----------GPAVSATAHPPIGV--- [468] 
M82918 SSV-A      YCPCWKQLIGCQKDYIVNPKYGKRKKVASKSIPTIVLANEDEDW---LRDMTPAQQDYFNANCETYMLEPGERF----FS-----------LPAVSATAHPSSEV--- [468] 
EU244915 ESV      FCPCWKQLIGCQKDYIVNPKYGKRKKVAKKSIPTIVLANVDEDW---LKDMTPAQQDYFNANCTVYILEPGERF----FG-----------GPAVSATAHPSIEV--- [468] 
EU445697 USV      YCPCWKQLIGCQKEYIVNPKYGKRKKVASRSIPTIVLANEDEDW---LKDMTPAQREYFEANCVIYIMTPGEKW----FS------------PV-------------- [468] 
FJ665632 ECSV     YLKHWKEFIGAQKDWQSNLKYGKPVLV-KGGKPAIVLCNSDQSYKSFLDCEENHQLRSWTSKNALFVDIQDALFGGVSLTMREQTREDDPESPMWASDSDPGDQAV-- [468] 
GQ273988 SacSV    YCPCWKQLVGCQKNYVVNPKYGKKKKVAKRSIPAVILANEDEDW---LRDMTPAQRDYMEANCEVYIMSSGEKW----FT------------PA-------------- [468] 
JF508490 EMSV     YCPQWKALVGAQRDYIVNPKYGKKKKI-KGGIPSIILTNDDEDW---LGEMKPAQAEYLHANSHVHYMYEGTKF----YK------------AEAAGQDV-------- [468] 
AF239159 SSEV     FCPCWKQLVGCQKEYVVNPKYGKKKKVASKSIPSIILANEDEDW---LTVMTPGQREYFEANAVIYIMTAGEKF----YK------------PA-------------- [468] 
KJ210622 SSNV     FCPNWKQLVGCQRDFIVNPKYAKRKEI-PGGIPCIILQNPDDDW---LPVLSPSQMDYFVNNCDVYVMKPGERF----FG---------GDTPVPEAQEDVPDGTGSS [468] 
JQ948091 DCSMV-A  FVPCWKGLVGAQRDITVNPKYGKKRLL-SNGVPCIILANEDEDW---LQQMQPGQADWFNANCEVHYMYQGETF----FK------------SLGAATA--------- [468] 
JF905486 PSMV-A   FVPCWKGLVGSQKDITVNPKYGKKRLL-SNGIPCIILVNEDEDW---LQQMQPSQADWFNANAVVHYMYSGESF----FE------------AL-------------- [468] 
M20021 CSMV       FVPCWKGLVGSQYDLTVNPKYGKKKRI-PNGIPCIILVNEDEDW---LQSMSTQQVDWFHGNAVVYHLLPGETF----IP------------SE-------------- [468] 
JQ948051 SSMV-1   FCPHWKALIGCQKDFTVNPKYGKKKLI-KGGIPTIILVNEDEDW---LADMTPGQVSYFEANVQIHYMTSEESF----IP--------DPALRQRLSLNYYKVCFFLM [468] 
JQ948052 SSMV-2   FCPYWKALVGSQHEYTVNPKYGKKKLI-KGGIPSIILVNEDDDW---MRAMNDGQRSYFEGNMSIYYMSEGESF----IR------------NEAL------------ [468] 
HQ113104 BCSMV    FVPCWKGLVGCQFDITVNPKYGKRRML-KNGVPSIILVNEDEDW---LKQMQPSQVGWFETNCIIHYMYAGESF----FE------------A--------------- [468] 
HM122238 DDSMV    FVPCWKGLVGSQFDITVNPKYGKKKTI-PNGIPSIILANEDEDW---LQTMSPQQADWFHGNCVVYYLQAGESF----IP------------PSSDVEA--------- [468] 
JQ948087 PDSMV    FVPCWKGLVGAQREITVNPKYGKKRLL-PNGIPCIILVNEDEDW---PQQMQPSQAAWFEDNCVVFYMNQGFRF----FE------------TTA------------- [468] 
AJ783960 WDV-A    FTPNWKCFVGAQRDFTVNPKYGKRKMI-RGGIPCIILVNPDEDW---LKDMTPEQSDYMYSNAVVHYMYEGESF----FA---------YGENVTASQ---------- [468] 
JQ361910 WDIV     FCPCWKQLVAAQRDFTVNPKYGKKKLI-KGGIPSIILVNSDEDW---LKTMTPEQQEYFEANSIIYMMEPTEKF----FG-----------GAEIV------------ [468] 
AM296025 ODV      YVPNWKCFLGAQKDFTVNPKYGKKKTI-RGGIPCIVLVNPDEDW---LKDMTPLQSDYLYANAEIHYMEDGETFINHSFT--------FGEGATASQ----------- [468] 
M23022 DSV        FCPCWKQLIGCQKEYVVNPKYGKKKRVASKSIPSIILTNPDEDW---MKDMTPAQLSYFEANTVIYKMTEGERF----FS--------YAEGPATASLASLDDAPA-- [468] 
E02258 MiSV       FLPQWKALVGAQRDYIVNPKYGKKKKI-PGGIPSIILTNDDEDW---IKDMKPAQVEYLYANAHVHYMYEGQKF----YV-----------LPAEE------------ [468] 
JX458741 DfasMV   FCPCWKALAGSQSDFTVNPKYGKKKRI-KGGIPCIILVNEDEDW---LTCMSSSQKTYFESNVVIYYMYAGEKF----FN------------FVEE------------ [468] 

Additional figure 1.1: Replication-associated protein annotation highlighting the functional motifs in representatives from each mastrevirus strain 
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2.1 Abstract 

Monocotyledonous plant-infecting mastreviruses (family Geminiviridae) are found in the Old 

World. The greatest diversity of these viruses to date has been documented in Africa, 

however this may simply reflect the more extensive sampling that has been done there. To 

provide a better understanding of mastrevirus diversity in Australia, we have sequenced the 

genomes of 41 virus isolates found in naturalised and native grasses and identified four 

tentative new species in addition to the four previously characterised species. Two of these 

species, which we have tentatively named Sporobolus striate mosaic virus 1 and 2 (SSMV-1 

and SSMV-2), were recovered from a single Sporobolus plant. Both species are highly 

divergent and are most closely related to the African streak viruses. This information, 

coupled with the discovery of divergent dicotyledonous plant infecting mastreviruses in 

Australia brings into question the hypothesis that mastreviruses may have originated in 

Africa. We found that the patterns of inter- and intra-species recombination and the 

recombination hotspots mirror those found in both their African monocot-infecting 

counterparts and dicot-infecting mastrevirus.  
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2.2 Introduction 

Viruses in the family Geminiviridae cause diseases in a wide range of economically 

important domesticated plant species. The four currently described genera, Mastrevirus, 

Curtovirus, Begomovirus and Topocuvirus, differ in genome organisation, host range and 

insect vector species. A few currently unclassified and divergent geminivirus species also 

exist, all with unknown vector species (Brown et al., 2011). These include Beet curly top Iran 

virus (BCTIV) (Yazdi et al., 2008) Eragrostis curvula streak virus (ECSV) (Varsani et al., 

2009b) and Turnip curly top virus (TCTV) (Briddon et al., 2010a) and these may in the future 

be classified as members of three new geminivirus genera. Geminiviruses characteristically 

have a small ~2.6–2.8 kb circular, single-stranded DNA genome (bipartite begomoviruses 

have two DNA molecules of ~2.6–2.8 kb each), encapsidated in twinned isometric viral 

particles (Harrison, 1985). The genomes are bidirectionally transcribed and encode between 

four (Mastrevirus and ECSV) and eight (Curtovirus, Begomovirus and Topocuvirus, BCTIV 

and TCTV) genes, and replicate in the cell nucleus via rolling circle and recombination-

dependent mechanisms (Jeske et al., 2001; Saunders et al., 1991; Stenger et al., 1991). 

Although not the most populated geminivirus genus, the genus Mastrevirus contains a wide 

diversity of viruses, are transmitted by a wider variety of vector species (including at least 14 

different leafhopper species spread across at least five genera) and infect a greater diversity of 

host species than any of the other geminivirus genera, with their hosts including both 

monocot and dicot angiosperms.  

 

All known mastreviruses have a monopartite 2.5–2.7 kb genome encoding four genes. These 

are movement protein (mp) and a coat protein (cp) on the virion-sense strand and, on the 

complementary strand, a replication associated protein (rep) and a replication associated 

protein A (repA) genes. The rep and repA are expressed from spliced complementary strand 

transcripts (Dekker et al., 1991; Mullineaux et al., 1990; Schalk et al., 1989; Wright et al., 

1997). As with all other geminiviruses, the Rep initiates rolling circle replication by binding 

close to and then nicking the origin of replication at a hairpin structure between nucleotides 

(nts) 7 and 8 of a conserved nonanucleotide (TAAT[A/G]TTAC) loop sequence (Heyraud et 

al., 1993).  



Chapter 2 

78 

To date, fifteen species of monocot-infecting mastreviruses have been characterised from the 

Old World (including ten from Africa and nearby south-west Indian Ocean islands, four from 

Eurasia, four from Australia and one from Vanuatu) but none from the New World. Dicot-

infecting mastreviruses have also been found in the Middle East (Mumtaz et al., 2011), 

Pakistan (Nahid et al., 2008), Africa (Liu et al., 1997) and Australia (Hadfield et al., 2012; 

Schwinghamer et al., 2010; Thomas et al., 2010). Since the only monocot-infecting 

mastrevirus with any economic importance is Maize streak virus (MSV) from Africa, very 

little is known about the diversity, distributions and host ranges of monocot-infecting 

mastreviruses in other regions of the world. In Australia, biological characterizations 

involving host range analysis (Greber, 1989), serological studies (Pinner et al., 1992) and 

genome sequencing have identified the existence of four distinct Australian monocot-

infecting mastrevirus species. These are Chloris striate mosaic virus (CSMV) (Andersen et 

al., 1988), Digitaria didactyla striate mosaic virus (DDSMV) (Briddon et al., 2010b), 

Bromus catharticus striate mosaic virus (BCSMV) (Hadfield et al., 2011) and Paspalum 

striate mosaic virus (PSMV) (Geering et al., 2011).  

 

Just as more intensive sampling and sequencing have begun to reveal the true extent of 

African monocot-infecting mastrevirus diversity and evolutionary mechanisms (Martin et al., 

2011a; Martin et al., 2001; Monjane et al., 2011; Varsani et al., 2008b; Willment et al., 

2001), it is likely that similar efforts in Australia will be equally productive. In this study, we 

have determine the full genome sequences of, and recombination patterns within, forty one 

Australian monocot-infecting mastrevirus isolates from 40 symptomatic wild grass samples 

collected from various locations in Queensland and New South Wales and including four 

novel species. 
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2.3 Materials and methods 

2.3.1 Sample collection and virus amplification 

Grass samples showing either streak or striation mosaic-like patterns (n=40) were collected 

from various locations around Queensland and New South Wales in eastern Australia 

between 1983 and 2011. Of these samples, 39 were collected between 2003 and 2011, while 

the other two samples were collected in 1983 and 1998 (Table 2.1).  

 

Total DNA was extracted from dried plant material using the GenCatch Plant Genomic DNA 

Purification kit (Epoch Biolabs, USA). Circular viral DNA in the total DNA extract was 

amplified using the Illustra TempliPhi Amplification Kit (GE Healthcare, USA) as described 

by Owor et al. (2007b) and (Shepherd et al., 2008a). The amplified concatenated viral DNA 

was subsequently digested using the restriction enzymes PstI and BglII to yield unit length 

genomes. The resulting ~2.7 kb DNA fragments were purified using the MEGA-spin Agarose 

Gel Extraction Kit (iNtRON Biotechnology Inc., Korea) and ligated into PstI and BglII sites 

of the pGEM3Zf (+) vector (Promega Biotech, USA).  

 

In thirty cases, polymerase chain reaction (PCR) allowed the recovery of viral genomes from 

samples where no unique restriction sites could be determined. For these samples, we 

designed back-to-back primers as follows: forward 5'-GANTTGGTCCGCAGTGTAGA-3', 

dicot reverse 5'-GTACCGGWAAGACMWCYTGG-3'. The PCR was performed using Kapa 

HiFi HotStart DNA polymerase (Kapa Biosystems, USA) and using following the 

thermocycling conditions: 94ºC for 3 min, 25 cycles of 98ºC (3 min), 52ºC (30 sec), 72ºC 

(2.45 min) and a final extension of 72ºC for 3 min. PCR products were cloned using the 

pJET1.2 vector (CloneJET™ PCR cloning kit, Fermentas, USA). In order to identify the host 

species a section of the chloroplast ndhF gene (~1.1kb) was PCR amplified from total 

genomic DNA using the following primer pairs ndhF1F: forward 5’-ATG GAA CAK ACA 

TAT SAA TAT G-3’, ndhF972R: reverse 5’-CAT CAT ATA AAC CCA ATT GAG AC-3’ 

and ndhF972F: forward 5'-GT CTC AAT TGG GTT ATA TGA T-3', ndhF2110R: reverse 5'-

CCC CCT AYA TAT TTG ATA CCT T-3' . The PCR was performed using Kapa HiFi 

HotStart DNA polymerase (Kapa Biosystems, USA) and the following PCR protocol: 94ºC 

for 3 min, 25 cycles of 98ºC (3 min), 48ºC (30 sec), 72ºC (1.30 min) and a final extension of 
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72ºC for 3 min. PCR products were cloned using the pJET1.2 vector (CloneJET™ PCR 

cloning kit, Fermentas, USA) and sequenced. All clones were sequenced by Macrogen Inc. 

(Korea) by primer walking. 

2.3.2 Sequence and phylogenetic analyses  

Contigs were assembled and general editing done using DNAMAN (version 5.2.9; Lynnon 

Biosoft) and MEGA5 (Tamura et al., 2011). Open reading frames (ORFs) were identified 

using DNAMAN, and conceptual translations done using MEGA5. Representatives of 

previously identified mastrevirus species (both monocot- and dicot-infecting) from 

throughout the world were obtained from the NCBI GenBank database and used in the full 

genome and protein (Rep and CP) analyses.  

 

All mastrevirus full genome sequences were linerised at the origin of replication 

(TAAT(A/G)TTAC) and aligned using MUSCLE (Edgar, 2004). Maximum likelihood (ML) 

phylogenetic trees were constructed using PHYML version 3 (Guindon et al., 2010) with 

1000 non-parametric bootstrap replicates and the nucleotide substitution model GTR+G4 

(selected as the best fit model by RDP4) (Martin et al., 2010). ML phylogenetic trees of Rep 

and CP amino acid sequences were constructed with PHYML using the LG model 

(previously determined as a best fit model) (Le & Gascuel, 2008). The ML phylogenetic trees 

were visualised using MEGA5. Branches with <60% support were collapsed using Mesquite 

(Version 2.75). The phylogenetic trees were rooted with the BCTIV Rep and CP sequences. 

Pairwise similarity comparisons of full genomes (nucleotide sequences), Rep (amino acid 

sequences) and CP (amino acid sequences) were undertaken with MEGA 5 (p-distance with 

pairwise deletion of gaps).  

2.3.3 Recombination analysis 

Recombination within the Australian monocot-infecting mastreviruses was analysed using 

the following methods in the RDP4 software package (Martin et al., 2010): RDP (Martin & 

Rybicki, 2000), GENECONV (Padidam et al., 1999), Bootscan (Martin et al., 2005), Maxchi 

(Smith, 1992), Chimera (Posada & Crandall, 2001), Siscan (Gibbs et al., 2000), and 3Seq 

(Boni et al., 2007). Datasets were grouped appropriately to scan for inter- and intra- species 

recombination. Recombination events were considered to be authentic when detected by a 

minimum of three methods coupled with clear phylogenetic evidence. 
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2.3.4 Selection analysis 

The ratios of normalised synonymous (dS) and non-synonymous (dN) substitution rates from 

codon alignments of mp, cp and rep gene of CSMV, PSMV and combined dataset of 

PSMV/PDSMV/DCSMV/BCSMV were calculated taking recombination into account using 

the SLAC method implemented in the online server Datamonkey 

(http://www.datamonkey.org).
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Table 2.1: Details of Australian monocot-infecting mastrevirus isolates from this study (41 
isolates) and previous studies (4 isolates). QLD-Queensland and NSW-New South Wales. 

 

 Isolate Sampling 
year 

GenBank  
accession 

Host Location Latitude Longitude 

Current study       

1 CSMV-A1 [AU-2935-2011] 2011 JQ948053 Chloris gayana Tolga, QLD -17.2233 145.4803 

2 CSMV-A1 [AU-3017-2011] 2011 JQ948054 Eriochloa polystachya Wee Waa, NSW -30.2239 149.4465 

3 CSMV-A2 [AU-1610-2003] 2003 JQ948056 Chloris gayana Brisbane, QLD -27.4698 153.0213 

4 CSMV-A2 [AU-1658-2004] 2004 JQ948057 Paspalum dilatatum Peak Crossing, QLD -27.7839 152.7284 

5 CSMV-A2 [AU-KP11-1983] 1983 JQ948055 Triticum aestivum Brisbane, QLD -27.4698 153.0213 

6 CSMV-A3 [AU-1650-2004] 2004 JQ948058 Chloris gayana Mt. Glorious, QLD -27.3343 152.7678 

7 CSMV-A4 [AU-1649-2004] 2004 JQ948059 Chloris gayana Beaudesert, QLD -27.9876 152.9954 

8 CSMV-A5 [AU-3009-2011] 2011 JQ948060 Chloris gayana Farrant Hill, NSW -28.3181 153.4877 

9 CSMV-A6 [AU-QG29-2011] 2011 JQ948083 Panicum sp. Wappa Falls, QLD -26.5738 152.9401 

10 CSMV-A6 [AU-QG31-2011] 2011 JQ948081 Sporobolus sp. Wappa Falls, QLD -26.5738 152.9401 

11 CSMV-A6 [AU-QG32-2011] 2011 JQ948082 Digitaria ciliaris Wappa Falls, QLD -26.5738 152.9401 

12 CSMV-A6 [AU-QG36-2011] 2011 JQ948084 Chloris gayana Glasshouse Mountains, QLD -26.9273 152.9407 

13 DCSMV-A [AU-QG6-2011] 2011 JQ948089 Digitaria ciliaris Corinda, QLD -27.5509 152.9799 

14 DCSMV-A [AU-QG7-2011] 2011 JQ948090 Digitaria ciliaris Corinda, QLD -27.5509 152.9799 

15 DCSMV-A [AU-QG8-2011] 2011 JQ948091 Digitaria ciliaris Corinda, QLD -27.5509 152.9799 

16 DCSMV-B [AU-QG5-2011] 2011 JQ948088 Digitaria ciliaris Corinda, QLD -27.5509 152.9799 

17 PDSMV-A1 [AU-QG46-2011] 2011 JQ948087 Paspalum dilatatum Landsborough, QLD -26.8079 152.9636 

18 PDSMV-A2 [AU-QG45-2011] 2011 JQ948086 Paspalum dilatatum Wappa Dam, QLD -26.5692 152.9199 

19 PDSMV-A3 [AU-1652-2004] 2004 JQ948062 Paspalum dilatatum Brisbane, QLD -27.4698 153.0213 

20 PDSMV-A3 [AU-1660-2004] 2004 JQ948061 Paspalum dilatatum Mt. Glorious, QLD -27.3343 152.7678 

21 PDSMV-A3 [AU-QG24-2011] 2011 JQ948077 Paspalum dilatatum Moorooka, QLD -27.5313 153.0239 

22 PDSMV-A3 [AU-QG44-2011] 2011 JQ948085 Digitaria ciliaris Brisbane Botanical Gardens, QLD -26.5692 153.0307 

23 PSMV-A1 [AU-1659-2004] 2004 JQ948063 Paspalum dilatatum Fernvale, QLD -27.4560 152.6533 

24 PSMV-A2 [AU-1656-2004] 2004 JQ948064 Paspalum dilatatum Beaudesert, QLD -27.9876 152.9954 

25 PSMV-A3 [AU-1654-2004] 2004 JQ948065 Paspalum dilatatum North Maclean, QLD -27.7721 153.0172 

26 PSMV-A4 [AU-QG33-2011] 2011 JQ948079 Paspalum dilatatum Landsborough, QLD -26.8078 152.9636 

27 PSMV-A6 [AU-1657-2004] 2004 JQ948068 Paspalum dilatatum Boonah, QLD -27.9973 152.6822 

28 PSMV-A6 [AU-QG12-2011] 2011 JQ948066 Paspalum dilatatum Corinda, QLD -27.5509 152.9799 

29 PSMV-A6 [AU-QG13-2011] 2011 JQ948067 Paspalum dilatatum Corinda, QLD -27.5509 152.9799 

30 PSMV-A6 [AU-QG14-2011] 2011 JQ948071 Paspalum dilatatum Corinda, QLD -27.5509 152.9799 

31 PSMV-A6 [AU-QG15-2011] 2011 JQ948072 Paspalum dilatatum Corinda, QLD -27.5509 152.9799 

32 PSMV-A6 [AU-QG16-2011] 2011 JQ948073 Paspalum dilatatum Palmgrove National park, QLD -24.9301 149.4030 

33 PSMV-A6 [AU-QG17-2011] 2011 JQ948074 Ehrharta erecta Moorooka, QLD -27.5313 153.0239 

34 PSMV-A6 [AU-QG19-2011] 2011 JQ948075 Digitaria ciliaris Moorooka, QLD -27.5313 153.0239 

35 PSMV-A6 [AU-QG2-2011] 2011 JQ948076 Paspalum dilatatum Corinda, QLD -27.5509 152.9799 

36 PSMV-A6 [AU-QG28-2011] 2011 JQ948078 Paspalum dilatatum Wappa Falls, QLD -26.5738 152.9401 

37 PSMV-A6 [AU-QG3-2011] 2011 JQ948080 Paspalum dilatatum Corinda, QLD -27.5509 152.9799 

38 PSMV-B1 [AU-3011-2011] 2011 JQ948069 Paspalum dilatatum Farrant Hill, NSW -28.3181 153.4877 

39 PSMV-B2 [AU-846-1998] 1998 JQ948070 Paspalum dilatatum Anstead, QLD -27.5948 152.8449 

40 SSMV-1 [AU-3020_1-2011] 2011 JQ948051 Sporobolus sp. Wyaga, QLD -28.1826 150.6601 

41 SSMV-2 [AU-3020_2-2011] 2011 JQ948052 Sporobolus sp. Wyaga, QLD -28.1826 150.6601 

Previous studies       

Andersen et 
al., 1988 

CSMV-A2 [AU-QL] unknown M20021 Chloris gayana Brisbane, QLD -27.3246 152.5175 

Geering et 
al., 2012 

PSMV-A5 [AU-1611-
2003] 

2003 JF905486 Paspalum dilatatum Anstead, QLD -27.3246 152.5175 

Briddon et 
al., 2010 

DDSMV [AU-QL-1999] 1999 HM122238 Digitaria didactyla Brisbane, QLD -27.4698 153.0213 

Hadfield et 
al., 2011 

BCSMV [AU-QL-1999] 1999 HQ113104 Bromus catharticus Darling Downs, QLD -27.5307 150.5852 
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2.4 Results and discussion 

2.4.1 Genome organisation and conserved motifs 

The genomes of all 41 of the monocot-infecting mastreviruses were between 2748 and 2818 

nucleotides with all containing two intergenic regions (the long intergenic region, LIR, and 

the short intergenic region, SIR) and open reading frames (ORFs) with homology to the four 

characteristic mastrevirus genes: on the virion-sense strand, V1 and V2, encoding the cp and 

mp, respectively, and on the complementary-sense strand, C1 and C2, encoding the rep and 

the C-terminal part of the repA, respectively (Fig. 2.1). We also identified likely intron donor 

and acceptor sites within C1 which, when spliced, would result in a C1:C2 transcript that 

could act as the messenger RNA for the repA (Accotto et al., 1989). Within all the genomes, 

we identified the conserved sequence TAATATT↓AC (↓indicates the site that is likely nicked 

by the rep), located at the putative origin of replication (v-ori).  

 

Within all the Australian monocot-infecting mastrevirus mps, we identified the putative 

hydrophobic membrane domain and within the cp, the putative DNA binding domain (Fig. 

2.2). All the Australian monocot-infecting mastreviruses contained the four rolling circle 

replication associated motifs: motifs I, II, III and the GRS (see Fig. 2.2 for details). Finally, 

we identified a conserved LxCxE motif in SSMV-1 and SSMV-2 that likely binds the host’s 

retinoblastoma related protein (pRBR) (Xie et al., 1995) but this motif could not be identified 

in any of the other Australian monocot-infecting mastreviruses. On the C-terminal portion of 

the rep the putative dNTP-binding domain was identified. 
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Virion-strand origin of replication 
SSMV-1 TAATATTACCCCGCCCCC------CACTCGCGAGGGCGACGTGTGCGCTCTACGTCGCCCGAGC--------------------GGGCCGGCTTTTGT------------------ACTG [120] 
SSMV-2 TAATATTACCCTTGCCCCCGCGGGCCGTCCCGAGGGCGACGTGTGCGCTCTACGTCGCCCGAGGGAAAGTGATAGAGAAAGAAA----GGGAATCCTTTAAT------------TAAAGA [120] 
DCSMV TAATATTACCGCCCATC-------TTTACCCGAGGGGCCTAC----GCTCAGCAGGCCCCGAGG----------------------------CTTTGGCGCC-------------CACTA [120] 
PDSMV TAATATTACCGTCGCCCT------GCTTTGCGAGGG-CCCAT----GCTCAACGGG-CCCGAGC-------------------------GGTCCCGGCCCAT------------CCACTA [120] 
BCSMV TAATATTACCGCCCATC-------TTTAGCCGAGGG-ACCAT----GCCCAACCGGTCCCGAGG--------------------CGCCCGGACCCCCCAAAC--------------ACTA [120] 
CSMV TAATATTACCGCCCCCCCGG----CCCATGCGAGGG-CCCAT----GCTCAACGGGTCCCGAGC--------------------------GGCTTTGGCTTT------------C-ACAT [120] 
DDSMV TAATATTACCGCCCCCGGC-----CCATGGCGAGGGCCCTAC----GCTCAGCAGGGCCCGAGC--------------------------GGCTTTACCTGCTTTGGTGTTCTTTAACTT [120] 
PSMV TAATATTACCGCTGCCCTC-----TTTACCCGAGGGCCCCAT----GCTCAACGGGGACCGAGG--------------TGGCTTTGCCCGGGCCTTATCAGC------------CCACTA [120] 

 

TATA box Movement protein start codon 
SSMV-1 GGCCGCATCTTTTCCCGGC---CTGAGTGCGCAACACGGGTGTTC-----------GATCGGGACACCGCGTCTTTAAAGTCA-----ACATCTTTAGGTCCTTCGACGATGGAGGCGGG [240] 
SSMV-2 AG----ACTTGGATAGCAC------GTCTCTTTAAAAGGGGGTGC-----------GCTCTGAGT--CGGTTATGTCTAATCC-GGCAACCCCTTTGGGTG--ATTAC------------ [240] 
DCSMV GG----GTTTGCGCCCGCC--------TGACGTATTGAGGTTTGCCCGCCG-CTCTAATTTGAGTGCCGTCTTTATAAGACGG-GACCTCGCCGCCCTTCT--ATGGCGG-------AG- [240] 
PDSMV AA----GATTGCTCCCCGC------ATTACGATAAATGGATTTGACTGCCG-CTCTACTTTGAACGATGTCTATAAAAGACTG-CATCGCACTACGACGCC--ATGGCGG-------AG- [240] 
BCSMV GG----GGTTGCACCCCGC------AATATGATTTTCGAATCTGACTGCCA-TCTTCCTTTGTTT--TGTCTTTATAAGACTA-GATCGCACTAGTACGCT--ATGGCGG-------AG- [240] 
CSMV GG----GCTTGTCCCCCGC------GATGCGATCT---GCTCTGCCA--------TGCTTTGG----CGGCTTTATAAAGCCGTTCTCAGACCTTTGTTTT--CCAATGC-------AG- [240] 
DDSMV GG----ATTTTCGCAGTGC-------------------GATCTGCCATCTG-ACCGGTTTTGTCT------TTTAAAAGACCG-CTCCCCCCCTTTGTTTCGAATGGCGA-------CTC [240] 
PSMV AG----GGCTGTTTCCCGCAATCTGATTTCGATTTTTTGCTTTGACTGACATTTCTGCTTTGGATG-CGGCTTTAAATAGCCG-CATCGCACTACTACGCC--ATGGCGG-------AG- [240] 

 
SSMV-1 CCATCTTCCATCGCAGCAGGGATTCCCATCGCCTTTGGCTTATTCCCA--GCCGAGCCCCAGCGGAGTCGGGAAC---GACTCCGCGTGGAGGACGCTCGTCCTGGTAT---TCACCATC [360] 
SSMV-2 --ACCTCAAGT----CAG--------CATCAGG-----GTGGTACGCA--GTCCGGATCCGTCGGAATCGGTAAC---GATTCCGCGTGGAGGGCGCTAGCTCTTGCTT---TCACCGTA [360] 
DCSMV -TACCCTCAGT----CAG--------CCTTTGTTGGAGGTAGTGCGAT--TCCGCGTCAAGGCCCGGTCGATAGCTTTGCTTCGACGTTGAAGGTAACTGCTTTGGGGCTCTTTGCTACG [360] 
PDSMV -TACCCTCAGT----CTG--------CTTTAGTGGTAAGTGGTGCGAT--TCCACGGCGAAGCCAGGACGAGAGCTTTGCCTCGTCTTTGAAGTTCACTGCTTTATCTTTATTTGCAGCA [360] 
BCSMV -TACCCTCAGT----CTG--------CTTTCGTTTTATCTGGTGCGAT--TCCACATCAAAGCAAGGACGAAGGCTTTGCCTCGTCTTTGAAGGTTACTGCTCTATCTTTGTTCGCAGCA [360] 
CSMV -TACCAGGGGTACGAGCA--------GCTCAGT-AGATCTGGATCCGT--GGAGCAACCCAGCCCCGGTGCTAGCTTTGCTTTCCCGGTGAAGGTGACAGCCCTCGTCTGTTTCGCAGCG [360] 
DDSMV CGACATTTGAT---AGTG--------CATATTTTAGATCTGGATCTGTGGTTCAAAACCAAGACGGGACA--AGCTTTGCTTTCCCGGTGAAGGTGACTGCCCTTGTCTGCATTTCTTCA [360] 
PSMV -TACCCTCAGT----CTG--------CTTTGATTGTTTCTGGTGCGAT--TCCACGGCGAAGCCAGGACGAGAGCTTTGCCACGTCTTTGAAGGTCACTGCTTTATCTTTATTTGCAGCA [360] 

 
SSMV-1 ACCGCAGTTGGTCTGGCGTGTTCATTTGCGCTTTACCGTCTGTGTGTGAAGGACCTTGTTCTGTTGCTGAGGGCGAAGCGCTCAAGGACGGTGACGGAACTGGGGTTCGGCGGCACCCCG [480] 
SSMV-2 ACTACGGTAACTCTTGTTTTGCTGTTCGGAGCTTGGAGGCTTTGTCTGAAAGACTGCCTTCTGACTCTGCGGGCTAAACGCAGCAAGACTACGACCGAACTAGGATTCGGTCAGA----- [480] 
DCSMV TTCATTGGGGCCGCAGTCCTGTCATTT---TTGTACAGGACGTGTCTATCAGACTGCATTACGCAGTACCGGCTTGGTTCCTGGAGCAGTACCGTCAATTCGGGCTTTGGGGGTAACCGG [480] 
PDSMV TTTATTGCTGCTTGCGTCTTGTCATTC---ATTTACAAGACGTGCATTGCGGAATTCATTACGCAATACCGTTTATCCGGTTTAAGCAGTGTAACTTCATCTGGCTTTGGGCGGACCGTT [480] 
BCSMV TTCATTGCTGCTGCCATCTTGTGTTTC---CTATACAAGACTTGTCTTGCAGATTGCTATACGCAATACCGGACTACCGGTCTGAGCAGTACATCTTCATCTGGCTTTGGTCGAACCTCT [480] 
CSMV ATTGTTGGAGCCTGTATTCTTGTATTC---TTGTACAAGACGTGCATTGCGGACTGCATAACGCAGTACCGGCTTACGGACTACGGCTGTCACACTTCGGCTGGGTTCGGAGGTGCGTTA [480] 
DDSMV ATTGTAGCGGCCGCAATACTTGTATTT---TTATACAAGACCTGTTTACAAGACTGCATAACGCAGTGGAGGCTTACGACATACGGCAGTCACTTTTCATCTGGTTTTGGAGGTACTCAT [480] 
PSMV TTTATTGCTGCTGCAGTCTTGACATTC---ATTTACAAGACTTGCATTGCGGATTTCATTACGCAATTCCGTTTATCCGGTTTAAGCAGTGTAACTTCATCTGGCTTTGGGCGGACCGCT [480] 

 
 
 

C
hapter 2 

Figure 2.1: continued on the following page. 
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Movement protein stop codon 
SSMV-1 GCG----CGCCAA-------------GACGGCGTTCG----------TACCGGGAGTGGGGTTCCCGGGCTTGGATAGTTTCCAC-----CAGGACCGGTTGCTTACATACGGGGACTTC [600] 
SSMV-2 -------CGCCGA-------------GAAGGGATCCG-----------------GTAGGCGGAGGAG---TCACCCAGTACCCCC-----CCGGAGTCCCTGGGTAACCAGGATCACCGC [600] 
DCSMV GCGTTACCCCAGGTCGTACGTGGAGACCTAGAAAGAC-AAGTATCTGTCCCC--GTTAGGG------------ACTCTGGTGTTT-----------TGCCTGTGGTTTCAGGAGCT--GC [600] 
PDSMV GAGGATCCGCCAGCTGTCCCC---CGGACAGCGTCTG-AGGTTTCAATTCCA--GTTGCTG---------TTAGAAGTGGTATTC-----------CTCCTGTGATTTCAGGTGCT--TC [600] 
BCSMV GAGGCTTCGACAGCTGTCCCG---CGGACAGCGTCTG-AGGTTTCTATTCCC--TTAGGGG---------ATAGATCTGCTACTC-----CA--TCTTCCTGTTTACCTACA------TC [600] 
CSMV CCCGTGACCTCTGC------------GCAAGCTAGTGCTGGTACCAGCACCCCTGTGTGTG---------TTCCCTGTGCTCCTCAGGTACAGGCGTCCGTGGATCTACCC-------TC [600] 
DDSMV TTGGTGACCTCAG-------------GCCAGCCTGAG--AGTAACCATACTCCCATTGTGAGTTTACCTGATAGATCTGCAGTTT-----CAGTGCCCCCTGTTTCGTTACCTGTTGGTT [600] 
PSMV GAGGTTCCGCCAGCTGTCCCTACAAGGACAGCGTCTG-AGGTTTCAATTCCC--GTAAGGGAAG------CTGTTTCTGCTCCTC------------CTTTGGTTTCTTCCG-------- [600] 

 
Coat protein start codon 

SSMV-1 CGGCGAGCGCTCGAGCTGAGCCGA-----------GCCATGCCGTCGTCCACGCGTGCTGCTGTGAGGCCTAAGCGTAAGAGGGTTGGGAAACAACCGTGGC-------CCAGAGAACTA [720] 

SSMV-2 CGTAAAAGACGGCCGTGAAGCGGTCCAGAGAGGACGCTATGCCTCCTCC------------------CGCTAAGAAGAAGAAGG--GTTCGGACTCTGGAGC-------CG-GAG----G [720] 

DCSMV TGCAGTTGGCGGAGGCTGAGTC-------------GTCATGCCTGCTTC------------------GTCGAAGAGGAAGCGTG--GGAGCAGTTCTGCTGG-------GAAGCG----G [720] 

PDSMV CGGAATTCCCGGAAATTGACGTTG-----------GAAATGCCGTCTTC------------------CTCAAAGAGGAAGAGGG--GGAGTACCTCGGGTAC-------TAAGCG----G [720] 
BCSMV TGGTATTTCATCTATTTGATTT-------------GTCATGACGTCTTC------------------CTCGAAGAGGAAACGTG-----GATCTGGTAAGAC-------GAAGAC----G [720] 

CSMV CGTAAGTAGGGTGTCATGA----------------GTCCTGCCAGCTC-------------------ATGGAAGAGGAAGAGGC--CCTCTTCTTCCTCCGC-------TCAGGC----G [720] 

DDSMV TGCAAACATCATGA---------------------GCCCTGCAGGCTC-------------------ATATAAGAGGAAGCG-----------CTCCGCCGCTTCGTCTTCAGCG----A [720] 

PSMV ------TGGTTGGTGTTTAGTT-------------TCCATGGCAGCTTC------------------GTCGAAGAGGAAGCGCG--GGAGTACTTCCGCAAC-------CAAGCG----G [720] 
 

SSMV-1 TGGCAGAGGGGGATTACCC---------CACGAAACAGCAGGATCCGGTCGACGGGTCTCATCGATGAGACCCGTTCGCCCTTTCGTTGCAGTAATGAAGT--ATACATGGACACCCAAC [840] 
SSMV-2 CTCCAGAAGCGTATACCAGCGAAGGTATTACGGACCGAGGAGCTCAAGCGGACGAG---------------------------CAGTCAGACGTCCTCCGCTTCAGTTCATCCAGTACAC [840] 
DCSMV CGTAAGAAGC------------------CGCGGTACACGA------AGTGGACTGGT-------------TCCCGTTCCAGCGCTAGCCAGGATGCACTGC--AGGTGCAGACCTTCCAA [840] 
PDSMV CGTAAGAAGC------------------CGCGAACCACGA------AGTGGACTGGAT----------------CCCGCAGCGCATCTAGAGAGGCGCTGC--AAGTACAGACCTTCACC [840] 
BCSMV CGCAAGAAGG------------------CGCGTTACACGA------AGTGGACA-------------TCATCGAGAACAACGTCAGCTGCAGACTCTCTGC--AGGTACAGACGTTCCTG [840] 
CSMV TCTAAGAAGCGC----------------CGCG----------------TGTACAGGCCTGCTGTTTCACGTTCTCTCGCTCGGC-----GAGAACCTCTGC--AGGTGCAAGACTTTGTC [840] 
DDSMV CGCCAAAACGCCGT--------------CGCG-TCTATAAACAAGCAGTGAGTC--------------------GTCCTCTCTCAAGGAGAGAACCACTGC--AGGTGCAAGATTTTACC [840] 
PSMV CGCAAGAAGC------------------CGCGGTACACGA------AGTGGACC----------------TCTGCCCGCAGCTCTAACAGAGATGCGCTGC--AGGTACAGACCTTCACC [840] 

 
SSMV-1 GGGGCAGGAGTTCAGG---TTGCTG----------CACCGGGTGCTGTCTATCTCATGACGAACTTGCCCCGGGGGAGCAGCGAAGACCAGCGACACACGGGGGAGACCTTGGCTTACAA [960] 
SSMV-2 CTGGACGAGCAACGGTTCTCCGATAACCGTTGGTCCGAATGGGTACGTAGCTCTCCTGACTAGCTTCCCAAGGGGAAGCGACGAAGATAAGCGTCATACAGGAGAGACTGTGACGTACAA [960] 
DCSMV TATGCTGAGGATCAGGCATTTAATG----------CAGGAGGACGTGCGCTGTTGCTCACGGCATTTACCCGCGGTTCTGCAGAGAACCAGCGGAAGTCCCAGGAGACCATTACGTACAA [960] 
PDSMV TGGAGTGAAGACCAGGCGTTCAACG----------CCGGTGGCCGAGCGATCCTTCTCTCGGCCTATACGCGCGGTTCTGGCGAGAACCAGCGCAAATCCCAGGAAACCATTACGTACAA [960] 
BCSMV TGGGCTGAGGATCAGTCCTTCAATA----------CTGGTGGAGGTTGCAGACTGCTAACCTCCTTCACGCGTGGTTCAGGAGAGAACCAACGCAAATCCCAGGAGACCATTACGTACAA [960] 
CSMV TGGGATACAGATGTGGCTTTCAATA----------GGGGAGGAGGATGCTACCTCCTCACTAGCTATGCTCGAGGCTCTGCCGAGAATCAGCGGAAGACCGCTGAGACCATCACGTACAA [960] 
DDSMV TGGGAGCAAGATTCGGCGTTCAATG----------CAGGTGGCTCCGCCTACCTGCTTACAAGTTATGCCCGCGGTTCAGCTGAGAATCAGCGCAAGACCGCGGAGACGATCACCTACAA [960] 
PSMV TGGGGTGAAGATCAGGCGTTCAACG----------CCGGAGGACGTGCGATACTTCTCACGGCCTTTACGCGTGGTTCTGCCGAGAACCAACGCAAATCCCAGGAGACCATTACATACAA [960] 
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SSMV-1 GCTGGGAATCGACCTAGAGGTACAGGTTGTGTCAGCTCAGTTTGCCTATGCCAA-----CAAGAGTAC------------------CCATGTCATGTGGCTGGTCTATGACGCACAGCCG [1080] 
SSMV-2 GGTAGGCTTGGATCT-----G------------------TTCTGCGTCAGAGACACAAACAGATACAAGGAGATAGGATCTGCTATCCACTGCTGCTGGTTGGTCTACGACGCTCAACCA [1080] 
DCSMV GGTTAGTGTTAGCCTTGGCGT------------------TTCGGCATCTTCTAC-TGTACAGAAGTACTGCGTGAAGA---GCCAGCCG-ATATGCTGGCTCGTGTACGATAAGACGCCT [1080] 
PDSMV GGTTGCCCTCAACCTTGGTGT------------------TTCCGCATCCGCTAC-GGTACTCAAGTACTGCTGCAGCA---GCCAGCCG-ATATGCTGGCTGGTGTATGACAAGACGCCT [1080] 
BCSMV GGTTGCCGTCAACCTTGGCAT------------------CTCCGCCTCCACTAC-CGTTCAGAAGTATTGCCTGACCA---GCCATCCT-ATATGTTGGCTGGTCTACGATAAGACGCC- [1080] 
CSMV GGTGGCAGTTAACCTGGGGTG------------------TGCTATCTCCGGGAC-GATGCAGCAATATTGCATCAGCT---CCCGACCG-GTCTGCTGGATTGTATACGACGCGGCCCCC [1080] 
DDSMV GGTGGCTATCAACCTTGGTGT------------------TGCTATTAGTGGCAC-TATGCAACAATACTGTGTGTCGA---GCCGGCCA-GTGTGCTGGCTCGTTTACGATGCGGCACCG [1080] 
PSMV GGTTAGTATTAACCTTGGTGT------------------GTCAGCATCTGCTAC-CGTCCTCAAGTACTGCTGCAAGA---GCCAGCCA-TTATGCTGGCTCGTATACGATAAGTCCCCG [1080] 

 
SSMV-1 AGCGGTCGTCTT---CCGGCGACCTCTGATATCTTCGACTACGTTGAGGGGTTCCAGTATATCCCACACGTGTGGAAGGTGAGGCGAGATCTGTGCCACCGGTACATTGTCAAACGGAAG [1200] 
SSMV-2 ACCGGTACGATT---CCGGGGCTGGGAACTATCTTCGACCTCGTTGATAACTTCACGGAGTACCCGACGACATGGAAGGTAAACCGGGATATGGGGCACCGGTTTGTGATTAAACGTCGC [1200] 
DCSMV ACTGGGATTGCTGACCTTGTCCCCTCGGACATTTTCGATGTGCCGAGTGGATTGACCAATTGGCCTTCTACCTGGAAGGTCAAGCGAGAAGTCTCGCACCGCTTTGTGGTGAAACGGCGC [1200] 
PDSMV ACTGGGATTACTGACCTGACCCCGTCAGACATCTTCGATGTGCCCTCGGGGTTACAGAACTGGCCTTCGACCTGGAAGGTCAAACGCGAAGCGTCTCACCGCTTCGTGGTGAAACGGCGT [1200] 
BCSMV --TGGGATTGCTGACCTGACTCCAACTGACATCTTTGATGTCCCGACTGGGTTGAACAACTGGCCTTCAACCTGGAAGGTCAAGCGCGAAGCATCTCACCGCTTCGTGGTGAAACGGCGC [1200] 
CSMV ACTGGCTCTGCTG---TTACCCCGAAGGACATCTTCGGGTACCCGGAAGGATTAGTTAACTGGCCTACTACTTGGAAGGTGGCCAGAGCGGTGTCCCACCGCTTCATAGTGAAGCGCCGA [1200] 
DDSMV TCCGGCACGGCTG---TGACGGCTCAAGAAATTTTCGGATTCCCTGATGGTTTGAAGAACTGGCCAACAACTTGGAAAGTGGCCAGATCGGTGTCCCACCGATTCATAGTGAAACGTCGG [1200] 
PSMV ACTGGGATTACGGACCTGACCCCATCAGACATCTTCGATGTGCCCTCGGGGTTACAGAACTGGCCTTCCACCTGGAAGGTCAAACGAGAAGCGTCTCATCGCTTCGTCGTCAAACGGCGT [1200] 

 
SSMV-1 TGGATGATAAACCTCGAGACCAATGGAGCGTCCTTCGGGGTGGACTTCAGTAGCAGACCGGT-CACTGCTCCAA------AGTACCGGGCTAGCTTCCACAAGTTCGTTAAGCGGTTAGG [1320] 
SSMV-2 TGGACCTTCACGCTCCAGTCGGATGGTCACCTGGGATCGAACGACTACA-------GCCGGGCTCCTGCAGCGCCCTGCAAGTACATGATTGCGTTCAACAAGTTCGTGAAGCGTCTAGG [1320] 
DCSMV TGGCCGTTTACGTTGAGTTGCAACGGGAGTACCTTCACGGCGGATTACACGAAGCTGCCGGTGCCCAATA-CAG------ACAACCTGGTGTCCGTGAACCGGTTCGCCAAGGGATTAGG [1320] 
PDSMV TGGCCGTTTAAGTTGGAATGTAACGGCAGTACGTTCCAGAAGGACTACACGAACCTGCCTGTGTGCAATA-CGC------AGAACCTGGTGTCCGTAACGAGGTTCGCCAAGGGACTTGG [1320] 
BCSMV TGGCCGTTTAGACTGTCCGTCAATGGCTCTACGTTCTCTGCAGATTATACGAAGCTGCCGGTGCCCAATA-CAG------ACAACCTGTGTACGATCAACAGGTTCGCCAAGGGACTTGG [1320] 
CSMV TGGGTCTTCACCATGGAGTCCAACGGCTCGCGCTTCGACCGTGACTACACCAACCTCCCGGC-TGCTATACCGC------AGTCCCTTCCCGTTCTGAACAAGTTCGCGAAGCAGTTGGG [1320] 
DDSMV TGGGTGTTTACACTGGAGTCCAACGGCTCCAATTTTGCTACGGGGTACTCTAGTA-ACCCGTGTGCCATACCGC------AATCCCTGCCGGTTCTGAACAAGTTCGCAAAGCAACTTGG [1320] 
PSMV TGGCCGTTCACGTTATCATGCAACGGGAGTACGTTCCAGAAGGACTACACAAACCTGCCTGTCTGTAACA-CAG------ACAACCTGGTGTCTGTAACGAGGTTCGCCAAGGGACTTGG [1320] 

 
SSMV-1 CGTACGAACTGAGTGGAAGAACTCCGACACGGGTGAGA--TCGGAGACATCCAGAGGGGAGCGTTGTACTTGGTGGTTGCTCCAGGCAACAACGTTCCGATAAACATTAGGGGGTACTTC [1440] 
SSMV-2 TGTTCGGACGGAATGGAGGAACACAACGACGGGTGACA--TCGGAGACGTGTCTAGGGGTGCGTTGTACATCGTAATGGCTAGAGGCAATGCCTGGAGTTACGAAGTTAGGGGGCGTATA [1440] 
DCSMV AGTGCGGACCGAGTGGAAGGATACGGTGTCTGCGGAGGCCTC--CGACATTAAGGGTGGAGCCCTTTACATAGTTCTTGCCCCGGCTAACGGGGTTGTTTTCACCGCCCGCGGGGTAATT [1440] 
PDSMV AGTGCGAACGGAGTGGAAGGACACAACGACGGCGGAGTCGTC--GGACATTAAGGGCGGAGCCCTGTACCTTGTGATAGCCCCTGCTAACGGGCTTGTGTTCACAGCCCGTGGTGTAATC [1440] 
BCSMV AGTGCGAACCGAATGGAAGGACACGGTTTCTGCTGACGCCTC--CGACATCAAGGGCGGAGCCCTGTACATAGTATTAGCCCCGGCTAATGGGCTTGTATTCACAGCTAGAGGTGTCATT [1440] 
CSMV CGTGCGGACCGAGTGGAAGAACGC--TGAAGGCGGAGACTTCGGCGACATAAAGAGCGGAGCTCTTTACCTAGTCATGGCTCCGGCTAACGGAGCTGTCTTTGTAGCCCGCGGCAATGTC [1440] 
DDSMV CGTGCGGACGGAGTGGAAGAACAC--CGCAGGGGGAGACTTCGGCGACATTAAGAGCGGCGCTCTTTACTTAGTGTTGGCTCCGGCTAACGGATTAACTTTTGTAGCACGCGGAAATATC [1440] 
PSMV AGTGCGAACGGAGTGGAAGGACACAACGACAGCGGACGCGTC--GGACATCAAGGGTGGAGCCCTCTACCTTGTGGTAGCCCCCGCTAACGGGCTTGTGTTTACAGCCCGTGGTGTAATC [1440] 
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Coat protein stop codon  
SSMV-1 CGTTTGTATTTCAAGAGTGTCGGTAATCAGTAGGATTACCGTCTTTGTAATCGAAGATTAATAAG-----------------------AAG-------CGAAGC------TTTTATTCAT [1560] 

SSMV-2 AGAGTGTATTTCAAATCAGTCGGGAATCAGT--GATGTAAGAACTCCTGGCTTGTAATGAATAAG----------------ACGTGTTTAA-------TAAAATGCG---------TCA- [1560] 

DCSMV AAGGTGTACTTTAAGTCTGTGGGCAACCAGT-----------------AGCCCAGTGT-AATGAGCCCCTTGGGCGA------GTATTAA--------TAAAAC--TCCAGTTTTATTAT [1560] 

PDSMV AAGTGCTACTTTAAGTCTGTGGGAAATCAGT-----------------AGCCCACTGTAATTGAGCCCATTGGGCGATCTATGATCTGAAA-------TAAAATGGCACATTTTATTTAT [1560] 

BCSMV AAAGTGTACTTCAAGAGTGTGGGCAATCAGT-----------------AGCCCAATGT-AATGAGCCCATAGGGCGA----------TGAA-------TAAAATGGCACATTTTATTTAT [1560] 

CSMV CGCGTGTATTTTAAGTCTGTTGGGAATCAGT--GATTCCCCAG-----ACTTCATTTTCAATAAAC----TGTGAGAGTTTGCTTGCCAAA-------CAACATA----ATTTCATTCAT [1560] 
DDSMV CGCATGTATTTTAAATCCGTCGGTAATCAGT--GATTACCGTTCAT--GGTTTATGAATAATAAACACAGTTTGATGACAAGCTTGGCAAATTATTATTAAAATGAGGCA---------- [1560] 

PSMV AAAGTCTACTTTAAGTCAGTGGGCAACCAGT-----------------AGCCCATTTGTAATGAGCCCATGGGGCGA----ACTTATGAAA-------TAAAATCTTGCATTTTATTCAT [1560] 

 
Replication associated protein stop codon 

SSMV-1 ATAGCGTGCAGTGCACA---------------GAGAAATTACAACACACA-CAATCGCAGCCG--AGGCTTAAGACGAGTCTCAGCGATTCCCTGCGATCATCTACATCAAAAAAAAACA [1680] 
SSMV-2 -----GTATGACGCTTG---------------ATTACATAACAGCACACTCGAACCGCCGCCG--AGGCTTAAGACGAGTCGGTGCGGTTCCCTGCGATACATGACATTAAAAAAAGA-- [1680] 
DCSMV TGCACTTGTGCAG------TGGCGGTACGACACAGAAAATACAACATTAACCTAAATTGGCGGCCAGATCGAAGGCGGCTAAGGGTTAGGACTCGAAA------------AAAAAAAACA [1680] 
PDSMV CGCA-TTGCGATGAACGCGTAGCGTTAC-------AAATTACAATACATA----GCGCAGCCTCGGGCTAAAGACCGAGTCTGA--AGCGACCCTAGTACAATACCACCGGAAAAACA-- [1680] 
BCSMV GTCA-TTATGACGAACG------AGTACAACGAGAAAATTACATAATTGGTTTTTGTGGGTCGCGAGGGGGAACCCG-----GAGCACGCACCCAAAA------ACACT--AAACACACA [1680] 
CSMV AACGATGGCGCAGTATGCGC------------AATACATTTAAAAGAAGG---------GCGGACAGGACAAAGGCGGGCGGCTAAGGGAAGCCGCAAGGGGCAACACC--------ACA [1680] 
DDSMV -----TTATGCCG------------------------ATTACAACATGG--TTTTGTGTGTCGGGAGGGGGAACCCG-----GACCACGCACCCAAA-------ACACTTAAATAAAACA [1680] 
PSMV CGCA-TTGAGATGCATGCGTAGCAGCAA----AGCAAATTACATAACTGG-TTTTGTGGGTCGCGAGGGGGAACCCG-----GAGCACGCACCCAAA-------ACACT-AAATGAAACA [1680] 

 
 

SSMV-1 CAC----------TTTATAATA-ATTCAGGCTGAGT-----CGCTGGCGTA----------AAGCCGGGTC------------CGGTATGAAGCTCTCTTCAGATGTCATGTAGTGGATC [1800] 
SSMV-2 --------TTACATTTATGAAA-ATT----------------------ACA----------AAGCTTCATT-----------TCTAA-TGAAGCTTTCTCCTTCCGACATATAATATATC [1800] 
DCSMV CACCCAACTCATATTAATGAAA-ATGCGCGGCGCGTGCCGACGGAGGAGTC----------ACGCTGTAGCTGCGCCAAGGCTTTTGAAGAAAGTCTCTCCTTGGTACATGTAATGTACC [1800] 
PDSMV --------ATATCTATCTGATA-ATGTCTCGCGCGTAGGTGTGTAACACCT----------ACGCCGTCGT-----------TTCGA-AGAAACGGAACCCTTGGTTCATGTAGAAGACG [1800] 
BCSMV AACCCAGAATATCTATAGGATACATGGCCGGCGCGTGCCGATA-----GTC----------ACGCTGTAGCTGGCCCTAAGCTTCGA-AGAAGCTCTCCCCTGCATACATGTAATGTATG [1800] 
CSMV TCCCAAGAATGAGTTTTGGAAT-ATGCAGC-----------CGCTGGCTTC----------ACGCTATTCC----------GAAGGAATGAAGGTTTCCCCTGGGAGAAGGTGATACACC [1800] 
DDSMV CACCCAACATTACATTATTAAT-ATGCCGCCCTAG------CGGAGAAGCT----------ATGCTTCGACGTCCGACGAAGGAGGAATGAAAGACTCTCCTGCTTGAAGATAGTAGACC [1800] 
PSMV CACCCAAATAATCTATCTGAAA-ATGCCGGACGAGGACTCGCGAAGGAGTCCGAGATTACAAAGCTTCGA------------------AGAAGCTTTCACCCGAGTACATGTAATGTACG [1800] 

