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Abstract 

 

Maintaining adequate and stable blood oxygen level is important for preterm 

babies to avoid the risk of brain, lung and retinal injury such as retinopathy of 

prematurity (ROP). However, wide disparities in policies and practices of 

oxygenation in preterm babies exist among neonatal care providers as it is still unclear 

which best method of monitoring and what features of oxygen measurements are 

important to clinician’s interpretations for assessing preterm babies at risk of 

developing severe ROP or unstable health condition. This thesis consists of two 

projects: NZ-ROP that examines multiple factors of severe ROP including summary 

statistics (mean, standard deviation (SD), coefficient of variation (CV) and 

desaturation) for oxygen saturation (OS) features in very extreme preterm babies, and 

NZ-LP that investigates the efficacy of some of these statistics for health monitoring 

of late preterm babies.  

The OS data in NZ-ROP were recorded using modified oximeters that have 

offsets and inherent software artefact, both of which mask the actual saturation for 

certain OS ranges and may complicate the choice of methods in the analyses. 

Therefore, novel algorithms involving linear and quadratic interpolations are 

developed, implemented on the New Zealand data, and validated using the data of a 

UK preterm baby, as recorded from offsets and non-offsets oximeters. For all data 

sets, the algorithms produced saturation distributions that were very close to those 

obtained from the non-offset oximeter. The algorithms perform within the 

recommended standards of commercial oximeters currently used in the clinical 

practice.  

ROP is a multifactorial disease, with oxygenation fluctuations as one of the 

key contributors. The all-subsets logistic regression, robust and generalised additive 

statistical modelling, along with a model averaging approach, are applied in NZ-ROP 

to determine the relationship of variability and level of OS with severe ROP, and the 

extent of contribution of various clinical predictors to the severity of this eye disease. 

Desaturation, as a measure of OS variability, has the strongest association with severe 

ROP among all OS statistics, in particular, the risk of severe ROP is almost three 

times higher in babies that exhibit greater occurrences of desaturation episodes. 

Additionally, this study identifies longer periods of ventilation support, frequent 



desaturation events, extreme prematurity and low birth weight as the most important 

factors that substantially exacerbate the severity of ROP, and therefore signify babies’ 

underlying condition of being severely ill.  

Persistent cardiorespiratory instabilities prior to hospital discharge may expose 

preterm babies to a greater risk of neuro-developmental impairments. In NZ-LP, the 

statistical summaries of mean, SD and CV are computed from the OS measurements 

of healthy stable and unstable babies, and the performance of these statistics in 

detecting the unstable babies is evaluated using an extremeness index for outlying 

data and a hierarchical clustering technique. With SD and CV, the clinically unstable 

babies were very well separated from the group of stable babies, wherein, the 

separation was even more apparent with the use of CV. These suggest