 
SSMV-1 TGCACGTTCGCTTCGAAGTACGACACCTGCCCGGGTGTCATATCGGCTAGCCAGTCCTCGTCCTCATTCACCAGTATGATAGTAGGGATACCTCCCTTTATCAGTTTCTTCTTACCATAT [1920] 
SSMV-2 GACATATTCCCTTCAAAATACGAACGCTGGCCGTCGTTCATGGCTCTCATCCAGTCGTCGTCCTCGTTAACTAGGATGATACTTGGTATTCCTCCTTTGATGAGTTTTTTCTTGCCGTAC [1920] 
DCSMV TCGCAGTTAGCGTTAAACCAGTCAGCCTGACCAGGCTGCATTTGTTGGAGCCAGTCTTCGTCCTCGTTGGCGAGGATTATGCATGGGACTCCGTTGGAGAGCAGCCGTTTTTTGCCGTAC [1920] 
PDSMV ACGCAGTTGTCCTGAAACCATGCAGCCTGTGATGGCTGCATGTATTGGGGCCAGTCTTCATCCTCGTTCACGAGGATTATGGAAGGTATTCCGTTAGGAAGAAGGCGTTTCTTCCCGTAC [1920] 
BCSMV ATACAGTTTGTCTCAAACCAGCCAACCTGACTAGGTTGCATTTGTTTGAGCCAGTCTTCGTCCTCGTTCACGAGGATTATTGATGGAACTCCATTCTTGAGCATACGTCGTTTACCATAT [1920] 
CSMV ACGGCGTTGCCGTGAAACCAGTCGACCTGTTGGGTCGACATCGACTGCAGCCAGTCTTCATCCTCGTTTACGAGGATAATACATGGAATCCCGTTGGGGATTCTTTTCTTCTTCCCGTAC [1920] 
DDSMV ACACAGTTGCCGTGAAACCAGTCGGCTTGTTGAGGCGACATGGTTTGTAGCCAGTCTTCATCCTCGTTCGCGAGGATTATTGAAGGTATCCCATTCGGGATAGTCTTCTTTTTACCGTAT [1920] 
PSMV ACTGCGTTAGCATTGAACCAGTCAGCCTGACTAGGCTGCATTTGTTGAAGCCAGTCTTCATCCTCGTTCACGAGGATTATGCATGGAATGCCATTTGACAGCAGCCGTTTCTTGCCATAC [1920] 
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Rep A stop codon 
SSMV-1 TTAGGATTTACAGTAAAGTCCTTCTGGCAGCCGATCAGAGCCTTCCAGTGAGGACAGAACTTGAAGGGGATGTCGTCGATCACATTGTATTGGGCCTCCTGGTC---GTATGTGGCCCAA [2040] 
SSMV-2 TTTGGGTTGACTGTATATTCATGCTGAGAGCCAACCAAGGCCTTCCAATAAGGACAGAACTTGAACGGAATATCATCGATTACATTATACTGGGCTTCGTTATTATAGT---TGGCGAAG [2040] 
DCSMV TTTGGATTGACGGTGATGTCCCTCTGTGCTCCGACCAACCCCTTCCAACAAGGGACGAATTTGAAGGGGATGTCATCAATTACATTGTATTCAGCGTCGGGAATGATGT---TGAGGAAG [2040] 
PDSMV TTTGGATTTACGGTGATGTCCCTCTGTGCCCCAACAATCCCCTTCCAACAAGGAACGAACTTGAACGGGATGTCATCTATGACGTTGTATCTGGCAGTGGGAATGACGT---GGAGGAAG [2040] 
BCSMV TTTGGATTTACGGTAATGTCAAACTGGCATCCAACAAGCCCTTTCCAACAAGGAACGAACTTGAATGGTATGTCATCTATGACATTGTAAGTTGCGTTAGCAACTAAGT---TGAGGAAG [2040] 
CSMV TTGGGGTTTACCGTCAGGTCATACTGGCTGCCGACGAGTCCCTTCCAACAAGGGACGAACTTGAACGGGATGTCATCAATGATGTTGAACTGGGCCTGGCAGTTCCATTCCTCTAGGAAG [2040] 
DDSMV TTTGGATTTACGGTTATGTCGAACTGGCTACCAACCAACCCCTTCCAACAAGGAACGAACTTGAACGGAATGTCATCTATGACATTATAGATGGCATTTTTATTCCACTCTGTGAGGAAA [2040] 
PSMV TTCGGATTTACTGTAATGTCCTTCTGGCTTCCGACAAGCCCTTTCCAACAAGGAACAAATTTAAACGGAATGTCATCTATGACATTATATCTTGCATTTTGAATTACGT---GGAGGAAG [2040] 

 
Rep intron 

SSMV-1 TCCACCTGCATATTGTAGTAGTTATGACGTCCTAACACCCTGGCCCAAGATTTCTTACCGGTACGAGTTGGTCCGCAGATGTAGAGGGATTTCCGGCGCCCTGC------TCCGTCCTAG [2160] 
SSMV-2 TCCAGGTTCATCTGCCAGTAGTTATGTTTACCTAGACTCCTGGCCCAAGATGTCTTACCGGTACGATTTGGTCCGCAGATGTAGAGCCCAGATTTCCTAGTTCTTGGATGGTCTGCAGAC [2160] 
DCSMV TCGACGCTGTGTTGCCAGTAGTTATGCTTACCCAGACTTCTGGCCCAAGATGTCTTTCCGGTACGACTTGGTCCGCAGATGTAGAGGGATTTTCTTCGTTCAGCAGGGTTTCTGCCCTGC [2160] 
PDSMV TCCACGGAATGCTGCCAGTAGTTGTGACATCCAAGACTTCTTGCCCAAGAAGTCTTTCCAGTTCTTGTTGGTCCGCAGATGTAGAGGCTTCTTCGCCGTTCAGCAGGACTTCTGTCCTGC [2160] 
BCSMV TCGACGCTGTGTTGCCAGTAGTTGTGAGCTCCCAGACTTCTAGCCCAAGAAGTCTTTCCAGTTCTTGTTGGTCCGCAAATGTAGAGTGATCTTCTTCGTTCATCAGGACGTCTGTCCTGC [2160] 
CSMV TTCACTGAGTGCTGCCAGTAGTGATGAGTTCCAAGACTTCTGGCCCAAGAAGTCTTTCCAGTTCTTGTTGGCCCACAGATGTACAGGCTTCGTCTCCGGACTCCAGGGCTCCAGACCTGG [2160] 
DDSMV TCTACAGAGTGTTGCCAGTAGTGGTGAGTTCCAAGACTTCTGGCCCAAGAAGTCTTTCCAGTTCTTGTTGGTCCACAGATATATAAGGATCGTCTTCGATGATGCGGACCTCGTTCCTGG [2160] 
PSMV TCCACGGAATGTTGCCAGTAGTTATGACTTCCGAGACTTCTTGCCCAAGAAGTCTTTCCTGTTCTTGTTGGACCACATATGTAGAGGGAACGTCTTCGTTCAGTAGGACTTCTGTCCTGC [2160] 

 
SSMV-1 TAACGTCAGCCATCCACTTTAAATCAGATTCGGCGTCCTCGGCCGGA-------TGTAGACAAGAGTACGCGAAGGGACTTACGATGTAGCACTGCAGGTTCTCCTGATACCAGTCCAAG [2280] 
SSMV-2 TAGCATCCATCAACCAGTTTAGGTCCCCCGAAGCGTCAGCCTGCGGA-------TGTAAAGAAGAGTATGCAGCAGGAGATACCTGGTA------GAGTGTATTATCGAGCCAGTCTGTG [2280] 
DCSMV TGGTGTCATGCATCCATTGGAGGTCAGCTCTAGCTTGTTCCTCCGAAAGACCGGAGTGAAT-GCTGTAAGCATAGGGACTTACAGTGTA------CAGTTCTGCTCGGAGCCATGCTCCG [2280] 
PDSMV TCAATTTAGATATCCATTGGAGGTCAAGCTTGGCTTGATCCTCCGTGACTCCGTTGTGAAT-GGAATATGCATAGGGACTTACAGAATA------TAATTCTTCTCGGAGCCATGCTCCG [2280] 
BCSMV TAATATCAGACATCCATTGGAGGTCAAGCCTCGCTTGGTCCTCCGTTACGCCATTATGTAT-GGAATATGCATAAGGACTTACAGAAAA------TAATTCTGCTTGGAGCCATGCTCCA [2280] 
CSMV TTAGGTCAGACATCCATTGGAGGTCAATACGTGCTTGTTCCTCCGAAATACCTGCATGCAG-ACTGAGGGCTTGAGGACTTACAGTATA------CAGCTCCTGCTGGAGCCATTCTCCT [2280] 
DDSMV TTACATCAGACATCCATTGGAGGTCAAGCTTTGCTTGTTCCTCCGATACTAATGCATGAAC-ACTGTAAGCAGAGACACTTACAGTGAA------GAACTCGGTATCGAGCCACTCTCCA [2280] 
PSMV TTAGATCAGACATCCATTGGAGGTCAAGCTTTGCTTGTTCCTCCGAAACACCGTTGTGTAT-GGAATACGCATAAGGACTTACAGTGTA------TAATTCATCTCGGAGCCATGCTCCG [2280] 

 
SSMV-1 AGGTTCTCATGACAT-------GTGAGATCC--GTAGTCTGGTACTGGCTCTGGTACTGGGGAGTGATGTCAGGGAAGAGCTTGGATGCAGAGTATTCGAACTGGGCTAGTCTAGTAGCC [2400] 
SSMV-2 ATTCTCTCATTACAC-------ATGAGATTT--TCTGTAGGGAAAGGGCTTGTGTATTCCGGAATCACGTCAGGGAAGAGCTTTGACGCGGAATATTCGAACTGCTGGAGTTTAGTAGCC [2400] 
DCSMV AGCACTGGATGTTCTTCTTGGCTTGGCATGT---------TGAATGGGCTGACGTAGGGCGGAGGAGTAGAGGGGAACAGCCGTTCGGCTGAGTATTCAAAGTTTTGCAACCTTGTTGCC [2400] 
PDSMV AGCACCTGATGTTCTGCCTGTGAAGGCATCC---------CGAAGGGATCAACATACGGAGGAGGGAGGCAGGGGAACAGCGCTTGCGCTGAGTATTCGAACTGTTGCAACCTTGTTGCC [2400] 
BCSMV ATCACCGGATGTTCATCCTGTGCTGGCATCC---------CGAAGGGATCCATATATGGCGTAGGAACCGAAGGGAATAAGCTCTCTGCGGAGTATTGGAATTGTTGCAACCTCGTTGCC [2400] 
CSMV ATGACCGGATGGTCG---------GACATGTCCCTTGACGCGTATGGCGCGGAGTAGGTTTGAGGAGGGTCAGGGAACAGGGCATTTGCACTGTATTGGAATTGCTGTAGGCGTACCGCC [2400] 
DDSMV ATGACCGGATGGTCA---------GACATGTCGTTGGAGACGAACTGTGGCTGGTATTGTATCGGAGCTTCGGGGAAGAGCGCTTTGGCGCTGTATTCAAACTGTTGGAGACGGATTGCC [2400] 
PSMV ATAACAGGATGTGTATCCTGCGATGGCATCC---------CGAAGGGATCCACATACGGTGGAGGAGTGGAAGGGAACAGCGATTCAGCTGAGAACTGAAACTGCTGCAACCTTGTTGCC [2400] 
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SSMV-1 CACTCAAACGGGAAGGACTTTCGGACCATCCCGAGATAATCGTCCCGGGTGGTAGCGGTTCGGAGGATGTACCGCATGCGCTCGTCCTTGACGGCCGAGTC-GCTGCGCCTCCTATCTGT [2520] 
SSMV-2 CAGTCAAATGGGAAGGCTTTTCTGACCATTGAGAGATAACTGGCTCGGTCAGTTGAAGTGTTGATGATTGAGCGCATGACTGAGTCCTTTGCTTTGGACTC-AGTGTTCTTTGGAGTCCT [2520] 
DCSMV CAGTCGAATGGGAAGGTCTTCCTTACCATTGAGAGATACTCCTCCTTGCTCTTGGAGCTTCTGATGATATCCGCCATTTTGGCGTCCTTTGTTGTTGACGC-GTCGATCTT-------GC [2520] 
PDSMV CAGTCGAATGGAAATTCTTTTTTGACCATCCCAAGATAGTCCTCACGTGATGTTGATTGAGAAATAATAGACGCCATTTTGGCGTCCTTCGTGGAAGGAGC-GTCAGCCTTCTTCTTCTT [2520] 
BCSMV CAATCGAATGGGAACGTATTCCTGACCATCGAGAGATAGTCCTCCTTGCAGGTACTGCTCTTGATTATCTCCGCCATTTTGGCGTCTTTAGTTGATGGAGC-ATCAACCTTCTTCT---- [2520] 
CSMV CATTCGAAAGGGAAACTCTTTCGAACCATGCTCAGATATTCGTCCCTGGACGTGGCGTTTGCCATGATTTGTTTCATGGTCTTGTCCCTAGAGGCCGACTGGGTCGGACTCCTGTT---- [2520] 
DDSMV CAGTCAAACGGAAATGCTTTCCGTATCATGGACAAATATTCGTCCCTGCTTGTGGCGTTAGCCATGATTTGTTTCATTTTTTTGTCACGGGTAAAGGAAGCTAGCTTCCTTTTCCTCGAT [2520] 
PSMV CAGTCGAATGGGAAGGATTTCCTTACCATCGAGAGATAGTCCTCCTTGTTTGTGGAACTTTTAATGATTTCCGCCATTTTTGCATCCTTCGTAGAAGGTGC-GTCCGCCTTCTTCT---- [2520] 

 
SSMV-1 GTGTTTGGGAGGTCTTCCGCCAGGGGCGACAAACTTCCCCCTGGCTGACTGGCTAACAGGCTCTTTGAGGATATACTCTTTGACCTTAGTAGCGCTTCTAACTGTTTGGATATTTGGGTG [2640] 
SSMV-2 GCCTTTGAGAGGAATG---------------AAGGTTCCTCTCTCGGCCTTTGAGACTGGATTTTTGAGACAATAGTCTCGGACGTTTGTAGGAGATTTTGCAGTTTGGATGTTAGGATG [2640] 
DCSMV GTTTGCGGACGTCTCTCTCCGTG--------TACGCCCCCTCCTCGGCGTACGATACCGGAGATTTCTTGCAGTATGCAAGGACTTTGTGGGGCATCCTTGCGTTTTGTACGTTGGGATG [2640] 
PDSMV CTTCTTCGCTTCGTCCTTG------------AAAGCCCCGTGCTCAACGAAGCATACGGGGCCTTTCTTGATGTACGCAAGTACCTTGTGAGGTACCCGCGCGTTCTGCACGTTAGGATG [2640] 
BCSMV -TCTTCTGCTTGGTGCTTGCTTG-------GAAAACCCCCGTTTCTACGAAACATAAGGGGTTTTTTTTGATGTATGCTAACACCTTGTGTGGCATTCTTGCATTCTGCACGTTAGGATG [2640] 
CSMV GACCTTGGGTTTCAGG---------------AATTTTCCAAATTCCCAGCTACTCTCAGGATGTTTCATACAGTATTTCAGAGTACTGGCTGGCTGCCTTGCAGCTTGGATATTTGGATG [2640] 
DDSMV GCCTTGGGCTTTACG----------------AAGACCCCGTCTTCGTAGAAATCTGCCGGATTTTTCTGACAGTATTCCAGAGTTTTCTCTGGATTTCTTGCCGCCTGAATGTTAGGATG [2640] 
PSMV -TTCTCGGACGCTTGATTTCCTGA-------AATACCCCATATTCCGCTTCGGATATTGGGGATTTCTTGCAGTATGATAATGCCTTCTTGGGCATTCTTGGATTTTGAACATTTGGATG [2640] 

 
SSMV-1 ATTTCCACCCAAATCAGCAAAAGAAGAGTCGCGAGACCGATATTGATCAGTAAGCTGCACAAGGCAATGAACATGGAAGCCGGAGTCCTGATGCAGCTCACGAACAGAAAGAATATACAG [2760] 
SSMV-2 ATAATCAAGGATATTAAAAGTACTGCTATCATTGGTACTGAATGCCTTATCAAGCTGAAATAGACAGTGAAGATGGTAATCACCGTCGCTGTGATGCTCACGAGTGACGAGGCAGTACTT [2760] 
DCSMV GTATTCTTCGAGGTCGAAGAAGCGTGCACGCGTAGTGCGTACGTGTTTCTTGCATTGCACGAAGCAATGCAGGTGGAAGGTGCCGTCTTGGTGTAGTTCTCTTGCCACGTATACATACGT [2760] 
PDSMV AAATTCTTCGACATCGAAGAATTTAGCACTCTTAGTGCGAATGTATTTTCTGCACTGTACTAGACAGTGCAAATGGTAAGAGCCATCCTTGTGCTCTTCCCTTGCGACGTATGAATACGT [2760] 
BCSMV AAATTCTTCGACGTCGAAGAATTTAGCACTCTTGGTGCGAACATATTTCTTGCATTGTACCAGACAATGCAAATGGTAAGATCCATCTTGATGTTCTTCTCTTGCCACGTAGACATACGT [2760] 
CSMV AAATTCATCCAGGTCAAAGTATTTTGGAGAGGTGGTTCTGAAATTTGCTTCGAGTTGGACGAAGGCATGTAAGTGGGGCTCACCGTCAGCATGGAATTCCCTGGAAATGTAAATATAATT [2760] 
DDSMV GAATTCAAAGAAATCAAAGTATTTGGCGGATGTGGTTCGGAAAACTTTGTCAAATTGAAGGAACGCATGTAAATGCGGTTCCCCATCTTGATGTAGCTCTTGAGCGATATACATATACTG [2760] 
PSMV AAATTCTTTGATGTCGAAGAATTTTGCACTTGTAGTGCGCACGTATTTTGAGCATTGTATTATACAATGCAGATGGTGAGATCCATCTTTATGTGCCTCTTGTGCCACGTAGATATACGT [2760] 

 
SSMV-1 AGGCTTATGAGACGAAAATTTGTCCCAGAGAGCATCTGTGATTAGGGCTGGATCGATCTCACACCGGGAGTAGGTGAGGAAGATGTTCTTCCCTCGGAAGTGGAATCC------------ [2880] 
SSMV-2 CGGACCGTACTTGCGGAATTTAGAATAGAGATGTTCGACAACATCTCTAGGCTCCAGAGTGCACTTCGGATATGTAAGAAATGCGCTACGAGCTCTGAATCTGAAGTTT-GCTGGGGATG [2880] 
DCSMV AGGCTCAAACTTGCGAAGTTTGTGCGTGATGTCACGCAACGCTTCCTGTGGATCAAGCAAGCACTTGCTGTATGTTAGGAAGATGTTCTTGGCCCTCACCTCGAAGCTT-GCTTCGGCAG [2880] 
PDSMV CGGGTCCCACTTCTTAAGAAGTCTGGAGAGGCGTTCAAGCATGAACGACGGCTCCAGGTGGCACTTACTGTATGTCAGGAATACATTCCTGCTTCTTACCTCGAAGCAA-GCTTCGACCG [2880] 
BCSMV GGGTTCGAACCTTCGAAGAAGGCTTGAGAGGTGTTCTTGCATGAACACCGGATCAAGGTGGCACTTGCTGTACGTTAAGAAAATGTTCCTTGATCTTACCTCGAAGCAT-GCTGCGACCG [2880] 
CSMV ACATTTCTTATTTTTTAGACGGTCAGCAATTTTCTGACCAGCCTCTTCGGGACTGATAGGACACCTGGGATAGGTGAGGAAGACATGTTTAGTCCTCAGGGAGAAG---------GCCTT [2880] 
DDSMV TATATTATACCGCTTACAAAGTTTTTTGAGAAACGAACCAGCATCCTTTGGAGGGATTGGGCACCTTGGGTATGTCAGGAAGACATGTTGAGAGCGGACGTTGAAGCTTAGCGGCAGACT [2880] 
PSMV GGGACAGTATTTCTTCAATAAAGAAGAAATATATTCCAGGAGGAATACAGCCGTGAGGTTGCACTTACTGTATGTGAGGAACAGGTTCCTCGCTCTCACCTTGAAGCAT-GAAGAGGAGG [2880] 
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Replication associated protein start codon 
SSMV-1 -------GTCGACGCTCTC-----CTCGTCGGAGGAAGAGA-----------------------------------------TGGCGAACGGGGACGGAGGGCGAGAGGGTCCAGACATG [3000] 
SSMV-2 CTTC-----------------------------------------------------------------------------------GGTGGAGTTGCTCTGTGAAGACAT---GAGTGA [3000] 
DCSMV CGCCCGGAGCG---------------CGTTCGGCCAGCCGGCAGTTTGCCGAGTTTGCCGACT----------CTGTGTCACTGACAGGAGGAGCCATCTCGTCAGAAGCT---AACGTG [3000] 
PDSMV CCCCTGGGGCGCCAACTTC-----CTCCCCCTGAAGGGGGGGGGCGCCAACT---TGCCCCCT--GGCGCCCTCTGTCTCACTGACATGTGAGGCCATCTTGGAAGAAGCT---ATCGTG [3000] 
BCSMV CCCCTGGGGCGCCAACCTC-----CCCGCTCGGTGAGCGGGGGGCGCCAGTT---TGCCCCCT--GGCGTCTGATGTCTCACTGACAAAGGAGGCCATCTCGTCAGAGGCT---ATCGTG [3000] 
CSMV CTCCCCAGGCGTCACT--------TGCCCTCCGCGAGATGGCACTTGTACGGAAGTGCCACTTCCCTCCCCCTCGCTCTCACTGACAGGCAGGGACGACATAATAAAAGAC---GACGTG [3000] 
DDSMV TGCCGCACTCTCCGAACTTGGATACTCGCCATAAGAGCGAGGATCGAACATGA--------------------CTGAGTCACTGACAAGCTGGGACGACATAATAAAAGAG---GACGTG [3000] 
PSMV GGGC---GTCGATAGACTGCCCACCCCTTCCT-------GGGCTCTCCATTTGACTGCCCACTTCACTGTTGCTTGTCTCACTGACAAGTGAGGACATCTCGTCAGAAGCT---ATCGTG [3000] 

 

TATA box 
SSMV-1 TTCTAGTCCTTAGCCGTT--------------------------TTCTGGGTGTGGAGCTCTCTAAAACTCCTAAGACATGCGTCGA------------------AACGTTTGCCCAGGC [3120] 
SSMV-2 AGTGAGTACTTAGTCGCGGAAGCTAC--TCAGCTCTCTCTTTTAGTCTACCGGGAACGCTTT--------CCTTTGCCCTTACGCGGGCCGGGCCGCGTTTATATAACACTCGAAAAGGC [3120] 
DCSMV GATAGCTTCTTAGCCCTTGGATCAGCTTTGAGATCCGAGG----TTTTGA--GAAACTCTCT-TCCTAGACCTCGCCCAGTTGCCGAGTTGCCCGCTCCTTGACGGGCCTTTAAATAGGC [3120] 
PDSMV GATAGCTTCACAGCCGTAGGATGTGCTTTGAGATCCGAGG----TTTTGA--AAAACTCTCTTGACAA--CCGTCGCCCCTTGCCCCCTT--CCGCTGCTGAAGGGCCTGTTAAATAGGC [3120] 
BCSMV GATAGACTCTCAGCCCTTGGATGATCTTTGAGATCCGAGG----TTTTGA--AAAACTCCCT-TCCTAGACCCTTGCCCCTTGGCGC-----CCCCCCCCCCGCGCCCTATCTTATAGGG [3120] 
CSMV GCTTGATGGACAGCCGTAGGATGTGTTCTGAGATGTGGA-----CTCCGAGCAAAACTATCTCTAATACCAGTTGCCCACCTGCCGAGTG--CCCTCTTCGG-------CTTTTATGGGC [3120] 
DDSMV GCTGAATGGAGAGCCGTAGGATCGTCTTTGAGATCCGAT-----TTGTGAGTGAAACTCTCT-TCCTACCAGTTTGCCAA-TGCCGAGTG---------CCAACCTACTCTTTTATAGGC [3120] 
PSMV GATAGCTTCAACGCCCTTAGATCTTCTTTGAGATCCGAGG----TTTTGA--AAAACTCTCT-TCCTAGACCGCTGCCGACTGCCGAGTT----CTCCCCCCGAAGCCCTTCTTATAGGG [3120] 

 

GC-box (rightward / virion sense promoter – element) 
SSMV-1 CGTGG--------GCTTAAATAGATAGCGGGCCGAAAGGCACGCTGCGAGTGGGGGGCGGGATGCGACGTTGATAGAC-GCGCGA [3205] 
SSMV-2 CGAGGAACCTTTAAATGACGGGACCGGCCGGCC----GGCCCGGGGCGGCTCGCGGGGGCAA---------GGAAAGCGAAGC-A [3205] 
DCSMV CGGAGCGGGGATTGCTTTGTTACTT--TGGGCC--------------------CTAGGTAAA---------GATGGGC-GAGC-A [3205] 
PDSMV CGCAGCGGAGATGGCTTTAATT-----TGGGCC----GGCCC-----------CCCCGGAAA---------GTAGGGCGACGAGA [3205] 
BCSMV CCTCGGGTGGGTGGCTTTTTTC-----TGGGCC----GGGCCG------------GCGTAAA---------GATGGGC-AAGCAA [3205] 
CSMV CTAA-----------------------CAGGCC----GGCTCTTTGC--------ATGGGCG---------GGGGGGC-AACC-A [3205] 
DDSMV CGCCGCCGCGACA--------------TGGGCC--------------------------------------GAGGGGCAAACCAA [3205] 
PSMV CCGGGGGGCATTGCTTTCCGTG-----TGGGCC----GGCCCGGTA-------------------------AAGAGGCAGCGCAA [3205] 
 

Figure 2.1: Nucleotide sequence annotation of a representative from each Australian monocot-infecting mastrevirus species aligned with 
MUSCLE.  
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Replication-associated protein  
 

Rolling circle replication motifs (Koonin & Ilyina, 1992)  DNA binding domain  Rep catalytic domain GRS motif (Nash et al., 2011) 

SSMV-1 M-SGPSRPPSPFAISSSDEESVDG-------------FHFRGKNIFLTYSRCEIDPALITDALWDKFSSHKPLYILSVRELHQDSGFHVHCLVQLTDQYRSRDSSFADLGGNHPNIQTVRSATKVKEYILKEPVSQSARG [140] 
SSMV-2 M-SSQSNSTE----------------------ASPANFRFRARSAFLTYPKCTLEPRDVVEHLYSKFRKYGPKYCLVTREHHSDGDYHLHCLFQLDKAFSTNDSSTFNILDYHPNIQTAKSPTNVRDYCLKNPVSKAERG [140] 
DCSMV M-APPVSDTESANSANCRLAER-------APGAAEASFEVRAKNIFLTYSKCLLDPQEALRDITHKLRKFEPTYVYVARELHQDGTFHLHCFVQCKKHVRTTRARFFDLEEYHPNVQNARMPHKVLAYCKKSPVSYAEEG [140] 
PDSMV M-ASHVSETE--GARGQVGAPPLQGEEVGAPGAVEACFEVRSRNVFLTYSKCHLEPSFMLERLSRLLKKWDPTYSYVAREEHKDGSYHLHCLVQCRKYIRTKSAKFFDVEEFHPNVQNARVPHKVLAYIKKGPVCFVEHG [140] 
BCSMV M-ASFVSETS--DARGQTGAPRSPSGEVGAPGAVAACFEVRSRNIFLTYSKCHLDPVFMQEHLSSLLRRFEPTYVYVAREEHQDGSYHLHCLVQCKKYVRTKSAKFFDVEEFHPNVQNARMPHKVLAYIKKNPLCFVETG [140] 
CSMV MSSLPVSESEGEGSGTSVQVPSRGGQV--TPGE--KAFSLRTKHVFLTYPRCPISPEEAGQKIADRLKNKKCNYIYISREFHADGEPHLHAFVQLEANFRTTSPKYFDLDEFHPNIQAARQPASTLKYCMKHPESSWEFG [140] 
DDSMV MSSQLVSDSVMFDPRSYGEYPSSE-----SAASLPLSFNVRSQHVFLTYPRCPIPPKDAGSFLKKLCKRYNIQYMYIAQELHQDGEPHLHAFLQFDKVFRTTSAKYFDFFEFHPNIQAARNPEKTLEYCQKNPADFYEDG [140] 
PSMV M-SSLVSETSNSEVGSQMESPGRGGQSIDAPSS--SCFKVRARNLFLTYSKCNLTAVFLLEYISSLLKKYCPTYIYVAQEAHKDGSHHLHCIIQCSKYVRTTSAKFFDIKEFHPNVQNPRMPKKALSYCKKSPISEAEYG [140] 
 

    Oligomerisation domain (Horváth et al., 1998)  LxCxE motif  dNTP-binding domain (Xie et al., 1995) 
SSMV-1 KFVAPGGRPPKHTDRRRSDSAVKDERMRYILRTATTRDDYLGMVRKSFPFEWATRLAQFEYSASKLFPDITPQYQSQYQTTDLTCHENLLDWYQENLQCYIVDGAGRRKSLYICGPTRTGKKSWARVLGRHNYYNMQVDW [280] 
SSMV-2 TFI-----PLKGRTPKNTESKAKDSVMRSIINTSTDRASYLSMVRKAFPFDWATKLQQFEYSASKLFPDVIPEYTSPFPTENLMCNERITDWLDNTLYQSADHPRTRKSGLYICGPNRTGKTSWARSLGKHNYWQMNLDF [280] 
DCSMV AYT-----ERDVRKRKIDASTTKDAKMADIIRSSKSKEEYLSMVRKTFPFDWATRLQNFEYSAERLFPSTPPPYVSPFNMPSQEEHPVLGAWLRAELYTQGRNPAERRKSLYICGPSRTGKTSWARSLGKHNYWQHSVDF [280] 
PDSMV AFKD----EAKKKKKKADAPSTKDAKMASIISQSTSREDYLGMVKKEFPFDWATRLQQFEYSAQALFPCLPPPYVDPFGMPSQAEHQVLGAWLREELYSQDRSPAERRRSLYICGPTRTGKTSWARSLGCHNYWQHSVDF [280] 
BCSMV VFQA----STKQKKKKVDAPSTKDAKMAEIIKSSTCKEDYLSMVRNTFPFDWATRLQQFQYSAESLFPSVPTPYMDPFGMPAQDEHPVIGAWLQAELFS-DRRPDERRRSLYICGPTRTGKTSWARSLGAHNYWQHSVDF [280] 
CSMV KFL-----KPKV-NRSPTQSASRDKTMKQIMANATSRDEYLSMVRKSFPFEWAVRLQQFQYSANALFPDPPQTYSAPYASRDMSDHPVIGEWLQQELYT-VWSPGVRRRSLYICGPTRTGKTSWARSLGTHHYWQHSVNF [280] 
DDSMV VFV-----KPKASRKRKLASFTRDKKMKQIMANATSRDEYLSMIRKAFPFDWAIRLQQFEYSAKALFPEAPIQYQPQFVSNDMSDHPVIGEWLDTEFFT-ERGPHHRRRSLYICGPTRTGKTSWARSLGTHHYWQHSVDF [280] 
PSMV VFQE----IKRPRKKKADAPSTKDAKMAEIIKSSTNKEDYLSMVRKSFPFDWATRLQQFQFSAESLFPSTPPPYVDPFGMPSQDTHPVIGAWLRDELYT-DRSPTERRRSLYICGPTRTGKTSWARSLGSHNYWQHSVDF [280] 
 
SSMV-1 AT-YDQEAQYNVIDDIPFKFCPHWKALIGCQKDFTVNPKYGKKKLIKGGIPTIILVNEDEDWLADMTPGQVSYFEANVQIHYMTSEESFIPDPALRQRLSLNYYKVCFFLM [391] 
SSMV-2 AN-YNNEAQYNVIDDIPFKFCPYWKALVGSQHEYTVNPKYGKKKLIKGGIPSIILVNEDDDWMRAMNDGQRSYFEGNMSIYYMSEGESFIRNEAL---------------- [391] 
DCSMV LN-IIPDAEYNVIDDIPFKFVPCWKGLVGAQRDITVNPKYGKKRLLSNGVPCIILANEDEDWLQQMQPGQADWFNANCEVHYMYQGETFFKSLGAATA------------- [391] 
PDSMV LH-VIPTARYNVIDDIPFKFVPCWKGIVGAQRDITVNPKYGKKRLLPNGIPSIILVNEDEDWPQYMQPSQAAWFQDNCVVFYMNQGFRFFETTA----------------- [391] 
BCSMV LN-LVANATYNVIDDIPFKFVPCWKGLVGCQFDITVNPKYGKRRMLKNGVPSIILVNEDEDWLKQMQPSQVGWFETNCIIHYMYAGESFFEA------------------- [391] 
CSMV LEEWNCQAQFNIIDDIPFKFVPCWKGLVGSQYDLTVNPKYGKKKRIPNGIPCIILVNEDEDWLQSMSTQQVDWFHGNAVVYHLLPGETFIPSE------------------ [391] 
DDSMV LTEWNKNAIYNVIDDIPFKFVPCWKGLVGSQFDITVNPKYGKKKTIPNGIPSIILANEDEDWLQTMSPQQADWFHGNCVVYYLQAGESFIPPSSDVEA------------- [391] 
PSMV LH-VIQNARYNVIDDIPFKFVPCWKGLVGSQKDITVNPKYGKKRLLSNGIPCIILVNEDEDWLQQMQPSQADWFNANAVVHYMYSGESFFEAL------------------ [391] 

 

Figure 2.2: Amino acid annotation of a representative from each Australian monocot-infecting mastrevirus species aligned with MUSCLE. 
Within the N-terminal portion of the Rep of all the viral isolates we identified the four motifs that are conserved in all geminiviruses and which 
are usually also found in the replication initiator proteins of other ssDNA viruses. Motif I (amino acids FLTYx), a double stranded DNA-binding 
domain, binds iterated sequence elements (called iterons) in the LIR near the v-ori. Motif II (amino acids H[V/L]H[C/A][L/F]xQ) binds divalent 
ions (Mn2+ and Mg2+) and is possibly involved in DNA cleavage (Argüello-Astorga & Ruiz-Medrano, 2001; Gutierrez, 1999; Orozco & Hanley-
Bowdoin, 1998). Motif III (amino acids YxxKx) catalyses DNA cleavage at the v-ori of replication (Laufs et al., 1995; Orozco & Hanley-
Bowdoin, 1996). The fourth motif, named geminivirus Rep sequence (GRS; H[L/V]H[C/A]xxQ), is vital for the initiation of RCR (Nash et al., 
2011). We identified a conserved LxCxE motif that likely binds the host’s Retinoblastoma related protein (pRBR; (Xie et al., 1995) in the two 
highly divergent Australian monocot-infecting mastreviruses (SSMV-1 and SSMV-2) but not in any of the other Australian monocot-infecting 
mastreviruses. On the C-terminal portion of the Rep we identified a likely dNTP-binding domain.  
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2.4.2 Classification of novel Australian monocot-infecting mastreviruses 

Forty-one full length mastrevirus genomes were isolated from 40 symptomatic grass samples 

from the Poaceae species; Paspalum dilatatum, Digitaria ciliaris, Ehrharta erecta, Chloris 

gayana, Panicum sp., Sporobolus sp., Triticum aestivum and Eriochloa polystachya. Our 

analyses revealed that of the 41 isolates, two isolates from a single Sporobolus plant are 

highly divergent and unlike previously described Australian monocot-infecting mastreviruses 

(Fig. 2.3A and B). Pairwise distance calculations (with pairwise deletion of gaps) revealed 

that these two unique mastreviruses share ~63.9% pairwise identity with one another and less 

than 62.5% identity with all other available mastrevirus sequences (Fig. 2.4). Based on these 

very low degrees of similarity, strong phylogenetic support for separation of these sequences 

from all the other known Australian mastreviruses (Fig. 2.3A) and the International 

Committee on the Taxonomy of Viruses (ICTV) sanctioned <75% mastrevirus species 

demarcation threshold (Brown et al., 2011) we propose that these isolates represent new 

species which we have tentatively named Sporobolus striate mosaic virus 1 (SSMV-1) and 

Sporobolus striate mosaic virus 2 (SSMV-2).  

 

The remaining 39 isolates cluster with previously described Australian monocot-infecting 

mastrevirus species (BCSMV, CSMV, DDSMV and PSMV; Fig. 2.3B). Pairwise distance 

comparisons indicated that twelve of these are CSMV isolates (>96.8% identity to the known 

CSMV) and seventeen are PSMV isolates (>92.3% identity to the known PSMV) (Fig. 2.5). 

 

Six isolates, all from Paspalum dilatatum, share ~68% similarity with PSMV (calculated 

according to ICTV specifications but 78% identity when calculated from pairwise alignments 

with gaps excluded as a fifth nucleotide state), their nearest currently described relative, and 

therefore should probably be assigned to a novel species which we have tentatively named 

Paspalum dilatatum striate mosaic virus (PDSMV). The remaining four isolates, all from 

Digitaria ciliaris, share <73% pairwise identity with all other mastrevirus species available 

and likely also represent a new species which we have tentatively named Digitaria ciliaris 

striate mosaic virus (DCSMV; Fig. 2.3B and Fig. 2.5).  
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Our analysis of the proportion of pairwise identities between 527 monocot-infecting 

mastreviruses available in GenBank and the 41 from this study (161013 pairwise identities 

compared) reveals a logical demarcation pattern for strains (80–94%) and genotype / variant 

(95–100%; Fig. 2.6). Despite the larger number of sequences compared, our new pairwise 

distribution analysis is consistent with previous analysis carried out for assigning strains and 

genotype/variants to mastreviruses (Hadfield et al., 2012; Martin et al., 2001; Varsani et al., 

2009a). Based on these pairwise identities, the CSMV, DCSMV and PSMV isolates could be 

further split into strain and genotype/variant groupings (Fig. 2.6; Table 2.1). Amongst the 

DCSMV and PSMV isolates, we identified two strains (DCSMV-A and -B and PSMV-A and 

-B) and further classified the PSMV isolates into eight genotype/variant groupings (PSMV-

A1 to A6 and PSMV-B1 and -B2). Similarly, we classified isolates within the single known 

CSMV and PDSMV strains into six (CSMV-A1–A6) and three (PDSMV-A1–A3) 

genotype/variant groupings, respectively. 
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Figure 2.3: See following page for figure legend. 
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Figure 2.3: (A) Maximum likelihood phylogenetic tree of representative mastrevirus full 
genomes from each species and major strain grouping. Branches are coloured according to 
either known (terminal branches) or likely (internal branches) regions of origin. Bootstrap 
support of branches is indicated by open and closed circles, branches with less than 60% 
bootstrap support have been collapsed. Viral isolates found in this study are indicated in bold. 
(B) Enlargement of the Australian monocot-infecting mastrevirus branch of the maximum 
likelihood tree of viral isolates recovered in this study are indicated in bold. (C) Cartoon 
depicting recombination events amongst Australian monocot-infecting mastrevirus isolates. 
Inter-species recombination events are indicated by a number and intra-species recombination 
events are indicated by a letter followed by a number. The colouring within the cartoons 
corresponds to the likely origins of recombinationally derived genome fragments. Genome 
map shows position of the mp (movement protein), cp (coat protein), repA (replication 
associated A protein) and rep (replication-associated protein) genes. 
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Figure 2.4: Two-dimensional percentage pairwise nucleotide identity plot (calculated with 
pairwise deletion of gaps) of full mastrevirus genomes, with a single representative from 
each species (tentative new species of Australian monocot-infecting mastrevirus are 
highlighted in bold). 
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Figure 2.5: Two-dimensional pairwise nucleotide identity plot (percentage identity 
calculated with pairwise deletion of gaps) comparing degrees of full genome nucleotide 
sequence similarity amongst Australian monocot-infecting mastrevirus isolates (excluding 
SSMV-1 and SSMV2). 
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Figure 2.6: Distribution of percentage pairwise nucleotide identities (pairwise deletion of 
gaps) of all the full genome monocot-infecting mastrevirus sequences (n=568) available in 
GenBank to determine 161013 pairwise identity comparisons. 
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2.4.3 SSMV-1 and SSMV-2 resemble divergent African streak viruses 

Our phylogenetic analyses indicated that the two highly divergent viruses detected in our 

survey, SSMV-1 and SSMV-2, are more closely related to African streak viruses than they 

are to the Australian striate mosaic viruses. The SSMV-1 and SSMV-2 rep amino acid 

sequences are ~54% similar to each other and <53.4 % similar to all other mastrevirus Rep 

proteins (Fig. 2.7C). On the other hand, the CPs of SSMV-1 and SSMV-2 share 48.6% 

pairwise amino acid identity to each other and <45% identity to the cp of all other 

mastreviruses (Fig. 2.7C). Using the Rep and full genome sequences, SSMV-1 and SSMV-2 

are more closely related phylogenetically to the African streak virus clade (Fig. 2.3A and Fig. 

2.7A), whereas using the highly divergent CP sequences, these viruses are sister to both the 

African streak virus and Australian striate mosaic virus clades (Fig. 2.7B).  

 

Digitaria streak virus from Vanuatu in the South Pacific is most closely related to MSV and 

conversely, a recently isolated virus from the Caprivi region of Namibia – Eragrostis minor 

streak virus (EMSV) (Martin et al., 2011b) is most closely related to Miscanthus streak virus; 

MiSV) from Japan. This coupled with the fact that the two divergent SSMV isolates are more 

closely related to African streak viruses than their Australian counterparts, raises an 

interesting question as to the origin of the African streak viruses. Moreover, based on the 

diversity of dicot-infecting mastreviruses one could argue that mastreviruses potentially 

originated in the Australian part of Gondwanaland. However, sampling of mastreviruses in 

the Middle East and the Indian sub-continent will potentially enable us to generate a more 

concrete hypothesis on the origin of mastreviruses. 

 



Chapter 2 

100 

EC
SV

PS
M

V

EM
SV

C
pC

D
SY

V

M
SV

-G

M
SV

-A

M
SV

-B

M
SV

-F
M

SV
-H

M
SV

-J

M
SV

-C
M

SV
-D

M
SV

-K

M
SV

-E
M

SV
-I

D
SV

Pa
nS

V-
A

Pa
nS

V-
B

Pa
nS

V-
G

Pa
nS

V-
E

Pa
nS

V-
C

Pa
nS

V-
D

Pa
nS

V-
H

Pa
nS

V-
I

Sa
cS

V
U

SV

SS
R

V-
A

SS
R

V-
B

ES
V

SS
V-

A
SS

V-
B

SS
EV

D
D

SM
V

C
SM

V

BC
SM

V

W
D

V
BD

V-
B

BD
V-

A
O

D
V

C
pC

D
SD

V
Be

YD
V

C
pC

D
PK

V
Tb

YD
V

C
pC

V-
B

C
pC

V-
A

M
iS

V

SS
M

V-
1

SS
M

V-
2

M
SR

V

PD
SM

V
D

C
SM

V-
A

C
pY

V
C

pR
V

R
ep

Cp

Pe
rc

en
ta

ge
 p

ai
rw

is
e 

am
in

o 
ac

id
 id

en
tit

y

30

40

50

60

70

80

90

100

SSMV-1 JQ948051 

0.2 CpRV GU256532

PSMV JF905486

EMSV JF508490

CpCDSYV  FR687959

MSV-G EU628631

MSV-A Y00514

MSV-B EU628597

MSV-F EU628629
MSV-H EU628638

MSV-J EU628641

MSV-C AF007881
MSV-D AF329889
MSV-K EU628643

MSV-E EU628626
MSV-I EU628639

DSV M23022

PanSV-A L39638

PanSV-B X60168

PanSV-G GQ415396

PanSV-E GQ415389
PanSV-C EU224264

PanSV-D EU224265

PanSV-H GQ415397

PanSV-I GQ415401

SacSV GQ273988
USV EU445697

SSRV-A AF072672
SSRV-B EU244916

SSV-A M82918
SSV-B EU244914

SSEV AF239159

DDSMV HM122238
CSMV M20021

BCSMV HQ113104

WDV AM040732
BDV-B FJ620684
BDV-A AM922261
ODV AM296025

CpCDSDV AM933134
BeYDV AM849096

CpCDPKVAM900416
TbYDV M81103

CpCV-BGU256531

CpCV-AGU256530
ECSV FJ665630

MiSV E02258

SSMV-2 JQ948052 
MSRV JQ624879

PDSMV JQ948077 
DCSMV-A JQ948089 

CpYVJN989439

Rep
A

ESV EU244915

CP

0.5

CpCDSYV  FR687959

PSMV JF905486

EMSV JF508490

MSV-G EU628631

MSV-A Y00514
MSV-B EU628597

MSV-F EU628629
MSV-H EU628638

MSV-J EU628641

MSV-C AF007881
MSV-D AF329889

MSV-K EU628643

MSV-E EU628626
MSV-I EU628639

DSV M23022

PanSV-A L39638

PanSV-B X60168

PanSV-G GQ415396

PanSV-E GQ415389
PanSV-C EU224264

PanSV-D EU224265
PanSV-H GQ415397

PanSV-I GQ415401

SacSV GQ273988
USV EU445697

SSRV-A AF072672
SSRV-B EU244916

ESV EU244915

SSV-A M82918
SSV-B EU244914

SSEV AF239159

DDSMV HM122238
CSMV M20021

BCSMV HQ113104

WDV AM040732
BDV-B FJ620684
BDV-A AM922261

ODV AM296025

CpCDSDV AM933134

BeYDV AM849096

CpCDPKV AM900416

CpRV GU256532
TbYDV M81103
CpCV-BGU256531
CpCV-AGU256530

ECSV FJ665630

MiSV E02258

MSRV JQ624879

PDSMV JQ948077 
DCSMV-A JQ948089

CpYVJN989439

SSMV-1 JQ948051 
SSMV-2 JQ948052 B

SSMV-1 JQ948051

CpRV GU256532

PSMV JF905486

EMSV JF508490

CpCDSYV FR687959

MSV-G EU628631

MSV-A Y00514

MSV-B EU628597

MSV-F EU628629
MSV-H EU628638

MSV-J EU628641

MSV-C AF007881
MSV-D AF329889
MSV-K EU628643

MSV-E EU628626
MSV-I EU628639

DSV M23022

PanSV-A L39638

PanSV-B X60168

PanSV-G GQ415396

PanSV-E GQ415389
PanSV-C EU224264

PanSV-D EU224265

PanSV-H GQ415397

PanSV-I GQ415401

SacSV GQ273988
USV EU445697

SSRV-A AF072672
SSRV-B EU244916

SSV-A M82918
SSV-B EU244914

SSEV AF239159

DDSMV HM122238
CSMV M20021

BCSMV HQ113104

WDV AM040732
BDV-B FJ620684

BDV-A AM922261
ODV AM296025

CpCDSDV AM933134
BeYDV AM849096

CpCDPKV AM900416
TYDV M81103

CpCV-B GU256531

CpCV-A GU256530

MiSV E02258

SSMV-2 JQ948052
MSRV JQ624879

PDSMV JQ948077
DCSMV-A JQ948089

CpYV JN989439

ESV EU244915

 ECSV FJ665630

C

Origin

aLRT support

Africa & Indian
Ocean Islands

Australa

Eurasia
Middle East

Japan

>90%
60–89%

Vanuatu

 

Figure 2.7: See following page for figure legend 
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Figure 2.7: Maximum likelihood phylogenetic trees of Rep (A) and CP (B) (based on amino 
acid alignments) depicting the evolutionary relationships of the new Australian monocot-
infecting mastrevirus species (represented in bold) to representative mastreviruses from each 
known species and major strain grouping. Bootstrap support of branches is indicated by open 
and closed circles, branches with less than 60% bootstrap support have been collapsed. (C) 
Two-dimensional percentage pairwise amino acid identity plot (with pairwise deletion of 
gaps) of Rep and CP of the new Australian monocot-infecting mastrevirus species 
(highlighted in bold) and representative mastrevirus isolates from the known mastrevirus 
species and major strain groupings.  
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2.4.4 Evidence of inter- and intra- species recombination 

The emergence of new geminiviral strains, and in some cases, species, has largely been 

attributed to inter- and intra-species recombination (Martin et al., 2011a; Padidam et al., 

1999; van der Walt et al., 2009; Varsani et al., 2008b). Therefore we undertook 

recombination analysis of the 45 available Australian monocot-infecting mastrevirus 

genomes in order to identify recombination patterns and hotspots. 

 

We detected ten inter-species (Events A-J; Fig. 2.1C; Table 2.2) and nine intra-species 

(Events C1-2, PD1-3, P1-4; Fig. 2.1C; Table 2.2) recombination events amongst the 

Australian monocot-infecting mastreviruses. No evidence of recombination was detected in 

SSMV-1 and SSMV-2. All PSMV isolates have a DCSMV-like region in the C-terminal 

portion of repA (Event J in Fig. 2.1C; Table 2.2). PSMV-A viruses have two regions, one in 

their mp and another in their cp that are apparently derived from a PDSMV-like virus (Events 

F & G in Fig. 2.1C; Table 2.2) whereas PDSMV isolates have two genome regions, one 

within their mp and another within their LIR that are apparently derived from a DCSMV-like 

virus (Events D & I in Fig. 2.1C; Table 2.2). DCSMV-B is, in turn, apparently a recombinant 

with a PSMV-like genome region spanning the LIR and the N–terminal encoding portion of 

mp (Event A in Fig. 2.1C; Table 2.2). Intra-species recombination in CSMV and PSMV was 

observed mainly in the LIR and the C-terminal encoding portions of repA and cp (Events P1, 

P2, P3, P4, C1, C2 in Fig. 2.1C; Table 2.2) whereas the three intra-species recombination 

events detected in PDSMV were distributed throughout the genome (Events PD1-3 in Fig. 

2.1C; Table 2.2).  

 

Previous studies have identified found a recombination hotspot at the origin of replication 

and at the interface between the cp/SIR amongst the African streak viruses (Varsani et al., 

2009a; Varsani et al., 2009b). The recombination analysis undertaken in this study of the 

Australian monocot-infecting mastreviruses reveals a clear recombination hotspot in the SIR. 

Consistent with previous data (Varsani et al., 2009a; Varsani et al., 2008b) we observe that 

small genomic fragment exchanges (<8% of full genome length) are most common in inter-

species recombination events amongst the Australian monocot-infecting mastreviruses, 

whereas larger fragment exchanges are common in intra-species recombination. The 

recombination patterns observed amongst the Australian monocot-infecting mastreviruses 
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closely mirror those found in African streak viruses (Owor et al., 2007a; Shepherd et al., 

2008b; Varsani et al., 2009a; Varsani et al., 2008a; Varsani et al., 2008b) and dicot-infecting 

mastreviruses (Hadfield et al., 2012; Martin et al., 2011a). This suggests that there are 

selective processes that globally influence mastrevirus recombination patterns which may 

have been at play since the origin of this genus. 

 

Table 2.2: Details of the recombination events detected using RDP4. Each event is 
represented by a letter (inter-species) or a letter(s) followed by a number (intra-species). 
Major and minor parents indicate the approximate identities of parental sequences that 
respectively donated the larger and smaller fractions of the recombinants genome. The 
highest p-value indicated for method shown in bold.  

Inter-species recombination 
Event  Recombinant (s) Minor Parent(s) Major Parent(s) Breakpoints Method P-Value
    Begin End   
A DCSMV-B PSMV DCSMV-A 2710 458 RGBMCST 4.58X10-88 
B PSMV EMSV 

MiSV 
PDSMV 1337 1395 RGBMC 6.58X10-18 

C PSMV-B BCSMV PSMV-A 1396 1453 RGBMCS 3.01X10-18 
D PDSMV DCSMV PSMV 438 605 RMC 4.53X10-13 
E BCSMV 

PSMV 
DCSMV PDSMV 1314 1408 RGBM 5.87X10-12 

F PSMV-A PDSMV PSMV-B 361 460 RGB 7.26X10-6 
G PSMV-A PDSMV PSMV-B 995 1205 RGBM 6.08X10-6 
H BCSMV PSMV Unknown 148 466 RBMC 4.52X10-6 
I PDSMV DCSMV PSMV 2730 2773 RBMC 1.05X10-6 
J PSMV DCSMV PDSMV 2025 2155 RGBMS 6.52X10-5 
Intra-species recombination 
CSMV  
C1 CSMV-A2  

(JQ948055 
JQ948056 
JQ948057) 

CMSV-A4 CSMV-A2  
M20021 

1758 1879 GBT 7.76X10-6 

C2 CSMV-A4 CSMV-A6 CSMV-A5, -A3 1282 1765 GBMS 3.57X10-5 
PDSMV 
PD1 PDSMV-A1 PDSMV-A3  

(JQ948085 
JQ948061 
JQ948062) 

PDSMV-A2 2193* 104 RBMS 1.79X10--7 

PD2 PDSMV-A3 
(JQ948077) 

PDSMV-A2 PDSMV-A1,  
A3 (JQ948062) 
A3 (JQ948085) 
A3 (JQ948087) 

837 1687 MCST 3.56X10-5 

PD3 PDSMV-A3  
(JQ948077 
 JQ948085) 

PDSMV-A2 PDSMV-A3 
(JQ948062) 

2320 2516 GBMCST 9.15X10-5 

PSMV 
P1 PSMV-A2, A3, A5, A6 PSMV-B PSMV-A4 1724 1984 RGBMCT 7.45X10-12 
P2 PSMV-B2 PSMV-A PSMV-B1 753 875 RGBMCST 6.03X10-9 
P3 PSMV-A5,A6 PSMV-A4 PSMV-A2, A3, B2 1239* 1476 RGBMCT 6.85X10-6 
P4 PSMV-B1 PSMV-A4 PSMV-B2 1766 1809 GBT 7.81X10-5 

RDP (R) GENCONV (G), BOOTSCAN (B), MAXCHI (M), CHIMERA (C), SISCAN (S), LARD (L) and 3SEQ (T). 
* = The actual breakpoint position is undetermined. 
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2.4.5 Selection analysis 

Comparative selection analyses of the genes from the various Australian monocot-infecting 

mastrevirus groups displayed similar levels of diversity reported by Hadfield et al. (2012) 

(439 MSV, 39 PanSV, 78 European dwarf virus isolates, 47 dicot-infecting mastreviruses). 

Our analysis clearly indicates that all the three genes of the Australian-monocot-infecting 

mastreviruses are evolving under purifying selection (dN/dS < 1) (Table 2.3). Grouping 

PSMV/PDSMV/DCSMV/BCSMV enabled us to compare the selection amongst the 

Australian monocot-infecting mastreviruses to that undertaken by Hadfield et al. (2012). 

Consistent with observations made by these authors, the cp genes are evolving under the 

highest degree of negative selection in contrast to the mp and rep genes. Interestingly, the mp 

gene of the PSMV group is evolving under the lowest degree of purifying selection, which is 

not surprising given that this species has such a broad host range. 

 

Table 2.3: Normalised non-synonymous / synonymous substitution rate ratios within the cp, 
mp and rep genes of Australian monocot-infecting mastrevirus (PSMV, CSMV and combined 
dataset of PSMV / PDSMV / DCSMV / BCSMV) compared with other similarly diverse 
groups of mastrevirus (Maize streak virus; MSV, Panicum streak virus; PanSV, European 
dwarf virus; EDV which includes Wheat dwarf virus, Oat dwarf virus and Barley dwarf 

virus). 

 

 

 

 

  Gene 
Dataset   Movement protein Coat protein Replication-associated 

protein 
PSMV  0.417093 0.067579 0.184383 
CSMV  0.299978 0.021378 0.150568 
PSMV/PDSMV/DCSMV/BCSMV  0.470904 0.121126 0.230959 
MSV  0.363271 0.137313 0.174095 
PanSV  0.270190 0.117245 0.142445 
EDV  0.247922 0.161192 0.188267 
Dicot-infecting mastreviruses  0.222441 0.186357 0.223076 
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2.4.6 Host range analysis 

In the 1988 study undertaken by Greber (1989) investigated the natural host ranges of 

Australian monocot-infecting mastrevirus (Fig. 2.8A), several classical virology methods 

were used to verify viral species which included visual symptom assessments, serological 

assays and/or vector transmission experiments (Greber, 1989; Pinner et al., 1992). Host range 

studies of five monocot-infecting mastreviruses referred to as CSMV type strain, CSMV M. 

stipoides strain, PSMV, B. catharticus geminivirus and D. didactyla geminivirus 

investigating 25 grass species were investigated. The natural host ranges of BCSMV and 

DDSMV were apparently limited to a single host whereas PSMV and CSMV proved to have 

a wider host range. Greber (1989) described a CSMV-M variant that was only found in the 

natural host Microlaena stipoides and, based on our natural isolate host range and molecular 

identity; we have not identified this variant in the wild.  

Our surveys revealed that CSMV was predominantly found in Chloris gayana (n=7; includes 

CSMV-A2 [AU-QLD] M20021) although there was one record from Digitaria ciliaris. 

PSMV was predominantly found in Paspalum dilatatum (n=16; includes PSMV-A5 [AU-

1611-2003] JF905486) although there was one record each from Digitaria ciliaris and 

Ehrharta erecta. Similar to PSMV, PDSMV was predominantly isolated from Paspalum 

dilatatum (n=5) with one isolate being obtained from Digitaria ciliaris (Fig. 2.8B).  
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Figure 2.8: Summary of Australian monocot-infecting mastrevirus host range. (A) Previous 
work undertaken by Greber (1989) showing natural host range, transmission efficiency in 
different hosts and unsuccessful transmissions for each virus isolate. (B) Natural host range of 
41 monocot-infecting mastrevirus isolated from grasses in Australia as part of this study and 
the four species previously characterised at a molecular level (PSMV, CSMV, BCSMV and 
DDSMV). Numbers in circles indicate the number of grass samples infected with the different 
virus species. 
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2.5 Concluding remarks 

Monocot-infecting mastreviruses with broadly overlapping geographical ranges are hosted 

under natural conditions by a wide variety of Australian grass species. Given that the data 

presented here was primarily obtained from opportunistic sampling over a relatively small 

area of eastern Australia (Additional fig. 2.1), the full geographic range of the various virus 

species described remains to be determined. 

 

Interestingly, Greber (1989) isolated CSMV and PSMV from maize and was able to transmit 

these as well as BCSMV and DDSMV into maize and wheat. This raises various important 

questions on the potential for these viruses to become agricultural pest. In Africa, a strain of 

MSV apparently emerged as a serious maize pathogen following recombination between two 

grass adapted MSV strains (Harkins et al., 2009a; Varsani et al., 2008b). Despite what must 

be assumed to have been continual contact between grass adapted MSV strains and maize 

following the introduction and spread of this species throughout Africa in the 16th and 17th 

century, the recombination event that finally yielded the maize adapted virus that today 

threatens African maize production likely only occurred somewhere in southern Africa in 

approximately the 1850s (Harkins et al., 2009b; Monjane et al., 2011). Since Australia has a 

shorter history of agriculture than Africa, it is perhaps not surprising that no Australian 

mastrevirus has yet emerged as a truly economically important agricultural pest. It may 

therefore be prudent to continually monitor spill-over infections of monocot-infecting 

mastreviruses in intensively cultivated grasses such as wheat, maize and sugarcane.  

 

Genbank accession numbers: JQ948051 – JQ948091 

 



Chapter 2 

108 

PDSMV
PSMV

CSMV
DCSMV

BCSMV

DDSMV

SSMV-1
SSMV-2

NSW

QLD

A

B

18
1

1
4

1

6

45

Eriochloa polystachya 1
Ehrharta erecta 1

Digitaria didactyla 1

Panicum sp. 1
Paspalum dilatatum 22

Triticum aestivum 1
Sporobolus sp. 3

Chloris gayana 6
Bromus catharicus

1

Digitaria ciliaris 7

13

1

Dactyloctenium australe

1

Mastrevirus species

Host Poaceae species

Total # of Australian
mastrevirus isolates

 

Additional figure 2.1: (A) Geographical distribution of Australian monocot-infecting 
mastrevirus isolates in QLD (Queensland) and NSW (New South Wales), Australia. Virus 
species are represented by different colours. Multiple isolates of the same species from the 
same location are represented by a single circle. (B) The range of host species from which 
monocot-infecting mastreviruses were characterised with each coloured blocks representing 
a single virus isolate of a particular species isolated from that host species. 
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3.1 Abstract 

The most well documented of these viruses is MSV-A which is an important pathogen of 

maize, a stable crop in Africa. Comparatively not near as much is known about the dynamics 

and evolution of other monocot-infecting mastreviruses, largely due to the fact that many 

infect wild uncultivated grasses. In this study we determine the complete sequences of 120 

full monocot-infecting mastrevirus genomes from various poaceae species, with the majority 

from wild uncultivated grasses. This included genomes belonging to the following 

established species EMSV (n=2), MSRV (n=1), MSV (n=95), PanSV (n=20), SSRV (n=1) 

and SSV (n=1). We analysed these genomes together with all African monocot-infecting 

mastreviruses available in GenBank and investigated the geographic distribution, host range 

and evolutionary dynamics of these viruses. It is evident based on current information that 

MSV is prevalent and broadly distributed throughout Africa and we now know that its 

geographic range extends in the north-west to the island of Gran Canaria. Our knowledge 

regarding the natural host range of both MSV and PanSV has been expanded dramatically 

including host grasses belonging to an additional 14 genera. Prevalent recombination is 

apparently occurring among different strains and species and for the first time inter-species 

recombination events have been detected among species from two geographical locations, 

Africa and Australia. Indicating ancestors of these viruses once occupied the same region(s) 

and host(s). Generally MSV and PanSV show similar patterns of natural selection. In the cp 

and rep of both species several sites are evolving under episodic diversifying selection 

pressures which may be indicative of sites which potentially play a role in host specificity. 

Overall our analyses give an in depth and up to date look at the dynamics and epidemiology 

of the monocot-infecting mastreviruses and focuses on MSV and PanSV which 

predominantly infect wild uncultivated grass species.  
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3.2 Introduction 

In Chapter Two monocot-infecting mastrevirus dynamics in Australia was discussed, it was 

evident in this chapter that Australia is a diversity hotspot for these viruses. It was discussed 

that Africa is also a known hotspot for monocot-infecting mastrevirus diversity although the 

major focus of mastrviruses research has gone into the maize pathogen MSV-A. In this study 

we aim to further elucidate the diversity, host range and evolution dynamics of wild grass 

adapted monocot-infecting mastreviruses in Africa. The most extensively characterised of the 

monocot-infecting mastreviruses are the African monocot-infecting mastreviruses, also 

referred to as the African streak viruses (AfSV). This group is comprised of twelve species 

which infect various species in the Poaceae family. Members of the AfSVs have been 

recovered from grasses sampled throughout Africa and the surrounding islands (Indian Ocean 

islands of Réunion and Mayotte) and are vectored by various leafhopper species in the genus 

Cicadulina. The most extensively sample mastrevirus is Maize Streak virus (MSV) (Martin et 

al., 2001; Monjane et al., 2011; Mullineaux et al., 1984; Owor et al., 2007; Varsani et al., 

2009; Varsani et al., 2008b) and this can be attributed to MSV’s devastating impact on maize 

production in Africa (Shepherd et al., 2010). It is well documented that only one strain of 

MSV, MSV-A causes serious disease in maize (Martin et al., 2001), whereas the other 

identified strains MSV-B – MSV-K cause only mild symptoms in maize and mainly infect 

uncultivated grass species in the field. With the exception of MSV only one other mastrevirus 

species Maize streak Réunion virus (MSRV) has been isolated from Maize (Oluwafemi et al., 

2014; Pande et al., 2012). A significant dataset of Panicum streak virus (PanSV) isolates has 

been collated, consisting of isolates from several countries in Africa and Indian Ocean islands 

(Varsani et al., 2009; Varsani et al., 2008a). PanSV, as the name suggests has largely been 

isolated from Panicum sp., however, the natural host range of this species extends to several 

other wild uncultivated grasses (Brachiaria deflexa, Ehrharta calycina, Urochloa maxima 

and Urochloa plantaginea) (Varsani et al., 2009; Varsani et al., 2008a). Of the AfSVs, PanSV 

has the second highest number of characterised strains, with nine documented strains 

(PanSV-A through -K).  

 

Other mastrevirus species which have been recovered from wild grasses are Axonopus 

compressus streak virus (ACSV) (Oluwafemi et al., 2014), Eragrostis minor streak virus 
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(EMSV) (Martin et al., 2011b), Eragrostis streak virus (ESV) (Shepherd et al., 2008b) and 

Urochloa streak virus (USV) (Oluwafemi et al., 2008).  

 

The remaining five species of the AfSVs, Sugarcane streak virus (SSV) (Hughes et al., 1993; 

Shepherd et al., 2008b), Sugarcane streak Egypt virus (SSEV) (Bigarré et al., 1999), 

Sugarcane streak Réunion virus (SSRV) (Bigarré et al., 1999; Shepherd et al., 2008b), 

Saccharum streak virus (SacSV) (Lawry et al., 2009) and Sugarcane white streak virus 

(SWSV) (Candresse et al., 2014), have collectively been referred to as the sugarcane-

infecting streak viruses. Although these have predominantly been found infecting sugarcane, 

SSRV and SSV have been also recovered from wild uncultivated grasses. 

 

Geographically, PanSV and MSV have been identified in several countries throughout Africa 

and the surrounding islands whereas many of the other species have only been found in a 

single country. This is most likely due to sampling bias of certain Poaceae host species.  

 

Studies have investigated recombination patterns among AfSVs showing that the exchange of 

genetic fragments between strains and even species is a frequent occurrence and can possibly 

facilitate the emergence of viruses which are to new host species (Shepherd et al., 2008b; 

Varsani et al., 2009; Varsani et al., 2008b). A prime example of this is MSV-A which is 

thought to have emerged as a pathogen of maize following recombination between wild-grass 

infecting ancestral MSV strains -B and -G/F (Varsani et al., 2008b). An investigation into the 

historical movement patterns and rates of dispersal of MSV-A subsequent to its emergence 

has given insight into its epidemiology and highlighted the importance of continued 

monitoring of these viruses. It may therefore also be equally important to survey AfSVs 

infecting wild uncultivated grasses to gain an overall picture of the epidemiology of these 

viruses. 

 

Here we undertook sampling of predominantly symptomatic wild uncultivated Poaceae 

species in the African countries Kenya, Namibia, Nigeria, South Africa, Zimbabwe and the 

surrounding island nations of Gran Canaria, Mauritius and Réunion, recovering a total of 120 

AfSV genomes. Among the 120 genomes recovered we have isolates of EMSV, MRSV, 
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MSV, PanSV, SSRV and SSV. We analysed these together with all AfSVs available in 

genbank to identify host ranges, geographic distribution and their evolutionary dynamics. The 

assemblage of a large MSV and PanSV genomic datasets enabled a robust analysis of natural 

selection acting on codon sites within the genomes of these viruses. Our investigation extends 

the known geographic range of several of these species, including the discovery of MSV in 

Gran Caneria Islands which is the first discovery of an AfSV north-west of the Sahara.  

 

3.3 Materials and methods 

3.3.1 DNA extraction and full genome mastrevirus isolation 

Poaceae samples displaying foliar striation/streak symptoms that are typical of monocot-

infecting mastrevirus infections were collected from Gran Caneria (n=34), Zimbabwe (n=5), 

Namibia (n=18), Nigeria (n=4), Réunion (n=10), Mauritius (n=40), South Africa (n=95) and 

Kenya (n=94). Total genomic DNA was extracted from dried leaf material of each sample 

using either a Extract-N-Amp™ Plant kit (Sigma-Aldrich, USA) as described in Shepherd et 

al. (2008a) or using the GF-1 nucleic acid extraction kit (Vivantis Technologies, Malaysia) 

according to the manufactures instructions. Circular viral DNA was enriched from the total 

genomic DNA using the Illustra TempliPhi Amplification Kit (GE Healthcare, USA). Full 

viral genomes were isolated using either restriction digest or polymerase chain reaction 

(PCR). For each restriction digestion reaction 1.5µl of templiphi enriched viral DNA was 

digested using either BamHI, KpnI or HindIII to yield unit length ~2.7 kb genomes. PCR was 

performed using 0.5µl templiphi enriched viral DNA, KAPA HiFi hotstart polymerase (Kapa 

biosystems, USA) and the degenerate primer pair: dicot forward 5'-GAN TTG GTC CGC 

AGT GTA GA-3', dicot reverse 5'-GTA CCG GWA AGA CMW CYT GG-3' (Hadfield et 

al., 2012). The PCR was placed under the following thermocycling conditions: 94ºC for 3 

min, 25 x [98ºC (3 min), 52ºC (30 sec), 72ºC (2.45 min)] and 72ºC for 3 min. Resulting PCR 

products were purified using the quick-spin PCR Product Purification Kit (iNtRON 

Biotechnology, Korea) and ligated into pJET1.2 vector (Fermentas, USA). Resulting cloned 

mastrevirus genomes were Sanger sequencing at Macrogen (Korea) by primer walking. 
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3.3.2 Sequence assembly and phylogenetic analysis 

Full mastrevirus genomes were assembled from overlapping Sanger sequencing reads using 

DNA Baser sequence assembler V4 (Heracle BioSoft, Romania) and manually managed 

using MEGA 5.2 (Tamura et al., 2011). Full genome sequence identities were calculated 

using SDT V1.2 (Muhire et al., 2014). Open reading frames for the movement protein (MP), 

capsid protein (CP) and replication-associated protein (Rep) were determined using 

DNAMAN V5.2.9 Lynnon Biosoft, Canada).  

 

A full genome dataset of all monocot-infecting mastreviruses, including those from this study 

together with all available on Genbank (downloaded 01/08/2014) and that of Chickpea 

chlorotic dwarf virus (KC172668) as an outgroup. These were linerised at beginning of the 

nonanucleotide sequence (TAATATTAC) and aligned using MUSCLE (Edgar, 2004), 

implemented in MEGA 5.2 (Tamura et al., 2011). A maximum likelihood (ML) phylogenetic 

tree was constructed in PhyML version 3.0 (Guindon et al., 2010) using an approximate 

likelihood ratio test (aLRT) for branch support and the best fit model GTR+G+I591 was 

chosen by jModelTest (Darriba et al., 2012). Branches with aLRT branch support <80% was 

collapsed using Mesquite version V1.12.  

3.3.3 Host Poaceae species identification 

Host species were identified for each sample polymerase chain reaction (PCR) amplification 

of a portion of the choloroplast ndhF gene (~1.1kb) was amplified from extractions of total 

genomic DNA using the primer pair ndhF972F and 5’-GTCTCAATTGGGTTATATGAT-3’, 

ndhF2110R  5’-CCCCCTAYATATTTGATACCTT-3’ (Giussani et al., 2001; Olmstead & 

Reeves, 1995). 4µl of genomic DNA together with Kapa HiFi hotstart DNA polymerase was 

put through the following thermocycling conditions: 94 °C for 3 min, 25x (98 °C (20 sec), 50 

°C (15 s), 72 °C (1 min)), final extension of 72 °C for 3 min. PCR products were purified 

using PCR quick-spin Purification Kit (iNtRON Biotechnology Inc, Korea) and sanger 

sequenced by Macrogen Inc. (Korea). 

3.3.4 Detecting natural selection within the mp, cp and rep codon alignments 

The full genome sequence datasets of MSV and PanSV were divided into movement protein 

(mp), capsid protein (cp) and replication-associated protein (rep) coding regions and 
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realigned based on a codon alignment with MUSCLE (Edgar, 2004). From these alignments 

the MSV and PanSV datasets were further split for each coding region (mp, cp, and rep) 

dataset. Recombination breakpoints identified with the GARD method (Kosakovsky Pond et 

al., 2006) were removed prior to selection analysis. The six datasets were separately analysed 

for evidence of selection acting on individual codon sites using the MEME (Murrell et al., 

2012) and FUBAR (Murrell et al., 2013) methods implemented in the HyPhy package via the 

online DATAMONKEY server (http://www.datamonkey.org/) (Delport et al., 2010). The 

FUBAR method was used to identify individual codon sites evolving under either 

diversifying or negative selection. The MEME method was used to identify individual codons 

evolving under episodic diversifying selection within individual sub-lineages within the 

analysed datasets. Due to the low number of genomic sequences available for the species of 

African monocot-infecting mastrevirus other than MSV and PanSV we were unable to 

undertake a selection analysis on these species. 

3.3.5 Recombination analysis 

Full genome datasets of the monocot-infecting mastreviruses were analysed for evidence of 

recombination events using the platform RDP4 (Martin et al., 2010) with the following 

methods RDP (Martin & Rybicki, 2000), GENECONV (Padidam et al., 1999), Bootscan 

(Martin et al., 2005), Maxchi (Smith, 1992), Chimera (Posada & Crandall, 2001), Siscan 

(Gibbs et al., 2000), LARD (Holmes et al., 1999) and 3Seq (Boni et al., 2007). A dataset 

comprised of all the monocot-infecting mastreviruses was analysed for evidence of inter-

species and intra-species recombination. Additionally a dataset of only MSVs and another 

only PanSVs was analysed for evidence of intra-species recombination in order to ensure a 

robust analysis of these two major groupings. Recombination events detected by RDP V4 

were deemed credible if the following criteria was met; strong phylogenetic evidence and 

each event detected by a minimum of three methods with p-values of <10-3. Results shown 

for intra-species recombination excludes events where the MSV-A is the recombinant as 

extensive MSV-A recombination analyses has previously been undertaken and published 

(Harkins et al., 2009; Monjane et al., 2011; Varsani et al., 2008b) and this study does not 

include any additional MSV-A sequences. This is also the case for the Australian monocot-

infecting mastreviruses for which intra-species and inter-species (among those found in 

Australia) has previously been reported by Kraberger et al. (2012). 
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3.4 Results and discussion 

3.4.1 Classification of 120 full AfSV genome sequences 

A total of 120 full AfSVs genomes were recovered from symptomatic wild uncultivated 

grasses, maize, sugarcane and one from wheat. Samples from 26 Poaceae genera were 

collected in five Africa countries (Kenya, Namibia, Nigeria, South Africa and Zimbabwe) 

and three of the surrounding islands (Gran Canaria, Mauritius and Réunion) (Table 3.1). A 

genome-wide comparison of the 120 recovered genomes with those of previously 

documented monocot-infecting mastrevirus species was undertaken using SDT V1.2 (Muhire 

et al., 2014). According to recommendations for mastrevirus classification specified by 

Muhire et al. (2013), the 120 genomes were assigned to the following established species; 

EMSV (n=2), MSRV (n=1), MSV (n=95), PanSV (n=20), SSRV (n=1) and SSV (n=1). 

Further, isolates which share >94% identity with previously described strains were assigned 

the specific strain demarcation. The new MSV isolates from this study were assigned 

accordingly to the MSV strains -B (n=19), -C (n=34), -D (n=4), -E (n=3), -F (n=30), -G 

(n=1), -J (n=1) and -K (n=2), and PanSV isolates to strains PanSV-A (n=18), PanSV-C (n=1) 

and PanSV-H (n=1). The SSRV isolate belongs to SSRV-A, whereas the SSV isolate shares 

<90% identity with other SSV isolates and therefore we tentatively propose this be assigned 

to a new strain called SSV-C. This is only the third time that an SSV isolate has been 

sampled and all three can be assigned to different strains. SSV-A was sampled from a 

sugarcane sample collected in South Africa and SSV-B from a Cenchrus myosuroides sample 

collected in Réunion. SSV-C, like SSV-A was also recovered from a sugarcane sample 

collected in South Africa. 

 

These species and strain designations were supported in our phylogenetic analysis. The 

phylogenetic tree shown in figure 3.1 provides an overview of the phylogenetic relationships 

between all monocot-infecting mastrevirus. It has previously been highlighted that PanSV 

diversity is similar to that seen among the MSVs (Fig. 3.2) (Varsani et al., 2009; Varsani et 

al., 2008a) and it is evident that this is still the case despite the fact that MSV has been the 

most highly sampled of the monocot-infecting mastreviruses. 
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Table 3.1: Details of African monocot-infecting mastrevirus isolates recovered in this study. 

Species/Strain Genbank 
no. 

Host Latitude  Longitude Sampling 
year 

Country 

EMSV KM230033 Eragrostis sp. 21.286380 S 55.519637 E 2009 Namibia 

  KM230032 Eragrostis sp. 7.469199 N 4.556646 E 2009 Namibia 

MSRV KM230031 Digiteria sp. 21.286380 S 55.519637 E 2011 Reunion 

MSV-B KM230030 Digitaria sanguinalis 33.784763 S 20.117002 E 2010 Kenya 

  KM229939 Digitaria sanguinalis 33.798896 S 19.874833 E 2009 Kenya 

  KM230029 Digitaria tino 33.784763 S 20.117002 E 2008 Mauritius 

  KM230028 Digitaria tino 21.251090 S 55.344000 E 2012 Mauritius 

  KM230027 Digitaria tino 21.286380 S 55.519637 E 2008 Mauritius 

  KM230026 Digitaria tino 26.387340 S 25.019490 E 2008 Mauritius 

  KM230025 Digitaria horizontalis 26.387340 S 25.019490 E 2008 Mauritius 

  KM230024 Bambusa oldhamii 26.387340 S 25.019490 E 2008 Mauritius 

  KM230023 Cenchrus echinatus 27.591950 S 24.752050 E 2008 Mauritius 

  KM230020 Unknown host 27.876550 S 24.815740 E 2011 Reunion 

  KM230022 Digitaria ciliaris 31.884000 S 18.635900 E 2008 Reunion 

  KM230021 Digitaria ciliaris 29.913123 S 31.017825 E 2008 Reunion 

  KM230019 Digiteria sp. 17.789790 S 23.343400 E 2012 Reunion 

  KM230018 Digiteria sp. 26.387340 S 25.019490 E 2012 Reunion 

  KM230017 Ehrharta erecta 27.736090 S 24.784330 E 2009 South Africa 

  KM230015 Bromus catharticus 29.065692 S 30.592636 E 2009 South Africa 

  KM230014 Chlorocalymma 
cryptacanthum 

29.742150 S 31.035050 E 2009 South Africa 

  KM230016 Lolium rigidum 15.434160 S 29.216640 E 2009 South Africa 

  KM230013 Digiteria sp. 15.434160 S 29.216640 E 1987 South Africa 

MSV-C KM230012 Digiteria sp. 20.237280 S 57.493920 E 2010 Kenya 

  KM229938 Setaria adhaerens 20.237280 S 57.493920 E 2010 Kenya 

  KM230010 Zea mays 20.237280 S 57.493920 E 2010 Kenya 

  KM230009 Zea mays 20.237280 S 57.493920 E 2010 Kenya 

  KM230008 Zea mays 20.237280 S 57.493920 E 2010 Kenya 

  KM230007 Zea mays 21.251090 S 55.344000 E 2010 Kenya 

  KM230006 Digitaria sanguinalis 20.231554 S 57.506558 E 2010 Kenya 

  KM230005 Zea mays 20.231554 S 57.506558 E 2010 Kenya 

  KM230004 Zea mays 20.231554 S 57.506558 E 2010 Kenya 

  KM230003 Digitaria sanguinalis 20.231554 S 57.506558 E 2010 Kenya 

  KM230002 Digitaria didactyla 20.231554 S 57.506558 E 2010 Kenya 

  KM230001 Digitaria sanguinalis 20.231554 S 57.506558 E 2010 Kenya 

  KM230000 Digiteria sp. 20.231554 S 57.506558 E 2010 Kenya 

  KM230011 Zea mays 33.472300 S 20.063000 E 2011 Kenya 

  KM229998 Digitaria sanguinalis 33.472300 S 20.063000 E 2009 Kenya 

  KM229999 Zea mays 33.472300 S 20.063000 E 2011 Kenya 

  KM229997 Zea mays 33.472300 S 20.063000 E 2011 Kenya 

  KM229996 Zea mays 33.472300 S 20.063000 E 2011 Kenya 

  KM229995 Zea mays 33.472300 S 20.063000 E 2011 Kenya 

  KM229937 Digitaria sanguinalis 18.060000 S 20.800000 E 2011 Kenya 

  KM229994 Brachiaria deflexa 18.064470 S 21.838550 E 2011 Kenya 

  KM229993 Brachiaria deflexa 18.064470 S 21.838550 E 2011 Kenya 

  KM229992 Urochloa decumbens 26.051650 S 25.348300 E 2011 Kenya 
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Species/Strain Genbank 
no. 

Host Latitude  Longitude Sampling 
year 

Country 

  KM229991 Hyparrhenia hirta 26.387340 S 25.019480 E 2011 Kenya 

  KM229990 Zea mays 26.051650 S 25.348650 E 2011 Kenya 

  KM229936 Setaria verticillata 26.051650 S 25.348650 E 2011 Kenya 

  KM229989 Setaria barbata 32.180000 S 18.890000 E 2011 Kenya 

  KM229988 Urochloa mosambicensis 26.051650 S 25.348650 E 2009 Namibia 

  KM229987 Polypogon monspeliensis 31.884000 S 18.635900 E 2009 South Africa 

  KM229986 Polypogon monspeliensis 31.884000 S 18.635900 E 2009 South Africa 

  KM229985 Polypogon monspeliensis 27.760000 S 30.810000 E 2009 South Africa 

  KM229984 Polypogon monspeliensis 26.720000 S 27.100000 E 2009 South Africa 

  KM229983 Ehrharta erecta 26.160000 S 27.690000 E 2011 South Africa 

  KM229978 Ehrharta erecta 33.784763 S 20.117002 E 2011 South Africa 

MSV-D KM229982 Polypogon monspeliensis 20.237280 S 57.493920 E 2009 South Africa 

  KM229981 Polypogon monspeliensis 20.237280 S 57.493920 E 2009 South Africa 

  KM229980 Ehrharta erecta 20.237280 S 57.493920 E 2011 South Africa 

  KM229979 Digitaria sanguinalis 20.237280 S 57.493920 E 2011 South Africa 

MSV-E KM229977 Unknown host 20.237280 S 57.493920 E 2011 Reunion 

  KM229976 Unknown host 20.237280 S 57.493920 E 2011 Reunion 

  KM229975 Unknown host 20.311730 S 57.696250 E 2011 Reunion 

MSV-F KM229974 Digitaria sanguinalis 0.400470 N 36.951290 E 2010 Kenya 

  KM229973 Digitaria didactyla 0.229800 N 37.647690 E 2010 Kenya 

  KM229972 Digiteria sp. 1.159120 N 36.684160 E 2009 Kenya 

  KM229971 Digiteria sp. 0.747220 N 34.163730 E 2009 Kenya 

  KM229970 Digiteria sp. 1.229860 N 36.840980 E 2009 Kenya 

  KM229969 Digitaria horizontalis 0.209660 N 36.387840 E 2008 Mauritius 

  KM229968 Digitaria horizontalis 0.895710 N 37.213310 E 2008 Mauritius 

  KM229967 Digitaria horizontalis 0.570040 N 37.188170 E 2008 Mauritius 

  KM229966 Digitaria ciliaris 1.054230 N 37.085030 E 2008 Mauritius 

  KM229965 Digitaria ciliaris 0.631990 N 37.249840 E 2008 Mauritius 

  KM229964 Elusine indica 0.279540 N 36.889190 E 2008 Mauritius 

  KM229963 Digitaria horizontalis 0.343760 N 37.629550 E 2008 Mauritius 

  KM229961 Digitaria horizontalis 0.445060 N 34.152690 E 2008 Mauritius 

  KM229962 Paspalum sp. 3.399830 S 39.495330 E 2012 Mauritius 

  KM229960 Digitaria horizontalis 0.106930 N 34.492240 E 2008 Mauritius 

  KM229959 Digitaria horizontalis 0.468480 N 34.309670 E 2008 Mauritius 

  KM229958 Digitaria horizontalis 20.388650 S 57.584270 E 2008 Mauritius 

  KM229957 Digitaria horizontalis 32.366060 S 18.955535 E 2008 Mauritius 

  KM229956 Digitaria horizontalis 28.121519 S 15.442484 W 2008 Mauritius 

  KM229955 Digitaria horizontalis 20.294170 S 57.532190 E 2008 Mauritius 

  KM229954 Digitaria horizontalis 20.294170 S 57.532190 E 2008 Mauritius 

  KM229953 Digitaria horizontalis 20.388650 S 57.584270 E 2008 Mauritius 

  KM229952 Digitaria horizontalis 20.388650 S 57.584270 E 2008 Mauritius 

  KM229951 Digitaria horizontalis 20.388650 S 57.584270 E 2008 Mauritius 

  KM229950 Digitaria horizontalis 20.388650 S 57.584270 E 2008 Mauritius 

  KM229949 Digitaria horizontalis 20.388650 S 57.584270 E 2008 Mauritius 

  KM229948 Digitaria horizontalis 20.388650 S 57.584270 E 2008 Mauritius 

  KM229947 Digitaria horizontalis 20.317840 S 57.509680 E 2008 Mauritius 

  KM229946 Digitaria horizontalis 20.102880 S 57.586110 E 2008 Mauritius 

Table 3.1 continued 
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Species/Strain Genbank 
no. 

Host Latitude  Longitude Sampling 
year 

Country 

  KM229945 Digitaria horizontalis 20.115670 S 57.552890 E 2008 Mauritius 

  KM229944 Oplismenus burmannii 20.115670 S 57.552890 E 2010 Zimbabwe 

MSV-G KM229943 Digiteria sp. 0.185000 N 37.958750 E 2008 Gran Canaria 

MSV-J KM229942 Sclerochloa dura 1.046270 N 37.075870 E 2011 Kenya 

MSV-K KM229941 Brachiaria deflexa 4.080880 S 39.374510 E 2011 Kenya 

  KM229940 Setaria adhaerens 0.052760 N 37.169950 E 2011 Kenya 

PanSV-A KM229935 Eragrostis minor 21.332376 S 55.470883 E 2009 Namibia 

  KM229922 Ehrharta erecta 1.231810 N 34.483020 E 2009 South Africa 

  KM229930 Brachiaria deflexa 1.001600 N 34.101010 E 2009 South Africa 

  KM229927 Brachiaria deflexa 1.116040 N 34.314500 E 2009 South Africa 

  KM229925 Brachiaria deflexa 0.156389 N 34.250830 E 2009 South Africa 

  KM229924 Panicum maximum 0.127930 N 35.091450 E 2009 South Africa 

  KM229923 Hordeum vulgare 1.040160 N 35.112040 E 2009 South Africa 

  KM229921 Brachiaria deflexa 1.259930 N 35.113780 E 2009 South Africa 

  KM229920 Brachiaria deflexa 1.036680 N 35.188790 E 2009 South Africa 

  KM229919 Unknown host 0.045990 N 35.214360 E 2009 South Africa 

  KM229933 Brachiaria deflexa 0.277030 N 36.027940 E 2009 South Africa 

  KM229932 Brachiaria deflexa 0.902480 N 35.256370 E 2009 South Africa 

  KM229929 Brachiaria deflexa 1.036680 N 35.188790 E 2009 South Africa 

  KM229928 Brachiaria deflexa 0.030410 N 36.201370 E 2009 South Africa 

  KM229926 Brachiaria deflexa 0.198550 N 35.034970 E 2009 South Africa 

  KM229934 Brachiaria deflexa 1.133880 N 35.096180 E 2010 South Africa 

  KM229931 Brachiaria deflexa 1.017800 N 35.037600 E 2009 South Africa 

  KM229916 Brachiaria deflexa 0.747220 N 34.163730 E 2009 South Africa 

PanSV-C KM229917 Megathyrsus infestus 21.332376 S 55.470883 E 2010 Zimbabwe 

PanSV-H KM229918 Brachiaria deflexa 21.332376 S 55.470883 E 2011 Nigeria 

SSRV-A KM229915 Saccharum hybrid 21.332376 S 55.470883 E 2005 Reunion 

SSV-C KM229914 Saccharum hybrid 21.332376 S 55.470883 E 2008 South Africa 

Table 3.1 continued 
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Figure 3.1: Maximum likelihood phylogenetic tree of all available full monocot-infecting mastrevirus 
genome sequences. Branches are coloured to highlight the different mastrevirus species. All aLRT 
support branches <80% were collapsed. Australian and European monocot-infecting mastreviruses 
clades have been collapsed. 
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Figure 3.2: Nucleotide pairwise identity distribution plot of full genomes of all maize streak virus 
and panicum streak virus datasets. 
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3.4.2 Diverse host range of MSVs and PanSVs 

To investigate host range and build on the previous host analysis undertaken by Varsani et al. 

(2008b) we identified the host species (or genus) from which the AfSV genomes were 

recovered in this study using the choloroplast ndhF gene (Table 3.1). Out of the 120 Poaceae 

samples from which mastreviruses were isolated we were unable to identify five host species 

and hence these are referred to as unknown hosts (Table 3.2). Among the 115 AfSV isolates 

for which hosts have been identified in this study, there are several newly identified host 

Poaceae species. Twelve isolates of MSV-C were recovered from maize (Zea mays). Prior to 

this study only MSRV, MSV-A, and MSV-B had been isolated from maize. Considering the 

amount of research undertaken on MSV in maize and the large number of MSV-A isolates 

recovered from maize (n=330) in the field over the years it is surprising that this strain has 

not previously been isolated from this host. It may be that other strains such as MSV-C are 

adapting to new hosts such as maize. Other than maize, three new host species from three 

different Poaceae genera and two subfamilies were identified for MSV-C. This was also the 

case for a MSV-F found in Eleusine sp., Panicum sp. and Paspalum sp., which had 

previously only been recovered from Digitaria sp. and Urochola sp. It was noted by Varsani 

et al. (2008b) that MSV-A isolates were recovered from grass species spanning eight genera 

whereas MSV-B was only isolated from grass species spanning six genera, suggesting that 

MSV-A may have a broader host range. Analysis of a significantly larger dataset which 

includes all MSV-A (n=377) and B (n=71) isolates recovered to date (available in the 

GenBank) shows that MSV-A has a host range which includes species from 12 Poaceae 

genera whereas MSV-B has a host range which includes species from 14 Poaceae genera. 

This suggests that MSV-B may in fact have a broader natural host range than MSV-A.  

 

A MSV-B genome was isolated from bamboo (B. oldhamii) leaf material collected in 

Mauritius, to our knowledge this is the first record of any mastrevirus having been isolated 

from a Bambusa sp. Several new host species from three subfamiles were also identified for 

PanSV-A, with the most common host species identified as B. deflexa. Of all the AfSV 

species, MSV is known to infect grasses from 27 Poaceae genera, this is distantly followed 

by PanSV which is known to infect grasses from nine Poaceae genera. It is interesting to note 

that PanSV and MSV have largely overlapping host ranges, eight of the nine genera PanSV is 

known to infect are also known to host MSV.  
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Table 3.2: Summary of all African monocot-infecting mastrevirus genomes recovered and host Poaceae subfamily and genera. Values shown in red 
represent those mastrevirus species/strains recovered in this study that have been identified in a host Poaceae genus for the first time. 
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3.4.3 Patterns of geographic distribution  

The extensive sampling undertaken in various countries throughout Africa and some of the 

surrounding Islands in recent years presents a good opportunity to investigate differences in 

geographic distributions of the AfSVs. In order to gain an overview of this information we 

mapped all the isolates where full genomes had been recovered of monocot-infecting 

mastrevirus species in Africa and neighbouring islands (both those recovered in this study 

and those publically available in GenBank) to indicate country of origin. Additionally we 

listed the number of species/strains which were recovered in those countries (Fig. 3.3) to get 

a clear overview. It is worth keeping in mind that some host species have been largely under 

sampled due to opportunistic sampling biases and others oversampled because of sampling 

efforts. For example sampling undertaken in Cameroon and Burkina Faso was solely of 

symptomatic maize material and therefore it is not surprising that only the maize adapted 

MSV strain (MSV-A) has been found in these countries. Although these sampling bias make 

it is difficult to compare the diversity identified in one country compared with another, we are 

able to gain an insight into the distribution of various species and strains.  

 

An extensive analysis of the geographic distribution and the historical movements of MSV-A 

was undertaken by Monjane et al. (2011), their study coupled with that of Harkins et al. 

(2009) determined that MSV-A most likely emerged around ~150 years ago in Southern 

Africa and subsequently MSV-A spread throughout the continent and the Indian Ocean 

islands, MSV-A has been sampled in 14 countries in Africa (Monjane et al., 2011; 

Oluwafemi et al., 2011; Varsani et al., 2009; Varsani et al., 2008b). Wild grass adapted MSV 

strains MSV-B to -K have also been found to be distributed in various regions of Africa and 

surrounding islands. Genomes of these MSVs have been sampled in 14 countries including 

the islands of Mauritius, Réunion and for the first time as part of this study a MSV isolate 

(MSV-G) was sampled in the island of Gran Canaria. This is the first record of an AfSV 

found north-west of the Sahara desert. MSV-G has previously only been recorded in Mali and 

Nigeria (Varsani et al., 2008b) despite the host species (Digitaria sp., Panicum sp., Paspalum 

sp., and Brachiaria sp.) having been sampled multiple times elsewhere in Africa. This strain 

therefore appears to have a distribution which is restricted to West Africa and the island of 

Gran Canaria. In this study an additional 37 MSV isolates were recovered from wild grasses 

and maize and cultivated maize sampled in Kenya. Among these four strains MSV-C, -F, -J 
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and -K were identified for the first time in Kenya. Additionally, Kenya is the only region 

where MSV-C has been found infecting Maize.  

 

The islands of the south-west Indian Ocean islands of Africa have previously been shown to 

be a hotspot of geminvirus diversity (Lefeuvre et al., 2007; Peterschmitt et al., 1996; 

Shepherd et al., 2008b). Grasses harbouring mastreviruses have been sampled from the 

islands of Réunion and Mayotte. Réunion has proven to be a hub of diversity with four 

mastrevirus species identified here (MSRV, MSV, SSRV and SSV). We therefore undertook 

sampling in the previously unsampled neighbouring island of Mauritius to see what viruses 

are moving between the islands. Here we recovered MSVs from 32 grass samples spanning 

five Poaceae genera from Mauritius. All of the MSV genomes recovered are MSV-Bs and 

MSV-Fs.  

 

PanSV was shown as having a similar geographical structure as MSV (Varsani et al., 2009), 

and it was also noted by these authors that the grass adapted MSV strains are spreading 

throughout the continent more easily than PanSV. We iterate this observation even with the 

addition of more PanSV sequences from four countries that the different PanSV strains are 

apparently regionally constrained. 
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Figure 3.3: Map of Africa and surrounding islands indicating countries where African monocot-
infecting mastreviruses have been sampled, this includes samples where full genomes were recovered 
obtained in this study and those available in the GenBank. Monocot-infecting mastrevirus species are 
represented by colours in key. Letters in country sample list represent the strain of the virus species of 
the same corresponding colour shown in key. The number of samples obtained for each species and 
strain from the various countries is indicated by the superscript number next to virus strain letter or 
acnonym. 
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3.4.4 Conserved patterns of recombination among the monocot-infecting 
mastreviruses 

Evolution through the mechanism of recombination has been well documented in several 

species of begomoviruses, curtoviruses and mastreviruses (Kraberger et al., 2013; Lefeuvre et 

al., 2009; Lefeuvre et al., 2007; Owor et al., 2007; Sanz et al., 2000; Silva et al., 2014; 

Varsani et al., 2014; Varsani et al., 2009). Among the studies investigating patterns of 

recombination in mastreviruses are several which have focused on the MSV and PanSV 

(Monjane et al., 2011; Shepherd et al., 2008b; Varsani et al., 2009; Varsani et al., 2008b). 

Extensive inter-strain and intra-strain recombination patterns were documented within MSV-

A genomes and to a lesser extent those of other MSV strains and PanSV. In this study we 

aimed to build on previous intra-species recombination analyses of the AfSVs and focus on 

events occurring among MSV strains other than MSV-A and in PanSV strains and other 

AfSVs. In addition to this we investigated inter-species recombination events among the 

monocot-infecting mastrevirus species and for the first time looking at events between 

species found in two geographically distinct regions of the world, the African originating and 

the Australian originating monocot-infecting mastreviruses. We therefore analysed the 120 

genomes recovered in this study together with the 697 African and Australian monocot-

infecting mastrevirus available in GenBank. A total of 47 intra-species (Fig. 3.4; Fig. 3.5; 

Table 3.3) and 17 inter-species events (Fig. 3.6; Table 3.4) were detected.  

 

Among the intra-species events detected, 23 events were identified in MSV (Fig. 3.4; Table 

3.3) (excluding those identified in MSV-A genomes), 16 in PanSV, five in SWSV and one in 

MSRV, SSV and USV (Fig. 3.5; Table 3.3). This is the first time there has been documented 

evidence of recombination in MSRV and USV. MSRV and USV isolates share greater than 

94% pairwise identity with other members of the species and therefore belong to the same 

strain, as a result these events would be deemed intra-strain recombination. Only one other 

intra-strain event was detected, this event involved the exchange of genetic fragments 

between PanSV-A isolates (event 33 in Fig. 3.5; Table 3.3). It is highly likely that intra-strain 

recombination occurs more frequently than has documented because it is difficult to detect 

breakpoints of such exchanges due to the high levels of identity shared among isolates within 

strains.  
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Several detected recombinants seem to have resulted from a complex patchwork of intra-

species recombination events, for example, some MSV-C recombinants have evidence of two 

major events which collectively consist of the exchange of genetic fragments which make-up 

<84 % of the viral genome (Events 3 and 15 in Fig. 3.4; Table 3.3). In PanSV-E recombinant 

genomes the exchange of genetic fragments overall from two events consists of <64% of the 

full genome (Events 29 and 26 in Fig. 3.5; Table 3.3).  

 

Varsani et al. (2009) described similarities between recombination patterns seen in PanSV 

and MSV, one key similarity noted was that inter-species events all involved the exchange of 

genetic material <30% of the full genome. This still remains the case and in fact, it seems to 

be a pattern which is seen throughout all inter-species recombination events detected in the 

monocot-infecting mastreviruses (Kraberger et al., 2012; Varsani et al., 2009; Varsani et al., 

2008a). Intra-species recombination in monocot-infecting mastreviruses on the other hand 

tends to involve the exchange of larger fragments which is evident in this analyses, the 

exchange of genetic material in an event ranges from 1.5% – 50% of the genome. Twelve of 

the sixteen inter-species events all have breakpoints within the intergenic regions of the 

genome highlighting a clear hotspot, a common pattern seen in other geminiviruses (Lefeuvre 

et al., 2009; Martin et al., 2011a; Varsani et al., 2009). A similar hotspot is seen in the intra-

species recombination although it is less clear.  

 

It is noteworthy that five of the 16 inter-species events identified here involve the apparent 

exchange of genetic material between species from two locations which are separated by the 

Indian Ocean, those found in Africa (including surrounding islands) and those found in 

Australia (Events E, F, I, Q and R in Fig. 3.6; Table 3.4). Recombination events of a similar 

nature are also seen among species of dicot-infecting mastreviruses (Kraberger et al., 2013), 

reinforcing the notion that ancestors of these viral species may at some point have coexisted 

in the same geographical region(s). Additionally seven inter-species events have inferred 

parental sequences of monocot-infecting mastreviruses species which are not known to infect 

the same host Poaceae species. For such events to occur the two parental viruses must 

occupy the same host and therefore this may indicate that some of these species possibly have 

a broader host range in the field than currently known resulting in an overlap of host species. 

Ancestors of these inferred parents may also have been able to infect the same host species as 

seen in events F, I, J, M, O, Q and R in Fig. 3.6 and Table 3.4. 
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Figure 3.4: Illustration of intra-species recombination events detected among MSV (with the 
exception of MSV-A). The genome organisation of mp, cp, rep and repA in relation to recombinants 
and recombinant regions is depicted above. Recombinant regions donated by the inferred minor 
parent is shown in light green, regions donated by the inferred major parent is shown in dark green. 
Recombination event information for each event can be found in Table 3.3. 
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Figure 3.5: Illustration of intra-species recombination events detected among all African monocot-
infecting mastrevirus species (with the exception MSV which can be found in Fig. 3.3). The genome 
organisation of mp, cp, rep and repA in relation to recombinants and recombinant regions is depicted 

above. Recombinant regions donated by the inferred minor parent(s) is shown in lighter shade of 
colour, region donated by the inferred major parent is shown in darker shade. Each recombination 

event is indicated by a corresponding number and information for each event can be found in Table 
3.3. 
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Table 3.3: Summary of intra-species recombination events detected among the African monocot-
infecting mastreviruses shown in Fig. 3.3 and Fig. 3.4. Major and minor inferred parents represent the 
likely parents donating the larger and smaller genetic segments of recombinant’s genome, 
respectively. The method with the most significant p-value is indicated in bold and the associated p-
value is shown.  

Event  Recombinant 

region 

 Major Parental Sequence(s)   Minor Parental Sequence(s)  Detection 

methods 

P‐value 

Intra‐species recombination       

1  1235‐1743  All MSV‐B  All MSV‐E, All MSV‐J, All MSV‐I  RGMCST  1.39x10‐32 

2  13*‐436  All MSV‐A, All MSV‐B  All MSV‐F  RGMST  1.87x10‐32 

3  456‐1372  All MSV‐C  All MSV‐K  RGMCST  1.38x10‐14 

4  1288‐1429  All MSV‐B1  All MSV‐A  RGMCST  4.14x10‐14 

5  1247‐1367  All MSV‐F  All MSV‐A, All MSV‐G  RGMCT  3.38x10‐13 

6  58‐1207  All MSV‐F4 and MSV‐F1  All MSV‐A  RGMCST  1.24x10‐21 

7  2642‐1179  All MSV‐F1  All MSV‐A  RGBMCST  1.16x10‐22 

8  2025‐2329  All MSV‐F1, All MSV‐F2  All MSV‐B1  RGBMCST  3.04x10‐12 

9  1444*‐66  MSV‐F2 (EU628628, EU628629, 

KJ437654, KJ437655, KM229974, 

KM229973, KM229971, KM229944) 

All MSV‐B1 (except AF239960, AF239962, EU152260, 

EU628577, EU628578, EU628582, EU628583, 

EU628585, EU628591, EU628594, EU628597, 

EU628598, EU628600, EU628608, EU628609, 

KM230014, KM23001), MSV‐B2 (EU628612) 

MCS  1.03x10‐31 

10  194‐1185*  All MSV‐F (except KM229974, 

KM229971, KM229972, KM229944, 

KM229969, KM229946), All MSV‐G 

All MSV‐A  RGBMCST  1.95x10‐18 

11  1625‐152  All MSV‐J  MSV‐A6 (AJ225008), MSV‐F1 (except KM229971, 

KM229967, KM229965, KM229963, KM229951, 

KM229956), MSV‐F1 (EU628630, EU628627), All MSV‐G 

MCS  5.43x10‐27 

12  1265‐1363  MSV‐B1 (KM230026, KM230027, 

KM230029), MSV‐B2 (KM230015, 

AF239960, AF239962, AF329886, 

EU628578, EU628579, EU628580, 

EU628581, EU628582, EU628583, 

EU628584, EU628585, EU628591, 

EU628594, EU628595, EU628596, 

EU628597, EU628598, EU628599, 

EU628600, EU628602) 

All MSV‐A and All MSV‐G  RGBMCT  5.19x10‐16 

13  1165‐1380*  Ancestral MSV‐B‐like  All MSV‐A  RGBMCST  4.06x10‐14 

14  67*‐1438  MSV‐B1 (AF239960, AF239962, 

AF329886, EU628577, EU628578, 

EU628582, EU628588, EU628597, 

EU628598, EU628600, EU628609, 

KM230014, KM230015, KM230016) 

All MSV‐B2 

MSV‐F2 (EU628628, EU628629, KJ437654, KJ437655, 

KJ437656, KM229974, KM229973, KM229972, 

KM229971, KM229969, KM229967, KM229966, 

KM229965, KM229944, KM229958, KM229959, 

KM229960, KM229950) 

MCS  2.24x10‐30 

15  1368*‐30  All MSV‐K, MSV‐D (KM229979, 

KM229980) 

Ancestral MSV‐A/MSV‐B/MSV‐G/MSV‐F‐like  RGBMC  2.78x10‐10 

16  1979‐176  MSV‐F1 (EU628627), MSV‐F2 

(KM229972) 

All MSV‐G  RMCT  4.48x10‐09 

17  1374*‐1966*  MSV‐F1 (EU628627), All MSV‐F2 

(except KM229964, KM229963, 

KM229952, KM229945, KM229951, 

KM229953, KM229961, KM229951, 

KM229955, KM229954, KM229949, 

KM229948, KM229956) 

Ancestral MSV‐B‐like  RBCST  2.10x10‐07 

18  1224‐1404  MSV‐B1 (AF329887, KM230030, 

KM230020, KM230013) 

MSV‐F2 (EU628629, EU628628, KJ437654, KJ437655, 

KJ437656, KM229972, KM229971, KM229946, 

KM229944) 

RGB  2.04x10‐15 

19  1993‐237  All MSV‐F2 (KM229973, KM229974, 

KM229972, KM229975) 

Ancestral MSV‐G‐like  MCT  7.54x10‐08 

20  1771*‐2035  All MSV‐G  MSV‐B2 (EU628613, EU628611)  RGBMST  4.81x10‐05 

21  1439‐2141  All MSV‐F2 (KM229973, KM229974, 

KM229972, KM229975) 

MSV‐B1 (KM230024, KM230025) All MSV‐B2  RMC  1.13x10‐06 

22  1288‐1577*  All MSV‐B2  MSV‐F1 (EU628630), MSV‐F2 (EU628629, KJ437655, 

KJ437656, KM229973, KM229972, KM229971, 

KM229970, KM229967, KM229965, KM229964, 

KM229962, KM229958, KM229956, KM229947, 

KM229946, KM229944), MSV‐F3 

RGBM  2.94x10‐05 
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23  1457‐1707*  MSV‐F2 (KM229965‐KM229969, 

KM229944, KM229946, KM229950, 

KM229958, KM229959, KM229962, 

KM229960) 

All MSV‐B2  RBM  6.51x10‐05 

24  1333‐1969  PanSV‐C (EU224264)  Ancestral PansV‐H‐like  RGMCST  1.13x10‐17 

25  2383‐121  All PanSV‐A (except KM229916)  Ancestral PansV‐H‐like  RGBMCST  4.24x10‐19 

26  629‐1294  Ancestral PanSV‐A‐like  PanSV‐B  RGMCST  1.04x10‐16 

27  2094‐190  PanSV‐E (GQ415390)  Ancestral PanSV‐B/PanSV‐C/PanSV‐F/PanSV‐G‐like  RGMCS  5.96x10‐21 

28  1397‐28  PanSV‐F  Ancestral PanSV‐F  RMCST  6.06x10‐13 

29  2089‐469  All PanSV‐I  PanSV‐F (GQ415392), PanSV‐G (GQ415393, GQ415395)  RGMCS  2.36x10‐20 

30  1419‐1542  All PanSV‐A  Ancestral PanSV‐H/PanSV‐E‐like  RGMC  5.66x10‐08 

31  1389‐2168  All PanSV‐H  All PanSV‐G  RMCST  2.26x10‐16 

32  2424‐2563  Ancestral PanSV‐E‐like  PanSV‐C (KM229917)  RGMST  2.25x10‐04 

33  1183‐1718  Ancestral PanSV‐A‐like  PanSV‐A (L39638)  GBT  1.38x10‐05 

34  176*‐456  PanSV‐A (GQ415386, GQ415387, 

KM229926, KM229928, KM229929, 

EU224263) 

PanSV‐F (GQ415392)  RBL  1.93x10‐04 

35  2668*‐67  PanSV‐B (X60168)  PanSV‐A (KM229916)  MLT  1.27x10‐04 

36  2675‐10  PanSV‐A (GQ415386 L39638)  Ancestral PanSV‐A‐like  GLT  1.13x10‐06 

37  2526‐2663  PanSV‐C (EU224264)  Ancestral PanSV‐A‐like  GBMC  8.64x10‐06 

38  576‐848  All PanSV‐I  PanSV‐B, PanSV‐F, PanSV‐G (GQ415394)  RBMCS  1.83x10‐08 

39  905‐1022*  PanSV‐B, PanSV‐E (GQ415389, 

GQ415390), PanSV‐F 

Ancestral PanSV‐A‐like  RMCT  1.32x10‐03 

40  608‐1322*  MSRV (KJ437670, KJ437669)  MSRV (JQ624880, KM230031)  RGMCST  5.50x10‐11 

41   278‐ 1080*  SWSV‐C (KJ187749)  Ancestral SWSV‐A‐like  RGBS  4.01x10‐06 

42   112‐178  SWSV‐B (KJ210622, KJ187747)  Ancestral SWSV‐A‐like  RGM  4.06x10‐06 

43   2827‐34  SWSV‐B (KJ187747)  SWSV‐A (KJ187746, KJ187745)  RGM  2.26x10‐08 

44  1420*‐1540  SWSV‐B (KJ210622, KJ187747)  Ancestral SWSV‐A‐like  RGM  9.54x10‐06 

45  2505‐2559  SWSV‐B (KJ210622, KJ187747)  Ancestral SWSV‐A‐like  RGB  1.70x10‐08 

46   2698‐2752  SSV‐A (M82918)  Ancestral SSV‐C‐like  RGBMCST  3.18x10‐10 

47  2023*‐2427  USV (EU445692)  USV (EU445693‐EU445699, KJ437665)  RGBMC  2.82x10‐08 

RDP (R) GENCONV (G), BOOTSCAN (B), MAXCHI (M), CHIMERA (C), SISCAN (S), LARD (L) and 3SEQ (T). 
* = The actual breakpoint position is undetermined. 
 

Table 3.3 continued 
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Figure 3.6: Illustration of inter-species recombination events detected among all African and 
Australian monocot-infecting mastrevirus species (excludes those events detected among the 
Australian monocot-infecting mastreviruses which has previously been documented by Kraberger et 
al. (2012). The genome organisation of mp, cp, rep and repA in relation to recombinants and 
recombinant regions is depicted above. Recombinant regions donated by the inferred minor parent is 
shown in light red, regions donated by the inferred major parent(s) is shown in dark red. 
Recombination event information for each event can be found in Table 3.4. 
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Table 3.4: Summary of inter-species recombination events detected among the African and Australia 
monocot-infecting mastrevirus shown in Fig. 3.5 (excludes those events detected among the 
Australian monocot-infecting mastreviruses which has previously been documented by Kraberger et 
al. (2012). Major and minor inferred parents represent the likely parents donating the larger and 
smaller genetic segments of recombinant’s genome, respectively. The method with the most 
significant p-value is indicated in bold and the associated p-value is shown.  

Event Recombina
nt region 

 Major Parental Sequence(s) Minor Parental Sequence(s) Detectio
n 
method
s 

P-value

Inter-species recombination   

A  1263‐1345  SSV‐A, All MSV‐A1, A2, A3 and A4, All 

MSV‐D, All MSV‐B1, All MSV‐E, MSV‐H, 

All MSV‐I, All MSV‐J, MSV‐C (AF007881, 

KM229983‐KM230012) 

Ancestral MSRV‐like  RGBM  1.27x10
‐18
 

B  1320*‐1378  Ancestral SSV‐A‐like, MSV‐like   All MSV‐F and MSV‐B3  RGBMC

T 

9.83x10
‐18
 

C  1300‐1341  All MSV‐D  ACSV (KJ437671)  RGM  3.86x10
‐08
 

D  1355‐1419  Ancestral MSV‐C‐like  All MSV, All SSV‐A  RGBM  4.65x10
‐13
 

E  1233‐1465  All DCSMV‐A  Ancestral SSRV/MSV/USV/PanSV/ESV‐

like 

RGB  1.30x10
‐06
 

F  1247‐1298  PSMV (JF905486, JQ948063‐JQ948080)  All USV, PanSV‐A (EU224263, 

GQ415387) 

RGM  5.08x10
‐12
 

G  1337‐1426  Ancestral MSV‐C‐Like  All MSV‐C and MSV‐D  RGBMS  1.21x10
‐11
 

H  71‐99  PanSV‐D (GQ415388), PanSV‐H 

(GQ415397) 

All MSV, SSV‐A  RGBS  2.33x10
‐06
 

I  432‐465  PDSMV (JQ948061, JQ948062, 

JQ948085‐ JQ948087) 

ESV (EU244915), SacSV (GQ273988), 

PanSV‐H (GQ415397) 

RGM  1.98x10
‐10
 

J  43‐97  PanSV‐A (L39638, GQ415387, 

EU224261, EU224263, KM229929) 

SSRV‐B (KJ437668)  RGBM  1.99x10
‐11
 

K  1386‐1431  Ancestral MSV‐C/MSV‐B‐like  All MSV‐C, MSV‐D,  MSV‐D, All MSV‐J, 

All MSV‐I 

RGB  2.12x10
‐09
 

L  1322‐1368  All MSV‐A, MSV‐B (EU628613, 

AF329887, EU628608, EU628610‐

EU628612, KM230020, KM230030), All 

MSV‐E, All MSV‐G, All MSV‐H, All MSV‐I, 

All MSV‐J 

All PSMV  RGB  2.50x10
‐09
 

M  1367‐1412  PanSV‐D (EU224265)  Ancestral SacSV‐like  RGBMC

S 

2.92x10
‐09
 

N  1347‐1384  All DCSMV‐A  All EMSV  RGBM  1.75x10
‐07
 

O  2541‐2587  SSEV (AF037752, AF039528, AF039529 

AF239159) 

PanSV‐A (KM229926, KM229928, 

KM229929), PanSV‐H (GQ415397), 

PanSV‐D (GQ415388) 

RGB  4.66x10
‐07
 

P  2533‐2573  PanSV‐I GQ415400  Ancestral All MSV/SSV‐A‐like  RGB  1.28x10
‐06
 

Q  69‐ 104*  PSMV (JQ948069)  All MSRV  RGMC  3.12x10
‐07
 

RDP (R) GENCONV (G), BOOTSCAN (B), MAXCHI (M), CHIMERA (C), SISCAN (S), LARD (L) and 3SEQ (T). 
* = The actual breakpoint position is undetermined. 
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3.4.5 Conserved patterns of natural selection signals between MSV and PanSV 

In addition to recombination, genetic drift coupled with natural selection is an important 

mechanism of geminivirus evolution (Duffy & Holmes, 2009; Duffy et al., 2008; Lima et al., 

2013). We therefore investigated the selection pressures acting on codon sites within the 

encoding regions of monocot-infecting mastreviruses by undertaking a comparative selection 

analysis of the mp, cp and rep of MSV and PanSV (Fig. 3.7). We used the selection detection 

models FUBAR (Murrell et al., 2013) and MEME (Murrell et al., 2012) to identify signals of 

selection influencing individual codon sites within the genes of MSV and PanSV. For both 

the MSV and PanSV we have large enough full genome datasets in order to detect significant 

signals of selection across a large proportion of the codon sites within the genes of MSV and 

PanSV.  

 

Selection analysis previously undertaken on mastrevirus species has looked at the overall 

selection pressure acting on the mp, cp and rep (Hadfield et al., 2012; Kraberger et al., 2012). 

Results showed that all genes have normalised non-synonymous/synonymous (dN/dS) values 

less than one which indicates these genes are evolving predominantly under negative 

selection, also referred to as purifying selection. This has also been documented in other 

ssDNA viruses (Duffy et al., 2008; Shackelton et al., 2005; Stenzel et al., 2014). Our results 

show that the cp is evolving under the highest degree of purifying selection (average dN/dS 

of MSV=0.24 and PanSV =0.26), followed by the rep (Average dN/dS of MSV=0.36 and 

PanSV =0.29) and mp (Average dN/dS of MSV=0.68 and PanSV =0.54). The mp seems to be 

evolving under the least amount of purifying selection of all three genes in all mastrevirus 

species investigated (Hadfield et al., 2012; Kraberger et al., 2012).  

 

Codon sites evolving under negative selection seem to be fairly evenly distributed throughout 

the cp and rep, with a high proportion of sites (Fig. 3.7; shown in red) under negative 

selection for the same amino acid in both MSV and PanSV. A notable region which has a 

high proportion of codon sites evolving under negative selection for the same amino acid in 

both MSV and PanSV is in the cp between codon site 45 and 190. This region spans the 

majority of the β-barrel structure which is integral to the core structure of the viral capsid 

(Bennett et al., 2008; Zhang et al., 2001) and therefore preservation of certain amino acids 

within this motif may be essential for maintaining CP structural integrity in these monocot-
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infecting mastrevirus species. Within the Rep many of the functional motifs appear to be 

predominantly undergoing negative selection (Fig. 3.7; shown in red, orange and grey). Motif 

C and the region flanking it has a high concentration of codons where strong signals of 

negative selection were detected (codon 195–codon 320), this clustering in PanSV is in the 

region of overlap between the rep and repA and therefore could be an artefact of this overlap 

(Fig. 3.7; indicated by a grey shaded area), however in MSV there is no overlap between the 

rep and repA and therefore this may represent a larger conserved functional region.  

 

Several sites within each gene are also evolving under detectably positive selection, either 

positive also referred to as diversifying (Fig. 3.7; shown in blue) or episodic diversifying 

(shown in green). Both favour change in residues at a site (sites where dN/dS >1), however, 

episodic diversifying selection is acting on a site only in specific subset(s) of the population. 

Very few sites have been detected to be undergoing positive selection (PanSV: mp=1, 

cp=1,rep=3; MSV: mp=3, cp=2, rep=4) whereas a significant portion of sites were detected 

to be evolving under episodic diversifying (PanSV: mp=6, cp=12, rep=18, MSV: mp=7, 

cp=11, rep=23). Strains of both PanSV and MSV are known to have different host ranges and 

preferences, it is therefore not surprising that some sites are in a state of change in different 

subsets, possibly strain subset, in these species and may mean that these sites are varied to be 

optimal in the different hosts.  
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Figure 3.7: Plots representing significant signals of natural selection acting on individual codon sites 
within the mp, the cp and the rep of MSV and PanSV. dN=Non-synonymous substitution rates and 
dS= Synonymous substitution rates. Absolute (Abs) values of dN-dS are plotted for positive selection 
(blue) and negative selection (orange, red and grey) indicated for those signals with an associated 
FUBAR p-value <0.05. Episodic positive selection signals with an associated MEME p-value <0.05 
are shown in green. Bar heights for Abs (dN-dS) values correspond to the degree of positive or 
negative selection detected using FUBAR. Sites at which episodic diversifying selection was detected 
using MEME have been represented by green bars with uniform height across the genes since Abs 
(dN-dS) values averaged across the entire phylogeny which do not reflect degrees of episodic 
diversifying selection (which by definition occurs only on specific subsets of branches within the 
phylogeny). Total averages for dN/dS ratios are indicated for each gene in MSV and PanSV. Codon 
sites are indicated based on a codon alignment of both species for each gene. The locations of 
conserved domains and motifs in relation to their positions in these alignments are shown for the mp; 
the predicted trans-membrane domain (Boulton et al., 1993), the cp; the β-barrel motif (Zhang et al., 
2001) and for the rep; iteron-related domain (IRD) (Argüello-Astorga & Ruiz-Medrano, 2001), 
rolling circle replication (RCR) motifs I, II and II (Ilyina & Koonin, 1992; Laufs et al., 1995; Rosario 
et al., 2012), the geminivirus Rep sequence (GRS) domain (Nash et al., 2011), and the helicase 
domain Walker-A, -B and -C motifs (Gorbalenya & Koonin, 1993; Gorbalenya et al., 1990). 
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3.5 Concluding remarks 

The African monocot-infecting mastreviruses are the most well characterised group of 

mastreviruses with over 640 genomic sequences recovered from infected grass samples from 

18 countries in Africa and four of the surrounding Islands. An overwhelming majority of 

these are the maize adapted MSV-A which evidently emerged as pathogen of maize ~150 

years ago as a result of recombination events among wild grass adapted MSV strains 

(Harkins et al., 2009; Monjane et al., 2011; Varsani et al., 2008b). Give the extent of 

recombination detected in MSVs, it is essential to monitor these monocot-infecting 

mastreviruses infecting wild grasses in order to identify new strains that may pose a 

significant threat to cultivated grasses. In this study we recovered and sequenced 120 full 

mastrevirus genomes from predominantly wild uncultivated grasses collected in five 

countries in Africa and three of the surrounding islands. Our analysis of the African monocot-

infecting mastreviruses builds on analyses undertaken in previous studies (Oluwafemi et al., 

2011; Oluwafemi et al., 2014; Shepherd et al., 2008b; Varsani et al., 2009; Varsani et al., 

2008b) further illuminating the geographic distribution, host range and complex evolutionary 

dynamics of these viruses.  

 

It is obvious that some species such as MSV and PanSV are widely distributed throughout 

Africa and neighbouring islands and we now know that MSV has a distribution which 

extends as far north as Gran Canaria Island. Prior to this study MSV-A and a single isolate of 

MSV-B had been recovered from maize, however, here we recovered 12 MSV-C genomes 

from maize plants sampled in Kenya. Several other MSV and PanSV strains were identified 

to have broader host ranges then previously known with a total of 20 new host genera 

identified for the various strains. Considering the broad host range of these two mastrevirus 

species in the context of all other monocot-infecting mastrevirus, all of which have been 

identified in a three hosts at the most, it is not surprising that they also have moved move 

extensively throughout the continent. The movement and spread of leafhopper vectors and 

human mediated movement of infected plant material is the most likely route of mastrevirus 

dispersal throughout the many regions of Africa where these viruses are found. 
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It is well documented that geminiviruses are able to evolve rapidly through the mechanism of 

evolution (Kraberger et al., 2012; LaBelle & Gerba, 1980; Lefeuvre et al., 2009; Monjane et 

al., 2011; Varsani et al., 2009; Varsani et al., 2008a). Our recombination analysis highlights 

that this mechanism is extremely common in the monocot-infecting mastreviruses. We 

identified patterns of recombination which are highly conserved in the monocot-infecting 

mastreviruses and somewhat in geminiviruses. Interestingly we identified the first evidence 

of ancestral recombination having occurred between monocot-infecting mastrevirus species 

from two geographically distant regions, Africa and Australia. Further, many of these events 

involve the exchange of genetic material between species that are not known to infect the 

same host. Taken together these findings indicate that ancestors of these species at one time 

most likely occupied the same geographic region(s) and host(s).  

 

For both MSV and PanSV a large amount of sequence data is available and these two species 

harbour a similar level of diversity which has enabled us to compare signals of selective 

pressures acting on codon sites within the mp, cp and rep of these species. All genes were 

evolving under predominantly purifying selection in both species which is common 

throughout ssDNA viruses (Duffy & Holmes, 2009; Duffy et al., 2008; Hadfield et al., 2012; 

Kraberger et al., 2012; Stenzel et al., 2014). Notable are the number of sites evolving under 

apparent episodic diversifying selection, these seem to be scattered throughout the cp and rep 

and as sites favouring changes in certain groups of the population these may be a clue to sites 

that are involved in host specificity.  

 

Overall this study has extended current knowledge of the dynamics of monocot-infecting 

mastreviruses sampled in Africa and provides some insight into evolutionary forces driving 

much of these dynamics. In turn some of the mastrevirus species infecting wild uncultivated 

grasses are apparently wide spread and have been able to adapt to infect a broad range of 

hosts giving weight to it being equally important to monitor viral populations which infect 

weed species such as grasses as it is to monitor those that infect crop species. 

 

GenBank accession numbers: KM229914 – KM230033 
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4.1 Abstract 

Viruses of the genus Mastrevirus (family Geminiviridae) are transmitted by leafhoppers and 

infect either mono- or dicotyledonous plants. Here we have determined the full length 

sequences of 49 dicot-infecting mastrevirus isolates sampled in Australia, Eritrea, India, Iran, 

Pakistan, Syria, Turkey and Yemen. Comprehensive analysis of all available dicot-infecting 

mastrevirus sequences showed the diversity of these viruses in Australia to be greater than in 

the rest of their known range, consistent with earlier studies, and that, in contrast with the 

situation in monocot-infecting mastreviruses, detected inter-species recombination events 

outnumbered intra-species recombination events. Consistent with Australia having the 

greatest diversity of known dicot-infecting mastreviruses, phylogeographic analyses 

indicating the most plausible scheme for the spread of these viruses to their present locations, 

suggest that most recent common ancestor of these viruses is likely nearer Australia than it is 

to the other regions investigated. 
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4.2 Introduction 

Chapter Two and Three involved an in depth examination into the monocot-infecting 

mastreviruses present in two major diversity hotspots, Australia and Africa. The work 

undertaken in this Chapter examines the dicot-infecting mastreviruses from a global 

perspective to see if similar patterns are evident and gain insights into possible origins of 

these viruses. 

 

Throughout the agricultural regions of Australia, south and north-east Africa, the Middle East 

and India, mastreviruses are recognised as potentially important threats to chickpea (Cicer 

arietinum), lentil (Lens culinaris), bean (Phaseolus vulgaris) and tobacco (Nicotiana 

tabacum) production (Farzadfar et al., 2002; Hadfield et al., 2012; Halley-Stott et al., 2007; 

Horn et al., 1994; Horn et al., 1993; Kumari et al., 2004; Kumari et al., 2008; Makkouk et 

al., 2003; Mumtaz et al., 2011; Nahid et al., 2008; Schwinghamer et al., 2010; Thomas et al., 

2010). Besides being economically important export crops for countries such as Australia, 

pulses such as lentils, chickpeas and beans are key dietary staples in northern Africa, India, 

Pakistan and the Middle East; with India alone producing around five million tonnes per 

annum over four decades to 2005 (Knights et al., 2007). By influencing the yields of 

important food crops in these populous and often agriculturally marginal regions, pathogens 

including mastreviruses threaten the food security of a substantial number of the world’s 

most economically vulnerable people. 

 

According to the most recent report by the International Committee of the Taxonomy of 

Viruses: Geminiviridae Study Group on mastrevirus classification there are six known 

species of dicot-infecting mastrevirues (Muhire et al., 2013). One species, Chickpea chlorotic 

dwarf virus (CpCDV), has been found only in the Middle East (including Turkey), Africa and 

India (Ali et al., 2004; Horn et al., 1993; Mumtaz et al., 2011; Nahid et al., 2008). All five of 

the other recognised species have only ever been found in Australia. These include Chickpea 

redleaf virus (CpRLV) (Thomas et al., 2010), Chickpea yellows virus (CpYV) (Hadfield et 

al., 2012), Chickpea chlorosis virus (CpCV) (Hadfield et al., 2012; Thomas et al., 2010), 

Chickpea chlorosis Australia virus (CpCAV) (Hadfield et al., 2012) and Tobacco yellow 

dwarf virus (TYDV) (Hadfield et al., 2012; Morris et al., 1992). This known distribution of 

dicot-infecting mastrevirus species is less extensive than that of the monocot-infecting 
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mastreviruses, which have been identified in Africa, Europe, Asia, Indian Ocean islands, 

throughout the Pacific rim and, more recently, in the Caribbean (Muhire et al., 2013; Rosario 

et al., 2013). 

 

Consistent with the notion that Australia is both the present centre of dicot-infecting 

mastrevirus diversity and is close to the region where these viruses first emerged, is that 

CpCDV is the only dicot-infecting mastrevirus species to be discovered outside of Australia, 

and phylogenetic evidence indicating that CpCDV forms a distinct monophyletic clade with 

high statistical support that it is nested within a much larger clade that contains the five 

Australian species (Hadfield et al., 2012). It is, however, also possible that this view of dicot-

infecting mastrevirus diversity has been biased by the fact that Australia is the site where 

these viruses have been most intensively sampled. Also it is entirely plausible that, as more 

dicot-infecting mastreviruses are sampled from elsewhere in the world, a completely different 

picture will emerge.  

 

In order to get a better perspective of the extent of dicot-infecting mastrevirus diversity in 

other parts of the world, we determined the full genome sequences of 30 isolates from 

symptomatic leaf material collected in north-east Africa, the Middle East (including Turkey) 

and India between 1993 and 2005. We also determined the full genome sequences of 19 

dicot-infecting mastrevirus isolates recovered from symptomatic plant samples collected in 

Australia between 2002 and 2011. This dataset was analysed together with all previously 

described monocot- and dicot-infecting mastreviruses and through this we identified six 

divergent strains of CpCDV.  

 

4.3 Materials and methods 

4.3.1 Sample collection, virus isolation and genome cloning 

Samples from 49 pulses chickpea (Cicer arietinum), lentil (Lens culinaris), faba bean (Vicia 

faba), field pea (Pisum sativum) and bean (Phaseolus vulgaris), collected in Syria (n=2), 

Pakistan (n=1), India (n=2), Turkey (n=2), Eritrea (n=9), Iran (n=9), Yemen (n=5) and 

Australia (n=19) which had previously been identified to be positive for mastreviruses either 

by PCR or ELISA were used in this study (Additional Table 4.1 details host species for each 
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sample). Total DNA was extracted from plant sap or dried plant material using Epoch nucleic 

acid purification kits (Epoch Life Science, USA). Enrichment of circular viral DNA from 

total DNA was carried out using the Illustra TempliPhi Amplification Kit (GE Healthcare, 

USA) as previously described by Owor et al. (2007) and Shepherd et al. (2008). Viral DNA 

amplicons were then digested using the restriction enzymes HindIII or XmnI which yielded 

~2.6 kb linearised unit length genomes. These were gel purified and ligated at either the 

HindIII or XmnI sites of the cloning vector, pGEM3Zf+ (Promega Biotech, USA). 

 

We used a polymerase chain reaction (PCR) amplification approach to recover viral genomes 

from 44 of the 49 TempliPhi enriched DNA samples for which we were unable to find a 

unique restriction enzyme. Degenerate back-to-back primers (dicot forward 5'-GAN TTG 

GTC CGC AGT GTA GA-3', dicot reverse 5'-GTA CCG GWA AGA CMW CYT GG-3'), 

previously described by Hadfield et al. (2012) were used to amplify full length dicot-

infecting mastrevirus genomes using Kapa HiFi HotStart DNA polymerase (Kapa 

Biosystems, USA) with the following thermocycling conditions: 94ºC for 3 min, 25 cycles of 

98ºC (3 min), 52ºC (30 sec), 72ºC (2.45 min) and a final extension of 72ºC for 3 min. PCR 

amplicons were ligated into linearised pJET1.2 vector (CloneJET™ PCR cloning kit, 

Fermentas, USA). All plasmids with cloned viral genomes were sequenced at Macrogen 

(Korea) by primer walking.  

 

4.3.2 Sequence assembly and pairwise sequence analyses  

Viral genome sequences were assembled using DNAMAN (version 7; Lynnon Biosoft, 

Canada). Forty-eight dicot-infecting mastrevirus full genome sequences available in public 

databases on 24 October 2012 and the wheat dwarf virus sequence (AM040732; included as 

an outlier) were obtained and aligned with the sequences determined in this study using 

MUSCLE (Edgar, 2004). The nucleotide sequence alignment thus obtained was manually 

edited using MEGA5 (Tamura et al., 2011). Similarly, putative Rep, MP and CP encoding 

sequences of the 97 virus genomes were computationally translated and aligned using 

MEGA5 with manual editing. Pairwise identities (1 - p-distance, with pairwise deletion of 

gaps) of the full dicot-infecting mastrevirus genomes were determined using SDT v1.0 

(Muhire et al., 2013).  
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4.3.3 Recombination analysis and construction of mostly recombination-free datasets 

Recombination analysis within the dicot-infecting mastreviruses was performed using RDP4 

(Martin et al., 2010), with the following methods; RDP, GENECONV (Padidam et al., 1999), 

Bootscan (Martin et al., 2005), Maxchi (Smith, 1992), Chimera (Posada & Crandall, 1998), 

Siscan (Gibbs et al., 2000), and 3Seq (Boni et al., 2007). Potential recombination signals 

were accepted as being genuine evidence of actual recombination events when they were 

detected with three or more of the seven methods (with associated p-values of <10-3) coupled 

with phylogenetic support for recombination having occurred. 

 

Based on the recombination analysis, two mostly recombination-free sequence alignments -

corresponding to a coat protein (CP) gene dataset and a Rep gene dataset were extracted from 

the full genome sequence alignments. 

4.3.4 Phylogenetic analyses and identification of the likely origin of dicot-infecting 
mastreviruses 

A maximum likelihood (ML) phylogenetic tree of the aligned full genome sequences (with 

recombinant region removed) was constructed using PHYML version 3 (Guindon et al., 

2010) with 1000 non-parametric bootstrap replicates with GTR+G4 selected as the best fit 

nucleotide substitution model using RDP 4 (Martin et al., 2010) and rooted with Wheat dwarf 

virus (WDV). Branches with less that 60% bootstrap support were manually collapsed using 

MESQUITE (Version 2.75). 

 

We opted to use Bayesian maximum clade credibility (MCC) trees produced using the 

computer program BEAST (Drummond et al., 2012) to evaluate the likely geographical 

origin of the dicot-infecting mastreviruses. These trees were time-calibrated based on 

sequence sampling times, with the root location based on the most plausible dating of the 

most recent common ancestor (MRCA) of the analysed sequences. Each of the MCC trees 

produced by BEAST represented an entire distribution of similarly plausible trees and 

explicitly accounted for phylogenetic uncertainty during their inference. Furthermore, besides 

offering fully probabilistic models of sequence evolution, BEAST also implements 

phylogeographic models of sequence movement between discrete sampling locations (such as 

between cities, provinces, countries or other discrete geographical regions). These models 

have been employed previously to investigate the movement dynamics the monocot-infecting 

mastrevirus species, Maizke streak virus (Monjane et al., 2011) and the begomovirus 
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species’: Tomato yellow leaf curl virus (Lefeuvre et al., 2010) and East African cassava 

mosaic virus (De Bruyn et al., 2012). The discrete phylogeography model used here to infer 

when and where the MRCA of the dicot-infecting mastreviruses existed considered 

geographic diffusion among six discrete sample locations: the Western Mediterranean (WM), 

Asia (AS) the Middle East (ME), East Africa (EA), Southern Africa (SA) and Australia 

(AU).  

 

Since previous analyses have indicated that sampling biases can strongly influence the 

phylogeographic inference of ancestral sequence locations in BEAST (De Bruyn et al., 2012; 

Lefeuvre et al., 2010; Monjane et al., 2011) we took steps to both directly reduce the 

influences of these biases prior to analyses, and to test for the effects of any biases after the 

analyses were concluded. Specifically, we randomly removed all but 10 of the Australian 

sequences from the full genome, CP and Rep datasets pre-analysis. Post-analysis, we directly 

evaluated the effects of residual sampling biases on the inferred geographical location of the 

MRCA by randomly swapping sampling locations among the sequences followed by 

revaluation of the MRCA location state. This test would indicate that a sampling bias had 

influenced inference of the MRCA location if the same locations(s) were indicated for the 

MRCA in both the randomised and un-randomised analyses. 

 

For each of the analysed datasets, independent replicate runs of the Markov chain of 2 x 107 

steps were performed using BEAST so as to achieve effective sample size (ESS) estimates 

for all relevant model parameters that were always >200. 

 

The degree of clock-like evolution evident within the analysed sequence datasets (full 

genome, CP and Rep) was evaluated using root-to-tip genetic distance vs. sampling date 

regression analyses based on inferred neighbor-joining trees using the computer program, 

Path-O-Gen (available from http://tree.bio.ed.ac.uk/software/pathogen/) (Drummond et al., 

2003).  

 

We used the computer program SPREADv1.0.4 (Bielejec et al., 2011) (available from 

www.kuleuven.ac.be/aidslab/phylogeography/SPREAD.html) to perform Bayes factor (BF) 

tests of potential epidemiological links between the analysed geographical regions revealed 

by the phylogeographic analyses performed by BEAST. In these tests we accepted BFlog10 

values greater than or equal to 5.0 as being indicative of significant statistical support for 
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movement between pairs of geographical regions (where a BFlog10 >100 was taken to 

represent decisive support, a BFlog10 >10.0 was taken to represent strong support and a BFlog10 

<5.0 was taken to represent poor support.). SPREAD was then used to produce .kml 

formatted files containing information on BF test supported routes of virus movement. These 

files can be viewed using the computer program, Google Earth (available from 

http://earth.google.com). 

 

4.4 Results and discussion 

4.4.1 Classification of new dicot-infecting mastrevirus full genome sequences  

Forty-nine dicot-infecting mastrevirus genomes (Table 1) were recovered from chickpea 

(n=40), lentil (n=4), faba bean (n=2), field pea (n=2) and bean (n=1). These 49 viral genomes 

and 48 others available in GenBank were assembled into a single dataset and genome-wide 

pairwise identities between every possible pair of sequences were calculated (1 minus p-

distance calculated with pairwise deletion of gaps; Fig. 4.1A) so as to assess the over-all 

genetic diversity of these viruses. Based on the recommendations of Muhire et al (2013) 

eighteen of the nineteen Australian dicot-infecting mastrevirus genomes could be assigned to 

previously named species and strain groupings; TYDV (1/19), CpCAV (7/19), CpCV-A 

(3/19), CpCV-B (1/19), and CpCV-E (6/19). The one exceptional Australian dicot-infecting 

isolate was clearly a member of the species CpCV but was <87% similar to any previously 

described CpCV isolate and was therefore assigned to a new strain of this species: CpCV-F. 

The 30 dicot-infecting mastreviruses from north-east Africa, the Middle East and the Indian 

subcontinent are all CpCDV isolates, either classifiable as members of the previously 

described CpCDV strains -A (11/30), and -D (2/30), or, because they shared < 94% identity 

to isolates in previously described strains, were assigned to new strains -F (8/30), -G (2/30),   

-H (1/30), -I (1/30), -J (1/30) and -K (4/30). 

 

It is evident both from the identity scores of all pairs of available dicot-infecting mastrevirus 

sequences and the maximum identity scores of all pairs of isolates within individual species, 

that even within individual species there is greater diversity amongst the known Australian 

dicot-infecting mastrevirus isolates than there is amongst the CpCDV isolates found across 

north-east Africa, South Africa, the Middle East, Turkey, Pakistan and India combined (Fig. 

4.1). 
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Table 4.1: Details for all full dicot-infecting mastrevirus genomes available in GenBank, including 
those from this study. GenBank accessions in bold are those genomes determined in this study. 

Species Strain GenBank no. Country Host  Sampling 
year 

CpCDV CpCDV-A 
 

FR687959 
KC172662 
KC172663 
KC172655  
KC172653 
KC172654 
KC172656 
KC172657 
KC172658 
KC172659 
KC172660 
KC172661 

Syria 
Turkey 
Turkey 
Iran 
Iran 
Iran 
Iran 
Iran 
Iran 
Iran 
Iran 
Iran 

Chickpea (Cicer arietinum) 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Field Pea (Pisum sativum) 

2008 
1996 
1996 
1999 
1999 
2002 
1999 
1999 
1999 
1999 
1999 
1999 

CpCDV-B 
 

Y11023 
DQ458791 
AM849096 

South Africa  
South Africa 
Pakistan 

Bean (Phaseolus vulgaris) 
Bean 
Chickpea 

1997 
1997 
2005 

CpCDV-C 
 

AM849097 
AM850136 
AM900416 

Pakistan 
Pakistan 
Pakistan 

Chickpea 
Chickpea 
Chickpea 

2005 
2007 
2007 

CpCDV-D 
 

FR687960 
KC172664 
KC172665 

Pakistan 
India 
India 

Chickpea 
Chickpea 
Field Pea 

2008 
1993 
1993 

CpCDV-E 
 

AM933135 
AM933134 

Sudan 
Sudan 

Chickpea 
Chickpea 

1997 
1997 

CpCDV-F 
 

KC172666 
KC172669 
KC172672 
KC172673 
KC172670 
KC172671 
KC172667 
KC172668 

Pakistan 
Yemen 
Yemen 
Yemen 
Yemen 
Yemen 
Syria 
Syria 

Lentil (Lens culinaris) 
Lentil 
Lentil 
Lentil 
Faba bean (Vicia faba) 
Faba bean 
Chickpea 
Chickpea 

1997 
1996 
1996 
1996 
1996 
1996 
2003 
1999 

CpCDV-G 
 

KC172674 
KC172675 

Eritrea 
Eritrea 

Chickpea 
Chickpea 

2005 
2005 

CpCDV-H KC172676 Eritrea Chickpea 2005 
CpCDV-I KC172677 Eritrea Chickpea 2005 
CpCDV-J KC172678 Eritrea Chickpea 2005 
CpCDV-K 
 

KC172679 
KC172680 
KC172681 
KC172682 

Eritrea 
Eritrea 
Eritrea 
Eritrea 

Chickpea 
Chickpea 
Chickpea 
Chickpea 

2005 
2005 
2005 
2005 

CpCV CpCV-A 
 

GU256530 
JN989413 
JN989414 
JN989415 
KC172685 
KC172683 
KC172684 

Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 

Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 

2002 
2002 
2002 
2002 
2010 
2002 
2002 

CpCV-B GU256531 
KC172690 

Australia 
Australia 

Chickpea 
Chickpea 

2003 
2011 

CpCV-C JN989416 
JN989417 

Australia 
Australia 

Chickpea 
Chickpea 

2002 
2002 
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Species Strain GenBank no. Country Host  Sampling 
year 

 CpCV-E 
 

JN989438 
JN989426 
JN989437 
JN989429 
JN989434 
JN989428 
JN989430 
JN989431 
JN989432 
JN989433 
KC172699 
KC172698 
KC172694 
KC172695 
KC172696 
KC172697 

Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 

Bean 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 

1984 
2002 
2002 
2002 
2002 
2002 
2002 
2002 
2002 
2002 
2002 
2002 
2002 
2002 
2002 
2002 

 CpCV-F KC172700 Australia Chickpea 2002 
CpCAV  JN989418 

JN989419 
JN989420 
JN989421 
JN989422 
JN989423 
KC172691 
KC172693 
KC172692 
KC172689 
KC172686 
KC172687 
KC172688 

Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 

Bean 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 
Chickpea 

2007 
2010 
2010 
2010 
2002 
2003 
2011 
2011 
2011 
2002 
2003. 
2003 
2003 

CpRLV  GU256532 Australia Chickpea 2003 
CpYV  JN989439 Australia Chickpea 2002 
TYDV  M81103 

JN989440 
JN989445 
JN989446 
JN989441 
JN989442 
JN989443 
KC172702 
JN989444 

Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 
Australia 

Tobacco (Nicotinana sp.) 
Tobacco 
Tobacco 
Tobacco 
Bean 
Bean 
Bean 
Bean 
Chickpea 

1992 
1986 
1985 
2002 
2010 
2010 
2010 
2010 
2002 

Table 4.1 continued 
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Figure 4.1: (A) Maximum likelihood phylogenetic tree (constructed with the nucleotide substitution 
model GTR+G4) of all available dicot-infecting mastrevirus full genome sequences (with 
recombinant regions removed). The trees were rooted with WDV. Bootstrap support for branches is 
indicated by open (60-89%) and closed circles (>90%), branches with less than 60% bootstrap support 
have been collapsed. Countries of origin are represented by colours shown in key. Viral isolate 
sequences determined in this study have accession numbers KC172653 – KC172702. (B) Two 
dimensional percentage pairwise identity plot matrix of a representative dicot-infecting mastrevirus 
from each strain and species. 
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4.4.2 Complex patterns of inter- and intra-species recombination amongst dicot-
infecting mastreviruses  

As has been demonstrated previously with smaller datasets, recombination has played a 

major role in the evolution of dicot-infecting mastreviruses (Hadfield et al., 2012; Martin et 

al., 2011b). A total of 16 intra-species and 10 inter-species recombination events were 

detected. Although 12 of the recombination events detected here were previously identified 

by Martin et al. (2011b) and Hadfield et al. (2012), the additional full genome sequences 

generated during this study has increased the resolution with which many of these 

recombination events can be characterised (Fig. 4.2; Table 4.2).  

 

Several groups of isolates apparently carry evidence of multiple independent recombination 

events. For example, the CpCV-F isolate has evidence of one intra-species recombination 

event involving the acquisition by an ancestral CpCV-E-like virus of a cp gene fragment from 

a CpCV-C-like virus (Event 1 in Fig. 4.2; Table 4.2). The ancestral CpCV-E-like sequence 

from which the ancestor of the CpCV-F sequences was likely derived was, as is the case with 

all contemporary CpCV-E and CpCV-A sequences, in turn carrying evidence of a likely 

much older inter-species recombination event. These events involved the transfer of a rep 

gene fragment from a CpCAV-like sequence into the genome of a CpCV-B-like sequence 

(Event F in Fig. 4.2; Table 4.2). More recently than the two previously discussed events 

detectable within the CpCV-F sequences, was an event involving a small region of the SIR of 

a common ancestor of these sequences which appears to have been derived from a currently 

unknown monocot-infecting mastrevirus species (Event G in Fig. 4.2; Table 4.2). Similarly 

complex recombination patterns are detectable within the sampled CpCV-A and CpCDV-K 

genomes, suggesting that such convoluted evolutionary histories might be fairly common 

amongst the dicot-infecting mastreviruses.  

 

Consistent with previous analyses of the monocot-infecting mastreviruses, we detected (1) 

that intra-species recombination events, in most cases, have tended to involve transfers of 

larger genome fragments (average of 22% ranging between 10% and 49% of the genome) 

than inter-species recombination events (average of 17% ranging between 10% and 30% of 

the genome; (Martin et al., 2001; Varsani et al., 2009a; Varsani et al., 2008b) and (2) that 

there are clear recombination breakpoint hotspots within the LIR and SIR genome regions 

(Martin et al., 2011b), and (3) a greater number of recombination breakpoints in the 
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complementary sense genes than in the virion sense genes (Hadfield et al., 2012; Kraberger et 

al., 2012; Martin et al., 2011b; Owor et al., 2007; Varsani et al., 2009a; Varsani et al., 

2008b). The concentration of recombination breakpoints within the intergenic regions of 

these viruses enabled us to construct two relatively recombination-free datasets 

corresponding to the cp and rep gene regions of the full genome dataset – hereafter 

respectively referred to as the CP and Rep datasets.  

 

It is interesting to note that recombination events were detected between species from two 

geographically separated regions, those species found in Australia and CpCDV which has 

only been documented in Africa, the Middle East and Indian Subcontinent. Evidence of 

similar recombination events in the monocot-infecting mastreviruses discussed in Chapter 

Two is a strong indication that these mastrevirus species likely circulated in the same region 

and infected the same host(s) at some point.  
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Figure 4.2: Illustration of recombination events amongst all dicot-infecting mastrevirus isolates. 
Inter-species recombination events are represented in grey and have an associated letter code. Intra-
species events are represented in black and have an associated number code. Arrows above the 
genome maps and indicate the positions of the mp (movement protein), cp (coat protein), repA 
(replication-associated A protein) and rep (replication-associated protein) genes.  
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Table 4.2: Details of all recombination events detected. Major and minor parents are inferred based 
on genetic fragments they donated to the recombinant, with the major parent donating the larger 
fragment and the minor parent the smaller fragment. The method with the most significant associated 
p-value is indicated in bold for each event. 

Event Recombinant
region

Potential
major Parent

Potential
minor Parent

Detection
method

P-value

646-1127 All CpCV-E CpCV-C (JN989416, JN989417) RGMCT

1947-205 Unknown RMCT

66-110 RMC

1257-1364 RGB

2543-150 Unknown RGMCT

2465-212 RGMCT

4-57 RGB

2555-504* CpCDV-F (KC172666, KC172669) RMCT

1259-1580 RGMCT

141-697 RMCTCpCV-A (KC172683, KC172684, KC172685, GU256530,
JN989413, JN989414, JN989415), All CpCV-E,
CpCV-F (KC172700 )

CpCV-B (KC172690)

UnknownCpCDV-J (KC172678)

1520-1798 CpCDV-H, CpCDV-I, CpCDV-J,
CpCDV-E (AM933135, AM933135)

Unknown RMCT

All CpCDV-D Unknown

94-170 CpCV-A (KC172684, KC172685 ),
All CpCV-E

CpCV-F (KC172700) RGT

All CpCDV-K

Unknown, All CpCV-ECpCV-C (JN989417)

CpCDV-C (AM849097, AM900416)

CpCDV-J

CpCDV-A (KC172653, KC172654, KC172655,
KC172663, KC172657, KC172661FR687959)

1942-2543 All CpCDV-F RGBMT

CpCDV-K (KC172680)

Unknown CpCDV-H (KC172676), CpCDV-C (AM849097)

UnknownCpCDV-J, CpCDV-H

7.23x10-03

9.09x10-08

6.64x10-08

2.24x10-12

5.22x10-05

5.36x10-05

4.52x10-06

1.18x10-11

2.71x10-07

2.23x10-8

1.71x10-07

4.70x10-07

7.45x1021

614-1083 All CpCDV-K RMCT 1.62x10-05
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15 1279-1343 CpCDV-K (KC172680 ) All CpCDV-G RGB 1.11x10-06

1061-1366 All CpCV-E All TYDV-A RGMCT

1247-1297 Unknown RBS

1706-2509 RBMCS

1345-1634 CpCDV-E (AM933135, AM933134),
All CpCDV-A,All CpCDV-F, CpCDV-H,
CpCDV-I, CpCDV-J

RMS

1447-2102 RGMCT

1725-1828 RMCT

111-159 RGTAll TYDV-AAll CpCV-E, CpCV-F, CpCV-A
(KC172684, KC172683, KC172685,
GU256530, JN989414, JN989415)

All CpCDVAll CpCV-A, All CpCV-E, All CpCAV,
All CpCV-B, CpCV-F, CpCV-C
(JN989416, JN989417)
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3.35x10-04

7.44x10-19
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8.14x10-15
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1.64x10-03
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RDP (R) GENCONV (G), BOOTSCAN (B), MAXCHI (M), CHIMERA (C), SISCAN (S), LARD (L) and 3SEQ (T). 
* = The actual breakpoint position is undetermined. 
 



Chapter 4 

168 

4.4.3 The geographical origin of the dicot-infecting mastreviruses 

Despite 10 years of sampling effort dicotyledonous plant species and using methods such as 

rolling circle amplification and next generation sequencing to identify and recover circular 

ssDNA viruses from infected plant material, the only regions of the world where dicot 

infecting mastreviruses have been conclusively identified are the Middle East, East Africa, 

Australia and South Africa. However, fragments of a dicot-infecting mastrevirus-like genome 

have been discovered through deep sequencing of small RNAs extracted from Peruvian 

sweet-potatoes (Kreuze et al., 2009), suggesting that the currently known distribution of these 

viruses is almost definitely an under-estimation of their geographical range. It is nevertheless 

possible for us to determine which of the regions where these viruses have been sampled is 

nearest to their geographical origin. Our results support the prevailing notion that the degree 

of dicot-infecting mastrevirus diversity outside of Australia is lower than that within 

Australia and that the dicot-infecting viruses discovered in the former regions most likely 

originated either in or near Australia. 

 

The WDV-rooted ML phylogenetic tree constructed from sequences with the tracts of 

recombinationally-derived sequence removed, indicated that the MRCA of these viruses (the 

node at the root of the tree in Fig. 4.1) is probably Australian. Also, as has been suggested in 

previous analyses the diversity of dicot-infecting mastreviruses in Australia is clearly far 

greater than that seen amongst the currently sampled African, Middle-Eastern, Turkish and 

Indo-Pakistani sequences. 

 

Given that the sequences examined here were sampled over a period of only 27 years (1984–

2011) it was unsurprising that our three datasets yielded only weak support for the presence 

of a molecular clock signal (Path-O-Gen derived correlation coefficients ranging between 

0.20 and 0.25). Since this indicated that the analysed datasets could not be productively used 

to estimate accurate nucleotide substitution rates, it was not possible for us to accurately date 

any of the historical dispersal events shown by our phylogeographic analyses. Nevertheless, 

of the various molecular clock (strict and relaxed) and demographic (constant population 

size, Bayesian skyline plot) models tested the constant population size + relaxed-clock model 

fitted the data best. 
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The maximum clade credibility (MCC) trees constructed using these models applied to the 

full genome, Rep, and CP datasets with sequences sampled from the Western Mediterranean 

(WM), Asian (AS) the Middle Eastern (ME), East African (EA), Southern African (SA) and 

Australian (AU) regions are presented in Fig. 4.3 to 4.5. For all of the analysed datasets 

Australia was indicated the most likely origin of the MRCA of all the analysed viruses (note 

the colour of the lines at the basal nodes of the trees in Fig 4.3 to 4.8). Specifically, Australia 

had 0.8735 posterior probability support as the root location state for the CP dataset, 0.8333 

for the Rep dataset, and 0.6932 for the full genome dataset.  

 

When the same data was analysed with the sampling locations randomized amongst the 

analysed sequences the most probable root locations were inferred to be either East Africa for 

the CP dataset (P = 0.1789) or the Middle east for the Rep (P = 0.1697) and full genome 

dataset (P = 0.1701) suggesting that our results were not inherently biased in favour of 

identifying Australia as the location of the MRCA (Fig 4.3 to 4.5).  

4.4.4 Plausible routes of dicot infecting mastrevirus movement out of Australia  

Collectively four statistically supported (BFlog10 >5.0) virus movements between the six 

analysed locations were inferred from the three analysed datasets (Fig. 4.3). These involved 

initial movements out of Australia to both South Africa (BFlog10 = 179.8, 69.0, 26.9), and to 

the horn of Africa (BFlog10= 21.8, 25.7, 5.2) with subsequent dispersal from the Middle East 

to Asia (BFlog10 = 550.1, 56.7, 363.1), and from horn of Africa to the Middle East (BFlog10 = 

203.7, 435.4, 41.9) for the full genome, Rep and CP datasets respectively. 
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Figure 4.3: (A) Maximum clade credibility tree constructed from the dicot-infecting mastrevirus full 
genome dataset under the GTR + G4 nucleotide substitution model, constant population size 
demographic model, a relaxed-clock evolutionary model and a discretized spatial diffusion 
phylogeographic model. This later model considered spatial diffusion between six geographic 
locations and included only a randomly selected subset of 10 of the Australian mastreviruses included 
in Fig 1. Branches and taxon names are coloured according to the region where they were collected. 
Posterior support greater than 90% is indicated by a filled circle and greater than 70% by an open 
circle at the nodes. Probabilities obtained with randomisation of the tip locations are provided as grey 
bars for each location. (B) Plausible historical movement pathways of dicot-infecting mastreviruses 
inferred using the full genome dataset. The spatial dynamics of dicot-infecting mastreviruses 
movements were inferred using the discrete phylogeographic model considering only the six 
geographical regions from which the analysed viruses were sampled. 
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Figure 4.4: (A) Maximum clade credibility tree constructed from the dicot-infecting mastrevirus Rep 
dataset under the GTR + G4 nucleotide substitution model, constant population size demographic 
model, a relaxed-clock evolutionary model and a discretized spatial diffusion phylogeographic model. 
This later model considered spatial diffusion between six geographic locations and included only a 
randomly selected subset of 10 of the Australian mastreviruses included in Fig 1. Branches and taxon 
names are coloured according to the region where they were collected. Posterior support greater than 
90% is indicated by a filled circle and greater than 70% by an open circle at the nodes. Probabilities 
obtained with randomisation of the tip locations are provided as grey bars for each location. B. 
Plausible historical movement pathways of dicot-infecting mastreviruses inferred using Rep dataset. 
The spatial dynamics of dicot-infecting mastreviruses movements were inferred using the discrete 
phylogeographic model considering only the six geographical regions from which the analysed 
viruses were sampled.  
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Figure 4.5: (A) Maximum clade credibility tree constructed from the dicot-infecting mastrevirus CP 
dataset under the GTR + G4 nucleotide substitution model, constant population size demographic 
model, a relaxed-clock evolutionary model and a discretized spatial diffusion phylogeographic model. 
This later model considered spatial diffusion between six geographic locations and included only a 
randomly selected subset of 10 of the Australian mastreviruses included in Fig 1. Branches and taxon 
names are coloured according to the region where they were collected. Posterior support greater than 
90% is indicated by a filled circle and greater than 70% by an open circle at the nodes. Probabilities 
obtained with randomisation of the tip locations are provided as grey bars for each location. (B) 
Plausible historical movement pathways of dicot-infecting mastreviruses inferred using the CP 
dataset. The spatial dynamics of dicot-infecting mastreviruses movements were inferred using the 
discrete phylogeographic model considering only the six geographical regions from which the 
analysed viruses were sampled.  
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Figure 4.6: Maximum clade credibility trees for the full genome dicot-infecting mastrevirus 
alignments constructed under the GTR + G4 nucleotide substitution model and a constant population 
size relaxed-clock evolutionary model with discretized spatial diffusion. This analysis considered a 
model of spatial diffusion between the 10 locations. Branches and taxon names are coloured by 
country of collection and colour gradients on the branches represent inferred historical migrations. 
Posterior support greater than 90% is indicated by a filled circle and greater than 70% by an open 
circle at the nodes. Probabilities obtained with randomisation of the tip locations are provided as grey 
bars for each location. 
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Figure 4.7: Maximum clade credibility trees for the Rep dataset of dicot-infecting mastrevirus 
alignments constructed under the GTR + G4 nucleotide substitution model and a constant population 
size relaxed-clock evolutionary model with discretized spatial diffusion. This analysis considered a 
model of spatial diffusion between the 10 locations. Branches and taxon names are coloured by 
country of collection and colour gradients on the branches represent inferred historical migrations. 
Posterior support greater than 90% is indicated by a filled circle and greater than 70% by an open 
circle at the nodes. Probabilities obtained with randomisation of the tip locations are provided as grey 
bars for each location. 
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Figure 4.8: Maximum clade credibility trees for the CP dataset of dicot-infecting mastrevirus 
alignments constructed under the GTR + G4 nucleotide substitution model and a constant population 
size relaxed-clock evolutionary model with discretized spatial diffusion. This analysis considered a 
model of spatial diffusion between the 10 locations. Branches and taxon names are coloured by 
country of collection and colour gradients on the branches represent inferred historical migrations. 
Posterior support greater than 90% is indicated by a filled circle and greater than 70% by an open 
circle at the nodes. Probabilities obtained with randomisation of the tip locations are provided as grey 
bars for each location. 
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4.5 Concluding remarks 

Dicot-infecting mastreviruses have been identified in Australia, Africa, the Middle East and 

the Indian subcontinent as potentially important crop pathogens. This study extends our 

current knowledge of the diversity of these viruses within these regions, with the addition of 

49 full genomes. Amongst these genomes are isolates of seven new divergent strains from 

two different species. Of particular interest is our recombination analysis which revealed a 

surprisingly high level of inter-species recombination events between dicot-infecting 

mastrevirus from two geographically distant regions, a pattern which while consistent with 

that found in dicot-infecting begomoviruses and the monocot-infecting mastreviruses 

(Kraberger et al., 2012; Shepherd et al., 2010; Varsani et al., 2008a; Varsani et al., 2008b, 

Chapter 2). Such a high frequency of recombination events coupled with evidence that 

recombination has likely contributed to the emergence of various geminiviruses as 

agricultural pests during modern times (Rocha et al., 2013; Varsani et al., 2008b), highlights 

the importance of continual surveillance to monitor for the presence and identities of these 

viruses in the environment so as to identify potentially new pathogens that may evolve to 

threaten agriculture.  

 

Pulses were among the first cultivated plants, with some of the oldest archaeobotanical 

evidence indicating that the Middle East is one of ancient centres of this practice (Mikić, 

2012; Tanno & Willcox, 2006). Given that the Middle East and surrounding countries have 

such a long history of the cultivation of pulses in comparison with Australia it is surprising 

that Australia harbours a greater diversity of dicot-infecting mastreviruses than Africa, the 

Middle East and Indian Subcontinent combined. The corrective measures that we have taken 

to account for recombination and sampling biases, strengthen our conclusion that the MRCA 

of the currently known dicot-infecting mastreviruses is most likely nearer Australia than the 

other sampling locations that were considered. It is nevertheless important to stress that 

Australia is merely the region amongst those that have been sampled where the MRCA of the 

analysed sequences originated. The MRCA of these sequences could have actually existed in 

any of the many regions of the world where samples have not been collected, with 

descendants of these sequences having simply passed through Australia en route to the other 

geographical regions that have been considered here. Similarly, the MRCA of the sequences 

considered here is not necessarily the MRCA of all the dicot-infecting mastreviruses 
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currently circulating on Earth, and is almost certainly also not the “first” mastrevirus that 

infected dicotyledonous hosts. Given that fragments of a highly divergent virus genome 

resembling those of dicot-infecting mastreviruses has been detected in the Peruvian sweet 

potato germplasm collection (Kreuze et al., 2009), it is entirely plausible that the viruses 

considered here are part of a much more diverse, but currently undiscovered, global dicot-

infecting mastrevirus population.  

 

Without much more intensive sampling of dicot-infecting mastreviruses, both in the regions 

considered here and across the vast areas of Asia, Africa, the Pacific Rim and the Americas 

where these viruses have remained unsampled, we cannot yet hope to pinpoint the actual 

geographical origins of either the MRCA of all dicot-infecting mastreviruses, or the location 

of the first dicot-infecting mastrevirus. With the application of modern molecular tools and 

new metagenomic approaches to mastrevirus discovery (Rosario et al., 2013), we anticipate 

that there will be a rapid increase in the diversity of known dicot–infecting mastreviruses that 

should greatly increase the resolution with which the movement pathways and geographically 

origins of these viruses can be determined.  

 

GenBank accession numbers: KC172653 – KC172702 
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Additional Table 4.1: Sampling information for the dicot-infecting mastrevirus genomes sequences 
determined in this study. 

Sample# Isolate 
GenBank 
accession 

Field  

specimen 
ID 

Lab ID Host 
Sampling 
Year 

Origin 

1 CpCDV-A  IR-Q1309A-1999 KC172655  IC149-99 Q1309A Chickpea 1999 Iran 

2 CpCDV-A IR-Q1309B-1999 KC172653  SP175-99 Q1309B Chickpea 1999 Iran 

3 CpCDV-A IR-Q1309C-2002 KC172654  IC 1-02 Q1309C Chickpea 2002 Iran 

4 CpCDV-A IR-SY32-1999 KC172656  IC 140-99 SY32 Chickpea 1999 Iran 

5 CpCDV-A IR-SY33-1999 KC172657  IC 143-99 SY33 Chickpea 1999 Iran 

6 CpCDV-A IR-SY34-1999 KC172658  IC 147-99 SY34 Chickpea 1999 Iran 

7 CpCDV-A IR-SY35-1999 KC172659  IC 148-99 SY35 Chickpea 1999 Iran 

8 CpCDV-A IR-SY37-1999 KC172660  IC 152-99 SY37 Chickpea 1999 Iran 

9 CpCDV-A IR-SY40-1999 KC172661  IP 175-99 SY40 Field pea 1999 Iran 

10 CpCDV-A TR-SY6-1996 KC172662  TC41-96 SY06 Chickpea 1996 Turkey 

11 CpCDV-A TR-SY7-1996 KC172663  TC40-96 SY07 Chickpea 1996 Turkey 

12 CpCDV-D IN-SY42-1993 KC172664  ICRISAT 1 SY42 Chickpea 1993 India 

13 CpCDV-D IN-SY43-1993 KC172665  ICRISAT 2 SY43 Field pea 1993 India 

14 CpCDV-F PK-SY3-1997 KC172666  PL148-97 SY03 Lentil 1997 Pakistan 

15 CpCDV-F SY-SY44-2003 KC172667  SC 3-03 SY44 Chickpea 2003 Syria 

16 CpCDV-F SY-SY5-1999 KC172668  SC54-99 SY05 Chickpea 1999 Syria 

17 CpCDV-F YE-SY11-1996 KC172669  YeL8-96 SY11 Lentil 1996 Yemen 

18 CpCDV-F YE-SY14-1996 KC172670  YeV18-96 SY14 Faba bean 1996 Yemen 

19 CpCDV-F YE-SY16-1996 KC172671  YeV26-96 SY16 Faba bean 1996 Yemen 

20 CpCDV-F YE-SY8-1996 KC172672  YeL5-96 SY08 Lentil 1996 Yemen 

21 CpCDV-F YE-SY9-1996 KC172673  YeL6-96 SY09 Lentil 1996 Yemen 

22 CpCDV-G ER-SY27-2005 KC172674  ErC472-05 SY27 Chickpea 2005 Eritrea 

23 CpCDV-G ER-SY29-2005 KC172675  ErC505-05 SY29 Chickpea 2005 Eritrea 

24 CpCDV-H ER-SY20-2005 KC172676  ErC177-05 SY20 Chickpea 2005 Eritrea 

25 CpCDV-I ER-SY21-2005 KC172677  ErC180-05 SY21 Chickpea 2005 Eritrea 

26 CpCDV-J ER-SY25-2005 KC172678  ErC351-05 SY25 Chickpea 2005 Eritrea 

27 CpCDV-K ER-SY19-2005 KC172679  ErC86-05 SY19 Chickpea 2005 Eritrea 

28 CpCDV-K ER-SY22-2005 KC172680  ErC243-05 SY22 Chickpea 2005 Eritrea 

29 CpCDV-K ER-SY23-2005 KC172681  ErC345-05 SY23 Chickpea 2005 Eritrea 

30 CpCDV-K ER-SY24-2005 KC172682  ErC347-05 SY24 Chickpea 2005 Eritrea 

31 CpCV-A AU-2683D-2010 KC172685  2683D 2683D Chickpea 2010 Australia 

32 CpCV-A AU-72M4-2002 KC172683  3460D 72M4 Chickpea 2002 Australia 

33 CpCV-A AU-D291-2002 KC172684 3494K D291 Chickpea 2002 Australia 

35 CpCV-B AU-CP30-2011 KC172690 3246 CP30 Chickpea 2011 Australia 

34 CpCAV AU-CP21-2011 KC172691  3245 CP21 Chickpea 2011 Australia 

37 CpCAV AU-CP34-2011 KC172693  3247 CP34 Chickpea 2011 Australia 

36 CpCAV AU-CP41-2011 KC172692  3248 CP41 Chickpea 2011 Australia 

38 CpCAV AU-73M4-2002 KC172689  3460E 73M4 Chickpea 2002 Australia 

39 CpCAV AU-TS3758E-2003 KC172686  3758E TS3758E Chickpea 2003 Australia 

40 CpCAV AU-TS3768C-2003 KC172687  3768C  TS3760C Chickpea 2003 Australia 

41 CpCAV AU-TS3773G-2003 KC172688  3773G  TS3773G Chickpea 2003 Australia 
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Sample 
# 

Isolate 
GenBank 
accession 

Field  

specimen 
ID 

Lab ID Host 
Sampling 
Year 

Origin 

42 CpCV-E AU-45D1-2002 KC172694  3487O 45D1 Chickpea 2002 Australia 

43 CpCV-E AU-54M4-2002 KC172695  3459D 54M4 Chickpea 2002 Australia 

44 CpCV-E AU-62M4-2002 KC172696  3459L 62M4 Chickpea 2002 Australia 

45 CpCV-E AU-70M4-2002 KC172697  3460B 70M4 Chickpea 2002 Australia 

46 CpCV-E AU-3498A-2002 KC172699  3498A 3498A Chickpea 2002 Australia 

47 CpCV-E AU-3498F-2002 KC172698  3498F 3498F Chickpea 2002 Australia 

48 CpCV-F AU-40D1-2002 KC172700  3487J 40D1 Chickpea 2002 Australia 

49 TYDV-A AU-2563-2010 KC172702 2563 2563 Bean 2010 Australia 
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5.1 Abstract  

Five distinct viral species in the genus Mastrevirus (family Geminiviridae) infect 

dicotyledonous plants in Australia, in the remainder of the world only a single dicot-infecting 

mastrevirus species has ever been identified. This species, Chickpea chlorotic dwarf virus 

(CpCDV), has been found infecting leguminous hosts in Africa, the Middle East and the 

Indian subcontinent. To further explore the diversity of CpCDV in Pakistan, ten full 

mastrevirus genome sequences were determined from chickpea and lentil plants. Eight of 

these genomes are from previously described CpCDV strains and included the first report of 

strain D and H isolates in Pakistan. Two other genomes derived from infected chickpea 

plants, are more closely related to dicot-infecting mastrevirus species found in Australia than 

they are to CpCDV. These two divergent genomes share less than 75% genome-wide 

nucleotide sequence identity with other characterised mastreviruses and therefore likely 

represent a second dicot-infecting mastrevirus species outside of Australia. We propose 

naming this species Chickpea yellow dwarf virus (CpYDV). We discuss how the presence of 

CpYDV in Pakistan weakens the hypothesis that Australia is the geographical origin of the 

dicot-infecting mastreviruses. 
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5.2  Introduction 

An overview of the dicot-infecting mastreviruses and their potential origins is discussed in 

Chapter Four. Following on from Chapter 4 the motivation behind this next study was to look 

more closely at the dynamics of dicot-infecting mastreviruses present in a major pulse 

growing region. Pakistan is among the top chickpea producing regions of the world 

(FAOSTAT, 2013) and previously studies have reported CpCDV in Pakistan (Manzoor et al., 

2014; Nahid et al., 2008), therefore further studies in this region may shed some light on the 

diversity of dicot-infecting mastreiviruses circulating in this region.  

 

Six species of dicot-infecting mastreviruses are known, five of which have only ever been 

identified in Australia: Chickpea chlorosis virus (CpCV) (Hadfield et al., 2012; Kraberger et 

al., 2013; Thomas et al., 2010), Chickpea chlorosis Australia virus (CpCAV) (Hadfield et al., 

2012), Chickpea yellows virus (CpYV) (Hadfield et al., 2012), Chickpea redleaf virus 

(CpRLV) (Thomas et al., 2010) and Tobacco yellow dwarf virus (TYDV) (Hadfield et al., 

2012; Morris et al., 1992; Thomas et al., 2010). All dicot-infecting mastreviruses that have so 

far been found outside Australia all belong to a single species, Chickpea chlorotic dwarf virus 

(CpCDV) (Muhire et al., 2013), the geographical range of which includes Africa, the Middle 

East and the Indian subcontinent. 

 

In many of these areas CpCDV is an important biotic constraint to chickpea production 

(Hamed & Makkouk, 2002; Kanakala et al., 2013). It appears to have a broad host-range 

which includes legumes such as chickpeas, lentils and common beans (Kraberger et al., 2013; 

Liu et al., 1997; Mumtaz et al., 2011) peppers (Akhtar et al., 2013), cotton (Manzoor et al., 

2013), sugar beet (Farzadfar et al., 2008) and the legume weed species Sesbenia bispinosa 

(Nahid et al., 2008). Between 2008 and 2012 leaves of chickpea plants showing yellowing or 

reddening symptoms (n=117), lentil plants with yellowing symptoms (n=27) and a common 

vetch (Vivica sativa; family Fabaceae) plant (n=1) with yellowing symptoms were collected. 

These samples were collected in areas around the cities of Bahawalnagar (n=4), Bhakkar 

(n=9), Chakwal (n=6), Faisalabad (n=53), Hyderabad (n=14), Jhang (n=18), Khushab (n=25), 

Mianwali (n=1), Muzaffargarh (n=4) and Rahim Yar Kahn (n=11) in Pakistan, to determine 

the incidence and diversity of CpCDV.  
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5.3 Materials and methods 

5.3.1 DNA extraction and isolation of mastrevirus genomes 

Total genomic DNA was extracted from the leaf material of individual plant samples using 

the GF-1 nucleic acid extraction kit (Vivantis Technologies, Malaysia) and circular DNA was 

enriched using an Illustra TempliPhi Amplification Kit (GE Healthcare, USA). The resulting 

concatameric DNA was used as a template for the recovery of complete genomes by PCR 

using Kapa HiFi DNA polymerase (Kapa Biosystems, USA) and the abutting primer pair 

(dicot forward 5'-GAN TTG GTC CGC AGT GTA GA-3'/dicot reverse 5'-GTA CCG GWA 

AGA CMW CYT GG-3') designed in a conserved sequence region in the genomes of dicot-

infecting mastreviruses. The PCR amplification protocol consisted of 94ºC for 3 min 

followed by 25 cycles of 98ºC for 3 min, 52ºC for 30 sec and 72ºC for 2 min 45 sec, followed 

by a final extension of 72ºC for 3 min. The resulting amplicons were ligated into the plasmid 

pJET1.2 (Fermentas, USA) and clones were Sanger sequenced at Macrogen Inc. (Korea) by 

primer walking. Sequences were assembled using DNA Baser Sequence Assembler V4 

(Heracle Biosoft, Romania). One of the amplicons recovered was not CpCDV and a BLASTx 

comparison (Altschul et al., 1990) showed this amplicon only shared low identity to other 

mastrevirus species from Australia. To confirm this genome and screen all samples for the 

presence of this virus we designed specific back-to-back primers (PK37 mastre F 5'-GGT 

TTC TGA AGT CAC CTC TGG TG-3' and PK37 mastre R 5'-ATC GAG TCA GCC CAA 

CCA AAT CTG-3').  

 

5.3.2 Pairwise identity comparisons and construction of phylogenetic trees 

The complete mastrevirus genomes recovered here, together with representative genomes of 

each dicot-infecting mastrevirus species and strain, were managed using MEGA 5.2 (Tamura 

et al., 2011) and aligned using MUSCLE (Edgar, 2004). Open reading frames were identified 

using DNAMAN V7 (Lynnon Biosoft, Canada. Maximum-likelihood phylogenetic trees were 

constructed for the full genome dataset, as well as the CP and Rep amino acid datasets using 

PHYML (Guindon et al., 2010) (with the best-fit model HKY and LG, respectively, 

determined using jModelTest (Posada, 2009) and ProtTest (Darriba et al., 2011). 

Phylogenetic trees were rooted with Wheat dwarf virus (WDV)/ Oat dwarf virus (ODV). 
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Pairwise identity comparisons of genome-wide nucleotide, CP amino acid and Rep amino 

acid sequences were performed using SDT v1.2 (Muhire et al., 2013). 

 

5.4 Results and discussion 

5.4.1 Classification of CpCDV genomes  

A total of eight CpCDV genomes were recovered from 145 symptomatic leaf samples 

(characteristic of that seen in mastrevirus infected pulse plants) in Pakistan between 2008 and 

2012, six from chickpea samples and two from lentil samples (Table 5.1). In addition, in two 

chickpeas samples (PK37 and PK103) a divergent mastrevirus was identified. The complete 

mastrevirus genomes recovered here together with all those dicot-infecting mastrevirus 

publically available were run through SDT software in order to determine the pairwise 

identities. The eight CpCDV isolates recovered shared >84% genome-wide nucleotide 

sequence identity with previously described CpCDV isolates (Fig. 5.1). Based on guidelines 

proposed by Muhire et al. (2013) the eight isolates were identified as CpCDV strains D 

(n=5), C (n=2) and H (n=1) (Table 5.1). Interestingly, this is the first report of the D and H 

strains of CpCDV in Pakistan. Previously these strains have only been identified in India and 

Eritrea, respectively. Although CpCDV has previously been identified infecting a lentil plant 

in Pakistan (Kraberger et al., 2013) this was a CpCDV-F isolate. CpCDV-C has so far only 

been found in Pakistan and, prior to the study here it was only isolated from chickpea.  
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Table 5.1: Sampling and isolate details of sequences recovered in this study. 

Genbank 
accession # 

Viral 
isolate 

Host Sampling location Sampling 
year  

Isolate ID 

HG934858 CpCDV-C Chickpea (Cicer arietinum) Faisalabad, Pakistan 2010 NIAB-C 

FR687960 CpCDV-D Chickpea  Bahawalnagar, Pakistan 2008 BGR-3 

KM377673 CpCDV-C Lentil (Lens culinaris) Faisalabad, Pakistan 2012 LE-E 

KM377668 CpCDV-D Chickpea Faisalabad, Pakistan 2012 PK31 

KM377670 CpCDV-D Chickpea  Faisalabad, Pakistan 2012 PK37 

KM377671 CpCDV-D Lentil Faisalabad, Pakistan 2012 PK43 

KM377672 CpCDV-D Chickpea  Faisalabad, Pakistan 2012 PK103 

KM377669 CpCDV-H Chickpea  Faisalabad, Pakistan 2012 PK32 

KM377674 CpYDV Chickpea Faisalabad, Pakistan 2012 PK103 

KM377675 CpYDV Chickpea  Faisalabad, Pakistan 2012 PK37 
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Figure 5.1: Maximum likelihood phylogenetic tree of dicot-infecting mastrevirus genomes 
determined in this study with representatives from each dicot-infecting mastrevirus strain and 
rooted with monocot-infecting mastreviruses. Mastrevirus isolates determined in this study 
highlighted in bold font. Branches are coloured by origin of samples and branches with <80% 
approximate likelihood branch support (aLRT) have been collapsed. B) Nucleotide pairwise 
identity colour matrix of dicot-infecting mastrevirus genomes. Mastrevirus isolates 
determined in this study are highlighted in bold font. 
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5.4.2 Discovery of two novel Australian-like mastrevirus isolates 

In addition to the eight CpCDV isolates identified in this study, two divergent mastreviruses 

were recovered. The two isolates share 99.3% genome-wide nucleotide pairwise identity but 

<75% nucleotide pairwise identity to all other known mastreviruses (Fig. 5.1C). These 

isolates were obtained from two separate chickpea plants sampled in the vicinity of 

Faisalabad, central Punjab province. Both of these chickpea plants were also coinfected with 

CpCDV-D (Table 5.1). Based on the mastrevirus species demarcation recommendations 

outlined by Muhire et al. (2013), coupled with phylogenetic support, these two viruses likely 

represent a new dicot-infecting mastrevirus species. This conclusion is supported by CP and 

Rep amino acid sequence phylogenetic analyses (Fig. 5.2A and B) which indicated that these 

novel viruses are more closely related to Australian dicot-infecting mastreviruses (with which 

they share ~69% CP and ~83% Rep pairwise amino acid identity) than they are to CpCDV 

(Fig. 5.2C). The name Chickpea yellow dwarf virus (CpYDV) is proposed for the new 

species. Full genome annotation indicates position of the MP, CP, Rep and RepA within the 

genome (Fig. 5.3). Further an amino acid annotation of each of these genes highlights the 

conserved domains and motifs found in geminivirus (Fig. 5.4). No evidence of recombination 

was found in the genome of CpYDV using the various recombination detection methods 

implemented in RDP4 (Martin et al., 2010).  

 

A global analysis of dicot-infecting mastreviruses has indicated that the centre of diversity 

and likely origin of the dicot-infecting mastreviruses is probably in or around Australia [12]. 

Our discovery of CpYDV in Pakistan suggests that the geographical origin of the dicot-

infecting mastreviruses could be more difficult to pinpoint than previously thought. The 

present lack of information of CpYDV diversity means that it is not possible at this point to 

determine either where this species originated or whether it was recently introduced to 

Pakistan from elsewhere. There are several examples of plant viruses having been introduced 

over the past three decades into Pakistan, including: the nanovirus banana bunch top virus 

(Amin et al., 2008), and the begomoviruses cotton leaf curl Gezira virus (Tahir et al., 2011) 

and east Africa cassava mosaic virus (De Bruyn et al., 2012). It is likely that these other 

viruses were introduced into the region around Pakistan within vegetatively propagated plant 

material and it remains a possibility that this could have been the route of entry for CpYDV – 

especially if the host range for this virus is as broad as that of CpCDV and includes crop or 
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ornamental plant species which are traded as vegetative material. The trade in ornamental 

plants, specifically Hibiscus rosa-sinensis, has been put forward as the most likely route for 

the introduction of a virus causing cotton leaf curl disease into China from the Indian 

subcontinent (Sattar et al., 2013). However, it is similarly plausible that the geographic host 

range of either presently unsampled Australian CpYDV lineages or other Australian clade 

dicot-infecting mastreviruses is greater than is presently known, since no studies have so far 

looked for dicot-infecting mastreviruses in Southeast Asia.  

 

It should also be pointed out, that the question of CpYDV’s origins could be somewhat 

elucidated by the identification of its vector species. The CPs of mastreviruses are the sole 

determinant of insect vector specificity (Briddon et al., 1990). Our analysis of the predicted 

CP amino acid sequences of the dicot-infecting mastreviruses shows that CpYDV groups 

within Australian dicot-infecting mastrevirus clade that contains TYDV (Fig. 5.2A). TYDV 

is the only virus in this clade for which a vector species has been identified; Orosius 

orientalis (syn. O. argentatus) (Trębicki et al., 2010). CpCDV is reported to be transmitted 

by O. orientalis (Horn et al., 1994) and O. albicinctus (Akhtar et al., 2011) and the 

geographic host range of O. albicinctus extends from Australia across Southeast Asia to the 

Middle East (Wilson & Turner, 2010). Together this suggests that one or both of these 

Orosius spp. could also be the vector(s) of CpYDV: a possibility that would not help resolve 

the question of either CpYDV’s origins or that of the dicot infecting mastreviruses as a 

whole. However, if it were found that CpYDV is transmitted by an Asian/Middle Eastern 

Ororsius species that is not found in Australia, it would greatly support the hypothesis that 

this novel species originated outside Australia. 
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Figure 5.2: Maximum likelihood phylogenetic tree of the (A) CP and (B) Rep amino acid sequences 
of dicot-infecting mastreviruses. The trees were rooted with sequences of monocot-infecting 
mastreviruses. Mastrevirus isolates recovered in this study are highlighted in bold font. Branches are 
coloured origin of samples and branches with less than 80% approximate likelihood branch support 
(aLRT) have been collapsed. C) Amino acid pairwise identity colour matrix of dicot-infecting 
mastrevirus Rep and CP sequences. Mastrevirus isolates determined in this study highlighted in bold 
font. 
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C
hapter 5 

Chickpea yellow dwarf virus 
 
Virion-strand origin of replication 
TAATATTACCAGTGAGTGCGTCTGGCCCACGCGAGCGCGTTAGCGCGAGCGGATTGGTTCTCGCAAAGTGGAATCTCATGAGTGGATTATCTTGTCTATATAAAGGTGCTGCCTTTAATA [120] 

 
Movement protein start codon 
ATTTTCAAAGATGCTTCCCGCTAAATACCAAGTCTTTCCTGGAGAAAATTACTCTTATACCCCAACTTTCGCGGGAAGTTATCAGGAAGTGCCTACCTCACATAATTCTTCTGGTGAGGC [240] 
TTTTAACAAAGTCTTTGTTGCCCTTATAGTTATTTTAATTTCCGTTGGTGTCTGTTATTTGGCTTACGTACTATTCGTTAAGGATCTTATTCTTCTATTGAAGGCTAAAAAACAAAGGAC [360] 

 
                        Capsid protein start codon Movement protein stop codon 

TACAACAGAGATAGGTTTTGGTAACACTCCAGGTAGACCTAACAGTCGAAGACAAGAGGATGCCGGGACCGTTTAGTGGTAAAACCTATTCAAGGAAGAAGGGTAAATATGCCAAGGCCT [480] 
ACAAAGCTCTTGGTGTGAAAAATCAAAAAGAGCTTGAAGAGCTGGTAAATGCGCCTGCTTGTCCAGTTACTCCTAGACCTGCCTTACAGGTTGCTGAATATTTTTGGACTACGGACAAAA [600] 
ATGGAATGATATTCCGTTCTGGTGGTGGTACTGCTCATTTCACTATGTATCCTCAGGGTTCAAATGAGAATTGCAGACATTCCAACCAGACTAATACCTACAAGATGGCTATTAAGTGCT [720] 
GGGTTGCATTGGATCCTACATTCTACAAGAAGGTGGCATGTGTTCCTGTGCATTTCTGGTTGGTATACGACAAAGATCCGGGTAATACACTGCCTGGATGCTCTACCATTTTTGATACTC [840] 
TGTATCAAGATTACCCGGGTACATGGACTGTATCCCGGAACGTTAGTCGTCGCTTTGTAGTTAAAAAACATTGGCACATAATCTTGGCCTCTAATGGAACGAATCCAACACAAGATCAAG [960] 
ACCCTGCTAAGTATGCTGGACCTGGACCTGTGTTTCAATGGAAACACATGAACAAGTTTTTTAAAAGACTTGGCGTAAGGACTGATTGGAAGAACTCAGCTACAGGTGAAGTAGCTGACA [1080] 

 
        Capsid protein stop codon 

TTAAGAGTGGAGCATTGTACTTAGTTTGTGCACCAAGTGGTGGTGCTGTTGTAAGGGTTGGGGGTAGATTCAGAATGTACTTCAAATCCGTTGGAAATCAATAAATTATTTTATTATTTT [1200] 
GTACATATTCTTATCTTACAATATGACCTTGAAAAATAAATACATAACAAAAAACACGCAAAAAATGAACAAAAAACAGAAAACAAACTTATATTATGAACTCTGAGTCAGAAGGAGAGG [1320] 

 
Replication-associated protein stop codon 
CACGTTTAGTGACTCGACGCTGCCGAAGCAATAAAAGTCTCTCCTTCACTCATTATATGGATTTTACAATTTAAATAAAAGTATTCTCTCTGAGAATCTGACATACTCTCAAGCCAGTCC [1440] 

 
         RepA stop codon 

TCATCATTATTAACTATTATAATACATGGGATTCCTCCTTTAACCCTCTTCTTTTTGCCGTATTTAGGGTTAACTGTGAAATCCTTCTGTGACCCTACTAACTGCTTCCAGTTGGGGCAG [1560] 
AACTTGAAGGGGATGTCGTCGATGACGTTGTATGTTGCGTTGACGTCGTATGTAGTGAAATCGACCCCTCCGTTGAAGTAGTTGTGTCTTCCCAGACTTCTGGCCCAACTGGTCTTTCCG [1680] 

 
Rep intron 

GTACGACTTGGTCCGCAGATGTAGAGGGATCGTCGCCGGAGTTGGAGTTGTTCGGGTTCCTGGTATAATCGTCCATCCAAATCAAATCTTCAGTTGCAGTTTCTAAAGAAAGATGTGGAT [1800] 
GGAGTAGTTGATAAGAATCTACACTTACAACATAGAGGTCTCTCTGGTATAGTTTAGCCATTCAGTAATTTCTTCATGGCAGTGAAGAAATTCATCTGGAAATGGGCTTTGATAGGGTGG [1920] 
CTGGAAAGAGTTTGCTTGCACTGTATTCAAGCCAGTGAAGCTTAGTTGCCCATTCATGGGGGAATTCTTGTTTAATCATTTCCAGATACTCCTCTTTAGATGTTGCAGTCTGTATGATAG [2040] 
TTCTCCATCGTTCATCAGATTTGGTTGGGCTGACTCGATGGTTTCTGAAGTCACCTCTGGTGATGATGTTCCCGTCCTTGGATATGTACTCAAGAACCTGCTTTGAGTTCTTAGCAGGTT [2160] 
GGATATTTGGATGGTTTTCCTCAAAATCAAAAAAAGAAGGGTCCCGTATATCACATCTTTTGTCAAGCTGTATAAGACAGTGAAGATGGGGAGAACCATCTTGGTGAAGTTCAGTAGCAA [2280] 
TAGCAATGAAAAAAATAGCAAGAGATGTGAGTTTGGACCAGAGAAAATCTCTGAGATTTTCTGCAGTAGAGGAGCTATGTGGATAAGTAAGGAAAACATATTTTGTTTGAAGTCTGAAAG [2400] 

 
Replication-associated and RepA protein start codon          TATA box 

AGTTGTTGTTTGTACGTCTTGGCATGGTTCCTCAAAACAGTGTTTCGAAAACTCTATCTTAACCAGTGAGTGAGGAAAATGAGGAACATATATAGAGAGGTAATTGGGCCTGTTGGGCCT [2520] 
 

GC-box – virion sense promoter element 
GACACGTGGGCCGCACTCACTGAACTT [2547] 

 

Figure 5.3: Genome sequence annotation of CpYDV (GenBank accession numbers KM377674, KM377675). 
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C
hapter 5 

Chickpea yellow dwarf virus 
 
Movement protein 
        Predicted trans-membrane domain (Wright et al., 1997) 
MLPAKYQVFPGENYSYTPTFAGSYQEVPTSHNSSGETFNKVFVALIVILISVGVCYLAYVLFVKDLILLLKAKKQRTTTEIGFGNTPGRPNSRRQEDAGTV [101] 
 
Capsid protein 
 
             Potential nuclear localisation signal                   DNA binding domain 
MPGPFSGKTYSRKKGKYAKAYKALGVKNQKELEELVNAPACPVTPRPALQVAEYFWTTDKNGMIFRSGGGTAHFTMYPQGSNENCRHSNQTNTYKMAIKCWVALDPTFYKKVACVPVHFW [120] 
LVYDKDPGNTLPGCSTIFDTLYQDYPGTWTVSRNVSRRFVVKKHWHIILASNGTNPTQDQDPAKYAGPGPVFQWKHMNKFFKRLGVRTDWKNSATGEVADIKSGALYLVCAPSGGAVVRV [240] 
GGRFRMYFKSVGNQ [254] 
 
  
Replication-associated protein 
 
Rolling circle replication motifs I, II and III (4)                      GRS domain (5)  
MPRRTNNNSFRLQTKYVFLTYPHSSSTAENLRDFLWSKLTSLAIFFIAIATELHQDGSPHLHCLIQLDKRCDIRDPSFFDFEGNHPNIQPAKNSKQVLEYISKDGNIITRGDFRNHRVSP [120] 
 
                                                                     Oligomerisation domain (3)       RBR interaction domain (6)     Walker-A (1, 2) (Gorbalenya & Koonin, 1993; 
Gorbalenya et al., 1990)  
TKSDERWRTIIQTATSKEEYLEMIKQEFPHEWATKLHWLEYSASKLFPDIEPPYQSPFPDEFLHCHEEITEWLNRDLYVEPEQLQLRRRSLYICGPSRTGKTSWARSLGRHNYFNGGVDF [240] 
 
           Walker-B motif (1,2)                       Motif C (1,2)  
TTYDVNATYNVIDDIPFKFCPNWKQLVGSQKDFTVNPKYGKKKRVKGGIPCIIIVNNDEDWLESMSDSQREYFYLNCKIHIMSEGETFIASAASSH [336] 
 
Figure 5.4: Annotated amino acid sequences of the MP, CP and Rep of CpYDV (GenBank accession numbers KM377674, KM377675). 
 
1. Gorbalenya AE, Koonin EV, Wolf YI (1990) A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA 

viruses. FEBS letters 262:145-148 
2. Gorbalenya AE, Koonin EV (1993) Helicases: amino acid sequence comparisons and structure-function relationships. Current Opinion in Structural 

Biology 3:419-429 
3. Horváth G, Pettkó-Szandtner A, Nikovics K, Bilgin M, Boulton M, Davies J, Gutiérrez C, Dudits D (1998) Prediction of functional regions of the maize 

streak virus replication-associated proteins by protein-protein interaction analysis. Plant Molecular Biology 38:699-712 
4. Koonin EV, Ilyina TV (1992) Geminivirus replication proteins are related to prokaryotic plasmid rolling circle DNA replication initiator proteins. The 

Journal of general virology 73 2763-2766 
5. Nash TE, Dallas MB, Reyes MI, Buhrman GK, Ascencio-Ibañez JT, Hanley-Bowdoin L (2011) Functional analysis of a novel motif conserved across 

geminivirus Rep proteins. Journal of Virology 85:1182-1192 
6. Xie O, Suarez-Lopez P, Gutierrez C (1995) Identification and analysis of a retinoblastoma binding motif in the replication protein of a plant
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5.5 Concluding remarks 

The results presented here extend our knowledge of the diversity and geographic distribution of 

dicot-infecting mastreviruses outside of Australia. We have revealed a greater degree of CpCDV 

diversity within Pakistan than was previously known and the existence outside Australia of the 

second dicot-infecting mastrevirus species. While this discovery slightly weakens the hypothesis 

that Australia is the geographical origin of dicot-infecting mastreviruses, it remains unclear 

whether CpYDV originated outside of Australia (perhaps in southeast Asia or the Middle East), 

or whether it was only recently introduced by humans to Pakistan from elsewhere. Certainly the 

occurrence of a divergent dicot-infecting mastrevirus outside of Australia reopens the question of 

the likely geographical origins of this interesting group of viruses.  

GenBank accession numbers: KM377668 – KM377675 
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6.1 Abstract 

In Sudan Chickpea chlorotic dwarf virus (CpCDV, genus Mastrevirus, family Geminiviridae) 

is an important pathogen of pulses that are grown both for local consumption, and for export. 

Although a few studies have characterised CpCDV genomes from countries within the 

Middle East, Africa and the Indian subcontinent, little is known about CpCDV diversity 

within any of the major chickpea production areas within these regions. Here we analyse the 

diversity of 145 CpCDV genomes sampled from pulses collected across the chickpea 

growing regions of Sudan. Although we find that seven of the twelve known CpCDV strains 

are present within the country, strain CpCDV-H alone accounted for ~73% of the infections 

analysed. Additionally we identified four new strains (CpCDV-M, -N, -O and -P) and show 

that recombination has played a significant role in the diversification of Sudanese CpCDV 

populations. Accounting for observed recombination events, we use the large amounts of data 

generated here to compare patterns of natural selection within protein coding regions of 

CpCDV and other dicot-infecting mastrevirus species. 
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6.2 Introduction 

In Chapter Five a novel mastrevirus species was discovered together with eight isolates of 

CpCDV in a large sample set of symptomatic pulse material from Pakistan indicating a low 

incidence of CpCDV in the growing regions surveyed. The objective of the following study 

was to investigate further the dicot-infecting mastreviruses present in a major pulse growing 

region and gain an understanding of the dynamics on a more localised scale. 

 

The Middle East, North Africa and the Indian subcontinent are all major producers of 

chickpeas, lentils, faba beans and various other pulses. In the Sudan pulses are both an 

important food source and a cash crop. They are grown in the fertile regions along the banks 

of the Nile which runs through the middle of the country, from South Sudan towards Egypt in 

the north. A serious constraint on pulse production in general, and on chickpea farming in 

particular, is the viral pathogen Chickpea chlorotic dwarf virus (CpCDV, genus Mastrevirus, 

family Geminiviridae). CpCDV is known to cause a variety of symptoms in chickpeas  

including stunting, foliar yellowing or reddening and reduced seed production. Other 

important chickpea-infecting viruses are Faba bean necrotic yellows virus (genus Nanovirus, 

family Nanoviridae) and members of the genus Polerovirus (in the family Luteoviridae; 

(Abraham et al., 2006; Kumari et al., 2008; Makkouk et al., 2003). 

 

Globally there are seven known species of dicotyledonous plant-infecting mastreviruses 

(referred to here as dicot-infecting), five of which have only been documented in Australia: 

Chickpea chlorosis virus; CpCV (Hadfield et al., 2012; Kraberger et al., 2013; Thomas et al., 

2010), Chickpea chlorosis Australia virus; CpCAV (Hadfield et al., 2012), Chickpea redleaf 

virus; CpRLV (Thomas et al., 2010), Chickpea yellows virus; CpYV (Hadfield et al., 2012) 

and Tobacco yellow dwarf virus; TYDV (Hadfield et al., 2012; Morris et al., 1992). The two 

species found outside of Australia are CpCDV (Ali et al., 2004; Horn et al., 1993; Kraberger 

et al., 2013; Kumari et al., 2004; Makkouk et al., 1995; Manzoor et al., 2014; Mumtaz et al., 

2011; Nahid et al., 2008) and Chickpea yellow dwarf virus (CpYDV) (Kraberger et al., 2014) 

Whereas CpCDV has been found in the Middle East (including Turkey), Africa and the 

Indian subcontinent, CpYDV has so-far only been found in Pakistan. With the exception of 
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TYDV, all of these dicot-infecting mastrevirus species have predominately been found 

infecting chickpeas, although little is known about their potential host range. 

 

CpCDV is transmitted by the leafhopper species Orosius orientalis (Matsumura) (Horn et al., 

1993) and O. albicinctus (Distant) (Cicadellidae: Hemiptera) (Akhtar et al., 2011; Kumari et 

al., 2004). Natural hosts identified in the field include chickpea (Cicer arietinum) (Kraberger 

et al., 2013; Kumari et al., 2004; Mumtaz et al., 2011; Nahid et al., 2008), lentil (Lens 

culinaris Medik) (Kraberger et al., 2013; Makkouk et al., 2002), faba bean (Vicia faba) 

(Kraberger et al., 2013), field pea (Pisum sativum) (Kraberger et al., 2013), french bean 

(Phaseolus vulgaris L) (Ali et al., 2004; Liu et al., 1997), sugar beet (Beta vulgaris L) 

(Farzadfar et al., 2008), Sesbania bispinosa (Jacq.) (Nahid et al., 2008), pepper (Capsicum 

annum L.) (Akhtar et al., 2013) and cotton (Gossypium sp.) (Manzoor et al., 2014). 

 

Recent studies have extended our current knowledge on CpCDV diversity (Kraberger et al., 

2013; Manzoor et al., 2014; Mumtaz et al., 2011) and there are currently twelve identified 

strains of CpCDV (A–L). Despite this there is little information on the prevalence and 

diversity of CpCDV within the pulse growing regions of individual countries. Field surveys 

in Sudan between 1996 and 2000 used serological analysis (tissue blot immunoassays) to 

reveal a CpCDV incidence of 72% in chickpea crops, and therefore identified this virus as the 

most important potential threat to chickpea production in Sudan (Hamed & Makkouk, 2002). 

The antibodies used for serological testing of CpCDV are also used to detect other dicot-

infecting mastrevirus species and at the time no nucleotide sequence data was obtained for 

further analysis of these samples so therefore we cannot be confident that all samples 

detected as positive were in fact CpCDV.  

 

Along with 16 CpCDV genomes from pulse samples collected between 1997 and 2008, we 

obtained full-length CpCDV genomes from an additional 129 samples collected in Sudan 

between 2012 and 2014 and two available in GenBank in order to analyse the molecular 

diversity for the first time of a large representative CpCDV sample set at high resolution 

within the pulse-growing areas of an entire country. Besides discovering four new CpCDV 

strains, we found evidence that extensive inter- and intra-strain recombination has made a 

major contribution to the diversification of this species. Finally, we capitalised on the large 
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amounts of data generated here to compare patterns of natural selection found in CpCDV to 

those found in other known monocot-infecting mastreviruses.  

  

6.3 Materials and methods 

6.3.1 Sample collection, DNA isolation and full genome recovery 

In the growing seasons 2012-2014 leaf material from pulse plants displaying foliar yellowing, 

mosaic/mottling patterns and/or stunting was collected from 312 individual plants located in 

the major growing pulse-growing regions of Sudan. Additionally, pulse plant samples 

collected in Sudan in 1997, 2006 and 2008 were obtained from Institut des Sciences du 

Végétal, CNRS in France. A total of 312 samples from Sudan were screened from Gezira 

state (n=166), the River Nile state (n=141) and the Northern state (n=5). Also, opportunistic 

sampling of similarly symptomatic plants was undertaken in Morocco (n=18) in 2013. 

Total genomic DNA from dried plant material was extracted using the GF-1 nucleic acid 

extraction kit (Vivantis Technologies, Malaysia), according to manufacturer’s specifications. 

Circular DNA was enriched from DNA extracts using rolling circle amplification with the 

Illustra TempliPhi Amplification Kit (GE Healthcare, USA) as previously described (Owor et 

al., 2007; Shepherd et al., 2008). Full viral genomes were amplified from 0.5µl of enriched 

viral DNA using polymerase chain reaction (PCR). The PCR reaction comprised Kapa HiFi 

HotStart DNA polymerase (Kapa biosystems, USA) together with previously described 

degenerate back-to-back primers (dicot forward 5'-GAN TTG GTC CGC AGT GTA GA-3', 

dicot reverse 5'-GTA CCG GWA AGA CMW CYT GG-3') (Hadfield et al., 2012). The 

thermal cycling protocol used was as follows: 94ºC for 3 min, 25 cycles [98ºC (3 min), 52ºC 

(30 sec), 72ºC (2:45 min)], 72ºC for 3 min. PCR products were purified using the Quick-spin 

PCR Product Purification Kit (iNtRON Biotechnology, Korea) and ligated into pJET1.2 

vector using the CloneJET™ PCR cloning kit (Fermentas, USA). Resulting recombinant 

plasmids containing viral genomes were sequenced at Macrogen Inc. (Korea) using primer 

walking.  
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6.3.2 Sequence assembly and pairwise similarity calculations 

Complete CpCDV genomes were assembled using DNA Baser Sequence Assembler V4 

(Heracle BioSoft, Romania) and probable genes identified using DNAman V7 (Lynnon 

Biosoft, Canada). The complete CpCDV genome sequences determined in this study together 

with 115 publically available dicot-infecting mastrevirus sequences, and a single wheat dwarf 

virus (WDV) genome (accession number AM040732) used to root the phylogenetic tree, 

(downloaded on 01 July 2014) were aligned using MUSCLE (Edgar, 2004). The resulting 

alignment was manually edited with MEGA5.2 (Tamura et al., 2011). Percentage pairwise 

sequence similarities between CpCDV genome sequences were determined using SDT v1.0, 

calculated as 1–p-distance, with pairwise deletion of gaps (Muhire et al., 2014).  

6.3.3 Construction of phylogenetic trees 

A full genome maximum likelihood phylogenetic tree was constructed using PHYML version 

3 (Guindon et al., 2010) using the best fit substitution model (TN93+G+I510) identified 

using jModelTest (Darriba et al., 2012) and rooted with WDV. Branches with approximate 

likelihood ratio test (aLRT) support <80% were collapsed using Mesquite version 2.75 

(Maddison & Maddison, 2011).  

6.3.4 Recombination analysis 

Two datasets, one containing all available dicot-infecting mastrevirus sequences and the other 

containing only the available CpCDV sequences were compiled and analysed for evidence of 

recombination using RDP4 (Martin et al., 2010) with the following methods: RDP (Martin & 

Rybicki, 2000), GENECONV (Padidam et al., 1999), Bootscan (Martin et al., 2005), Maxchi 

(Smith, 1992), Chimera (Posada & Crandall, 2001), Siscan (Gibbs et al., 2000), and 3Seq 

(Boni et al., 2007). Recombination events were only accepted as credible when (1) they were 

detectable by three or more of these methods with associated p-values <10-3 and (2) they had 

strong phylogenetic support (i.e. clustering of the identified recombinant(s) in different parts 

of phylogenetic trees constructed from regions of the alignment corresponding to the 

fragments of the recombinant identified as having been derived from each of its parents).  
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6.3.5 Selection analysis  

The full genome dicot-infecting mastrevirus dataset was divided into movement protein 

(MP), capsid protein (CP) and replication-associated protein (Rep) coding regions and 

realigned using codon information with MUSCLE. From these alignments we extracted 

separate CpCDV, CpCV, CpCAV and TYDV, for each coding region (MP, CP, and Rep) 

dataset. Accounting for recombination breakpoints identified with the GARD method 

(Kosakovsky Pond et al., 2006) these 12 datasets were separately analysed for evidence of 

selection acting on individual codon sites using the MEME (Murrell et al., 2012) and 

FUBAR (Murrell et al., 2013) methods implemented in the HyPhy package via the online 

Datamonkey server (http://www.datamonkey.org/) (Delport et al., 2010). The FUBAR 

method was used to identify individual codon sites evolving under either diversifying or 

negative selection throughout the entire evolutionary history of the sequences being analysed 

and the MEME method was used to identify individual codons evolving under episodic 

diversifying selection within individual sub-lineages within the analysed datasets. There were 

too few sequences available for CpYDV, CpRV, CpRLV and CpYV for us to perform 

selection analyses on these species. 

 

6.4 Results and discussion 

6.4.1 Strain classification of CpCDV isolates 

In this study a total of 145 full CpCDV genomes were recovered and sequenced from 

infected pulse plants collected in the Gezira state (n=104), the River Nile state (n=38) and the 

Northern state (n=3) of Sudan and from one sample obtained from Morocco (Table 6.1). 

Prior to this study twelve CpCDV strains had been identified from Syria, Turkey, Iran, South 

Africa, Pakistan, India, Sudan, Yemen and Eritrea. To our knowledge this is the first report of 

CpCDV in Morocco.  

 

Based on the mastrevirus classification guidelines outlined by Muhire et al. (2013) we were 

able to assign 140 of the CpCDV isolates from this study to seven of the 12 previously 

described CpCDV strains through full genome analysis; C (n=18), D (n=3), E (n=1), F (n=3), 

H (n=107), I (n=1) and K (n=7). The remaining six isolates most likely represent four new 
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strains which we have tentatively named CpCDV-M (n=2), -N (n=1), -O (n=1) and -P (n=2). 

For the purpose of this study, we further classified CpCDV strains into genotype/variant 

groupings based on a threshold of 94 - 97% pairwise sequence identity (i.e. isolates with 

>97% pairwise sequence identity represent the same genotype, whereas those with >94% but 

<97% pairwise sequence identity represent different genotypes). The monophyly of these 

genotypes were also phylogenetically supported (Fig. 6.1 and Additional Table 6.1). 

Additionally, we further classified these isolates into variant groupings (i.e. groups of isolates 

with pairwise sequence identities of ≥99% were classified as belonging to the same group of 

variants). Different variant groupings were denoted with a numerical subscript after the strain 

letter designator: e.g. CpCDV-H variant group one and two were denoted CpCDV-H1 and 

CpCDV-H2. 

 

We noted that strains CpCDV-J and -I, include genomes that share more than 97% sequence 

identity and we therefore merged into strain CpCDV-I. Similarly, two CpCDV-G isolates 

were found to share >95% sequence identity with the CpCDV-F isolates and we therefore 

merged these isolates into the strain CpCDV-F. 
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Table 6.1: Sampling information for all CpCDV isolate sequences recovered in this study.  

Strain 
 

Host Year 
sampled 

Country Region collected Genbank no. 

CpCDV-C Cicer arietinum 2008 Sudan El Talha KM229768 

  Cicer arietinum 2012 Sudan Gezira KM229780 

  Cicer arietinum 2013 Sudan Berber KM229772 

  Cicer arietinum 2013 Sudan Berber KM229773 

  Cicer arietinum 2013 Sudan Berber KM229774 

  Cicer arietinum 2013 Sudan Berber KM229775 

  Vicia faba 2013 Sudan Berber KM229785 

  Cicer arietinum 2013 Sudan Berber KM229771 

  Cicer arietinum 2013 Sudan Gezira KM229769 

  Cicer arietinum 2013 Sudan Gezira KM229770 

  Cicer arietinum 2013 Sudan Gezira KM229777 

  Cicer arietinum 2013 Sudan Gezira KM229781 

  Cicer arietinum 2013 Sudan Gezira KM229782 

  Cicer arietinum 2013 Sudan Gezira KM229783 

  Cicer arietinum 2013 Sudan Middle Gezira KM229784 

  Cicer arietinum 2014 Sudan Berber KM229776 

  Cicer arietinum 2014 Sudan Berber KM229778 

  Cicer arietinum 2014 Sudan Berber KM229779 

CpCDV-D Pisum sativum 2008 Sudan ARC, Wad Medani KM229786 

  Cicer arietinum 2008 Sudan Unknown KM229787 

   Cicer arietinum 2013 Morocco Unknown KM229788 

CpCDV-E Vicia faba 1997 Sudan El Rayafa KM229789 

CpCDV-F Cicer arietinum 2013 Sudan Ad-Damar KM229790 

  Cicer arietinum 2013 Sudan Ad-Damar KM229791 

  Cicer arietinum 2013 Sudan Ad-Damar KM229792 

CpCDV-H  Cicer arietinum 2006 Sudan Wad Medani KM229801 

  Cicer arietinum 2008 Sudan ARC, Wad Medani KM229795 

  Cicer arietinum 2008 Sudan ARC, Wad Medani KM229796 

  Cicer arietinum 2008 Sudan ARC, Wad Medani KM229797 

  Cicer arietinum 2008 Sudan ARC, Wad Medani KM229798 

  Cicer arietinum 2008 Sudan ARC, Wad Medani KM229799 

  Cicer arietinum 2008 Sudan El Talha KM229794 

  Cicer arietinum 2008 Sudan Kalli region, North of Shendi KM229800 

  Cicer arietinum 2008 Sudan Wad Medani KM229793 

  Cicer arietinum 2013 Sudan Abuselaim KM229885 

  Cicer arietinum 2013 Sudan Abuselaim KM229887 

  Cicer arietinum 2013 Sudan Abuselaim KM229888 

  Cicer arietinum 2013 Sudan Ad-Damar KM229871 

  Cicer arietinum 2013 Sudan Ad-Damar KM229873 

  Cicer arietinum 2013 Sudan Ad-Damar KM229869 

  Cicer arietinum 2013 Sudan Ad-Damar KM229870 

  Cicer arietinum 2013 Sudan Baika KM229890 

  Cicer arietinum 2013 Sudan Berber KM229857 

  Cicer arietinum 2013 Sudan Berber KM229858 

  Cicer arietinum 2013 Sudan Berber KM229864 

  Cicer arietinum 2013 Sudan Berber KM229865 

  Cicer arietinum 2013 Sudan Berber KM229866 

  Cicer arietinum 2013 Sudan Berber KM229867 

  Vicia faba 2013 Sudan Berber KM229899 

  Cicer arietinum 2013 Sudan Berber KM229853 

  Cicer arietinum 2013 Sudan Berber KM229854 

Table 6.1 continued 
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  Cicer arietinum 2013 Sudan Berber KM229855 

  Cicer arietinum 2013 Sudan Berber KM229856 

  Cicer arietinum 2013 Sudan Gezira KM229802 

  Cicer arietinum 2013 Sudan Gezira KM229803 

  Cicer arietinum 2013 Sudan Gezira KM229804 

  Cicer arietinum 2013 Sudan Gezira KM229805 

  Cicer arietinum 2013 Sudan Gezira KM229806 

  Cicer arietinum 2013 Sudan Gezira KM229807 

  Cicer arietinum 2013 Sudan Gezira KM229808 

  Cicer arietinum 2013 Sudan Gezira KM229809 

  Cicer arietinum 2013 Sudan Gezira KM229811 

  Cicer arietinum 2013 Sudan Gezira KM229812 

  Cicer arietinum 2013 Sudan Gezira KM229813 

  Cicer arietinum 2013 Sudan Gezira KM229814 

  Cicer arietinum 2013 Sudan Gezira KM229815 

  Cicer arietinum 2013 Sudan Gezira KM229816 

  Cicer arietinum 2013 Sudan Gezira KM229817 

  Cicer arietinum 2013 Sudan Gezira KM229818 

  Cicer arietinum 2013 Sudan Gezira KM229819 

  Cicer arietinum 2013 Sudan Gezira KM229820 

  Cicer arietinum 2013 Sudan Gezira KM229821 

  Cicer arietinum 2013 Sudan Gezira KM229822 

  Cicer arietinum 2013 Sudan Gezira KM229823 

  Cicer arietinum 2013 Sudan Gezira KM229824 

  Cicer arietinum 2013 Sudan Gezira KM229825 

  Cicer arietinum 2013 Sudan Gezira KM229826 

  Cicer arietinum 2013 Sudan Gezira KM229827 

  Cicer arietinum 2013 Sudan Gezira KM229828 

  Cicer arietinum 2013 Sudan Gezira KM229829 

  Cicer arietinum 2013 Sudan Gezira KM229830 

  Cicer arietinum 2013 Sudan Gezira KM229831 

  Cicer arietinum 2013 Sudan Gezira KM229832 

  Cicer arietinum 2013 Sudan Gezira KM229833 

  Cicer arietinum 2013 Sudan Gezira KM229834 

  Cicer arietinum 2013 Sudan Gezira KM229841 

  Cicer arietinum 2013 Sudan Gezira KM229845 

  Cicer arietinum 2013 Sudan Gezira KM229852 

  Cicer arietinum 2013 Sudan Gezira KM229859 

  Cicer arietinum 2013 Sudan Gezira KM229868 

  Cicer arietinum 2013 Sudan Gezira KM229872 

  Cicer arietinum 2013 Sudan Gezira KM229877 

  Cicer arietinum 2013 Sudan Gezira KM229878 

  Cicer arietinum 2013 Sudan Gezira KM229879 

  Cicer arietinum 2013 Sudan Gezira KM229880 

  Cicer arietinum 2013 Sudan Gezira KM229881 

  Cicer arietinum 2013 Sudan Gezira KM229886 

  Cicer arietinum 2013 Sudan Gezira KM229897 

  Cicer arietinum 2013 Sudan Gezira KM229898 

  Cicer arietinum 2013 Sudan ARC, Wad Medani KM229874 

  Cicer arietinum 2013 Sudan ARC, Wad Medani KM229875 

  Cicer arietinum 2013 Sudan ARC, Wad Medani KM229876 

  Cicer arietinum 2013 Sudan ARC, Wad Medani KM229860 

  Cicer arietinum 2013 Sudan ARC, Wad Medani KM229861 

  Cicer arietinum 2013 Sudan ARC, Wad Medani KM229862 

Table 6.1 continued 
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  Cicer arietinum 2013 Sudan ARC, Wad Medani KM229863 

  Lens esculenta 2013 Sudan Hudiba station KM229810 

  Cicer arietinum 2013 Sudan Komor  KM229850 

  Cicer arietinum 2013 Sudan Komor  KM229851 

  Cicer arietinum 2013 Sudan Mealeag KM229891 

  Cicer arietinum 2013 Sudan Mealeag KM229893 

  Cicer arietinum 2013 Sudan Mealeag KM229894 

  Cicer arietinum 2013 Sudan Middle Gezira KM229835 

  Cicer arietinum 2013 Sudan Middle Gezira KM229836 

  Cicer arietinum 2013 Sudan Middle Gezira KM229837 

  Cicer arietinum 2013 Sudan Middle Gezira KM229838 

  Cicer arietinum 2013 Sudan Middle Gezira KM229839 

  Cicer arietinum 2013 Sudan Middle Gezira KM229840 

  Cicer arietinum 2013 Sudan Middle Gezira KM229842 

  Cicer arietinum 2013 Sudan Middle Gezira KM229843 

  Cicer arietinum 2013 Sudan Middle Gezira KM229844 

  Cicer arietinum 2013 Sudan Middle Gezira KM229846 

  Cicer arietinum 2013 Sudan Middle Gezira KM229847 

  Cicer arietinum 2013 Sudan Middle Gezira KM229848 

  Cicer arietinum 2013 Sudan Middle Gezira KM229849 

  Cicer arietinum 2013 Sudan Selaim KM229882 

  Cicer arietinum 2013 Sudan Selaim KM229883 

  Cicer arietinum 2013 Sudan Selaim KM229884 

  Cicer arietinum 2013 Sudan Wad asha KM229892 

  Cicer arietinum 2013 Sudan Wad Asha KM229895 

  Cicer arietinum 2013 Sudan Wad elmaak KM229896 

  Cicer arietinum 2014 Sudan Berber KM229889 

CpCDV-I Cicer arietinum 2013 Sudan Middle Gezira KM229900 

CpCDV-K Cicer arietinum 1997 Sudan Abu Haraz KM229901 

  Cicer arietinum 2008 Sudan El Talha KM229902 

  Cicer arietinum 2008 Sudan El Talha KM229903 

  Cicer arietinum 2013 Sudan Gezira KM229904 

  Cicer arietinum 2013 Sudan Komor Galeen KM229906 

  Cicer arietinum 2013 Sudan Neemalaha KM229907 

  Cicer arietinum 2013 Sudan Shalawa Galeen KM229905 

CpCDV-M Cicer arietinum 2013 Sudan Ad-Damar KM229909 

  Cicer arietinum 2013 Sudan Ad-Damar KM229908 

CpCDV-N Cicer arietinum 2013 Sudan ARC, Wad Medani KM229910 

CpCDV-O Cicer arietinum 2014 Sudan Berber KM229911 

CpCDV-P Cicer arietinum 2013 Sudan Abuselaim KM229912 

  Cicer arietinum 2014 Sudan Berber KM229913 

 



Chapter 6 

212 

CpCDV-B
2-I

CpCDV-H
1-III

CpCDV-F
1-II

CpCDV-M
1-I

CpCDV-C
1-II

CpCDV-P
CpCDV-H

1-I

CpCDV-E
1-I

CpCDV-K
1-III

CpCDV-K
1-II

CpCDV-L
1-I

CpCDV-C
2-I

CpCDV-H
1-V

CpCDV-A
1-I

CpCDV-D
1-I

CpCDV-I
2-I

CpCDV-F
1-I

CpCDV-K
1-I

CpCDV-C
1-I

CpCDV-O
1-I

CpCDV-K
1-IV

CpCDV-F
3-I

CpCDV-K
2-I

CpCDV-I1-I
CpCDV-I

2-II

CpCDV-F
2-I

CpCDV-D
1-II

CpCDV-K
1-I

CpCDV-B
1-I

CpCDV-H
1-IV

CpCDV-H
1-II

CpCV
CpCAV
CpRLV
CpYV
TYDV
CpYDV

aLRT branch support
>95%
80-95%

0.2 Nucleotide substitutions per site

 

Figure 6.1: Maximum likelihood phylogenetic tree indicating the relationships of the known dicot-
infecting mastrevirus species. Full genome sequences of CpCDV from this study together with those 
available in GenBank, as well as the five other species of dicot-infecting mastreviruses from Australia 
are included. Australian dicot-infecting mastrevirus species are represented by a triangle. Branch 
support is indicated by the open and closed circles in the key. Branches with less than 80% aLRT 
support have been collapsed. 
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6.4.2 The CpCDV population in Sudan is highly diverse 

The CpCDV genomes determined here were primarily obtained from the major chickpea 

producing areas of Sudan. These regions were located along the Nile in the proximity of Wad 

Medani (Gezira State), Shendi and Berber (Nile State) and Selaim (Northern State) (Fig. 6.2). 

Prior to this study only two publically available full genomes of CpCDV (AM933134 and 

AM933135) had been determined (isolated from chickpeas) from Sudan. Both of these 

genomes belonged to strain E and both were sampled in 1997 from Abu Haraz, near Wad 

Medani (Gezira State). Here we have recovered an additional Sudanese CpCDV-E genome 

from a plant sample collected in 1997 El Rayafa (Fig. 6.3; Table 6.1). It is interesting to note 

that, despite the scale of our sampling, no other CpCDV-E isolates were recovered (Fig. 6.3 

and Fig. 6.4). The absence of CpCDV-E variants in any samples collected here and elsewhere 

since 1997 suggests that this strain is a rare variant in the CpCDV population of Sudan. 

  

Other CpCDV strains are appear to be more persistent than CpCDV-E. CpCDV-K has so far 

only ever been found in the region surrounding Wad Medani, it was sampled there in 1997, 

2008 and 2013. Similarly CpCDV-C and CpCDV-H isolates were consistently sampled in 

Sudan between 2006 and 2014. CpCDV-C has only ever been found in the Berber region, 

whereas CpCDV-H was found at every sampling site and accounted for 73% of all CpCDV 

isolates collected in Sudan since 2006. Given the prevalence of CpCDV-H in Sudan, it is 

unsurprising that this strain was also detected in neighbouring Eritrea in 2005 (Kraberger et 

al., 2013).  

 

Due to the low numbers of CpCDV genomic sequences that have been sampled outside of 

Sudan it is not currently possible to accurately infer the world-wide diversity and prevalence 

of the various CpCDV strains. Nonetheless, based on the available data, CpCDV-F is 

apparently the most widely distributed CpCDV strain in that it has been detected in six of the 

eleven countries where CpCDV genomes have been found. 

 

Other strains appear to be confined to specific regions. For example, CpCDV-A has only 

been identified in the region encompassing Iran, Syria and Turkey. It is however, important 

to reiterate that there are only five countries (Sudan, India, Pakistan, Eritrea and Iran) from 
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which nine or more CpCDV genomes have been sampled and it is possible that extra 

sampling will reveal that the less commonly detected strains such as -B and -K have a greater 

geographical range than is presently apparent from the available data. 
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Figure 6.3: Summary of country of origin, strain, sampling year and total numbers of CpCDV genomes identified including 
those recovered in this study and all other available sequences in GenBank. Sampling dates have been clustered into four year 
intervals which are indicated by the gradient of colours shown in the key. Number of genome sequences determined for each 
strain and country are indicated within each corresponding box. 
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6.4.3 Evidence of extensive intra-strain recombination 

As with other geminiviruses, recombination is apparently a major feature of mastrevirus 

evolution. We analysed the 146 genomes from this study together with other dicot-infecting 

mastrevirus genomes available in GenBank for evidence of recombination. Previously many 

inter-strain recombination events (Kraberger et al., 2013) and inter-species recombination 

events (Hadfield et al., 2012; Kraberger et al., 2013; Martin et al., 2011b) involving CpCDV 

have been identified. We therefore attempted to both characterise novel recombination events 

evident within the genome sequences determined here and refine the characterisations of 

previously identified recombination events involving CpCDV. 

 

We detected evidence of two unique intra-strain, 29 unique inter-strain (intra-strain and inter-

strain events are collectively referred to as intra-species events) and six unique inter-species 

recombination events, all of which involved CpCDV isolates as sequence acceptors (Fig. 

6.5). Of these events 19 intra-species events and one inter-species recombination event have 

not previously been identified. For four of the ten previously detected intra-species 

recombination events (Hadfield et al., 2012; Kraberger et al., 2013; Martin et al., 2011b) we 

were able to for the first time, identify both of the likely parental sequences to at least the 

strain level (events 8, 12, 18 and 21 in Fig. 6.5A; Table 6.2). 

 

Recombination appears to have played a particularly predominant role in the genesis of 

strains CpCDV-N, -O and -P (three of the novel strains identified here for the first time). The 

ancestral progenitor of each of these strains was likely derived from several recombination 

events involving parental sequences belonging to other CpCDV strains found in Sudan. One 

event inferred to have occurred in the common ancestor of CpCDV-N and -O involves a 

parental sequence that is most similar to CpCDV-L (Event 18 in Fig. 6.5A; Table 6.2). 

Although CpCDV-L has so far only been found infecting cotton in Pakistan, it is entirely 

plausible that the CpCDV-L-like parent of the ancestral recombinant that yielded the O and N 

strains could have existed almost anywhere within (or even outside of) the presently known 

geographical range of CpCDV. 

 



Chapter 6 

219 

Of the 146 sequences classified here as belonging to CpCDV-H (the predominant CpCDV 

strain found in Sudan), 107 are recombinants with parental viruses likely belonging to 

CpCDV strains -I, -O, -C, -D and a currently unsampled strain (Events 9, 10, 11, 13, 27 and 

29 in Fig. 6.5A; Table 6.2). Interestingly all but one of these recombination events (the 

exception being event 27) involved a CpCDV-H acquiring a rep gene fragment from one of 

the other CpCDV strains that are found in Sudan.  

 

In fact, many of the other detected inter-strain recombination events have also involved the 

transfer of rep gene fragments. This pattern of sequence exchange mirrors that seen in other 

geminiviruses (specifically those in the Curtovirus, Mastrevirus and Begomovirus genera). 

Specifically, the recombination patterns evident here and elsewhere indicate that for 

geminiviruses in general, recombination frequencies may be higher in genome regions 

encoding complementary sense genes than they are in the regions encoding virion sense 

genes. Alternatively, if basal recombination frequencies are similar across the genome, it 

would imply that selection might generally disfavour the survival of recombinants with 

breakpoints within the virion sense genes more than it disfavours recombinants with 

breakpoints in the complementary sense genes (Kraberger et al., 2012; Lefeuvre et al., 2009; 

Martin et al., 2011a; Martin et al., 2011b; Varsani et al., 2008).  

 

Four of the six inter-species events that we detected involved the transfer of large genome 

fragments ranging in size from 753 to 1314 nt. (Events A, B, C and D in Fig. 6.5B; Table 

6.3). Overall the inter-species recombination events involve the transfer of on average 21% of 

the genome. This percentage is substantially larger than those inferred in previous analyses of 

both dicot- and monocot-infecting mastreviruses (Hadfield et al., 2012; Kraberger et al., 

2013; Kraberger et al., 2012; Martin et al., 2011b; Monjane et al., 2011; Varsani et al., 2009; 

Varsani et al., 2008).  

 

CpCDV, which is one of only two dicot-infecting mastrevirus species known to occur outside 

of Australia, was identified here as potentially being a parent (or at least being most closely 

related to the actual parent) in four of the six inter-species events; all of which involved 

sequence transfers to viruses currently found in Australia. This information, together with the 

discovery of the Australian-like mastrevirus, CpYDV, in Pakistan, implies that an ancestor of 
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CpCDV may have moved out of Australia (or at least that region of the world) and into the 

Middle East, Africa and the Indian subcontinent where it subsequently became established; a 

hypothesis supported by the phylogeographic analysis undertaken by Kraberger et al. (2013). 
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Figure 6.5: Recombination amongst 
dicot-infecting mastreviruses involving 
CpCDV. The positions of the mp 
(movement protein), cp (capsid 
protein), repA (replication-associated A 
protein) and rep (replication-associated 
protein) ORFs in relation to the 
recombination breakpoints are shown 
by arrows above recombinants. 
Genotype and variant information for 
each strain is shown in Additional. 
Table 6.1. (A). Intra-species 
recombination events: each event is 
represented in black and by a number 
which points to the corresponding entry 
in Table 6.2. (B) Inter-species 
recombination events: each event is 
represented in grey and by a letter 
which points to a corresponding entry 
in Table 6.3.  
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Table 6.2: Summary of intra-species recombination events. Major and minor parent labels indicate 
the inferred parent(s) respectively donating the larger and smaller fraction of the recombinant’s 
genome. The method with the most significant p-value is indicated in bold and the associated p-value 
is shown. 

Event Recombinant
region

Potential
major Parent

Potential
minor Parent

Detection
method

P-value

234-1096 All CpCDV-C, CpCDV-D1-II, CpCDV-D1-III
CpCDV-D1-I (KM377671, KM229788, KC172664),
CpCDV-N

All CpCDV-K, All CpCDV-P RGBCST

404-564 All CpCDV-H RGBMCST

1372-2485 RGBMCST

2029-2479 RGBMCST

1982-187 CpCDV-C1-I (AM900416), CpCDV-C1-II
(KM229774, KM229776, KM229778,
KM229779), CpCDV-D1-II (KM229787)
CpCDV-H1-II (KM229893)CpCDV-H1-III,
CpCDV-H1-VI (KM377669, KM229803,
KM229806, KM229810, KM229819, KM229820,
KM229824, KM229825, KM229827, KM229830,
KM229836, KM229838, KM229840, KM229842,
KM229844, KM229845, KM229847, KM229849,
KM229851, KM229852, KM229860, KM229866,
KM229869, KM229871, KM229872, KM229873,
KM229878, KM229884, KM229888, KM229889,
KM229890, KM229891, KM229895, KM229898,
KM229793, KM229797)

RGBMCST

1689-138 RGMCST

2548-147 RGBMCST

2493-698 CpCDV-D1-I (KC172664) RGBMCST

1709-2483 RGBMCST

708-1668 RGBMCSTAll CpCDV-H (except KM229850), CpCDV-I2-IIAll CpCDV-K1-IV, All CpCDV-K1-I
CpCDV-K1-III

All CpCDV-H (except KM229850 and KM229885)All CpCDV-C, CpCDV-O

119-1085 All CpCDV-F3 CpCDV-F1-I (KC172667, KC172669,
KC172670, KC172671)

RGBMCST

CpCDV-H1-II (KM229877), CpCDV-H1-III
All CpCDV-H1-IV

CpCDV-I2-I, CpCDV-I2-II

1700-310 All CpCDV-K1-I, CpCDV-K1-III
All CpCDV-K1-IV, CpCDV-K2-I

All CpCDV-H, All CpCDV-I2 RGBMCST

CpCDV-I1, CpCDV-I2-I

All CpCDV-KAll CpCDV-H (except KM229850 and
KM229885) CpCDV-P1-I, CpCDV-P1-II

All CpCDV-K

CpCDV-I1, CpCDV-I2-I

 All CpCDV-C1, CpCDV-D1-I (KM377674, KM377671,
FR687960, KF176553, KC172664, KC172665 )
CpCDV-D1-II, CpCDV-D1-III, CpCDV-O

1942-2543 All CpCDV-K, CpCDV-I1-I RGBMCST

All CpCDV-C

All CpCDV-H1-III
All CpCDV-H1-IV

All CpCDV-I2

Ancestral CpCDV-I-likeAll CpCDV-P, All CpCDV-H1-II
(except KM229897)

1.93x10-15

9.47x10-12

1.47x10-12

2.70x10-57

1.73x10-09

2.02x10-21

4.49x10-13

5.60x10-62

6.86x10-38

9.01x10-44

6.18x10-26

7.88x10-15

9.42x10-47

1133-1583 All CpCDV-H, CpCDV-K2 RGBMCST 3.72x10-27

1

7

9

13

10

2

14

12

11

3

6

4

5

8

15 1602-1713 All CpCDV-K1-I, CpCDV-K1-III
CpCDV-K1-IV (KM229904)

CpCDV-H1-I (KM229843), All CpCDV-H1-II
(except KM229770), CpCDV-H1-III, All CpCDV-H1-IV
(except KM229895), All CpCDV-H1-V

GBLT 1.44x10-09

CpCDV-K1-I (KC172682)305*-425* CpCDV-H1-V (KM229850)
All CpCDV-H1-II (except KM229815, KM229816,
KM229817), All CpCDV-H1-IV (except KM229889,
KM229890, KM229884, KM229848, KM229838,
KM229810, KM377669)

RBT 1.59x10-0316

Intra-species recombination

1123-1371 All CpCDV-K All CpCDV-E RGBMCST

1258-1547 RGBMCST

433-524 RGBMAll CpCDV-EAll CpCDV-K1-I, CpCDV-K1-III, All CpCDV-K1-IV,
CpCDV-K2, CpCDV-O, All CpCDV-P

All CpCDV-LAll CpCDV-D1-I, CpCDV-D1-II 4.14x10-08

2.52x10-08

1.43x10-1717

18

19
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1957-2406 Ancestral CpCDV-P-like, CpCDV-H-like GMCS

2549*-118* RBT

2510-23 All CpCDV-C1-I, CpCDV-C1-II (except KM229771,
KM229773, KM229772, KM229775),All CpCDV-D1-I
(except KM229786, KM377672), CpCDV-D1-II,
CpCDV-O

RGB

206-536 All CpCDV-E MCS

2514*-2562 RGBL

1873-6* All CpCDV-E All CpCDV-F3, All CpCDV-A1 (except KC172654) RGBMCS

CpCDV-H1-IV (KM229886, KM229857, KM229850,
KM229847, KM229811, KM229797, KM229800),
All CpCDV-H1-II (except KM229804, KM229807,
KM229814, KM229815, KM229817, KM229822,
KM229862, KM229864, KM229870, KM229877,
KM229893, KM229894, KM229897, KM229859)
CpCDV-H1-III, CpCDV-H1-V (KM229885)

CpCDV-D1-I (KC172664, FR687960, KC172665)

1949-2548 Ancestral CpCDV-A-like All CpCDV-F3-I RGBMCST

All CpCDV-F2-I, All CpCDV-F3, CpCDV-F1-II

All CpCDV-M

Ancestral CpCDV-I-like

All CpCDV-H1-II (except KM229816, KM229876,
KM229877), CpCDV-H1-III, All CpCDV-H1-IV
(except KM229797, KM377669, KM229812, KM229813,
KM229824,, KM229834, KM229836, KM229837,
KM229844, KM229845, KM229849, KM229851,
KM229852, KM229861,KM229867, KM229872,
KM229873, KM229878KM229879

1579-1850 All CpCDV-M RBMC

Ancestral CpCDV-C1-like and CpCDV-D1-like

CpCDV-F1-I (KC172667) Ancestral CpCDV-F2-I-like 7.00x10-05

1.41x10-09

5.40x10-04

1.68x10-28

6.62x10-08

9.66x10-07

1.05x10-05

9.07x10-10

330*-867 All CpCDV-H1-II, All CpCDV-H1-IV RBMCST 1.01x10-07

23

25

26

28

27

22

20

21

24

1708*-2508* All CpCDV-H1-II, CpCDV-H1-III
All CpCDV-H1-IV (except KM229879), CpCDV-P1-I

RBMCSTAll CpCDV-C1, All CpCDV-C2-I (except KM229770)
CpCDV-O

1.35x10-4029

 
RDP (R) GENCONV (G), BOOTSCAN (B), MAXCHI (M), CHIMERA (C), SISCAN (S), LARD (L) and 3SEQ (T). 
* = The actual breakpoint position is undetermined. 
 

 

Table 6.2 continued 
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Table 6.3: Summary of inter-species recombination events. Major and minor parent labels indicate 
the inferred parent(s) respectively donating the larger and smaller fraction of the recombinant’s 
genome. The method with the most significant p-value is indicated in bold and the associated p-value 
is shown.  

1311-2064 All CpCAV All CpCDV RGBMCST

1348-2517 RBMCST

1168-2482 RBMCSAll CpCAV (except KC172687 and KC172688)All CpCDV-B, All CpCDV-E, CpCDV-D1-I
(KM229787, KM377671, Q4790, KC172664,
KC172665), All CpCDV-C1-I, All CpCDV-F2-I,
All CpCDV-F1-II, All CpCDV-F1-I, All CpCDV-L,
All CpCDV-M, All CpCDV-A (except KC172657,
KC172658, KC172661), All CpCDV-H1-III
CpCDV-H1-IV (KM229793, KM229794
KM229796, KM229797, KM229799,
KM377669, KM229802, KM229803,
KM229806, KM229809-11, KM229813,
KM229819, KM229820, KM229825,
KM229830, KM229836, KM229839-42,
KM229844, KM229845, KM229847,
KM229848, KM229851, KM229854,
KM229856, KM229857, KM229860,
KM229861, KM229866, KM229868
KM229869, KM229872, KM229878,
KM229879, KM229880, KM229882,
KM229884, KM229886, KM229889,
KM229890, KM229891, KM229895,
KM229896, KM229898)

All CpCAVAll CpCDV

1230-1335* CpCV-F (KC172700) Ancestral CpCDV-H-like MST

209-1234 Ancestral CpRV All CpCV-E, CpCV-A (GU256530) RBMCS

CpCV-A (JN989415, GU256530,
JN989413, KC172684),
CpCV-E (JN989431, JN989433)

2512-2556 All CpCDV-B2-I, All CpCDV-C1-I, All CpCDV-C1-II
All CpCDV-D (except KC172665 and KC172664)
All CpCDV-H1-IV, All CpCDV-I1-I, All CpCDV-K1-III
All CpCDV-K1-IV, CpCDV-N, CpCDV-O, CpCDV-E
(KM229901 and AM933135), CpCDV-B1-I (AM849096),
CpCDV-C2-I (KM229800), CpCDV-H1-II (KM229893)

RGBM

6.82x10-11

6.62x10-10

4.60x10-06

4.17x10-24

2.09x10-09

3.05x10-14A

B

C

F

D

E

Inter-species recombination

Event Recombinant
region

Potential
major Parent

Potential
minor Parent

Detection
method

P-value

 
RDP (R) GENCONV (G), BOOTSCAN (B), MAXCHI (M), CHIMERA (C), SISCAN (S), LARD (L) and 3SEQ (T). 
* = The actual breakpoint position is undetermined. 
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6.4.4 Signals of natural selection within dicot-infecting mastrevirus species 

The large amount of novel CpCDV sequence data that we generated provided a good 

opportunity to compare and contrast signals of natural selection acting on the coding 

sequences of the various well sampled species of dicot-infecting mastreviruses. We used two 

different codon-model based methods, FUBAR and MEME, to infer selective processes 

acting on individual codon sites within the mp (Fig. 6.5A), cp (Fig. 6.5B) and the rep (Fig. 

6.6) genes of all available CpCDV (n=205), CpCAV (n=13), CpCV (n=28) and TYDV (n=9) 

full-length genome sequences.  

 

Due to the low numbers of available CpCAV and TYDV sequences these analyses only had 

sufficient power to detect statistically significant signals of natural selection at a few 

individual codon sites in each of these species. 

 

Whereas dN/dS values significantly lower than one imply negative or purifying selection 

favouring the maintenance of amino acid sequences, dN/dS values significantly greater than 

one imply positive or diversifying selection favouring the modification of amino acid 

sequences. It is expected that most expressed viral proteins should have close to functionally 

optimal amino acid sequences and that their genes should therefore be evolving under 

predominantly negative selection (Duffy & Holmes, 2008; Kraberger et al., 2012; Shackelton 

et al., 2005; Stenzel et al., 2014). It is unsurprising then that all of the analysed dicot-

infecting mastrevirus genes had dN/dS values that were significantly lower than one, with the 

values for the mp generally displaying the lowest degree of purifying selection (i.e. the 

highest dN/dS) and the cp the highest degree (i.e. the lowest dN/dS). It is important to note 

here that whereas it is valid to compare the magnitudes of the dN/dS values between different 

genes of the same species, unless the datasets for the different species being analysed have 

similar degrees of diversity, it is not valid to compare the magnitudes of dN/dS values for the 

same gene in different species. In this regard, it is apparent that for all species the cp is 

evolving under stronger purifying selection than the rep. Also, with the exception of CpCAV, 

the mp is evolving under the weakest negative selection. Curiously, with CpCAV the mp is 

apparently evolving under the strongest negative selection. It should be noted, however, that 

the CpCAV dataset was both less diverse, and contained fewer sequences, than the other 
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datasets analysed: factors which both strongly impact the power of the analyses we have 

performed.  

 

The influence of dataset size and diversity is also clearly reflected in the differences between 

the datasets with respect to the numbers of codon sites detectably evolving under either 

positive or negative selection. We were nevertheless able to detect a number of individual 

codon sites that appear to be consistently evolving under negative selection in two or more of 

the analysed species (sites indicated in red and orange in Fig. 6.5 and 6.6). These sites reflect 

specific amino acid positions that are likely crucial to the functioning of the various 

expressed proteins. Codon sites indicated in red, (mp=19 sites, cp=48 sites and rep=104 sites) 

reflect particular residues within proteins that presently have amino acid states that are 

broadly adaptive in the context of multiple dicot-infecting mastrevirus niches. Whereas sites 

in orange (mp=2 sites, cp=32 sites and rep=27 sites) also reflect functionally important amino 

acid positions, the most adaptive amino acid at these positions differs from species to species. 

The amino acids at these sites are likely adaptive to features of niches that are specific to the 

different species. The large number of sites within the various coding regions that appear to 

be consistently evolving under negative selection is possibly due to the fact that these species 

all occupy similar ecological niches: something that is unsurprising since they all have 

largely overlapping host ranges and similar vector species. 

 

There are also a number of interesting patterns in the codon sites that are detectably evolving 

under either constant (in blue) or episodic (in green) positive selection (i.e. sites at which 

dN/dS is significantly higher than one in all or a significant fraction of lineages in the 

particular datasets analysed). For example, the first 52 codon sites of rep (the gene region 

encoding the portion of Rep involved in recognition and binding to the virion strand origin of 

replication) contains an unusually high proportion of sites (7/52 in CpCDV and 5/52 in CpCV 

with codon 52 evolving under episodic positive selection in both) that are evolving either 

under constant (indicated in blue) or episodic (indicated in green) positive selection (i.e. 

selection favouring change). This suggests that the optimal amino acid configuration in this 

part of the protein is in a state of flux, with, for example, different configurations perhaps 

being optimally suited to the different host species that these viruses infect. It is also 

noteworthy that this is the precise region of rep that is either most frequently exchanged 



Chapter 6 

227 

during recombination amongst these viruses, or, when it is transferred, is frequently adaptive 

and therefore yields genomes that are favoured by natural selection.  

 

In the portion of rep encoding the actual origin of replication recognition sequences (called 

the iteron related domain - labelled IRD in Fig. 6.7), three uniformly spaced codon sites at 

positions 12, 15 and 18 are detectably evolving under negative selection. This suggests that 

despite the apparently fluctuating selection pressures acting on the remainder of the DNA 

binding regions (rolling-circle replication motifs; RCR motifs I, II and III, and the three 

superfamily helicase motifs; Walker-A, Walker-B and Motif C) of the rep, the selective 

pressures on origin recognition are relatively constant across all the species examined here. 

Another strikingly conserved pattern of positively and negatively selected codon sites occurs 

within the region of rep encoding the Walker-A motif (Fig. 6.7). This region of rep however 

also falls within the portion of the gene that is expressed in two different frames in Rep and 

RepA (indicated by a grey shaded box in Fig. 6.7). The apparently conserved positive 

selection signals detectable throughout this region of overlap between rep and repA are 

therefore possibly an artefact of negative selection acting simultaneously on the different 

proteins these genes encode. For example, the positive selection signals detected in the rep 

codons between positions 215 and 219 could simply be a consequence of negative selection 

acting to preserve the amino acid coding potential of overlapping codons in repA. Regardless 

of the causes of these positive selection signals the highly conserved negative selection 

signals at positions 201 and 203 (both encoding a glutamic acid in three species) clearly 

indicate that selection is strongly favouring these two amino acids within the Rep Walker-A 

motif. 

 

Other notably conserved negative selection signals occur in mp both between codons 6 and 

10, and between codons 40 and 81. Whereas conserved negative selection signals are 

pervasive throughout cp, codons 94, 98, and 235 are all detectably evolving under episodic 

diversifying selection in both TYDV and CpCAV. Although the region encompassing codons 

94 and 98 has not been identified as playing any role in transmission the C-terminal region 

has been associated with vector specificity in the begomoviruses AbMV and TYLCV. 

Therefore it is possible that codon 235 maybe an important site for vector specificity or 

transmission efficiency. 
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Figure 6.6: See following page for figure legend
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Figure 6.6: Plot representing signals of natural selection acting on individual codon sites within A. 
the mp and B. the cp of CpCDV, CpCAV, CpCV and TYDV. Absolute (Abs) values of dN-dS are 
plotted for positive selection (blue) and negative selection (orange, red and grey) signals with an 
associated FUBAR p-value <0.05. Abs values for episodic positive selection signals with an 
associated MEME p-value <0.05 are given in green. Bar heights for Abs (dN-dS) values correspond to 
the degree of positive or negative selection detected using FUBAR. Sites at which episodic 
diversifying selection was detected using MEME have been represented by green bars with uniform 
height across the genes since Abs (dN-dS) values averaged across the entire phylogeny do not 
accurately reflect degrees of episodic diversifying selection (which by definition occurs only on 
specific subsets of branches within the phylogeny). Overall, averages for the dN/dS ratios (all of 
which are significantly <1) are indicated for each gene and species. Codon sites are indicated based on 
a codon alignment of all species for each gene. The locations of the predicted trans-membrane domain 
(Boulton et al., 1993) in relation to their position in these alignments are shown. dN=Non-
synonymous substitution rates and dS= Synonymous substitution rates. 
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Figure 6.7: See following page for figure legend
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Figure 6.7: Plot representing significant signals of natural selection acting on individual codon sites 
within the rep of CpCDV, CpCAV, CpCV and TYDV. Absolute (Abs) values of dN-dS are plotted 
for positive selection (blue) and negative selection (orange, red and grey) signals with an associated 
FUBAR p-value <0.05. Abs values for episodic positive selection signals with an associated MEME 
p-value <0.05 are given in green. Bar heights for Abs (dN-dS) values correspond to the degree of 
positive or negative selection detected using FUBAR. Sites at which episodic diversifying selection 
was detected using MEME have been represented by green bars with uniform height across the genes 
since Abs (dN-dS) values averaged across the entire phylogeny do not accurately reflect degrees of 
episodic diversifying selection (which by definition occurs only on specific subsets of branches within 
the phylogeny). Overall, averages for the dN/dS ratios (all of which are significantly <1) are indicated 
for each gene and species. Codon sites are indicated based on a codon alignment of all species for 
each gene. The locations of conserved domains and motifs in relation to their positions in these 
alignments are shown; iteron-related domain (IRD) (Argüello-Astorga & Ruiz-Medrano, 2001), 
rolling circle replication (RCR) motifs I, II and II (Ilyina & Koonin, 1992; Laufs et al., 1995; Rosario 
et al., 2012), the geminivirus Rep sequence (GRS) domain (Nash et al., 2011), and the helicase 
domain Walker-A, -B and -C motifs (Gorbalenya & Koonin, 1993; Gorbalenya et al., 1990). 
dN=Non-synonymous substitution rates and dS= Synonymous substitution rates. 
 



Chapter 6 

232 

6.5 Concluding remarks 

In this study we analysed the diversity of CpCDV in Sudan by identifying, cloning and 

sequencing 145 CpCDV genomes from symptomatic pulse samples and included two full 

genome CpCDV sequences from Sudan which had previously deposited in GenBank. In 

addition an opportunistically sampled CpCDV isolate from Morocco was recovered. 

Amongst these isolates four new CpCDV strains have been identified, all with complex 

patterns of recombination. CpCDV-H, the predominant strain circulating in Sudan, is 

evidently also frequently recombining with large numbers of other CpCDV strains found 

within the country. The high frequencies of inter-strain recombination evident within these 

Sudanese viruses likely reflect high frequencies of infections containing multiple CpCDV 

strains.  

Recently CpCDV has been found in the field infecting previously unsuspected hosts such as 

cotton and peppers (Akhtar et al., 2013; Manzoor et al., 2014). These and other recent 

CpCDV diversity studies have raised many questions with regard to the natural host range of 

this dicot-infecting mastrevirus species, and the role that genetic recombination might play in 

facilitating its emergence as a pathogen of important crops such as cotton (which is currently 

one of Sudan’s principal cash crops). A survey in Sudan in 2002 using serological tests 

showed a high incidence of CpCDV-like mastreviruses in various wild plant species, one of 

which, pigeon pea (Cajanus cajan), is commonly planted by Sudanese farmers on the 

margins of their fields. This has prompted the suggestion that, in this country at least, pigeon 

pea may facilitate the circulation of CpCDV between other currently unknown uncultivated 

reservoir species and pulse crops (Ali et al., 2004). In Australia, TYDV-like mastreviuses 

were shown to have a wide host range (infecting species in seven dicot families) in areas and 

at a time when chickpeas were not widely grown Thomas & Bowyer 1984). It is likely that 

chickpea is particularly susceptible to, and visibly affected by, mastreviruses. In order to 

enable more informed CpCDV control strategies it might be worthwhile in future CpCDV 

sampling surveys to attempt the characterisation of both CpCDV variants and other presently 

undiscovered dicot-infecting mastrevirus species that infect uncultivated dicotyledous plant 

species that are commonly found growing in close proximity to important crop species such 

as cotton and chickpea. 

GenBank accession numbers: KM229768 – KM229913 
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Additional Table 6.1: Genotype and variant designations of all CpCDV isolates, their corresponding 
GenBank accession numbers and their countries of origin. 

CpCDV Strain Genotype/ 
Variants 

GenBank no. Country  CpCDV Strain Genotype/ 
Variants 

GenBank no. Country 

CpCDV-A CpCDV-A1-I FR687959 Syria      KC172673 Yemen 
    KC172653 Iran    CpCDV-F1-II KF111683 Oman 
    KC172654 Iran    CpCDV-F2-I KM229790 Sudan 
    KC172655 Iran      KM229791 Sudan 
    KC172656 Iran      KM229792 Sudan 
    KC172657 Iran    CpCDV-F3-I KC172674 Eritria 
    KC172658 Iran      KC172675 Eritria 
    KC172659 Iran  CpCDV-H CpCDV-H1-I KC172676 Eritria 
    KC172660 Iran      KM229843 Sudan 
    KC172661 Iran    CpCDV-H1-II KM229798 Sudan 
    KC172662 Turkey      KM229801 Sudan 
    KC172663 Turkey      KM229804 Sudan 
CpCDV-B CpCDV-B1-I AM849096 Pakistan      KM229807 Sudan 
    Y11023 South Africa      KM229808 Sudan 
  CpCDV-B2-I DQ458791 South Africa      KM229814 Sudan 
CpCDV-C CpCDV-C1-I AM849097 Pakistan      KM229815 Sudan 
    AM850136 Pakistan      KM229816 Sudan 
    AM900416 Pakistan      KM229817 Sudan 
    JF831147 India      KM229818 Sudan 
    JF831148 India      KM229821 Sudan 
    JX183063 India      KM229822 Sudan 
    JX183064 India      KM229823 Sudan 
    JX183065 India      KM229828 Sudan 
    HG934858 Pakistan      KM229829 Sudan 
    KM377673 Pakistan      KM229832 Sudan 
  CpCDV-C1-II KM229768 Sudan      KM229846 Sudan 
    KM229771 Sudan      KM229859 Sudan 
    KM229772 Sudan      KM229862 Sudan 
    KM229773 Sudan      KM229863 Sudan 
    KM229774 Sudan      KM229864 Sudan 
    KM229775 Sudan      KM229870 Sudan 
    KM229776 Sudan      KM229874 Sudan 
    KM229778 Sudan      KM229875 Sudan 
    KM229779 Sudan      KM229876 Sudan 
    KM229782 Sudan      KM229877 Sudan 
    KM229784 Sudan      KM229881 Sudan 
    KM229785 Sudan      KM229883 Sudan 
  CpCDV-C2-I KM229769 Sudan      KM229887 Sudan 
    KM229770 Sudan      KM229893 Sudan 
    KM229777 Sudan      KM229894 Sudan 
    KM229780 Sudan      KM229897 Sudan 
    KM229781 Sudan    CpCDV-H1-III KM229892 Sudan 
    KM229783 Sudan    CpCDV-H1-IV KM229793 Sudan 
CpCDV-D CpCDV-D1-I KM229786 Sudan     KM229794 Sudan 
    FR687960 Pakistan      KM229795 Sudan 

    KC172664 India      KM229796 Sudan 
    KC172665 India      KM229797 Sudan 
    KF176552 India      KM229799 Sudan 
    KF176553 India      KM229800 Sudan 
    KM377672 Pakistan      KM377669 Pakistan 
    KM377670 Pakistan      KM229802 Sudan 
    KM377671 Pakistan      KM229803 Sudan 
    KM229788 Morocco      KM229805 Sudan 
  CpCDV-D1-II KM229787 Sudan      KM229806 Sudan 
  CpCDV-D1-III KM377668 Pakistan      KM229809 Sudan 
CpCDV-E CpCDV-E1-I AM933134 Sudan      KM229810 Sudan 
    AM933135 Sudan      KM229811 Sudan 
    KM229789 Sudan      KM229812 Sudan 
CpCDV-F CpCDV-F1-I KC172666 Pakistan      KM229813 Sudan 
    KC172667 Syria      KM229819 Sudan 
    KC172668 Syria      KM229820 Sudan 
    KC172669 Yemen      KM229824 Sudan 
    KC172670 Yemen      KM229825 Sudan 
    KC172671 Yemen      KM229826 Sudan 
         KM229827 Sudan 
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CpCDV Strain Genotype/ 
Variants 

GenBank no. Country  CpCDV Strain Genotype/ 
Variants 

GenBank no. Country 

  CpCDV-H   KC172672 Yemen  CpCDV-L CpCDV-L1-I HE864164 Pakistan 
   KM229830 Sudan      HE956705 Pakistan 
   KM229831 Sudan      HE956706 Pakistan 
   KM229833 Sudan     HG313782 Pakistan 
   KM229834 Sudan  CpCDV-M CpCDV-M1-I KM229908 Sudan 
   KM229835 Sudan      KM229909 Sudan 
   KM229836 Sudan  CpCDV-N CpCDV-N1-I KM229910 Sudan 
   KM229837 Sudan  CpCDV-O CpCDV-O1-I KM229911 Sudan 
   KM229838 Sudan  CpCDV-P CpCDV-P1-I KM229912 Sudan 
    KM229839 Sudan    CpCDV-P1-II KM229913 Sudan 

    KM229840 Sudan      
    KM229841 Sudan      
    KM229842 Sudan      
    KM229844 Sudan         
    KM229845 Sudan         
    KM229847 Sudan         
    KM229848 Sudan         
    KM229849 Sudan  
    KM229851 Sudan  
    KM229852 Sudan  
    KM229853 Sudan  
    KM229854 Sudan  
    KM229855 Sudan  
    KM229856 Sudan  
    KM229857 Sudan  
    KM229858 Sudan  
    KM229860 Sudan  
    KM229861 Sudan  
    KM229865 Sudan  
    KM229867 Sudan  
    KM229868 Sudan  
    KM229869 Sudan  
    KM229871 Sudan  
    KM229872 Sudan  
    KM229873 Sudan  
    KM229878 Sudan  
    KM229879 Sudan  
    KM229880 Sudan  
    KM229882 Sudan  
    KM229884 Sudan  
    KM229886 Sudan  
    KM229888 Sudan  
    KM229889 Sudan  
    KM229890 Sudan  
    KM229891 Sudan  
    KM229895 Sudan  
    KM229896 Sudan  
    KM229898 Sudan  
    KM229899 Sudan  
  CpCDV-H1-V KM229850 Sudan  
    KM229885 Sudan  
CpCDV-I CpCDV-I1-I KC172677 Eritria  
  CpCDV-I2-I KM229900 Sudan  
  CpCDV-I2-II KC172678 Eritria  
CpCDV-K CpCDV-K1-I KM229901 Sudan  
    KC172679 Eritria  
    KC172681 Eritria  
    KC172682 Eritria  
  CpCDV-K1-II KM229902 Sudan  
    KM229903 Sudan  
  CpCDV-K1-III KC172680 Eritria  
  CpCDV-K1-IV KM229904 Sudan  
    KM229906 Sudan  
    KM229907 Sudan  
  CpCDV-K2-I KM229905 Sudan  

Additional Table 6.1 continued 
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7.1 Abstract  

The genomes of a large number of highly diverse novel circular DNA viruses from a wide 

range of sources have been characterised in recent years. Some of these recovered circular 

single-stranded DNA (ssDNA) viruses share similarities to the plant-infecting ssDNA virus 

family, Geminiviridae. Here we describe four novel circular ssDNA viral genomes which 

encode replication-associated proteins (Rep) that are most closely related to those of either 

geminiviruses or gemycircularviruses (a potentially new family of ssDNA viruses that is 

closely related to geminiviruses). These four viral genomes were recovered from Bromus 

hordeaceus in New Zealand. Two of these viral genomes share >99% and have tentatively 

been named Bromus-associated circular virus-1 (BasCV-1), and the two other divergent 

genomes have tentatively been named BasCV-2 and BasCV-3. BasCV-1 shares ~57% 

identity to geminivirus-like, Nepavirus (previously isolated from sewage; GenBank accession 

number JQ898333), BasCV-2 shares ~57% identity with SaCV-3 (also from sewage; 

GenBank accession number KJ547627) and BasCV-3 shares between 56% and 64% 

sequence identity to, and phylogenetically clusters with, members of the gemycircularvirus 

group. All four of the viral genomes recovered have a major open-reading frame on both their 

complementary and virion sense strands, one of which likely encodes a Rep and the other a 

coat protein. Although future infectivity studies are needed to identify the host(s) of these 

viruses, this is the first report of ssDNA viruses that are associated with grasses in New 

Zealand. 
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7.2 Introduction 

The previous Chapters collectively entail a comprehensive look into the overall dynamics of 

mastreviruses in regions of the world where these viruses are known to exist. Give 

geminiviruses are found globally and Australia harbours a high level of mastrevirus diversity 

it is entirely plausible that mastreviruses or related viruses may be present in New Zealand. 

The aim of this endeavour was to take an exploratory approach using a viral metagenomic 

method to investigate the existence of mastreviruses or related viruses in wild grasses in New 

Zealand.  

 

Poaceae is one of the largest plant families and contains more than 10,000 species of grasses 

which collectively have a near global distribution (Barker et al., 2001). Although members of 

this family are infected by a variety of viruses, the only single-stranded DNA viruses that are 

known to infect members of the Poaceae family are mastreviruses (family: Geminiviridae). 

Of these, the most well studied is Maize streak virus (MSV) because of its devastating impact 

on maize production in Africa (Martin et al., 1999; Monjane et al., 2011; Shepherd et al., 

2010; Varsani et al., 2008). MSV together with other species of monocot-infecting 

mastreviruses infect both cultivated and non-cultivated grasses and have been identified in 

Africa, Europe, Asia and Australia (Candresse et al., 2014). A recent study has revealed a 

high degree mastrevirus diversity within uncultivated Australian grasses (Kraberger et al., 

2012). Based on the wide distribution of mastreviruses and the close proximity of New 

Zealand to Australia, a mastrevirus diversity hotspot, it is plausible that a similar degree of 

mastrevirus diversity might also occur within New Zealand’s grasses.  

 

Several grass-infecting viruses have been documented in New Zealand, many of which are 

thought to have been introduced into New Zealand through the movement of exotic grass 

species (Davis & Guy, 2001). There have been twelve identified species, all of which are 

RNA viruses: Barley yellow dwarf virus-PAV, Barley yellow dwarf virus-RMV, Barley 

yellow dwarf virus-MAV, Barley stripe mosaic virus, Cocksfoot mottle virus, Cocksfoot mild 

mosaic virus, Cynosurus mottle virus, Cereal yellow dwarf virus-RPV, Ryegrass cryptic 

virus, Rye grass mosaic virus, Soil-borne wheat mosaic virus and Wheat streak mosaic virus 
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(Delmiglio et al., 2010; Guy, 2006; 2014; Latch, 1977; Mohamed, 1978; Pearson et al., 

2006).  

 

Recent advances in sequencing technologies have enabled the application of sequence 

independent metagenomic approaches in the detection and characterisation of entirely novel 

viral communities that are associated with various different eukaryote species or 

environments (Dayaram et al., 2014; McDaniel et al., 2013; Ng et al., 2011; Rosario et al., 

2009; Sikorski et al., 2013; van den Brand et al., 2012). These methods have been 

particularly effective at exploring the diversity within the environment of diverse circular 

replication-associated protein (Rep) encoding ssDNA (CRESS-DNA) viruses. Consequently 

this has yielded the discovery of both highly divergent members of known ssDNA virus 

families (Candresse et al., 2014; Kreuze et al., 2009; Victoria et al., 2009) and CRESS-DNA 

viruses that potentially belong to entirely new families: such as the recently proposed 

gemycircularvirus family (Rosario et al., 2012a; Sikorski et al., 2013). In an attempt to 

identify and characterise ssDNA viruses associated with Poaceae sp. in New Zealand we 

firstly used such an approach to identify viruses associated with 33 uncultivated grass 

samples, and then recovered full genomes and Sanger sequenced four CRESS-DNA genomes 

from four of these samples.  

 

7.3 Materials and Methods 

7.3.1 Sample collection and DNA extraction  

Grasses presenting symptoms commonly associated with virus-infections (foliar yellowing 

and crinkling) were opportunistically collected from locations in the North (n=7) and South 

island (n=26) of New Zealand between 2012 and 2014. A total of 13 Poaceae species were 

sampled, Anthoxanthum odoratum (n=3), Arrhenatherum elatius (n=5), Axonopus fissifolius 

(n=1), Bromus hordeaceus (n=4), Bromus inermis (n=5), Bromus tectorum (n=1), Dactylis 

glomerata (n=3), Elymus farctus (n=1), Holcus lanatus (n=5), Hordeum vulgare (n=1), 

Paspalum dilatatum (n=1), Pennisetum clandestinum (n=1) and Poa alpine (n=2).  
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Leaf material was homogenised in 1ml of SM Buffer [0.1 M NaCl, 50 mM Tris-HCl (pH 

7.4)]. The homogenate was centrifuged at 10,000 x g for 10 min to pellet cellular debris and 

the supernatant was passed through 0.45µm and 0.2µm syringe filters in succession (Sartorius 

Stedim Biotech, Germany). Viral DNA was isolated using the High Pure Viral Nucleic Acid 

Kit (Roche Diagnostics, USA). Circular viral DNA in the DNA extract was enriched using 

TempliPhiTM (GE Healthcare, USA). The enriched DNA was then sequenced on an Illumina 

HiSeq 2000 sequencer at the Beijing Genomics Institute (Hong Kong).  
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7.3.2 Next-generation sequencing and virus isolation 

Paired-end reads were assembled using ABySS 1.3.6 (Simpson et al., 2009) with a k-mer 

setting of 64. The assembled contigs >500nt were analysed for significant similarities to 

proteins of geminiviruses and geminivirus-like CRESS-DNA viruses (indicated by BLASTx 

E-scores <10-5). Back-to-back primers were designed based on conserved regions within the 

rep of geminivirus-like viral contigs in order to recover full viral genomes from individual 

grass samples using polymerase chain reaction (PCR). PCR was performed using specific 

back-to-back primer pairs (Table 1) and Kapa HiFi Hotstart DNA polymerase (Kapa 

Biosystems, USA) with the following thermocycler conditions: 94ºC for 3 min, 25 cycles of 

98 ºC (20sec), 60 ºC (30sec), 72 ºC (3min) and a final extension of 72ºC for 3 min. The 

resulting amplicons of ~2.5–2.7 kb were gel-purified using the Quick-spin PCR Product 

Purification Kit (iNtRON Biotechnology, Korea) and purified products were ligated into 

pJET1.2 (Thermo Fisher Scientific Inc, USA). The resulting clones were Sanger sequenced at 

Macrogen Inc. (Korea) by primer walking. The Sanger sequence contigs were assembled into 

full genome sequences using DNA Baser V4 (Heracle BioSoft S.R.L. Romania). 

7.3.3 Full genome analysis and pairwise comparison 

Full genome sequences were managed using MEGA5 (Tamura et al., 2011) and open reading 

frames identified using DNA man software (version 5.2.9; Lynnon Biosoft) and BLASTx 

(Altschul et al., 1990). Pairwise comparison of those genomes recovered in this study 

together with those most similar available in GenBank, was undertaken using SDT V1.2 

software (Muhire et al., 2014).  

7.3.4 Phylogenetic analysis 

A Rep amino acid sequence dataset was compiled consisting of the sequences from the four 

CRESS-DNA viruses recovered in this study, representative sequences from the 

gemycircularviruses, geminiviruses and nanoviruses. Additionally, the Reps of BamiV, 

NimiV and NephV and geminivirus-like Rep sequences from fungal and rhizaria genomes 

were included. We aligned these sequences using MUSCLE (Edgar, 2004) and constructed a 

maximum likelihood (ML) phylogenetic tree using PHYML version 3 (Guindon et al., 2010) 

with the substitution model RtRev+G chosen using ProtTest 3 (Darriba et al., 2011) and the 
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approximate likelihood-ratio test (aLRT) used to estimate branch support (Anisimova & 

Gascuel, 2006). The nanovirus Rep sequences were used to root the tree. 

 

7.4 Results and discussion 

7.4.1 Novel viral genome analysis 

Four probable CRESS-DNA viral genomes were recovered from leaf material of Bromus 

hordeaceus collected in two locations in New Zealand; Sefton, Canterbury (n=2) and Mt 

Victoria, Wellington (n=2) (Table 7.1). BLASTx analysis of these four viruses revealed that 

they each likely encode a Rep which is similar to those of gemycircularviruses and 

geminiviruses. These genomes have at least one major ORF in both the virion and 

complementary sense. One of the first gemycircularvirus to be characterised was the fungal-

infecting virus Sclerotinia sclerotiorum hypovirulence-associated DNA virus-1 (SsHADV-1) 

(Yu et al., 2010). Although SsHADV-1 was first identified in China, it has subsequently been 

found in both benthic sediments in New Zealand rivers and associated with dragonflies and 

damselflies in the USA (Dayaram et al.; Kraberger et al., 2013). Other viruses that are 

closely related to SsHADV-1 have been recovered from variety of other sources. These 

include two viral genomes, one from cassava (Cassava-associated circular DNA virus; 

CasCV) and another from Hypericum japonicum leaf material (Hypericum japonicum-

associated circular DNA virus; HjasCV) (Dayaram et al., 2012; Du et al., 2014). Other 

gemycircularvirus genomes have been isolated from faecal matter (Meles meles fecal virus; 

MmFV and Faecal-associated gemycircularviruses; FaGmV-1–13) (Ng et al., 2014; Sikorski 

et al., 2013; van den Brand et al., 2012), insects (Mosquito VEM SDBVL-G virus; MvemV 

and Dragonfly-associated circular viruses; DfasCV-1–5) (Dayaram et al.; Ng et al., 2011; 

Rosario et al., 2012a), healthy bovine serum (HCBI8 and HCBI9) (Lamberto et al., 2014) 

and serum from a patient with multiple sclerosis (MSSI2) (Lamberto et al., 2014).  

 

Seven CRESS-DNA viral genomes that are distantly related to geminiviruses but do not 

group with the gemycircularviruses (Baminivirus; BamiV, Niminivirus; NimiV, Nephavirus; 

NephV and SaCV-1–4 (Ng et al., 2012) have previously been found in either treated or raw 

sewage material. Additionally four distantly related genomes have been recovered from 

insect species in the order Odonata (Odonata-associated circular DNA virus; OdasCV-6, -7, -
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8, -9 and -15) (Dayaram et al.) and one from ancient caribou faeces (Ancient caribou feces 

associated virus; anCFV (Ng et al.). Interestingly, Rep-like sequences similar to the 

geminiviruses have also been identified in various fungal and rhizaria genomes (Liu et al., 

2011). 
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Table 7.1: Details for Bromus-associated circular DNA viral isolates and back-to-back primers used to recover full genomes. 

Genbank 
accession # 

Virus name Isolate ID New Zealand location Forward primer Reverse primer 

KM510189 BasCV-1 NZG01-29-Sef Sefton, Canterbury GAACAGCTGAACGAGGGTTT CAGTGGAGATGTAGCTTCGA 

KM510190 BasCV-1 NZG03-29-Wel Mt Victoria, Wellington GAACAGCTGAACGAGGGTTT CAGTGGAGATGTAGCTTCGA 

KM510191 BasCV-2 NZG03-39-Wel Mt Victoria, Wellington GCCTGCTTCACGATACAC GAGACCGCTTCTAGTGCT 

KM510192 BasCV-3 NZG01-118-Sef Sefton, Canterbury AGAACGTAATCCCCGGTG TTGGAGGAGACCTTGACG 

                NB: BasCV=Bromus-associated circular DNA virus 

 

C
hapter 7 
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Based on genome-wide pairwise identities, the four probable viral genomes recovered here 

from Bromus hordeaceus are highly diverged from previously characterised CRESS-DNA 

viruses and most likely can be classified as three distinct viral species which we have 

tentatively named Bromus-associated circular DNA virus (BasCV) -1, -2 and -3. The 

genomes of BasCV-1, -2 and -3 are 2776 nt, 2542 nt and 2238 nt in size, respectively (Fig. 

7.1).  

 

Genome-wide pairwise comparisons using SDT 1.2 (Muhire et al., 2014) indicated that the 

two isolates NZG03-29 (Mt Victoria) and NZG01-29 (Sefton) share ~99% pairwise identity 

with one another and ~57% with Nepavirus (JQ898333). We have tentatively named these 

two viruses BasCV-1 [NZ-NZG01-Sef-2012] (KM510189) and BasCV-1 [NZ-NZG03-Wel-

2012] (KM510190). Isolate NZG03-39 (Mt Victoria) which shares ~57% pairwise identity to 

SaCV-3 (KJ547627) have tentatively been named BasCV-2 [NZ-NZG03-Wel-2012] 

(KM510191). Lastly, isolate NZG01-118 (Sefton) which shares <64% genome-wide pairwise 

identity with all other currently known gemycircularviruses has been tentatively named 

BasCV-3 [NZ-NZG01-Sef-2012] (KM510192). Comparison of the three BasCVs with each 

other indicated that while they all share 55-58% genome-wide identity with one another, they 

all have different nonanucleotide sequences as their probable virion strand origins of 

replication: TATATAA(A/G)A (BasCV-1), TAGTATTAC (BasCV-2) and TAATGTTAT 

(BasCV-3).  

7.4.2 Rep and CP analysis 

Within the four viral genomes we identified putative Reps and capsid proteins (CPs). In 

addition to the two major open reading frames (ORFs), in BasCV-1 and -2 we identified two 

other minor ORFs (Fig. 7.1A and B). In BasCV-1 and -3 we identified putative introns in the 

Rep and therefore the Reps may potentially be expressed from spliced transcripts as seen in 

members of the geminivirus genus, Mastrevirus (Dekker et al., 1991) (Fig. 7.1A and C). The 

Rep of BasCV-1 shares ~32% amino acid identity with that of NepaV (Fig. 7.1A), whereas 

the BasCV-3 Rep shares ~63% with those of DfaCV-2 and CasCV (Fig. 7.1C). Similar to the 

repA gene found in mastreviruses, putative ORFs encoding a repA were also identified in 

BasCV-1 and 3. The Rep of BasCV-2 is also likely encoded in the complementary sense and 

shares 34% identity with the Rep of Rodent-stool circovirus M-45 (JF755409) and McMurdo 

ice shelf pond associated circular DNA virus-2 (KJ547647) (Fig. 7.1B). The putative CP 
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ORF of BasCV-3 shares significant levels of similarity to known CRESS viruses including 

~41% amino acid identity to the CP amino acid sequences of gemycircularviruses (Fig. 

7.1C).  

 

A Rep amino acid maximum likelihood tree was constructed which included the four 

CRESS-DNA viruses recovered in this study, representative sequences from the 

gemycircularviruses, geminiviruses and nanoviruses. Also included were the Reps and Rep-

like sequences of BamiV, NimiV and NephV and geminivirus-like Rep sequences from 

fungal and rhizaria genomes. Due to the high degree of sequence variation amongst the 

geminivirus-like sequences we were only able to credibly align, and therefore use, these Rep 

amino acid sequences to infer their phylogenetic relationships (Fig. 7.2). The phylogenetic 

tree shows that the Reps of the BasCVs are indeed distantly related to those of the 

geminiviruses. The Rep of BasCV-3 is nested in the monophyletic gemycircularvirus clade 

whereas the Reps of BasCV-1 and BaCV-2 branch basal to both the geminicirculavirus and 

geminivirus groupings.  
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Figure 7.1: Genome organisation of Bromus-associated circular DNA virus -1, 2 and 3. 
Stemloop structure with nonanucleotide sequence containing the probable virion strand origin 
of replication (A). Percentage pairwise amino acid identities of BasCV-1, -2 and -3 (five 
highest identities) of the Rep (B) and CP (C). 
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Figure 7.2: Maximum-likelihood phylogenetic tree of the Rep amino acid sequences (rooted with 
Reps of nanoviruses) of BasCV-1, 2 and 3, gemycircularviruses, other geminivirus-like CRESS 
viruses, geminiviruses and Rep-like sequences in fungal genomes. Branches with aLRT branch 
support of <80% have been collapsed. Sample names in bold represent those recovered in this study. 
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7.4.3 Identification of putative motifs in the Replication-associated protein and iterons in 
the long intergenic region 

Within the Reps encoded by BasCVs, we identified both the three rolling circle replication 

related motifs, and the three superfamily 3 (SF3) helicase motifs which are commonly found in 

CRESS-DNA viruses (Ilyina & Koonin, 1992; Koonin, 1993; Koonin & Ilyina, 1992; Rosario et 

al., 2012b) (Fig. 7.3). The Rep motifs identified for BasCV-1 and -3 are more similar to 

geminivirus RCR motifs whereas those identified in BasCV-2 are more similar to those found in 

circoviruses. A conserved region of Rep found in geminiviruses known as the geminivirus Rep 

sequence (GRS) domain (Fig. 7.3) (Nash et al., 2011) which is thought to be involved in 

cleavage of ssDNA during RCR, was identified in BasCV-1 and BasCV-3. We note that BasCV-

2 does not seem to have a GRS domain. The Walker motif A, B and motif C (SF3 helicase 

motifs) seem to be conserved across the Reps of BasCV isolates and most CRESS-DNA viruses. 

Various cis acting elements have been identified in the intergenic regions of ssDNA viruses 

which are thought to interact with the Rep to initiate RCR (Argüello-Astorga et al., 1994; 

Dayaram et al., 2014; Dayaram et al., 2013; Londoño et al., 2010). The specificity of these 

repeating sequence elements (called iterons in geminiviruses) has been shown to play an 

important part in the efficiency of replication (Herrera-Valencia et al., 2006). We identified 

potential analogues of these elements in the BasCV-1 and BasCV-3 sequences (Fig. 7.4). These 

elements are similar to those found in some of the gemycircularviruses, BasCV-3 which groups 

with the gemycircularviruses shares the same iteron sequence with the ssHADV-1 which is 

known to infect fungi (Fig. 7.4B). This gives weight to the idea that BasCV-3 may in fact be 

hosted by an endo- or epiphytic fungus of this bromus grass. 
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Figure 7.3: Alignment of Rep sequences showing rolling circle replication motifs I, II and III, Walker 
motif A and B and motif C of CRESS-DNA viruses (BasCV-1, 2 and 3 - shown in red, the 
gemycircularviruses, other geminivirus-like CRESS viruses and representative geminiviruses, 
circoviruses, nanoviruses and Rep-like sequences in fungal and rhizaria genome). 
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M-34-KGF RLS AKRY LLTYAQC ---32--- HIHIAV EFAKKL NSV DTKYFD BasCV-1 [KM510190]

MSTF RFY ARYA LLTYAQC ---31--- HLHAFV DFGRRF QSR RAAVFD HCBI8 [LK931483]

MPRRF QVR ARNL IITFPQV ---40--- HYHIYL GFDKIV TVN SATAFD HCBI9 [LK931484]

MSSF RFQ ARYA LLTYAQC ---31--- HLHAFV DFGVKF STR NVRVFD FaGmV-9 [KF371633]

MSSF RFQ ARYA LLTYPQC ---31--- HLHAFV DFGVKY RTR NARAFD MSSI2 [LK931485]

MPF RFA AKYG LLTYPQC ---31--- HLHAFF MFERKF ESR NVRVFD DfasCV-1 [JX185430]

MSF RFA AKWG LLTFPQS ---31--- HLHAFF MFERKF ESR NVRVFD FaGmV-8 [KF371634]

MPSFA IKD AKFL LLTYAQV ---35--- HFHAFL DFGSKF STR NERFWD MvemV [HQ335086]

MSRQFC LKD AKYC LLTYPQI ---37--- HLHCFL DFGRKF SSR DTRIFD FaGmV-7 [KF371635]

MTF ILN ARYF LVTYPQS ---31--- HLHVFC DFGRKF RSR RADIFD FaGmV-5 [KF371637]

MPSF VCN ARYF LVTYPQC ---31--- HLHCFA DFGRKF RSR KTDIFD DfasCV-2 [JX185429]

MPPKQKPP YAN FRYA LLTYAQC ---31--- HLHAFV DFSRRF RSR RSDVFD FaGmV-1a [KF371643]

MPF YFN ARYA LITYAQC ---31--- HLHCFI DFGRKF RSR RTDIFD CasCV [JQ412057]

MTF DFH AKYV LLTYAQC ---31--- HLHCFA EFGRKF RSR KADVFD SsHADV-1 [GQ365709]

MPSF DLH CRYA LLTYAQC ---31--- HLHCFV DFGRKR RFR RVDVFD BasCV-3 [KM510192]
AGGGACR

GGACACA
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Iterons SPD-r1 SPD-r1Motif I Motif II

ATG-13-GTCCCTTTGAGTCtCTGGGCTAAACTAATATTATAGCCCAGGGACGGGGAC

ATG-9-GTCCCTGGGCAAACTAATGTTATAGCCCAGGGACGGGGAC

Left-arm stem

Left-arm stem Right-arm stem

Right-arm stem

SsHADV-1 [GQ365709]

BasCV-3 [KM510192]

Iterons

A

B

 
 
Figure 7.4: (A) Correlations between iterons core sequences and potential Rep DNA-binding SPDs of 
BasCV-1, BasCV-3 and selected gemycircularviruses. Amino acid residues identified as putative SPDs in  
the beta-1 strand (r1) are shaded in yellow, whereas SPDs in the beta-strand (r-2) associated to Motif II 
are shaded in blue. The conserved RCR motifs I and II are indicated at the top of the alignments. The Rep 
N-end of BasCV-1 is also aligned to show the similitude of its RCR motifs with gemycircularviruses. (B) 
Comparisons of the origin of replication region in the LIR of BasCV-3 and SsHADV-1, illustrating the 
resemblances between their putative Rep-binding sites (iterons).  
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7.5 Concluding remarks 

In summary, we have found four viral genomes associated with Bromus hordeaceus; this is 

the first report of circular ssDNA viruses being associated with grasses in New Zealand. Two 

of these, belonging to the tentative species BasCV-1, were found in two geographically 

distinct locations, one in the South Island and the other in the North Island of New Zealand 

suggesting that this tentative species has a reasonably wide distribution in New Zealand. We 

were, however unable to ascertain whether these viruses infect B. hordeaceus. or infect other 

organisms associated with B. hordeaceus (e.g. fungi, bacteria or protists). However, it is 

evident that the Reps encoded by these viruses are most closely related to those of plant-

infecting geminiviruses and probably fungus infecting gemycircularviruses. A third genome, 

tentatively classified as belonging to another new species, BasCV-3, is most closely related to 

SsHADV-1 (a definitively fungus-infecting gemycircularivirus) and CasCV and HJasCV 

(viruses previously isolated from cassava and H. japonicum, respectively). It is therefore 

plausible that BasCV-3 may infect one or more Bromus-associated fungus species. Recently 

gemycircularvirus isolates have also been recovered from healthy cattle serum. This finding, 

together with the discovery here of similar viruses associated with grasses (a primary 

component in the diet of most cattle), increases the plausibility that gemycircularviruses are 

able to move between species in different kingdoms (much as some plant viruses are 

circulatively transmitted by their insect vectors). An extensive survey of grasses in New 

Zealand as well as infectivity studies will be necessary to determine the diversity and host 

range of these viruses. 

 

GenBank accession numbers: KM510189 – KM510192 
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8.1 Abstract 

Our knowledge of circular single-stranded DNA (ssDNA) virus diversity has increased 

dramatically in recent years, largely due to advances in high-throughput sequencing 

technologies. These viruses are apparently major virome components in most terrestrial and 

aquatic environments and it is therefore of interest to determine their diversity at the 

interfaces between these environments. Treated sewage water is a particularly interesting 

interface between terrestrial and aquatic viromes in that it is directly pumped into waterways 

and is likely to contain virus populations that have been strongly impacted by humans. We 

used a combination of high-throughput sequencing, full genome PCR amplification, cloning 

and Sanger sequencing to investigate the diversity of circular ssDNA viruses present in a 

sewage oxidation pond. Using this approach, we recovered 50 putatively complete novel 

circular ssDNA viral genomes (it remains possible that some are components of multipartite 

viral genomes) and 11 putatively sub-genome-length circular DNA molecules which may be 

either defective genomes or components of multipartite genomes. Thirteen of the genomes 

have bidirectional genome organisations and share similar conserved replication-associated 

protein (Rep) motifs to those of the gemycircularviruses: A group that in turn is most closely 

related to the geminiviruses. The remaining 37 viral genomes share very low degrees of Rep 

similarity to all other known Rep-encoding ssDNA viruses. This number of highly divergent 

ssDNA virus genomes within a single sewage treatment pond further reinforces the notion 

that there likely exists hundreds of completely unknown genus/family level ssDNA virus 

groupings. 
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8.2 Introduction 

The discovery of three novel CRESS DNA viruses associated with wild grasses in New 

Zealand was discussed in Chapter Seven. These viruses are distantly related to Geminiviruses 

and two of these viruses share a similar architecture to mastreviruses, including a putative 

spliced Rep. This is the first time a CRESS DNA virus associated with any grass species in 

New Zealand has been documented and further validates such sequence independent 

approaches for the discovery of novel CRESS DNA viruses. The study discussed in this 

chapter used a similar viral metagenomic approach as in Chapter Seven in an effort to 

investigate the presence of geminiviruses or related CRESS DNA viruses in treated sewage 

material and further elucidate the known viral diversity of these viruses in New Zealand. 

 

Sewage is a biological sink for a wide variety of infectious agents including viruses. 

Consisting largely of human excrement, sewage harbours a rich diversity of viruses. Besides 

viruses that infect the multitude of environmental microbes which degrade faeces, sewage 

also contains viruses infecting humans, their gut flora, and their food (Blinkova et al., 2009; 

Cantalupo et al., 2011; Metcalf et al., 1995; Ng et al., 2012; Parsley et al., 2010; Rosario et 

al., 2009c; Symonds et al., 2009; Tamaki et al., 2012). Secondary stages of sewage treatment 

involve aeration in ‘oxidation ponds’ which might also introduce viruses that infect birds, 

algae, fungi, insects and aerobic bacteria into the treated sewage water that is ultimately 

discharged into the natural environment. 

 

To date virus research on sewage systems has predominantly focused on viruses of clinical 

importance to humans, such as poliovirus and other enteroviruses (Blomqvist et al., 2004; 

Hewitt et al., 2011; Katayama et al., 2008; Lodder & de Roda Husman, 2005; Symonds et 

al., 2009; Vaidya et al., 2002). Only a handful of studies have taken an unbiased 

metagenomics-based approach to study viral diversity associated with raw sewerage 

(Cantalupo et al., 2011; Ng et al., 2012; Tamaki et al., 2012) and one which looked at 

reclaimed water (Rosario et al., 2009b). These revealed that sewage contains genetic material 

derived from a wide variety of vertebrate, invertebrate and plant-infecting viruses. A 

significant proportion of this genetic material encodes proteins that share low, but 

nevertheless significant, degrees of similarity to those encoded by circular single-stranded 
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DNA (ssDNA) viruses in the familys Geminiviradae, Circoviriadae and Nanoviradae. For 

example, Ng et al. (2012) recorded as much as 30% of viral-related sequences assembled 

from their metagenomic analysis of raw sewage samples shared significant similarities to 

proteins of these three ssDNA families. If this genetic material is indeed viral-derived, many 

of these represent completely novel ssDNA virus groups. For example, three complete 

ssDNA genomes that were recently isolated from raw sewage (named Nepavirus, Nimivirus 

and Baminivirus) encode replication-associated proteins (Reps) that are most closely related 

to but clearly distinct from Rep proteins expressed by plant-infecting geminiviruses and each 

likely represents an undescribed genus / group (Ng et al., 2012). Similarly divergent ssDNA 

viruses have been found in faecal samples from humans (Castrignano et al., 2013), caribou 

(Ng et al.), sheep (Sikorski et al., 2013b), New Zealand fur seals (Sikorski et al., 2013a), pigs 

, foxes (Bodewes et al., 2013), bats (Castrignano et al., 2013; Ge et al., 2011; Ge et al., 2012; 

Li et al., 2010b), rodents (Phan et al., 2011), mustelids (Smits et al., 2013; van den Brand et 

al., 2012) and birds (Phan et al., 2013; Reuter et al., 2014; Sikorski et al., 2013b).  

 

Several of these novel ssDNA viruses share similarities to Sclerotinia sclerotiorum 

hypovirulence-associated DNA virus 1 (SsHADV-1), a virus previously found in benthic 

river sediments (Kraberger et al., 2013) and has been isolated from the fungus, Sclerotinia 

sclerotiorum (Yu et al., 2010). The Rep of SsHADV-1 contains geminivirus-like Rep motifs 

(Dayaram et al., 2012; Nash et al., 2011). Viral genomes related to SsHADV-1 have also 

been recovered from animal faecal samples (Sikorski et al., 2013b; van den Brand et al., 

2012), dragonflies and damselflies, mosquitoes (Ng et al., 2011), bovine and human serum 

(Lamberto et al., 2014) and plant material (Dayaram et al., 2012; Du et al., 2014) and, as a 

result, a new genus known as gemycircularviruses has been proposed for this group of 

Gemini-like, possibly fungal-infecting, viruses. Novel ssDNA viruses which have Reps that 

share similarity to circo- and cyclovirus proteins have also been identified in faecal samples 

(Ge et al., 2011; Li et al., 2010a; Li et al., 2010b). 

 

The genomes of monopartite eukaryote-infecting circular ssDNA viruses (such as those in the 

familys Circoviridae and Geminiviridae) typically have at least two open reading frames 

(ORF): one encoding a Rep and the other encoding a coat protein (CP). Multipartite ssDNA 

virus genomes, such as those found in members of the Nanoviridae, are comprised of up to 
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eight individual genome components, with each component encoding a single protein; of 

those components at least one encodes a Rep and another component encodes a CP. The CPs 

of viruses are often highly diverse because they are involved in interaction with host cell 

surface receptors. In many instances the putative Rep encoded by divergent environmental 

circular Rep encoding single-stranded (CRESS) DNA viruses is the only protein that has any 

detectable homology to other known ssDNA virus Rep proteins. In fact this similarity is the 

strongest evidence that these environmental ssDNA molecules are virus genomes. Signature 

motifs within the Reps of these molecules are characteristic of Rep encoding ssDNA viruses 

(Rosario et al., 2012b).  

 

Sampling sewage provides a convenient and non-invasive approach to studying viral 

diversity within human impacted environments. As mentioned previously, aeration of treated 

sewage occurs in oxidation ponds where clarified sewage is circulated for ~two weeks before 

being discharged into the ocean or rivers. This open-air stage allows algal growth and UV 

exposure, both of which reduce coliform populations (Abdel-Raouf et al., 2012; Sinton et al., 

2002). Despite a number of viral studies on raw sewage, only one study (Rosario et al., 

2009b) has looked at viral diversity in treated sewage prior to discharge. To address this lack 

of knowledge we used a viral metagenomic sequence-informed approach to determine the 

diversity of CRESS DNA viruses within treated sewage oxidation ponds. We recovered and 

characterised 50 novel ssDNA virus genomes and 11 sub-genome-length circular DNA 

molecules that may be either defective genomes or individual genome components of viruses 

belonging to divergent groups of multipartite ssDNA viruses. This highlights the rich 

diversity of the CRESS DNA viruses associated with sewage oxidation ponds. 
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8.3 Materials and methods 

8.3.1  Sample collection and viral DNA isolation 

A sewage oxidation pond (final ‘open air’ stage of treatment) water sample was collected at 

the Christchurch Wastewater Treatment Plant, Christchurch, New Zealand on September, 

2012. 50ml of the sample was successively passed through 0.45µm and 0.2µm syringe filters 

(Sartorius Stedim Biotech, Germany). The filtrate was precipitated using 15% PEG at 4ºC 

overnight and pelleted by centrifugation at 10,000 x g for 10min. The resulting pellet was 

resuspended in 1ml of SM buffer [0.1 M NaCl, 50 mM Tris-HCl (pH 7.4)]. Nucleic acid was 

extracted from 200µl of this re-suspension using the High Pure Viral Nucleic Acid Kit 

(Roche Diagnostics, USA). The isolated viral nucleic acids were enriched using TempliPhiTM 

(GE Healthcare, USA).  

8.3.2 Next-generation sequencing-informed recovery of complete viral genomes 

Enriched viral DNA was sequenced at the Beijing Genomics Institute (Hong Kong) using an 

Illumina HiSeq 2000 sequencer. The paired end reads were assembled using ABySS 1.3.5 

(Simpson et al., 2009) with a k-mer setting of 64. Contigs >1000nts were analysed by 

BLASTx (Altschul et al., 1990) for detectable homology to known viral proteins. 

 

Abutting primers were designed (Table 1) to recover complete circular genomes for contigs 

found to have credible viral hits BLAST E-scores <10-7) as determined using BLASTx 

(Altschul et al., 1990). The circular genomes were recovered using polymerase chain reaction 

with KAPA HiFi Hotstart DNA polymerase (Kapa Biosystems, USA) with the specific 

abutting primers using the following thermocycler program: 94ºC for 3 min, 25 cycles of 98 

ºC (20sec), 55 ºC (30sec), 72 ºC (3min) and a final extension of 72ºC for 3 min. The PCR 

amplicons were gel purified and ligated into pJET1.2 plasmid (Thermo Fisher Scientific, 

USA) and sequenced at Macrogen Inc. (Korea) by Sanger sequencing using primer walking.  

 

Sanger sequencing reads were assembled using DNA Baser (Heracle BioSoft S.R.L. 

Romania). Putative CP and Rep ORFs were identified and preliminary genome analysis was 

carried using BLASTx (Altschul et al., 1990). Pairwise similarity comparisons (1 – p-

distance, with pairwise deletion of gaps) of Rep amino acid sequences predicted to be 
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expressed by circular CRESS DNA viruses obtained in this study along with those available 

in GenBank (as of 14th Sept 2014), were determined using SDT v1.2 (Muhire et al., 2014). 
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Table 8.1: Details of primer sequences used to recover complete CRESS DNA viral genomes and circular DNA molecules in this study. 

Sewage-associated circular DNA viruses     
Acronym and isolate details GenBank 

accession # 
Forward primer Reverse primer 

SaCV-1 [NZ-BS3349-2012]   KJ547620 GTGACAAGTACAAACGAAAACG ATACCACCAGCCAGTCTC 
SaCV-2 [NZ-BS4000-2012]   KJ547626 TCACAGCGAGGGTAAGTTAAG CTTAGACTTGCAACTACTTCTTG 
SaCV-3 [NZ-BS3854-2012]   KJ547627 ACGACTTCGAAACGGTCTC CGTTTCTTGCGGTATTTGTCAGT 
SaCV-4 [NZ-BS3799-2012]   KJ547628 GGCGAACTTTAAGGATGACTG AAATGGTTGAAGTACATGTGCGG 
SaCV-5 [NZ-BS3901a-2012]  KJ547629 GGTGGCTGTTCGTAAGGATA CACTGAAATGGTATGATTGGAC 
SaCV-6 [NZ-BS4017-2012]   KJ547630 GAGCTTGTTTGACCTTCTTCTC TCGAAGCGGAGGACATTGAA 
SaCV-7 [NZ-BS3976-2012]   KJ547631 TTCCTTCCAAACGTAGTCACTG GATACTCGAGTCTCCGGAA 
SaCV-8 [NZ-BS4075-2012]   KJ547632 TCGGTGGTCTTGGATAGCT CTGGGACGACATCTGGAAAT 
SaCV-9 [NZ-BS3681-2012]   KJ547633 GCAGTCGCAGAAAGAAACG TACCCGTGACTCCCAGATT 
SaCV-10 [NZ-BS3946-2012]  KJ547621 ACCTACGTACTCCTCAGC TACGGAGTTATCGAGCAGTTG 
SaCV-11 [NZ-BS3997-2012]  KJ547622 CACTATTCGTACCTACACTTGG CTAGTACGGATCCTGTTGTATTG 
SaCV-12 [NZ-BS3888-2012]  KJ547623 CCATGCATCTGGCTCAACAA CTTTCCCCATCTGACTGTTC 
SaCV-13 [NZ-BS4044-2012]  KJ547624 TGAGATTCACGAGCAATCTTCAC CAAGGATGGAAGCAAGCATATG 
SaCV-14 [NZ-BS4064-2012]  KJ547625 TTAGCCTCCCAGAGAGAGA GCTCTCCTGGGCTGTTGT 
SaCV-15 [NZ-BS3557-2012] KM821750 TCGTTGGGTCTCTACGGAGTTTG CCCGCAACCGTAAACTGATAGTC 
SaCV-16 [NZ-BS3759-2012] KM821751 GACGCCATCAGAGATGCAGCT CCAATCTCGAGAGTCATTGCGG 
SaCV-17 [NZ-BS4236-2012] KM821752 CAACCCAGGAACCTATTACTTCTCC GATTCTGCGAATCTTCTAACACCTCC 
SaCV-18 [NZ-BS3994-2012] KM821753 CAGGGTAACTATCAGGTTACAAAGAG CTTGCCACCAATAAAGTTGAAACAGTG 
SaCV-19 [NZ-BS4128-2012] KM821754 TCGCAGTCGATAATATGGCGCC TTCGTTTGAGGTTCCCGTACAATCTAC 
SaCV-20 [NZ-BS3900-2012] KM821755 AGCTCATCCATTGCAGCAGCAC TATGGGTCATACCATTGAGTGTATACG 
SaCV-21 [NZ-BS4169-2012] KM821756 CACTGGCGAGTGGTTCTATGG ACGTCCTGCTGATCCTCAGG 
SaCV-22 [NZ-BS4155-2012] KM821757 GAGCTCTCCACTCGAGAGTTC GCGATGAAAAGACTGAAGTCGTGG 
SaCV-23 [NZ-BS4025-2012] KM821758 GAACTGACTTGCTTAGAGTCGCTG TCTGTCCGGCTCCTGTACAG 
SaCV-24 [NZ-BS4091-2012] KM821759 GTAGAACGATAGCCCAGTCGG AAGCTGCCAGAGAAAGAAGACTTGG 
SaCV-25 [NZ-BS4281-2012] KM821760 GGCCATGTACCGTTCGATCTG CTGGTCGAGGACGAAGTACC 
SaCV-26 [NZ-BS4339-2012] KM821761 GAACTGGATGACCTTGTTCCTGG ATCCAGAGTCTTGCCAGCTTTGATC 
SaCV-27 [NZ-BS4103-2012] KM821762 CAGCGCTGACTATTCGAAACCAC ATAGCTCTGAGAGTCCGATAACTGTG 
SaCV-28 [NZ-BS4064a-2012] KM821763 CAAGCTGGAGGAGTTCATTGGATG CGCTTCTGGAGCATGCAGTAAC 
SaCV-29 [NZ-BS4325-2012] KM821764 GATGAAAGCGCGAACTGACTATCC GTTTTGCCCGCACCAGATGCT 
SaCV-30 [NZ-BS4120-2012] KM821765 CGTGGATTGGCGAGAAAAGCTC TAAGCTTGCATTTGCTTTCCGTGGAG 
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Acronym and isolate details GenBank 
accession # 

Forward primer Reverse primer 

SaCV-31 [NZ-BS4358-2012] KM821766 CATGGAACAACCCCAACGTTACTG TAACACACCAACGCATGACTTTAGGC 
SaCV-32 [NZ-BS4194-2012] KM821767 GGCTGGATCGGTACCCAGTAAT ATCGTAAAAAGTGCGAGACATCGATTC 
SaCV-33 [NZ-BS4147-2012] KM821768 GGCAAAAGTCATCGTGCAAGATCTG AACACCTGGAGGCCCGTAATAC 
SaCV-34 [NZ-BS4221-2012] KM821769 TTACGTCGACAAAGACGCTGACAAG CAAAGCAACTCTTCTTGCCATTTTCG 
SaCV-35 [NZ-BS4050-2012] KM821770 GCCATTGCCTGCTACGCCTA GTGAGCGATGCCTTTGCAGGTTT 
SaCV-36 [NZ-BS3974-2012] KM821748 CGCAACGACAGCATCGTCAAG GAGGACCCACTCTGTAGGCT 
SaCV-37 [NZ-BS2945-2012] KM821749 ACTTTATGCTCCTCGGGTGCAG GGTCTTGGAACCATTGGAGGATAAC 

Sewage-associated gemycircularvirus 

SaGmV-1 [NZ-BS3970-2012] KM821747 GAATGGCTATTACAGTCTGGTATCGG ATCTCTTCCATCAACATCTCCTCCG 
SaGmV-2 [NZ-BS3911-2012] KJ547642 AATCTCCGTTACCCCTCTTTC GTGAAAAACTAAAGTCCGAAGG 
SaGmV-3 [NZ-BS4149-2012] KJ547643 ACAGAAGTGCCCTTGGTG GTTCATTCACCTCACTCCG 
SaGmV-4 [NZ-BS3913-2012] KJ547634 AGGATGGAGGAGTTCATTAC GGTGACGTTCTCTTCCCA 
SaGmV-5 [NZ-BS3963-2012] KJ547635 TACCACCCGAACATTCAACCA GCCTTCAACATCAAAGCGTC 
SaGmV-6 [NZ-BS4014-2012] KJ547636 GGTTACGACTACGCATGCAA CTTCTCCGGAGTGCCATAA 
SaGmV-7a [NZ-BS3939-2012] KJ547637 TCCATCCGCGTGATCTTCT GGAGTTCATCTGCACGTG 
SaGmV-7b [NZ-BS3972-2012] KJ547640 ACACAGATCGACGATGGTAC AAAATATCGCGCGAGATTCGG 
SaGmV-8 [NZ-BS3917-2012] KJ547638 AGTACTGTGACTGGAAGTTCG CATGTTCTTTCACCCAACTTCAGA 
SaGmV-9 [NZ-BS3970-2012] KJ547639 GCCATTGCTTCCTCCGCT GGAACTCGTGATAAGTGGG 
SaGmV-10a [NZ-BS3980-2012] KJ547644 GTCTTTCGAGTCCCCCA CTATCGGAGGCAGAGTG 
SaGmV-10b [NZ-BS3849-2012] KJ547645 ACTCTGCTTCCTGAAGGTC GGATGCAAATGGTGGCGT 
SaGmV-11 [NZ-BS4117-2012] KJ547641 CCTTGATTGCATAGTCGTATCC ATGGTGATGTTGTTTGCGGAG 

Sewage-associated circular DNA molecules     

SaCM-1 [NZ-BS4111-2012] KJ547618 TACTGTACCAAAGAAGAAGGTCGC CTTTTCATTTTGTTGCTTGGTACCC 
SaCM-2 [NZ-BS3901b-2012] KJ547617 GGTGGCTGTTCGTAAGGATA CACTGAAATGGTATGATTGGAC 
SaCM-3 [NZ-BS2940-2012] KJ547619 ATCTTCTTGCCGACCCGTT TATGCTGAAGAGTCTCCAAGC 
SaCM-4 [NZ-BS2920-2012] KM877826 CCTTTGCCGATTACGCAAACACTAG CTGCTATGACCTTGCCATCGTTC 
SaCM-5 [NZ-BS3056-2012] KM877827 CTGCTACCTGGATGTCATGTAGAG AGCTATAACCTGGGCTAAGGACTTC 
SaCM-6 [NZ-BS3713-2012] KM877828 ACAGCTGCCACTGCTGTTTTCC CTGAGCCGCAGGATCAACAGT 
SaCM-7 [NZ-BS3510-2012] KM877829 GATATTCTGCAGCCCCAACTTC TCCTATCTATCGCGTAGAATATAGGAGTC 
SaCM-8 [NZ-BS3610-2012] KM877830 GATCCTTCGGGAGAAGCCGAA TGCCGTACCGCAGTCCAGAAT 
SaCM-9 [NZ-BS3553-2012] KM877831 CGACTATCATTGGTACACTACCTAACC GCTGAGTATCAGGTACACGAGTG 
SaCM-10 [NZ-BS3301-2012] KM877832 GATCACCTGGATCTATGATCACAATAGC TCGATCTTCCTGATCTTGTACATGTCG 
SaCM-11 [NZ-BS3394-2012] KM877833 GACATCGCACACGGGAACAACAA GTCGACGAAGGAGTCTTGACAGAGAG 
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8.3.3 Phylogenetic analyses 

The Rep amino acid sequences potentially encoded by the newly determined CRESS virus 

genomes together with those potentially encoded by other CRESS DNA viruses available in 

Genbank (as of 14th Sept 2014) were aligned using T-coffee (Notredame et al., 2000) and the 

alignment was refined using MUSCLE (Edgar, 2004) as implemented in MEGA5 (Tamura et 

al., 2011). 

 

The refined alignment was used to infer a maximum likelihood (ML) phylogenic tree using 

PhyML v3 (Guindon et al., 2010) using the best fit amino acid substitution model, WAG+G 

(determined using ProtTest 3) (Darriba et al., 2011), with an approximate likelihood-ratio test 

(aLRT) (Anisimova & Gascuel, 2006) for branch support. All branches with <80% aLRT 

support were collapsed using Mesquite v2.75 (http://mesquiteproject.org).  

 

A specific Rep alignment was generated which contained all known gemycircularvirus-like 

Rep sequences and all other available Rep sequences that were closely related to this group. 

The Rep ML phylogenetic tree constructed using this dataset was inferred with PHYML 

using the LG+I+G amino acid substitution model (determined to be the best fit model with 

ProtTest 3). The Reps of nanoviruses were used as an out-group. Additionally, the Reps of 

DflaCV-1, DflaCV-2, RW-E, CB-B, RodSCV-M-44, BtCV-1, 12-LDMD, 18-LDMD, 

SI00898, OdasCV-12, SaCV-6, -7, -8, -16, -19, -24, -27 and -32 (all referred to as CRESS 

DNA clade-1) were aligned and a ML phylogenetic tree was constructed using the LG+I+G 

amino acid substitution model (determined to be the best fit by ProtTest 3). This tree was 

rooted with GOM03193 (JX904377) - a ssDNA viral sequence isolated from a seawater 

sample which is the most closely related outlier sequence to this group.  

8.3.4 Recombination analysis of gemycircularviruses 

Recombination analysis was performed on the aligned full genome dataset of the 

gemycircularviruses (as this group of CRESS DNA viruses are similar enough to enable a 

credible alignment) using RDP4 (Martin et al., 2010) implementing the following methods: 

RDP (Martin & Rybicki, 2000), GENECONV (Padidam et al., 1999), Bootscan (Martin et 

al., 2005), Maxchi (Smith, 1992), Chimera (Posada & Crandall, 1998), Siscan (Gibbs et al., 
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2000), and 3Seq (Boni et al., 2007). Only events in which recombination was detected by 

three or more methods, each with an associated p-value of <10-3 that were coupled with 

phylogenetic support for recombination having occurred, were considered credible.  

 

8.4 Results and discussion 

8.4.1 Recovery and characterisation of novel CRESS DNA viral genomes 

8.4.1.1 Circular viral genomes recovered by PCR using abutting primers  

In an initial study to investigate CRESS DNA viral diversity in treated sewage, we purified 

viral DNA from an oxidation pond sample, amplified sequenced this using an Illumina next-

generation sequencing platform. The resulting 26,757,090 Illumina reads which were de novo 

assembled into 1833 contigs that were >1000 nts. A BLASTx comparison of these reads to 

the NCBI viral protein database showed that 53.3% (977 contigs) had significant BLASTx 

hits (e-value of 10-7). Of those 95.7% (935 contigs) shared identity with viral protein. Further 

analysis of the 935 viral-like contigs showed that 39.04% (365 contigs) shared identity to 

CRESS DNA virus proteins, 30.7% (287 contigs) to Microviridae proteins and 23.42% (219 

contigs) to Inoviridae proteins and 6.93% (64 contigs) to double stranded DNA viruses 

(Phycodnaviridae, Mimiviridae, Irodoviridae, Corticoviridae, Siphovoridae, Podoviridae and 

Mucoviridae). For the purpose of this study we focused on the 365 contigs with similarities to 

CRESS DNA viruses. Contigs were used to design back-to-back primers within a conserved 

region of the Rep or CP encoding ORF sequences. These primers were used in a PCR to 

recover circular ssDNA molecules representing what are apparently complete genomes of 50 

novel ssDNA viruses (Table 1). These sequences are hereafter simply referred to as 

“complete genomes” although it is recognised that these could possibly be genome 

components of multipartite ssDNA viruses such as those found in the genus Begomovirus of 

the family Geminiviridae and in all genera of the family Nanoviridae. Eleven additional 

circular replicons were recovered that are either individual genome components of 

multipartite ssDNA viruses, or defective sub-genome-length molecules that are hereafter 

simply referred to as “subgenomic DNA molecules”.  

All the PCR products were cloned and Sanger sequenced (a list of the primers used to recover 

each circular DNA molecule is provided in Table 1). Thirty-seven of the complete genomes 
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that range in size from 1605 nts to 4202 nts likely belong to completely novel CRESS DNA 

virus genera as they share only very low levels of sequence similarity to any other known 

CRESS DNA viruses. We have therefore tentatively named these sequences Sewage-

associated circular DNA virus (SaCV) 1 through 37. All of these CRESS DNA viruses 

encode at least two major ORFs, one of which encodes a Rep (Fig. 8.1). SaCV-1, SaCV-2, 

SaCV-3, SaCV-24, SaCV-32 SaCV-35, SaCV-36, SaCV-37 likely express Reps from spliced 

transcripts (i.e. their rep genes likely have introns analogous/homologous to those found in 

some geminiviruses and gemycircularviruses). Reps derived from a spliced rep are a feature 

seen in some members of the Geminivirdae family, for example in the genus Mastrevirus the 

rep is expressed from a spliced ORF C1 and C2 and repA is expressed from ORF C1 alone 

(Dekker et al., 1991; Wright et al., 1997). Splicing event of the Rep occurs with the removal 

of an intron with the acceptor and donor sites of GT and AG, respectively. In geminivirus the 

rep and repA are both essential for replication (Liu et al., 1998), the repA also plays a role in 

gene expression (Collin et al., 1996; Liu et al., 1999). Large ORFs that potentially encode 

Rep and CP are identifiable in all of the SaCV sequences other than SaCV-8 and -31 (See 

Table 2 for the top BLASTx result for each of the SaCVs putative Rep and CP ORFs). In 

these exceptional viruses two large ORFs other than the Rep were identified, neither of which 

shared any similarities to known CRESS DNA virus CPs. Similarly, two viruses with two 

unknown ORFs in addition to a ORF which encodes a Rep, have also been identified from a 

fresh water pond in the McMurdo Ice Shelf (Antarctica) (Zawar-Reza et al., 2014). Of the 37 

SaCV genomes 17 have putative Rep and CP ORFs which are bidirectionally transcribed 

(SaCV-31 has two unknown ORF, both transcribed on the virion sense strand), whereas 19 

are unidirectionally transcribed and one SaCV-8 is unknown due to two possible CP ORFs 

transcribed both on the virion and complementary strands. Similar genome architecture has 

been documented in other CRESS DNA viruses (Dayaram et al., 2014; Labonté & Suttle, 

2013; Rosario et al., 2009a; Zawar-Reza et al., 2014). These 37 complete genomes are so 

divergent from all other known CRESS DNA viruses, as is the case for most environmental 

CRESS DNA viruses, we were therefore only able to analyse their phylogenetic relationships 

to the CRESS DNA viruses based on their predicted Rep amino acid sequences (Fig. 8.2; 

additional Table 8.1 for list of acronyms and corresponding accession numbers in 

phylogenetic tree).  
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The remaining 13 complete genomes that were recovered here are closely related to the 

gemycircularviruses (Fig. 8.2 and 8.3), all have two large bidirectional ORFs (putatively 

encoding a Rep and CP) and ranging in size from 2130 nts to 2277 nts (Fig. 8.1). As is the 

case with most other described gemycircularviruses, all but one (SaGmV-6) of these 

complete genomes likely express Rep from a spliced transcript (Fig. 8.1).  

 

Genome-wide pairwise nucleotide comparisons of the gemycircularviruses which include 

sequences of 13 genomes recovered in this study together with 37 related sequences currently 

available in GenBank revealed a similar distribution of pairwise identities to that determined 

by Sikorski et al (2013b). Specifically, the distribution of pairwise identity scores display 

discrete clusters between 55% – 67%, 70% – 76% and 78% – 81%. Based on this distribution 

(Fig. 8.4), coupled with phylogenetic evidence, (Fig. 8.3A) we have tentatively classified the 

new viral genome sequences into separate species based on a genome-wide nucleotide 

sequence identity threshold of <78%. Hence, 13 of the gemycircularviruses recovered in this 

study were classified into 11 new species. Following from the simplified nomenclature 

proposed by Sikorski et al (2013b) we tentatively name these viruses sewage-associated 

gemycircularvirus (SaGmV) -1 through -11. The two genomes assigned to the SaGmV-7 

“species” (genomes BS3939 and BS3972) share 79.2% genome-wide nucleotide identity, and 

the two assigned to the SaGmV-10 species (genomes BS3980 and BS3849) share 81.1% 

identity. We have tentatively named these SaGmV-7 and SaGmV-10 sequences, SaGmV-7a / 

7b, and SaGmV-10a / 10b, respectively.  

8.4.1.2 Subgenomic DNA molecules 

The 11 subgenomic DNA molecules that were recovered (Fig. 8.1) which range in size from 

896 nts to 1294 nts and may represent either defective genomes (with large deletions) or 

small genome components of CRESS DNA viruses with multipartite genomes such as those 

found in the family Nanoviridae. We identified a single large ORF in each of these DNA 

molecules and have tentatively named them Sewage-associated circular DNA molecules 

(SaCM) -1 through to -11. Eight of these subgenomic molecules have a single ORF which 

shares similarity to Reps and three have an ORF that shares similarities to CPs of CRESS 

DNA viruses. A putative virion strand origin of replication stem-loop structures such as those 

found in most other known CRESS DNA viruses were identifiable within 7 of the 11 

subgenome molecules. Given both the absence of easily identifiable virion strand origins of 
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replication in all subgenomes and the fact that all 11 of these sequences are most closely 

related to CRESS DNA viruses with genomes that are twice as large and likely express two 

proteins, it is likely that these molecules are non-viable defective versions of much larger 

genomes rather than the complete components of multipartite genomes. The only exception 

to this is SaCM-4 which shares 53% identity with Faba bean necrotic yellows virus DNA R 

(KC979000) (Table 2). Geminivirus subgenomes have been recorded as a natural occurrence 

during geminivirus replication (Hadfield et al., 2012; Jeske et al., 2001), it is therefore not 

surprising that other ssDNA viruses may also produce subgenomic molecules during 

replication. 
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Table 8.2: Top BLASTx identities of the sewage-associated viruses and molecules Rep and CP amino acid sequences determined in this study with those 
encoded by other complete CRESS DNA virus genomes. 

Sewage-associated circular DNA viruses               

Isolate name  GenBank 
accession # 

Replication-associated 
protein 

GenBank 
accession # 

E-Value Identity Coat protein GenBank 
accession 
# 

E-Value Identity 

SaCV-1  KJ547620 Baminivirus JQ898331 9x10-30 32% McMurdo Ice Shelf pond-
associated circular DNA virus-3 

KJ547648 2x10-38 31% 

SaCV-2   KJ547626 Gemycircularvirus-10 KF371632 6x10-28 50% no significant viral hit       

SaCV-3    KJ547627 Baminivirus JQ898331 1x10-39 35% no significant viral hit       

SaCV-4  KJ547628 Gemycircularvirus-11 KF371631 5x10-55 38% no significant viral hit       

SaCV-5  KJ547629 Chimp162 GQ404883 5x10-07 45% no significant viral hit       

SaCV-6   KJ547630 Circoviridae 18 LDMD KF133825 5x10-137 65% no significant viral hit       

SaCV-7    KJ547631 Dragonfly larvae 
associated circular 
virus-2 

KF738874 2x10-141 67% no significant viral hit       

SaCV-8    KJ547632 Dragonfly larvae 
associated circular 
virus-2 

KF738874 9x10-97 58% no significant viral hit       

SaCV-9   KJ547633 Pig stool associated 
circular ssDNA virus 

 JX305992 8x10-136 78% Turkey stool associated circular 
ssDNA virus 

KF880727 2x10-116 55% 

SaCV-10   KJ547621 Pea yellow stunt virus KC979054 3x10-30 55% no significant viral hit       

SaCV-11  KJ547622 Circoviridae 2 LDMD KF133808 3x10-18 43% Circoviridae 4 LDMD-2013       

SaCV-12   KJ547623 Bat circovirus 
ZS/China/2011 

JF938079 9x10-52 40% no significant viral hit       

SaCV-13  KJ547624 HCBI8.215 virus LK931483 5x10-07 60% Circoviridae 2 LDMD-2013 KF133808 2x10-20 42% 

SaCV-14  KJ547625 Tobacco yellow dwarf 
virus-A 

JN989443 4x10-15 27% Circoviridae 21 LDMD-2013 KF133828 4x10-13 32% 

SaCV-15  KM821750 Bat circovirus 
ZS/Yunnan-China/2009 

JN377572 5x10-08 35% uncultured marine virus JX904404 1x10-24 35% 

SaCV-16 KM821751 Dragonfly larvae 
associated circular 
virus-2 

KF738874 4x10-109 61% McMurdo Ice Shelf pond-
associated circular DNA virus-7 

KJ547652 4x10-10 27% 
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Isolate 
name  

GenBank 
accession # 

Replication-associated 
protein 

GenBank 
accession # 

E-Value Identity Coat protein GenBank 
accession # 

E-Value Identity 

SaCV-17  KM821752 Circoviridae  
19 LDMD 

KF133826 3x10-41 37% no significant viral hit       

SaCV-18 KM821753 Rhynchosia golden 
mosaic virus 

AF239671 2x10-14 26% Circoviridae 4 LDMD-2013 KF133811 6x10-17 30% 

SaCV-18 KM821754 Bat circovirus 
ZS/China/2011 

JF938078 2x10-106 57% Nepavirus JQ898333 3x10-16 28% 

SaCV-20  KM821755 Circoviridae 19 LDMD-
2013 

KF133826 6x10-65 44% no significant viral hit       

SaCV-21  KM821756 Dragonfly larvae 
associated circular virus-
3 

KF738876 7x10-76 47% no significant viral hit       

SaCV-22  KM821757 Canine circovirus  KC241983 2x10-59 43% no significant viral hit       

SaCV-23 KM821758 Dragonfly cyclovirus1 KC512918 2x10-75 45% no significant viral hit       

SaCV-24 KM821759 Bat circovirus 
ZS/China/2011 

JF938078 4x10-86 49% no significant viral hit       

SaCV-25 KM821760 Farfantepenaeus 
duorarum circovirus 

KC441518 4x10-28 35% Circoviridae 21 LDMD-2013 KF133828 3x10-06 29% 

SaCV-26 KM821761 Gemycircularvirus-9 KF371633 8x10-10 25% Dragonfly larvae associated 
circular virus-3 

KJ547622 1x10-06 27% 

SaCV-27 KM821762 Dragonfly larvae 
associated circular virus-
2 

KF738874 5x10-125 65% Circoviridae 18 LDMD-2013 KF133825 3x10-16 28% 

SaCV-28  KM821763 Citrus chlorotic dwarf 
associated virus 

KJ547625 4x10-14 30% Mosquito VEM virus 
SDRBAJ 

HQ335087 2x10-24 34% 

SaCV-29  KM821764 Diporeia sp. associated 
circular virus 

KC248416 7x10-60 43% Circoviridae 21 LDMD-2013 KF133828 1x10-09 28% 

SaCV-30  KM821765 Chickpea chlorosis 
Australia virus 

KC172693 2x10-10 27% Dragonfly larvae associated 
circular virus-3 

KF738876 2x10-07 29% 

SaCV-31 KM821766 Circovirus-like genome 
RW-A 

FJ959077 4x10-26 30% no significant viral hit       

SaCV-32 KM821767 Dragonfly larvae 
associated circular virus-
2 

KF738874 2x10-107 58% Nepavirus JQ898333 6x10-14 24% 
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Isolate 
name  

GenBank 
accession # 

Replication-associated 
protein 

GenBank 
accession # 

E-Value Identity Coat protein GenBank 
accession # 

E-Value Identity 

SaCV-33  KM821768 Dragonfly larvae 
associated circular virus-3 

KF738876 1x10-53 43% Nepavirus  JQ898334 3x10-19 28% 

SaCV-34  KM821769 Cyanoramphus nest 
associated circular X 
DNA virus 

JX908739 3x10-36 32% no significant viral hit       

SaCV-35 KM821770 Cyclovirus 
PKbeef23/PAK/2009 

HQ738634 1x10-21 29% Circoviridae 3 LDMD-2013 KF133810 1x10-09 30% 

SaCV-36  KM821748 Ancient caribou feces 
associated virus 

KJ938716 5x10-146 60% Ancient caribou feces 
associated virus 

KJ938716 1x10-71 50% 

SaCV-37 KM821749 Dragonfly-associated 
circular virus-1 

JX185430 3x10-52 35% no significant viral hit       

Sewage-associated gemycircularviruses                

SaGmV-1 KM821747 Cassava associated 
circular DNA virus 

JQ412057 1x10-142 63% Gemycircularvirus-5 KF371637 6x10-37 35% 

SaGmV-2  KJ547642 Dragonfly-associated 
circular virus-1 

JX185430 6x10-122 59% MSSI2.225 virus LK931485 5x10-43 41% 

SaGmV-3  KJ547643 Gemycircularvirus-8 KF371634 0 67% Gemycircularvirus 8 KF371634 6x10-141 62% 

SaGmV-4  KJ547634 Caribou feces-associated 
gemycircularvirus 

KJ938717 2x10-94 63% Caribou feces-associated 
gemycircularvirus 

KJ938717 1x10-89 50% 

SaGmV-5  KJ547635 Meles meles fecal virus JN704610 5x10-128 73% Meles meles fecal virus JN704610 8x10-129 57% 

SaGmV-6  KJ547636 Sclerotinia sclerotiorum 
hypovirulence associated 
DNA virus 1 

GQ365709 0 71% Gemycircularvirus-10 KF371632 8x10-57 44% 

SaGmV-7a  KJ547637 Dragonfly-associated 
circular virus 2 

JX185429 9x10-161 65% Sclerotinia sclerotiorum 
hypovirulence associated 
DNA virus 1 

GQ365709 5x10-18 50% 

SaGmV-7b  KJ547640 Cassava associated 
circular DNA virus 

JQ412056 6x10-149 62% Sclerotinia sclerotiorum 
hypovirulence associated 
DNA virus 1 

GQ365709 2x10-19 49% 
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Isolate name  GenBank 
accession # 

Replication-associated 
protein 

GenBank 
accession # 

E-Value Identity Coat protein GenBank 
accession # 

E-Value Identity 

SaGmV-8  KJ547638 Cassava associated 
circular DNA virus 

JQ412057 8x10-159 62% Cassava associated circular 
DNA virus 

JQ412057 4x10-36 40% 

SaGmV-9  KJ547639 Dragonfly-associated 
circular virus-2 

JX185429 2x10-154 62% Gemycircularvirus-4 KF371638 4x10-14 41% 

SaGmV-10a  KJ547644 Gemycircularvirus-9 KF371633 7x10-169 65% MSSI2.225 virus LK931484 2x10-156 80% 

SaGmV-10b  KJ547645 MSSI2.225 virus  LK931485 9x10-130 94% MSSI2.225 virus LK931485 2x10-174 88% 

SaGmV-11  KJ547641 Hypericum japonicum 
associated circular DNA 
virus 

KF413620 2x10-144 61% Gemycircularvirus-2 KF371640 1x10-55 45% 

Sewage-associated circular DNA molecules 

SaCM-1  KJ547618 Beak and feather disease 
virus 

JX221020 4x10-12 47% No putative Cp       

SaCM-2  KJ547617 Diporeia sp. associated 
circular virus 

KC248418 3x10-18 30% No putative Cp       

SaCM-3  KJ547619 Circoviridae 4 LDMD KF133811 5x10-14 31% No putative Cp       

SaCM-4  KM877826 Faba bean necrotic 
yellows virus 

KC979000 1x10-26 53% No putative Cp       

SaCM-5  KM877827 Dragonfly larvae 
associated circular virus-3 

KF738876 7x10-63 49% No putative Cp       

SaCM-6  KM877828 No putative Rep       Circovirus-like genome RW-C FJ959079 3x10-04 62% 

SaCM-7  KM877829 No putative Rep       Circovirus-like genome RW-C FJ959079 7x10-19 34% 

SaCM-8 KM877830 Bat circovirus 
ZS/Yunnan-China/2009 

JN377572 8x10-07 36% No putative Cp       

SaCM-9  KM877831 Meles meles circovirus-
like virus 

JQ085285 1x10-26 32% No putative Cp       

SaCM-10 KM877832 No putative Rep       Diporeia sp. associated circular 
virus 

KC248418 4x10-09 26% 

SaCM-11 KM877833 Anguilla anguilla 
circovirus 

KC469701 3x10-29 31% No putative Cp       
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Sewage-associated circular DNA viruses

Genome
organisation∆

Virus Name Name of Isolate
Genbank
accession #

Genome
size (nt)

Nonanucleotide
motif

1 Sewage-associated gemycircularvirus-1 SaGmV-1 NZ-BS3970-2012] KM821747 2234 TAATATTAT

Sewage-associated gemycircularvirus-2 SaGmV-2 [NZ-BS3911-2012] KJ547642 2193 TAATATTAT

Sewage-associated gemycircularvirus-3 SaGmV-3 [NZ-BS4149-2012] KJ547643 2130 TAATATTAT

Sewage-associated gemycircularvirus-4 SaGmV-4 [NZ-BS3913-2012] KJ547634 2115 TAATATTAT

Sewage-associated gemycircularvirus-5 SaGmV-5 [NZ-BS3963-2012] KJ547635 2243 ATAACTTTG

Sewage-associated gemycircularvirus-7a SaGmV-7a [NZ-BS3939-2012] KJ547637 2277 TAATGTTAT

Sewage-associated gemycircularvirus-7b SaGmV-7b [NZ-BS3972-2012] KJ547640 2237 TAATATTAT

Sewage-associated gemycircularvirus-8 SaGmV-8 [NZ-BS3917-2012] KJ547638 2234 TAATATTAT

Sewage-associated gemycircularvirus-9 SaGmV-9 [NZ-BS3970-2012] KJ547639 2273 TAATATTAT

Sewage-associated gemycircularvirus-10a SaGmV-10a [NZ-BS3980-2012] KJ547644 2249 TAATGTTAT

Sewage-associated gemycircularvirus-10b SaGmV-10b [NZ-BS3849-2012] KJ547645 2254 TAATGTTAT

Sewage-associated gemycircularvirus-11 SaGmV-11 [NZ-BS4117-2012] KJ547641 2169 TAATATTAT

Sewage-associated circular DNA virus-1 SaCV-1 [NZ-BS3349-2012] KJ547620 2777 ATATTATAC

Sewage-associated circular DNA virus-2 SaCV-2 [NZ-BS4000-2012] KJ547626 2531 TAATATTAC

Sewage-associated circular DNA virus-3 SaCV-3 [NZ-BS3854-2012] KJ547627 2112 TAATATTAC

Sewage-associated circular DNA virus-32 SaCV-32 [NZ-BS4194-2012] KM821767 2711 TAGTATTAC

Sewage-associated circular DNA virus-35 SaCV-35 [NZ-BS4050-2012] KM821770 2472 TATCTATAG

Sewage-associated circular DNA virus-36 SaCV-36 [NZ-BS3974-2012] KM821748 2254 TAAGATTCT

Sewage-associated circular DNA virus-37 SaCV-37 [NZ-BS2945-2012] KM821749 2155 TAATATTAC

2 Sewage-associated circular DNA virus-24 SaCV-24 [NZ-BS4091-2012] KM821759 2605 CATTATTAC

3 Sewage-associated gemycircularvirus-6 SaGmV-6 [NZ-BS4014-2012] KJ547636 2147 TAATATTAT

Sewage-associated circular DNA virus-4 SaCV-4 [NZ-BS3799-2012] KJ547628 1899 TAATATTAC

Sewage-associated circular DNA virus-22 SaCV-22 [NZ-BS4155-2012] KM821757 2861 CAGTATTAC

Sewage-associated circular DNA virus-25 SaCV-25 [NZ-BS4281-2012] KM821760 3588 TAGTATTAC

Sewage-associated circular DNA virus-27 SaCV-27 [NZ-BS4103-2012] KM821762 2638 CGTGGCTTG

Sewage-associated circular DNA virus-33 SaCV-33 [NZ-BS4147-2012] KM821768 2846 ATTACTTAC

4 Sewage-associated circular DNA virus-5 SaCV-5 [NZ-BS3901a-2012] KJ547629 1969 CGGTATTAC

Sewage-associated circular DNA virus-6 SaCV-6 [NZ-BS4017-2012] KJ547630 2540 ATGTAATAC

Sewage-associated circular DNA virus-10 SaCV-10 [NZ-BS3946-2012] KJ547621 2246 TAGTATTAC

Sewage-associated circular DNA virus-11 SaCV-11 [NZ-BS3997-2012] KJ547622 2336 AAGTATTAC

Sewage-associated circular DNA virus-13 SaCV-13 [NZ-BS4044-2012] KJ547624 3533 AGAGGTTAC

Sewage-associated circular DNA virus-16 SaCV-16 [NZ-BS3759-2012] KM821751 1817 TAGTAGGTA

Sewage-associated circular DNA virus-18 SaCV-18 [NZ-BS3994-2012] KM821753 2290 TGTCCGAGT

Sewage-associated circular DNA virus-23 SaCV-23 [NZ-BS4025-2012] KM821758 2309 TATTATTAC

Sewage-associated circular DNA virus-29 SaCV-29 [NZ-BS4325-2012] KM821764 4037 TAGTATTAC

5 Sewage-associated circular DNA virus-31 SaCV-31 [NZ-BS4358-2012] KM821766 4202 TAATATAAG

6 Sewage-associated circular DNA virus-7 SaCV-7 [NZ-BS3976-2012] KJ547631 2311 TTGAGTTCC

Sewage-associated circular DNA virus-9 SaCV-9 [NZ-BS3681-2012] KJ547633 2423 ATGCTACCC

Sewage-associated circular DNA virus-15 SaCV-15 [NZ-BS3557-2012] KM821750 1605 TAGTATTAC

Sewage-associated circular DNA virus-17 SaCV-17 [NZ-BS4236-2012] KM821752 2207 TAGTATTAC

Sewage-associated circular DNA virus-20 SaCV-20 [NZ-BS3900-2012] KM821755 2087 TAGGATTAC

Sewage-associated circular DNA virus-21 SaCV-21 [NZ-BS4169-2012] KM821756 2906 TAGTATTAC

Sewage-associated circular DNA virus-26 SaCV-26 [NZ-BS4339-2012] KM821761 3348 TAATATTAC

Sewage-associated circular DNA virus-34 SaCV-34 [NZ-BS4221-2012] KM821769 2220 TAGTATTAC

7 Sewage-associated circular DNA virus-12 SaCV-12 [NZ-BS3888-2012] KJ547623 1805 TAGTATTAC

Sewage-associated circular DNA virus-14 SaCV-14 [NZ-BS4064-2012] KJ547625 2335 TAATATTAC

Sewage-associated circular DNA virus-28 SaCV-28 [NZ-BS4064a-2012] KM821763 2496 TAATATTAC

8 Sewage-associated circular DNA virus-19 SaCV-19 [NZ-BS4128-2012] KM821754 2478 TAGTATTAC

9 Sewage-associated circular DNA virus-30 SaCV-30 [NZ-BS4120-2012] KM821765 2741 TAATATTAC

10 Sewage-associated circular DNA virus-8 SaCV-8 [NZ-BS4075-2012] KJ547632 2577 ATTACTTAC

Sewage-associated circular DNA molecules

Single ORF Sewage-associated circular DNA molecule-1 SaCM-1 [NZ-BS4111-2012] KJ547618 967 Unknown

Sewage-associated circular DNA molecule-2 SaCM-2 [NZ-BS3901b-2012] KJ547617 1169 Unknown

Sewage-associated circular DNA molecule-3 SaCM-3 [NZ-BS2940-2012] KJ547619 1132 Unknown

Sewage-associated circular DNA molecule-4 SaCM-4 [NZ-BS2920-2012] KM877826 1040 TAATACTAA

Sewage-associated circular DNA molecule-5 SaCM-5 [NZ-BS3056-2012] KM877827 1078 CATTATTAC

Sewage-associated circular DNA molecule-6 SaCM-6  [NZ-BS3713-2012] KM877828 1077 TATCAGAAA

Sewage-associated circular DNA molecule-7 SaCM-7 [NZ-BS3510-2012] KM877829 896 TAATATTAC

Sewage-associated circular DNA molecule-8 SaCM-8 [NZ-BS3610-2012] KM877830 1639 TAGTATTAC

Sewage-associated circular DNA molecule-9 SaCM-9 [NZ-BS3553-2012] KM877831 1535 TATTATTAT

Sewage-associated circular DNA molecule-10 SaCM-10 [NZ-BS3301-2012] KM877832 1026 TAGTATTAC

Sewage-associated circular DNA molecule-11 SaCM-11 [NZ-BS3394-2012] KM877833 1294 Unknown
∆Genome organisation  groupings are soley for the purpose of this publication to give a basic overview of  the genome organisation of each virus.
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Figure 8.1: Summary of genome organisation and isolate information for sewage-associated viruses 
and molecules. Genome cartoons show overview of genome organisation but do not represent the 
exact positioning and relative size of each gene in the individual sewage associated viruses. 
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8.4.2 Phylogenetic and sequence analyses of novel sewage-associated circular viruses 

The only recognisably homologous features in common between the CRESS DNA viral 

genomes recovered in this study are their probable Reps and virion-strand origins of 

replication. An alignment containing predicted Rep amino acid sequences from both the 

probable viral genomes recovered in this study and those of other representative CRESS 

DNA viruses available in GenBank was used to construct a ML phylogenetic tree. It is 

important to note that the breadth of diversity in this large dataset makes it difficult to 

accurately align the Rep sequences and hence the ML phylogenetic tree presented in Figure 

8.2 is simply meant as a plausible indicator of the genetic relatedness between the represented 

Rep sequences of CRESS DNA viruses.  

 

The Reps of the SaCVs are highly diverse, with SaCV-1, -2, -3, -4, -36 and -37 being most 

closely related to geminiviruses, the gemycircularviruses (Rosario et al., 2012a; Sikorski et 

al., 2013b; Yu et al., 2010), two other sewage-associated viruses, (Baminivirus and 

Niminivirus) (Ng et al., 2012), an Ancient caribou-associated virus (anCFV) (Ng et al., 2014) 

and an Odonata-associated circular DNA virus (OdasCV-6) (Dayaram et al., In review) (Fig. 

8.2 and Fig. 8.3). SaCV-1 encodes a putative CP which shares 29.31% amino acid identity 

with the presumed CP of Niminivirus. The SaCV-9 Rep appears to be clustering with a group 

of divergent CRESS DNA viruses isolated from pig faeces, sharing ~79% Rep aa identity 

with pig stool associated circular DNA viruses from Europe (JX305991- JX305998, 

unpublished and JQ023166, (Sachsenröder et al., 2012). The Rep of SaCV-10 is most similar 

to that of nanoviruses, sharing 42.65% pairwise identity with Milk vetch dwarf virus 

(AB000920). Interestingly, the genome of SaCV-13 shares some similarity to the DNA-RNA 

hybrid viruses and viral contigs (Diemer & Stedman, 2012; McDaniel et al., 2013; Roux et 

al., 2013) recently described. The Rep of this virus is most closely related to that of ssDNA 

viruses whereas the CP is most similar to that of Tombusviruses, the oomycete-infecting 

ssRNA viruses, Sclerophthora macrospora virus A (Yokoi et al., 1999) and Plasmopara 

halstedii virus A (Heller-Dohmen et al., 2011), and the CP of previously described DNA-

RNA viruses and viral-like contigs (Diemer & Stedman, 2012; McDaniel et al., 2013; Roux 

et al., 2013). Similar putative DNA-RNA hybrid viruses have been identified associated with 

dragonflies (Rosario et al., 2012a) and in ocean water (McDaniel et al., 2013) however they 

vary in that the CP of these viruses has a domain which is significantly similar to that in the 
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ssRNA plant-infecting virus, Tobacco necrosis satellite virus (Henriksson et al., 1981). Five 

SaCVs, SaCV-11, -14, -18 and -29 all have CPs which also share significant similarities to 

STNV. The presence of these putative DNA/RNA hybrid viruses in several aquatic 

environments and from a dragonfly indicates that these viruses may be common in nature. 

 

The Reps of SaCV-6, -7, -8 -16, -19, -24, -27 and -32 are all quite closely related to those of 

DflaCV-1 (KF738873), DflaCV-2 (KF738874), RW-E (FJ959081), CB-B (FJ959083), 

RodSCV-M-44 (JF755408), YN-BTCV-1 (JF938078), 12-LDMD (KF133819), 18-LDMD 

(KF133825), OdasCV-12 (KM598395) and SI00898 (JX904478; Fig. 8.2 and Fig 8.5). A 

more comprehensive analysis of this clade, which we have name CRESS DNA viruses Clade 

1 for the purposes of this study, shows that the SaCVs in this clade share between 40% and 

73% Rep aa identity with the other members of this clade and each other (Table 2). It is 

important to note that despite these genomes having closely related Rep sequences their 

genome organisations vary and are still highly diverse which is evident in the ML 

phylogenetic tree (Fig. 8.5). Those which have a unidirectional genome organisation are 

OdasCV-12, SaCV-7, DflaCV-1, DflaCV-2, LDMD-12, LDMD-18, RW-E and SI00898, 

while the rest all have a bidirectional genome organisation (Fig. 8.1). Interestingly, RW-E is 

from a treated sewage sample collected in Florida, USA at point of discharge into 

environment.  

 

The Reps of SaGmV-1 to -11 are most closely related to those of gemycircularviruses (Fig. 

8.3) with SaGmV-4 being the most divergent of these viruses. The Rep sequences of four 

SaGmVs (SaGmV-1a, SaGmV-7a, SaGmV-7b, SaGmV-8, and SaGmV-9) form a well-

supported clade together with BasCV-3, with sequences in the clade sharing >76.45% Rep aa 

identity. Interestingly, the Rep of SaGmV-6 shares 70.19% pairwise identity with SsHADV-1 

Rep sequences recovered in China and New Zealand (Kraberger et al., 2013; Yu et al., 2010). 

Given that SsHADV-1 infects the fungus Sclerotinia sclerotiorum it is possible that other 

members of this clade also infect fungi. Hypericum japonicum-associated circular DNA virus 

(HJasCV) (Du et al., 2014) and Cassava-associated circular DNA virus (CasCV) (Dayaram et 

al., 2012) were isolated from plant samples and therefore may infect epiphytic/endophytic 

fungi living on or within plants. Since several viruses in this group were isolated from faecal 

samples it is possible these originated from fungal material or spores consumed by the 
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various animals and shed in their faecal material or fungal contamination post-shedding (Ng 

et al., 2014; Sikorski et al., 2013b). Those gemycircularviruses associated with dragonflies 

(Rosario et al., 2012a) and mosquitos (Ng et al., 2011) may be from fungal material 

indirectly consumed by the dragonfly or adhered to the outside of the insect. Recently the 

discovery of gemycircularviruses in bovine serum from healthy cattle as well as from brain 

tissue and serum of a patient with multiple sclerosis perhaps adds a new dimension on the 

possible host range of these viruses (Lamberto et al., 2014). SaGmV-10a and 10b are closely 

related, sharing 81.1% and 87.5% genome-wide pairwise identity respectively to the 

gemycircularvirus isolate recovered from serum and brain tissue from a patient with multiple 

sclerosis (isolates MSSI2.225 and MSBI3.224, which are said to be identical). 
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Figure 8.2: Mid-point rooted maximum likelihood phylogenetic tree (constructed with the nucleotide 
substitution model WAG+G) of Rep amino acid sequences encoded by known and putative CRESS 
DNA viral genomes recovered in this study. Phylogenetic tree was midpoint rooted. Branches with 
<80% aLRT support have been collapsed. Accession numbers for the CRESS DNA viruses are 
provided in Table 4. Branches and names in red indicate Reps encoded by viral genomes recovered in 
this study. The clade for the Nanoviruses, cycloviruses, circoviruses, CRESS DNA clade-1 and major 
grouping incorporating the geminiviruses, gemycircularviruses, and gemini-like viruses have been 
collapsed.  
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Figure 8.3: Maximum likelihood Rep amino acid sequence phylogenetic trees (constructed with the 
nucleotide substitution model LG+I+G+F). Sources of viral isolates are indicated by colours shown in 
the key. Branches with aLRT <80% support have been collapsed. Reps encoded by CRESS DNA 
viruses recovered in this study are indicated in bold. Mid-point rooted maximum likelihood 
phylogenetic tree of all known gemycircularvirus Rep sequences including those from this study. 
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Figure 8.4: Distribution of genome-wide pairwise nucleotide identities of gemycircularviruses.  
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Figure 8.5. Maximum likelihood Rep amino acid sequence phylogenetic trees (constructed with the nucleotide substitution model LG+I+G+F). Maximum 
likelihood phylogenetic tree (A) and pairwise amino acid comparison matrix (B) of Rep sequences from CRESS DNA virus Clade 1. CRESS DNA viruses 
recovered in this study are indicated in bold. 
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8.4.3 Conserved motifs within replication-associated proteins 

All well studied circular ssDNA viruses that express a Rep protein replicate by a rolling-

circle mechanism (Jeske et al., 2001). There are a number of well conserved motifs present in 

the Reps of these viruses (Koonin & Ilyina, 1992; Londoño et al., 2010; Rosario et al., 

2012b) that are characteristic of rolling-circle replication (RCR) initiator proteins. Besides 

facilitating the definitive identification of Rep-encoding ORFs, the extreme conservation of 

these motifs is the primary reason that Reps expressed by diverse rolling-circle replicons 

have identifiable homology. The most conserved of these motifs, known as RCR motifs I, II 

and III have been reviewed in Rosario et al. (2012b). A fourth large conserved motif known 

simply as the geminivirus Rep sequence (GRS) domain has been identified in geminiviruses 

(Nash et al., 2011) and gemycircularviruses (Dayaram et al., 2012; Sikorski et al., 2013b). 

Three putative conserved helicase domains known as Walker A, B and C motifs sit 

downstream of motif III, these have been identified in all the major families of eukaryote-

infecting circular ssDNA viruses (Rosario et al., 2012b). 

 

We attempted to identify these various motifs within all the probable Rep sequences encoded 

by the genomes recovered in this study (Table 3 and 4). The Reps of gemycircularviruses and 

those closely related have motifs (including the GRS motif) which are most similar to those 

found in geminivirus Reps (Table 3). Interestingly, Niminivirus and SaCV-4 both have the 

same motif I sequence (FLTYPQ) as that found in most geminivirus Reps (Table 3). Motif I 

has been shown in geminiviruses to be required for DNA binding and cleavage prior to RCR 

(Orozco & Hanley-Bowdoin, 1998) and it likely has a similar function in these other viruses. 

All the SaCVs and the SaGmVs have a conserved motif III sequence (YxxK), with the 

exception of SaCV-10, SaCV-34 and SaCV-35 (Table 3 and 4), that is similar to that seen in 

all the well characterised eukaryotic ssDNA viral families. There is a high degree of 

conservation among the members of CRESS DNA Clade 1 viruses, especially in motif I 

[(M/L)LT(A/I)P], motif III [YV(W/G)K] and the Walker C motif [(F/I)TSN] (Table 2). 
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Table 8.3: Putative conserved motifs identified in the Reps of gemycircularviruses and those that are 
most closely related. 

Viral isolate Genbank 
accession # 

RCR 
motif  I 

RCR 
motif  II 

GRS motif RCR 
motif  III 

Walker-A Walker-B Motif C 

SaGmV-1  KM821747  LITYSQ VHLHC RCFDIEGRHPNIEPSR YACK GESRTGKT AIFDDW VISN 

SaGmV-2 KJ547642 IVTYAQ IHLHC DVFDVEGRHPNVQHVG YCIK GPTRVGKT VFDDM YCHN 

SaGmV-3 KJ547643 LLTYAQ LHIHA RVFDMDGCHPNIVRGY YAIK GPTKLGKT VFDDM YLYN 

SaGmV-4 KJ547634 IVTFPQ VHYHM NLFDYFGAHGNIKSVR YCGK GPSRTGKT VFDDI MCLN 

SaGmV-5 KJ547635 LLTYSQ IHLHA RRFDVEGYHPNIQPCG YAIK GETRLGKT VLDDI WLMN 

SaGmV-6 KJ547636 LLTYAQ IHLHV DTFDVGGFHPNISQSY YACK GPSQTGKT VFDDI WCSN 

SaGmV-7a KJ547637 LLTYAQ VHLHV NIFDVDGCHPNISPSS YAIK GESRTGKT VFDDI WLSN 

SaGmV-7b KJ547640 LLTYSQ VHLHC RCFDIEGRHPNVEPSH YVIK GESRTGKT VFDDV WLSN 

SaGmV-8 KJ547638 LITYAQ VHLHC RVFDIEGRHPNIEPSR YAVK GESRTGKT VFDDI WLSN 

SaGmV-9 KJ547639 LLTYAQ IHLHC RVFDIENRHPNVEPSR YAVK GESRTGKT VFDDI WLSN 

SaGmV-10a KJ547644 LLTYAQ IHLHA RAFDVEGQHPNVSPSR YAIK GPSRMGKT IFDDF WLSN 

SaGmV-10b KJ547645 LLTYPQ LHLHA RAFDVEGCHPNVSPSR YAIK GPSRMGKT IFDDF WLSN 

SaGmV-11 KJ547641 LLTYAQ LHLHV DLFDVDGHHPNVTPSR YAIK GRSRTGKP VFDDI WLAN 

FaGmV-1a KF371643 LLTYAQ THLHA DVFDVGGRHPNLVPSY YAIK GDTRLGKT VFDDM WLAN 

FaGmV-1b KF371642 LLTYAQ THLHA DVFDVGGRHPNLVPSY YAIK GDTRLGKT VFDDM WLAN 

FaGmV-1c KF371641 LLTYAQ THLHA DVFDVGGRHPNLVPSY YAIK FPAWLDVV AIDDM WLAN 

FaGmV-2 KF371640 LLTYAQ THLHA DVFDVGGRHPNVMPSF YATK GDTRLGKT VFDDM WLSN 

FaGmV-3 KF371639 LLTYAQ THLHA DVFDVGGRHPNLVPSY YAIK GDTRLGKT VFDDM WLSN 

FaGmV-4 KF371638 LLTYAQ THLHA DVFDVGGFHPNIEASR YAIK GDTRLGKT VFDDM WLAN 

FaGmV-5 KF371637 LVTYPQ THLHV DIFDVGGFHPNIERSK YACK GDALTGKT VIDDI WIAN 

FaGmV-6 KF371636 LLTYAQ IHLHC RIFDVDGRHPNVVPSR YAIK GPSLTGKT VLDDI WCAN 

FaGmV-7 KF371635 LLTYPQ YTSHC RIFDIQGHHPNIERVG YTIK GETRLGKT IFDDL WCSN 

FaGmV-8 KF371634 LLTFPQ LHLHA RVFDVDGRHPNVVRGY YAIK GPTRLGKT IFDDM YICN 

FaGmV-9 KF371633 LLTYAQ IHLHA RVFDVQGHHPNVEPSR YAIK GPTRTGKT VFDDF WINN 

FaGmV-10 KF371632 CPHYLP THLHA RRFDVDGYHPNVQPFG YAIK GESRLGKT VFDDM WLCN 

FaGmV-11 KF371631 FLTYSQ HHYHV RIFDVGGCHPNFKSVR YCLK GRSRLGKT VMDDI WCTN 

FaGmV-12 KF371630 FLTYSQ FHFHA RIFDFDGLHPNIESVR YTKK GPHRRRRT VFDDI WVCN 

FaGmV-13 KJ938717 IITFPQ IHYHV DSFDVLGHHPNWTPIR LEHG GPTRTGKT VFDDI MCMN 

HCBI9 LK931484 ITFPQV IHYHI TAFDYFGAHGNIKSIR YVGK GPTRTGKT VFDDI MCMN 

HCBI8 LK931483 LTYAQC THLHA AVFDVGGFHPNISITK YAIK GPSRTGKT VFDDI WISN 

MSSI2 LK931485 LTYPQC LHLHA RAFDVEGCHPNVSPSR YAIK GPSRMGKT IFDDF WLSN 

MmFV JN704610 LLTYAQ IHLHA RRFDVEGFHPNIAPCG YAIK GETRLGKT VLDDM WLMN 

MVemV HQ335086 LLTYAQ IHFHA RFWDIAGRHPNIARVG YAIK GPSRTGKT VFDDI WVSN 

SsHADV-1 GQ365709 LLTYAQ IHLHC DVFDVDGHHPNITKSR YAIK GPSQTGKT VFDDI WCSN 

CasCV JQ412057 LITYAQ VHLHC DIFDVDGRHPNIEPSW YAIK GDSRSGKT IFDDI WISN 

HjasCV KF413620 LVTYAQ LHLHV DILDVDGRHPNLAPIK YAIK GGTRTGKT VFDDI WICN 

DfasCV-1 JX185430 LLTYPQ VHLHA RVFDVDGHHPNIVRGY YATK GDTRLGKT VFDDM YISN 

DfasCV-2 JX185429 LVTYPQ LHLHC DIFDVDGCHPNIQPST YAIK GESRTGKT IFDDI WISN 

DfasCV-3 JX185428 LLTYAQ THYHA RIFDIDGYHPNILSGR YATK GPSRTGKT VFDDI WCNN 

DfasCV-4 KM598385 LITYAQ LHLHV DIFDVDGRHPNIKRSW YAIK GGNGSGQT IFDDI WLCN 

DfasCV-5 KM598387 LLTYSQ THFHVF NVFDVGGHHPNILPVW YAAK SSLAFRKP VFDDW WLCN 

SaCV-1 KJ547620 IITYPQ LHRHA FFDHLTRHPNIKCVGK YVKK GASRLGKT VFDDI TSTN 

SaCV-2 KJ547626 FLTYPR LHVHA RFFDVAGFHPNIQTVR YLDK GPSRTGKT IFDDV VDN 

SaCV-3 KJ547627 LLSEQN LHLHA DAFDVDGFHPNIQKPR YCSK GKSRWGKT IFDDI WLCN 

SaCV-4 KJ547628 FLTYPQ PHLHA TFFNYENYHPNIQSAR YTKK GPSKLGK VFDDF YCAN 

NimiV JQ898332 FLTYPQ PHFHA RHFDISGYHPNIQVCR YVTK GPSKTGKS VLDDI IVCS 

BamiV JQ898331 LLTYPQ PHLHI RFFDVDTFHPNVVVVR YIAK GASRIGKT VFDDI FLVN 

SaCV-36 KM821748 FLTYSQ IHYHV DVFDLDNHHPNIAIIK YIRK GPTRLGKS ILDDF WICQ 

SaCV-37 KM821749 IITYPR PHIHV RYFDIGDHHPNVQSTR YVAK GELLYIVT VFDDI WLSN 
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Table 8.4: Putative conserved motifs identified in the Reps encoded by CRESS 
DNA viruses identified in this study and of those of CRESS DNA virus Clade 1. 

  RCR motif    

 Viral isolate  Genbank 
accession # 

I II III Walker-A Walker-B Motif C 

SaCV-5 KJ547629 FYTYNN PHLQG YCTK GPGGVGKD ILDEF ILTN 

SaCV-9 KJ547633 CEGDNA RHFQF YVYK ERGNSGKT IIDTP VLCN 

SaCV-10 KJ547621 CFTHNN DHIQG YCME GNNGKTYF IFDYV VLAN 

SaCV-11 KJ547622 VFTLNN PHLQG YCTK GPTGAGKT ILDDI ITSN 

SaCV-12 KJ547623 CFTLNN PHLQG YCHK GVTGTGKT VIDDF ITSN 

SaCV-13 KJ547624 LCTYAK KHMHV YLGK GNSWKSYT FVDLA VLAN 

SaCV-14 KJ547625 FLTWPQ KHVHA YVCK GLPGVGKT VLDEY IVSN 

SaCV-15  KM821750 SITINN VHYQG YVHK GRWVSTEF YVDSL ILRH 

SaCV-17  KM821752 CFTLNN RHLQG YCSK GLPGVGKS IIDDF VTSN 

SaCV-18  KM821753 TITFPQ PHLHV YCTK GPKNLGKT VFDEF ILSN 

SaCV-20  KM821755 VFTVNN PHLQG YCKK GKAGCGKS IIEDF ITSN 

SaCV-21  KM821756 CFTLNN RHLQG YCTK GEPGVGKS ILDDF VTSN 

SaCV-22  KM821757 CFTQNN PHYQG YCTK GPPGTGKS VIDEF ITSN 

SaCV-23  KM821758 VFTVNN PHIQG YCRK GPPGSGKS IIDDF ITSN 

SaCV-25  KM821760 VFTVNN PHIQG YCTK GPTGTGKT VLEEF ITSN 

SaCV-26  KM821761 SLTYPQ VHRHV YCMK EAPNLGKT LLDEY ITSN 

SaCV-28  KM821763 FLTWPQ PHVHA YVCK GLPGVGKT VLDEF IVSN 

SaCV-29  KM821764 CYTLNN PHHQG YCKK GASGAGKT IIDDV ITSQ 

SaCV-30  KM821765 FLTFPQ KHLHA YVMK GPPGIGKT LLDEF IMSN 

SaCV-31  KM821766 CVTWNN PHFQM YCTK GPSAVGKT IVDEW FTSN 

SaCV-33  KM821768 LLTIND EHWQL YVFK GPPGVGKS ILDDF ITSN 

SaCV-34  KM821769 CFTSFN KHIQG YCKQ MGGNTGKS IYDLA VMAN 

SaCV-35  KM821770 IGTIYL HHIQI YCTE GGAGVGKS LFDDF FTAD 

SaCV-36 KM821748 FLTYSQ IHYHV YIRK GPTRLGKS ILDDF WICQ 

CRESS DNA virus clade-1             

SaCV-6 KJ547630 LLTIPH KHWQI YVWK GPTGTGKS VIDEF ITSN 

SaCV-7 KJ547631 LLTIPH LHWQA YVWK GRTGTGKS VIDEF ITSN 

SaCV-8 KJ547632 MLTAPA SHWQL YVWK GRTGTGKS VIDEF ITSN 

SaCV-16  KM821751 ILTIPH LHWQL YVWK GPTGVGKS VIDEF ITSN 

SaCV-19  KM821754 ILTIPH LHWQI YVHK GRTGTGKS VIDEF ITSN 

SaCV-24  KM821759 IGTISI QHWQV YVWK GLTGTGKS VIDEF ITSN 

SaCV-27  KM821762 LLTIPF LHWQI YVWK GPTATGKS VLDEY ITTN 

SaCV-32  KM821767 LLTIPH LHWQL YVWK GDAGTGKS VIDEF ITSN 

DFLaCV-1 KF738873 CFTVNN SHWQI YVWK GDTRLGKT IVDEF FTSN 

DFLaCV-2 KF738874 VFTLNN LHWQV YVWK GESRTGKT VIDEF ITSN 

RWE FJ959081 LLTIPE LHWQV YVWK GPTGTGKS VVDEF ITSN 

CB-B FJ959083 ILTIPE RHWQV YVGK GPTGTGKT IIDEF ITSN 

RodSCV-M44 JF755408 MLTIPY PHWQL YVWK GSTGMGKS VIDEF ITSN 

BtCV-1 JF938078 LLTIPY LHWQL YVWK GRTGAGKS VIDEF ITSN 

SI00898 JX904478 LLTIPH LHWQI YVWK GRTETGKS VMDEF ITSN 

12-LDMD KF133819 MLTIPH IHWQL YVWK GVSGSGKS VLDEF ITSN 

18-LDMD KF133825 MLTIPH IHWQL YVWK GVSGSGKS VLDEF ITSN 

OdasCV-12  KM598395 LGTIPF EHWQV YVWK GPTGTGKS VIDEF ITSN 
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8.4.4 Nonanucleotide sequence analysis 

In order to initiate RCR the Rep of ssDNA viruses in the family’s Circoviridae, Nanoviridae 

and Geminiviridae cleaves the parental virion-sense DNA strand within a conserved 

nonanucleotide motif in the loop domain of a stem-loop structure that is usually located in an 

intergenic region. Probable virion-strand origin of replication nonanucleotide sequences were 

identified in all 50 of the complete genomes recovered in this study (Fig. 8.1). All 

gemycircularviruses, with the exception of three genomes (MmFV, FaGmV-12, -13 and 

SaGmV-5) have a TAATRTTAD nonanucleotide sequence, whereas the complete genomes 

with Rep sequences that cluster close to the gemycircularviruses (Baminivirus, Nimivirus, 

SaCV-2, -3, -4 and SaCV-37) have a TAATATTAC nonanucleotide sequence, which is 

highly conserved amongst the geminiviruses (the primary exceptions being Eragrostis 

curvula streak virus [FJ665631] (Varsani et al., 2009b) and Beet curly top Iran virus 

[EU273816] (Yazdi et al., 2008)). The nonanucleotide motifs of SaCV-5 through -14 are 

variable (Table 2) and to some extent this is not surprising given how divergent these are 

from the other viral genomes recovered in this study (Fig. 8.2; Additional Table 8.1).  

8.4.5 Recombination patterns among Gemycircularviruses  

Of all the complete genomes recovered in this study, only those that were closely related to 

the gemycircularvirus group could be aligned with sufficient accuracy to enable reliable 

recombination analysis. Previously Sikorski et al. (2013b) isolated 12 new 

gemycircularviruses and analysed these along with all other previously identified 

gemycircularviruses for evidence of recombination (Fig. 8.6). Their results indicated seven 

strongly supported recombination events were detected. Given that we have significantly 

increased the number of known viral genomes within this group we were able to identify a 

total of 15 recombination events. Although the addition of several new sequences to this 

group has increased the alignment credibility on a full genome scale, there is still a relatively 

high degree of sequence diversity and therefore it is important to keep in mind that the 

position of individual breakpoints may vary as sequences that are more closely related to the 

parental viruses of recombinants are recovered. The fragments of sequence that were 

apparently transferred during recombination vary in size from 90nt (event 1 in Fig. 8.6) to 

786nt (event 5 in Fig. 8.6). Breakpoints were found spanning coding and non-coding regions 

with the exception of event 8 which was exclusively limited to non-coding regions (Fig. 8.6).  
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There are currently no obvious recombination breakpoint hot- or cold-spots within the 

gemycircularvirus genomes. This is in contrast to observations made in very well sampled 

ssDNA virus families such as the circoviruses, nanoviruses and geminiviruses. In these other 

virus groups whereas recombination breakpoint hotspots tend to occur in intergenic regions 

and are particularly common at the virion-strand origin of replication (Kraberger et al., 2012; 

Lefeuvre et al., 2007; Martin et al., 2011b; Varsani et al., 2009a), recombination breakpoint 

cold-spots tend to occur within the internal regions of coat protein genes. Recombination 

hotspots are thought to occur in the intergenic regions because this is where replication and 

transcription factors may clash during replication (Martin et al., 2011a). 
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Figure 8.6: Illustration and details of recombination events detected in all gemycircularvirus 
genomes. Arrows above genome maps indicate the positions of large ORFs. Grey boxes represent 
recombinantion event. Major and minor parents indicate the most likely identities of parental 
sequences that respectively donated the larger and smaller regions of the recombinants genome. 
Methods used to detect recombination are as follows RDP (R), GENCONV (G), BOOTSCAN (B), 
MAXCHI (M), CHIMERA (C), SISCAN (S) and 3SEQ (T). For each event the method with the most 
significant associated p-value is indicated in bold. 
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8.5 Concluding remarks  

Prior to the advent of metagenomic sequencing of CRESS DNA viruses the diversity of this 

group was largely underestimated. It now seems apparent that such viruses are likely 

ubiquitous in the biosphere and may collectively represent a more common biological entity 

on Earth than previously thought (Londoño et al., 2010; López-Bueno et al., 2009; McDaniel 

et al., 2013; Rosario et al., 2009b; Roux et al., 2012; Zawar-Reza et al., 2014). 

 

This study investigates CRESS DNA viral diversity of circular genomes recovered from an 

oxidation pond using a high-throughput sequencing-informed approach. Using back-to-back 

primers based on Illumina derived de novo contig assemblies, the recovery and Sanger 

sequencing of full genomes both enables verification of Illumina-derived sequencing contigs 

present in the sample, and allows the recovery of full genomes for future biological 

characterisation. We postulate that while many of the 50 putatively complete genomes 

recovered here likely represent viruses that infect a variety of microorganisms within 

oxidation ponds, some of these genomes may also have been derived from human excrement 

and might therefore represent viruses infecting humans, their gut-associated microflora or 

their food-sources, such as plants. In order to identify the uni- or multi-cellular species within 

the environment in which these viruses either replicate or are transported, the sequences 

presented could be used to produce specific probes to detect closely related homologues 

within a variety of organisms. For example, through environmental sampling of faecal matter 

and insects a novel viral group named Cyclovirus (Dayaram et al., 2013; Ge et al., 2011; Li 

et al., 2010a; Rosario et al., 2012a; Rosario et al., 2011) was discovered: This group is 

closely related to circoviruses and possibly represents a novel genus within the family 

Circoviridae. Over the last year cycloviruses have been found in human cerebrospinal fluid 

and nasopharyngeal aspirates (de Jong et al., 2014; Phan et al., 2014; Smits et al., 2012; van 

Doorn et al., 2013). Therefore, baseline data of diverse CRESS DNA viruses collected using 

metagenomic approaches from ecosystems can prove very useful in the identification of 

related viruses in various organisms. 

 

Gemycircularviruses have been recovered from a wide range of different organisms and 

environmental sources (Dayaram et al., 2012; Du et al., 2014; Kraberger et al., 2013; Ng et 
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al., 2014; Rosario et al., 2012a; Sikorski et al., 2013b; Yu et al., 2010), suggesting that these 

viruses have a very broad geographical distribution and are present in a variety of different 

ecosystems. SsHADV-1 is the only gemycircularvirus for which a host species has been 

definitively identified. This virus is known to infect the fungus, Sclerotinia sclerotiorum and 

it has therefore been proposed that other viruses within this group may also infect fungi 

(Dayaram et al., 2012; Sikorski et al., 2013b). Further evidence that these viruses may infect 

fungi is the discovery of gemycircularvirus-like Rep sequences integrated within the genomes 

of various fungal species. Further, a large number of fungal species have been identified in 

sewage (Becker & Shaw, 1955; Dorcas et al., 2013; Ismail & Abdel-Sater, 1994; Kacprzak et 

al., 2005; Ulfig et al., 1996) and it is therefore entirely plausible that the SaGmVs identified 

here may infect either fungi growing in/around the oxidation ponds, or fungi associated with 

excrement itself. There is also plentiful algal growth in oxidation ponds (Abdel-Raouf et al., 

2012; Oswald et al., 1953) and the possibility remains that algae may also be the hosts of 

some of the identified viruses. We do however reiterate the earlier comment regarding the 

discovery of gemycircularviruses associated with a multitude of sources including serum and 

brain tissue leaving the question wide open as to the host range of these viruses. The 

identification of recombination events among the gemycircularviruses highlights that at least 

some of these viruses must have an overlapping host range in order for recombination to 

occur. 

 

Although there is generally a reduction in the titres of human pathogenic viruses following 

sewage treatment many, such as rotaviruses and adenoviruses persist and remain detectable 

both in treated sewage (Hewitt et al., 2011; Tonani et al., 2013), and in the waterways and 

coastal waters into which treated sewage is pumped (Ming et al., 2014; Schlindwein et al., 

2010; Sdiri-Loulizi et al., 2010; Van Heerden et al., 2003). Many sewage-associated viruses 

are in fact so persistent that they can often be found within filter feeders living on coastlines 

near sewage outflows (Kittigul et al., 2014; Seo et al., 2014). Such studies have shown that 

many viruses are able to withstand the sewage treatment process highlighting the importance 

of identifying the overall viral diversity present in treated sewage in order to have an 

awareness of what viral populations are discharged into the ocean or waterways. Although 

the viruses identified in this study most likely pose no risk to public health, they are 

nevertheless important in extending our current knowledge both on the biodiversity at the 

interface between terrestrial and aquatic viromes, and on ssDNA virus diversity in the general 
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environment. While our study provides baseline data on ssDNA viral diversity in treated 

sewage, future metagenomics studies investigating viral populations in raw sewage to those 

in treated sewage would give us a better indication as to whether these viruses originate in 

human excrement or are introduced during the open-air stage of sewage treatment. A 

significant portion of the viruses isolated from treated sewage share similarity to 

geminiviruses, which is the only clue we have to their possible hosts. Further research is 

needed to identify if in fact these gemini-like viruses do infect plants or other organisms.  

 

GenBank accession numbers: 

SaCV-1–37: KJ547620 – KJ547625, KM821748 – KM821770 

SaGmV-1–11: KJ547634 – KJ547643, KM821747 

SaCM-1–11: KJ547618 – KJ547619, KM877826 – KM877833 
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Additional Table 8.1: List of acronyms and corresponding accession numbers for complete CRESS 
DNA virus genomes available in public databases and used in this study to infer ML phylogenetic 
trees. 

Acronym Genbank 
# 

Acronym Genbank 
# 

Acronym Genbank # Acronym Genbank 
# 

AtCopCV JQ837277 hs2 JX559622 PoSCV 3L2T KC5452309 SI04276 JX904605 

BatCV SC703 JN857329 LaCopCV JF912805 RodSCV M 13 JF755410 SOG00160 JX904075 

BatCV TM6C HM228875 MmCV JQ085285 RodSCV M 44 JF755408 SOG00164 JX904076 

BBC-A FJ959086 MpaCDV-1 KJ547646 RodSCV M 45 JF755409 SOG00182 JX904077 

BOSVCCP11493 JN634851 MpaCDV-2 KJ547647 RodSCV M 53 JF755415 SOG00781 JX904107 

Canarypoxvirus NP955176 MpaCDV-3 KJ547648 RodSCV M 89 JF755402 SOG03994 JX904139 

CB-A FJ959082 MpaCDV-4 KJ547649 RodSCV R 15 JF755401 SOG04070 JX904144 

CB-B FJ959083 MpaCDV-5 KJ547650 RodSCV V 64 JF755407 SOG04106 JX904147 

ChiSCV DP152 GQ351272 MpaCDV-6 KJ547651 RodSCV V 69 JF755403 SOG05268 JX904185 

ChiSCV GM415 GQ351277 MpaCDV-7 KJ547652 RodSCV V 72 JF755411 TuSCV KF880727 

ChiSCV GM476 GQ351274 MpaCDV-8 KJ547653 RodSCV V 76 JF755404 YNBtCV-1 JF938078 

ChiSCV GM488 GQ351276 MS5845 HQ322117 RodSCV V 77 JF755405 10-LDMD KF133817 

ChiSCV GM495 GQ351273 Nepavirus JQ898333 RodSCV V 81 JF755412 11-LDMD KF133818 

ChiSCV GM510 GQ351275 NG10 ADF80742 RodSCV V 84 JF755413 12-LDMD KF133819 

ChiSCV GT306 GQ351278 OdasCV-1 KM598393 RodSCV V 86 JF755416 13-LDMD KF133820 

CynNCKV JX908740 OdasCV-2 KM598399 RodSCV V 87 JF755406 14-LDMD KF133821 

CynNCXV JX908739 OdasCV-3 KM598407 RodSCV V 91 JF755417 15-LDMD KF133822 

DfCirV JX185415 OdasCV-4 KM598408 RodSCV V 97 JF755414 16-LDMD KF133823 

DfCyClV JX185418 OdasCV-5 KM598410 RW-A FJ959077 17-LDMD KF133824 

DFLaCV-1 KF738873 OdasCV-9 KM598392 RW-B FJ959078 18-LDMD KF133825 

DFLaCV-10 KF738884 OdasCV-10 KM598412 RW-C FJ959079 1-9LDMD KF133826 

DFLaCV-10a KF738885 OdasCV-11 KM598394 RW-D FJ959080 1-LDMD KF133807 

DFLaCV-2 KF738874 OdasCV-12 KM598395 RW-E FJ959081 20-LDMD KF133827 

DFLaCV-3 KF738875 OdasCV-13 KM598396 SAR-A FJ959084 21-LDMD KF133828 

DFLaCV-3a KF738876 OdasCV-14 KM598397 SAR-B FJ959085 2-LDMD KF133808 

DFLaCV-4 KF738877 OdasCV-16 KM598411 SDWAP HQ335074 3-LDMD KF133810 

DFLaCV-5 KF738878 OdasCV-17 KM598400 SDWAPI HQ335042 4-LDMD KF133811 

DFLaCV-5a KF738879 OdasCV-18 KM598401 Sewage circo ACY68125 5-LDMD KF133812 

DFLaCV-6 KF738880 OdasCV-19 KM598404 SI00003 JX904394 6-LDMD KF133813 

DFLaCV-7 KF738881 OdasCV-20 KM598406 SI00006 JX904395 7-LDMD KF133814 

DFLaCV-8 KF738882 OdasCV-21 KM598409 SI00063 JX904401 8-LDMD KF133815 

DFLaCV-9 KF738883 PigSCV JX274036 SI00078 JX904407 9-LDMD KF133816 

DfOrV JX185417 PisaCV ANH1 JX305997 SI00094 JX904412 Volvovirus KC543331 

DfOrV JX185416 PisaCV FUJ1 JX305998 SI00142 JX904416   

Diporeia sp CVLM28925 KC248425 PisaCVGER2011 JQ023166 SI00197 JX904420   

Diporeia sp CV-LM3487 KC248416 PisaCV HEN1 JX305991 SI00349 JX904427   

FdCV KC441518 PisaCV HUB1 JX305992 SI00373 JX904431   

FSfaCV KF246569 PisaCV HUB2 JX305993 SI00441 JX904439   

GasCSV KC172652 PisaCV HUN1 JX305995 SI00793 JX904469   

GOM00012 JX904192 PisaCV HUN2 JX305996 SI00850 JX904473   

GOM00443 JX904231 PisaCV JIANGX1 JX305994 SI00898 JX904478   

GOM00546 JX904245 pocircolike21 JF713716 SI01664 JX904518   

GOM00583 JX904250 pocircolike22 JF713717 SI01813 JX904523   

GOM02856 JX904312 pocircolike41 JF713718 SI03513 JX904541   

GOM02962 JX904333 pocircolike51 JF713719 SI03654 JX904548   

GOM03041 JX904344 PoSCV 2 KC545226 SI03701 JX904559   

GOM03161 JX904368 PoSCV 33L7 KC545227 SI03705 JX904561   

GOM03193 JX904377 PoSCV 34L13 KC545228 SI03717 JX904562   

hs1 JX559621 PoSCV 34L5 KC545229 SI03931 JX904581   
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9.1 Background overview 

Mastreviruses are found in several regions of the world including Asia, Europe and Australia, 

Africa and several surrounding islands. Over the last 10 years our knowledge regarding the 

diversity of mastreviruses has increased dramatically, with the discovery of new species on 

an almost annual basis. This is largely attributed to the improvement of molecular techniques 

and the development of new molecular tools (overview discussed in Chapter One). It is clear 

that mastreviruses are able to rapidly evolve through mechanisms of natural selection and 

recombination, facilitating the emergence of new variants within a short period of time 

(Harkins et al., 2009a; Harkins et al., 2009b; Kraberger et al., 2012; Martin et al., 2011b; 

Monjane et al., 2011; van der Walt et al., 2009; Varsani et al., 2009; Varsani et al., 2008b). 

MSV-A, has been well characterised due to its devastating effect on maize, one of the staple 

crops in Africa (Monjane et al., 2011; Oluwafemi et al., 2011; Owor et al., 2007; Shepherd et 

al., 2010; Varsani et al., 2009). Grass-adapted strains of MSV and PanSV have also been 

well characterised, although to a lesser degree then MSV-A (Varsani et al., 2009; Varsani et 

al., 2008a). Among the dicot-infecting mastrevirus, CpCDV and TYDV have been the most 

extensively studied, however much of this work was carried out using serological detection 

assays and therefore little molecular information was previously available. A better 

understanding of mastreviruses epidemiology is fundamental for devising disease 

management strategies. Likewise there have been no documented studies investigating the 

presence of mastreviruses or similar circular DNA viruses in New Zealand.  

 

The aim of this PhD research was to gain a wider understanding of the dynamics of 

mastreviruses, including the diversity, host and geographical range, mechanisms of evolution, 

inferences into historical movements and the possible origins of these viruses. Finally to 

address the question whether mastreviruses or related viruses are circulating in New Zealand, 

a viral metagenomics approach was used to identify circular ssDNA viruses from two sources 

in New Zealand.  
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9.2 Major findings  

9.2.1 Summary 

Through the course of this thesis research, 365 full mastrevirus genomes were recovered and 

analysed together with those available in GenBank to investigate mastrevirus dynamics. 

Chapter Two and Chapter Three highlight an investigation into the diversity of monocot-

infecting mastrevirus with focus on those which infect predominantly wild grass species in 

Australia (n=41) and Africa (n=120). Among the 41 genomes recovered in Australia four 

new species were identified, PDSMV, DCSMV and two highly divergent mastrevirus species 

SSMV-1 and SSMV-2. The two divergent species (SSMV-1 and SSMV-2) are more closely 

related to the African monocot-infecting mastreviruses and a mastrevirus isolated from a 

dragonfly in Puerto Rico than to the other Australian mastreviruses. Based on current 

knowledge, Africa harbours significantly more mastrevirus species than Australia. The 

discoveries in Chapter Two however of several new species in a relatively small sample 

survey in Australia coupled with the knowledge that Africa has been the focus of mastrevirus 

research for many years (with <600 genomes recovered to date) is an indication that there 

may be a significantly higher level of mastreviruses diversity than currently known 

circulating in Australian grasses. Studies undertaken in both Chapter Two and Three reveal 

that certain mastreviruses have broad host ranges which encompass a large number of 

Poaceae species, in Africa it is MSV and PanSV and in Australian it is PSMV and CSMV 

(Fig 9.1). An extensive overview of the geographic distribution of mastreviruses in Africa 

shows many species have overlapping host ranges. MSV was documented on the island of 

Gran Canaria for the first time, extending the known geographic range of the African streak 

viruses north-west of the Sahara desert. Clear recombination patterns seen among the 

monocot-infecting mastreviruses are consistent with what has previously been documented in 

the African monocot-infecting mastreviruses (Shepherd et al., 2008; Varsani et al., 2009; 

Varsani et al., 2008b). 

 

Chapters Four, Five and Six collectively involve an in-depth investigation into the diversity 

and dynamics of the dicot-infecting mastreviruses. In these chapters 204 full dicot-infecting 

mastrevirus genomes were recovered from symptomatic pulse plants. The dataset generated 

as a result of the research undertaken in Chapter Four enabled, for the first time, a 
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phylogeographic analyses of these viruses. The analysis indicated that the likely origin of the 

most recent common ancestor of the dicot-infecting mastreviruses is possibly closer to 

Australia than any other regions which have been sampled. Chapter Five highlights the 

discovery of a novel Australian-like dicot-infecting mastrevirus from chickpea material 

collected in Pakistan, which based on our analysis is a putative new species, Chickpea yellow 

dwarf virus (CpYDV). This is the second dicot-infecting mastrevirus species to be found 

outside of Australia. In Chapter Six, a comprehensive survey of CpCDV in Sudan reveals a 

dominant strain circulating in Sudan and highlights the extensive intra-species recombination 

which is likely facilitating the emergence of several newly identified CpCDV strains. 

 

Chapters Seven and Eight reveal the presence of a diverse range of circular DNA viruses in 

New Zealand associated with two sources: wild Poaceae spp and treated sewage material, 

many of which share similarities to geminiviruses.  

 

9.2.2 Mastrevirus diversity, host range and geographic distribution 

Increased sampling efforts have revealed that mastreviruses have a wider global distribution 

than previously thought and as a group show high diversity. Knowledge on the prevalence of 

some previously described species such as wild grass adapted MSVs and CSMVs was 

expanded on in Chapter Two and Chapter Three and several new species and strains 

identified. Within Australia four new species were identified, two of which are highly 

divergent, SSMV-1 and SSMV-2. Although Australia has been shown to harbour a level of 

diversity which rivals that found in Africa, to date no Australian monocot-infecting 

mastrevirus species have emerged as a agriculturally important pathogen like MSV-A, which 

emerged as a serious pathogen of maize in Africa ~150 years ago (Harkins et al., 2009b; 

Monjane et al., 2011). MSV-A apparently emerged following recombination events between 

two grass adapted MSV strains, this emergence was shown to be ~250 years after the 

introduction of maize into Africa (Harkins et al., 2009b; Varsani et al., 2008b). Knowing the 

short history of agriculture in Australia it is not surprising that mastreviruses have not yet 

emerged as major crop pathogens. Given the example of MSV-A and the rapid increase and 

expansion in the farming of cultivated grasses such as wheat and rice in Australia, virus ‘spill 

over’ is highly likely from indigenous and endemic plants. If a mastrevirus species was to 
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emerge as an important pathogen in Australia, having as much information at hand regarding 

these viruses is vital for surveillance and management of crop plants.  

The number of dicot-infecting mastrevirus species is less than those identified to infect 

monocot plants. Among those identified, the majority of the dicot-infecting mastrevirus have 

been found only in Australia which is surprising considering research has predominantly 

focused on pulses in the northern hemisphere rather than in Australia. The discovery of a new 

species of dicot-infecting mastrevirus in Pakistan (Chapter Five), however, is the first 

indication that a larger pool of diversity other than those viruses belonging to the species 

CpCDV may exist outside of Australia. The studies undertaken in Chapter Four and Six 

highlight that even among CpCDV isolates analysed there is a high level of diversity, for 

example within Sudan alone 11 of the 14 strains were identified. This level of strain based 

diversity is similar to that identified for MSV and PanSV discussed in Chapter Two. It is 

apparent from the findings in this thesis that we have likely only just begun to unravel the 

true breadth of diversity within the mastrevirus genus. The discovery of several new species 

in Australia from a small sample suggests that further research activities in this area may 

identify Australia as a mastrevirus diversity hotspot. 

 

The known host range of monocot-infecting mastreviruses includes a large number of grass 

species and the overall host range is much more extensive than that seen for the dicot-

infecting mastreviruses. Among the dicot-infecting mastrevirus species CpCDV and TYDV 

have the broadest known host ranges, whereas all other species have only been identified in a 

single host. This is likely due to the limited amount of work which has been undertaken on 

wild pulses in relation to the dicot-infecting mastreviruses. An overview of monocot-

infecting mastrevirus host range is shown in Figure 9.1, which illustrates the relationships 

between monocot-infecting mastrevirus species/strains and known host genera. Species vary 

in host specificity with some species and strains are more generalist having broad host ranges 

whereas others are more specialist with seemingly narrow host ranges. It does however need 

to be noted that host range can be biased by the sampling approach and/or specificity of the 

virus isolation method and therefore it may be that some viral species with seemly narrow 

host ranges do in fact have broader host ranges which is yet to be elucidated. Both MSV and 

PanSV have extensive host ranges which may be a reflection of the extent to which these 

viruses have been studied in Africa compared with other species. In Australia CSMV and 
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PSMV seem to be the most generalist species of moncot-infecting mastrevirus. Interestingly, 

several of the monocot-infecting mastrevirus species also have overlapping grass hosts. 

Among the species which have overlapping host ranges are also those from two 

geographically distinct regions. For example Digitaria sp. has been identified as a host for 

MSV, PanSV from Africa, and CSMV, DDSMV, DCSMV and PSMV from Australia. An 

overlap in host range can result in recombination as two viruses must infect the same host for 

a recombination event to take place. Therefore identifying host species that can harbour two 

or more viral species may give important insights into those species which are more likely to 

be in an environment which facilitates recombination. Having a broad knowledge of host 

range is also important for the management of viral infections of crops as alternative hosts 

can act as viral reservoirs. 

 

Geographically mastrevirus have been found on the continents of Africa, Australia, Asia and 

Europe, with Africa harbouring the largest number of known monocot-infecting mastrevirus 

species and Australia the largest number of dicot-infecting mastrevirus species. Chapter 

Three highlights that within Africa some species such as MSV and PanSV are found to have 

wide, overlapping geographic ranges which include some of the islands off the African 

continent. In Australia all the identified monocot-infecting mastrevirus species have been 

found within the Australian state of Queensland because sampling has been so far restricted 

to mainly this region, it is likely that the geographical ranges of these viruses extends to other 

regions in Australia. 

 

CpCDV has been identified in 11 countries whereas the other dicot-infecting mastrevirus 

species have only been identified in single countries. CpCDV likely has been moved between 

countries within the Middle East, Africa and Indian Subcontinent through the movement of 

infected pulse plant material and/or vector migration. 

9.2.3 Phylogeography and mastrevirus origins 

In Chapter Four a phylogeographic analyses was possible due to the sample size and time 

span over which the samples were collected. Results of this analysis indicated that the most 

recent common ancestor originated in the region around or possibly in Australia with the 
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plausible routes of movement out of Australia including two initial movements, one to 

Southern Africa and one to the horn of Africa. This was followed by the subsequent dispersal 

of these viruses to the Middle East, and Asia. The discovery of an Australian-like dicot-

infecting mastrevirus in Pakistan (Chapter Five) questions the origin of this virus (CpYDV) 

and whether it was introduced by the movement of infected plant material by humans 

recently. Several other divergent mastreviruses which are more similar to those found in other 

geographically distant locations, such as DSV from Vanuatu which is most closely related to 

African streak viruses, DfasMV from Puerto Rico is most closely related to SSMV-1 and 

SSMV-2 from Australia. The human mediated movement of plant viruses into new regions 

and countries has been recently highlighted (De Bruyn et al., 2012; Lefeuvre et al., 2010; 

Ochola et al., 2015; Péréfarres et al., 2012). Novel mastreviruses have also been identified in 

quarantine sugarcane samples in France within sugarcane setts from the USA, Barbados, 

Sudan and Egypt. Interestingly, the sugarcane setts from the USA and Barbados all originated 

in Sudan (Candresse et al., 2014). This information collectively highlights the possibility that 

DSV, DfasMV, SSMV-1 and SSMV-2 viruses may have been introduced from other regions 

through human mediated movement of infected plant material or insect vectors. With human 

movement globally being at an all-time high and trading of agricultural commodities 

internationally occurring more frequently, biosecurity measures to reduce the spread of plant 

viral pathogens between countries, are essential.  
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9.2.4 Mechanisms of evolution 

Common patterns of recombination have often been noted among geminiviruses (Lefeuvre et 

al., 2007; Martin et al., 2011a; Martin et al., 2011b; Owor et al., 2007; Padidam et al., 1999; 

Silva et al., 2014; van der Walt et al., 2009; Varsani et al., 2009; Varsani et al., 2008b). It is 

evident from the recombination analyses undertaken as part of the work presented in this 

thesis that recombination is a major driving force behind the diversification of mastreviruses 

and facilitating the emergence of new strains / variants and possibly new species. Clear 

patterns seen among mastreviruses in the analysis shown in Chapters Two, Three, Four and 

Six are: 

1) The size of genetic fragment exchanged in intra-species recombination tends to be larger 

on average then that seen in inter-species, with the exception of analyses undertaken in 

Chapter Six where fragments were considerably larger then described in other analyses 

(Chapters Two, Three and Four). 

2) Clear recombination breakpoint hotspots are noted in the intergenic regions and more 

frequently in the complementary-sense genes then in the virion-sense genes.  

3) The first evidence for inter-species recombination events between species from two 

geographically distant locations was identified in the monocot-infecting mastreviruses 

(Chapter Three) and the dicot-infecting mastreviruses (Chapters Four and Six). 

4) Evidence that some of these species at one time must have circulated in the same 

geographic location and occupied the same host(s).  

 

An investigation into the selection pressures acting on the coding regions of monocot and 

dicot-infecting mastrevirus species showed that the same genes are evolving under similar 

selection pressures between species. Overall, purifying selection is dominant implying these 

genes are predominantly favouring the maintenance of many codon sites. A region which 

generally is evolving under largely purifying in the cp of all mastreviruses analysed is within 

the possible β-barrel motif region which forms the core structure of the cp. No regions are 

evidently evolving under similar selection pressures across all species of dicot- and monocot-

infecting mastreviruses. There are however some selection signals trends between species 

within the two groupings (monocot and dicot-infecting) that are highlighted in Chapter Three 
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and Six. Interestingly, certain sites among species which have members that are known to 

infect a wide range of hosts such as MSV and PanSV have sites which are undergoing 

episodic selection at codons clustered within certain regions of the cp and rep, which could 

be an indication that these sites may play a role in host specificity. This may be useful for 

future studies which are interested in target regions for investigating host and vector 

specificity.  

 

9.2.5 Discovery of highly diverse circular DNA viruses in New Zealand 

Several studies have used sequence-independent approaches such as viral metagenomics to 

identify viral populations in a sample without any prior knowledge of what viruses are 

present (Rosario et al., 2012). Many of which have led to the discovery of novel 

geminiviruses and gemini-like viruses (Candresse et al., 2014; Du et al., 2014; Kraberger et 

al., 2013b; Kreuze et al., 2009; Loconsole et al., 2012; Ng et al., 2011a; Ng et al., 2012; Ng 

et al., 2011b; Poojari et al., 2013; Seguin et al., 2014; Sikorski et al., 2013). A recent 

publication has also demonstrated the effectiveness of viral metagenomics in the detection of 

novel mastrevirus in quarantine samples (Candresse et al., 2014). Plant viruses such as 

pepper mild mottle virus have been shown to be viable in sewage treatment processes and can 

act as an indicator of faecal contaminated water (Rosario et al., 2009).  

 

In light of these discoveries an exploratory approach undertaken in Chapter Seven and Eight 

used a viral metagenomic approach to identify novel mastreviruses or similar CRESS DNA 

viruses in two sources, wild grasses and a sewage oxidation pond. A sample from an 

oxidation pond was chosen instead of untreated sewage because we do not have access to 

facilities that allows us to work on the latter and it was of particular interest to investigate 

whether such viruses were present following the treatment process prior to discharge back 

into the local environment. Both studies employed a viral metagenomics approach using NGS 

coupled with the use of back-to-back primers for PCR amplification and recovery of full 

clonal viral genomes. Viral genomic DNA was enriched using Phi29 polymerase prior to 

sequencing which enhances the discovery of circular DNA molecules. Although no 

mastreviruses were recovered, four novel circular ssDNA virus genomes were isolated from 

grasses sampled on both the North and South Islands of New Zealand and 50 novel CRESS 



Chapter 9 

313 

DNA viruses from a sewage oxidation pond sample, of which many share similarities to 

geminiviruses.  

 

The four novel CRESS DNA viruses associated with grasses in New Zealand. BasCV-1 and 

BasCV-3 have likely replication-associated proteins which are expressed following a splicing 

event and similar genome architecture to that of mastreviruses, although a possible movement 

protein was not identified. These novel viruses represent new highly divergent species and 

possibly belong to new genera. The putative Rep of BasCV-1 shares between 29-32% 

identity with the Rep of the Nepavirus from raw sewage, SaCV-4 from treated sewage and 

other geminiviruses. The Rep of BasCV-2 shares 31-34% identity to that of Rodent stool 

associated circular virus M-45 and environmentally derived ssDNA viruses. BaCV-3 

phylogenetically clusters with the Gemycircularviruses and interestingly is most closely 

related to two other genomes recovered from leaf material and one from the fungus 

Sclerotinia sclerotiorum. All BasCVs viruses were identified associated with Bromus grasses 

and BasCV-1 was found in two locations within New Zealand. This information indicates 

these likely have are widely distributed within New Zealand and lends weight to the 

association of this virus with Bromus spp in New Zealand. It is possible that these viruses 

infect grasses or an organism such as fungi, bacteria or protists which are associated with the 

grass. 

 

Following on from Chapter Seven the body of work in Chapter Eight uses a similar approach 

to identify CRESS DNA viruses in a sewage oxidation pond sample from Christchurch, New 

Zealand. A range of highly diverse CRESS DNA viruses were recovered, many of which are 

distantly related to geminiviruses (SaCV-1 – SaCV-4, SaCV-36 and SaCV-37) as well as 

other major CRESS DNA virus families including circoviruses, cycloviruses and 

nanoviruses. Thirteen genomes discovered cluster with the gemycircularviruses, expanding 

this group and enabling a more in-depth analysis. The gemycircularvirus genus has been 

populated with members recovered from a wide range of sources such as fungi, insects, 

plants, faecal material, bovine serum and human brain tissue, leading to the question of 

whether these viruses are able to move between organisms in different kingdoms. The recent 

discovery of a common algal virus, ATCV-1, associated with human mycosal surfaces is an 
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example of how viruses can be part of the virome of organisms that are not within the same 

kingdom as the known host (Yolken et al., 2014).  

 

Several new gemycircularviruses were identified collectively in Chapter Seven and Eight, 

this meant that for the first time a rigorous recombination analysis could be undertaken. It is 

evident from this analysis that recombination is likely a frequent occurrence, as is seen 

among mastreviruses (Chapter Two, Three, Four and Six) and other ssDNA viruses (Hadfield 

et al., 2012; Kraberger et al., 2013a; Martin et al., 2011a; Stainton et al., 2012; Stenzel et al., 

2014). The gemycircularvirus dataset however is still relatively small and therefore no 

obvious trends in recombination patterns or hot/cold spots could be identified. 

 

Putative nonanucleotide, RCR and SF3 motifs were identified for all the novel viral genomes 

identified in Chapter Seven and Eight. The Reps of several of these viral genomes identified 

are related those of geminiviruses. These genomes also each contain a nonanucleotide 

sequence which are similar or homologous to those of geminiviruses. For example those 

viruses belonging to the gemycircularvirus group all contained a well conserved 

nonanucleotide motif of TAATRTTAD. There is also a high degree of conservation of the 

RCR and SF3 motifs between these gemini-like viruses and geminiviruses. This is also the 

case for other grouping/clades where evidence of motif conservation is beginning to become 

obvious, such as that seen in CRESS DNA virus clade-1 (Chapter Eight). These similarities 

and phylogenetic relationships to other known ssDNA virus families such as geminiviruses 

could be clue to the evolutionary origins of these novel viruses. As more information 

becomes available on these viruses and phylogenetic groups are expanded we may be able to 

elucidate the origins of all ssDNA viruses. 

 

Infection studies to identify potential hosts of these viruses recovered in Chapters Seven and 

Eight could not to be performed as part of this thesis research due to time constraints, permits 

and availability of appropriate containment facilities. Nonetheless the discoveries of more 

than 50 novel CRESS DNA viruses in Chapters Seven and Eight, many of which share 

similarities to geminiviruses, further iterates that such sequence independent approaches are 

ideal for the discovery of novel gemini-like viruses and provides insights into the wealth of 
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CRESS DNA diversity present in different environments within New Zealand. A wide range 

of highly diverse CRESS DNA viruses were identified from a relatively small dataset of 33 

grass samples and a single sample from an oxidation pond, therefore it is likely that 

expanding this approach to look at other sources would result in the discovery of many more 

gemini-like viruses and novel CRESS DNA viruses. 
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Figure 9.1: Depiction of monocot-infecting mastrevirus species and strains and the 
corresponding host genera from which full genomes have been recovered. 
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9.3 Future directions 

As part of the research undertaken in this thesis we have expanded the current knowledge of 

mastreviruses globally and novel CRESS DNA viruses in New Zealand. This has opened the 

field up to new questions and has highlighted areas where more research is necessary. These 

areas include the following: 

 Transmission studies to identify the leafhopper species transmitting the Australian 

dicot-infecting mastreviruses, CpYDV in Pakistan and the monocot-infecting 

mastreviruses around the world. 

 Survey of geographical distribution of leafhopper species in pulse growing regions of 

Australia, Asia and Africa to gain a better perspective of vector dynamics. In order to 

identify vector species visual identification coupled with molecular analysis of a 

conserved gene such as the cytochrome c oxidase I gene could be used. This could 

also solve the debate as to whether O. orientalis and O. albicinctus are  different 

species or the same. 

 Use CpYDV specific primers to investigate the presence of this species in major pulse 

growing regions of the world and to possibly answer the question to its likely origin. 

 Identify dicot-infecting mastreviruses in non-cultivated plants and determine whether 

these act as reservoirs and potential ‘mixing vessels’ for the emergence of 

recombinant variants that could pose serious threat to cultivated crops. 

 Undertake an extensive survey of indigenous grasses in Australia to illuminate the 

diversity of monocot-infecting mastreviruses in Australia.  

 Investigate potential hosts of the novel CRESS DNA viruses recovered in this study 

by designing specific probes, performing infection studies and using a sequence based 

approach. 
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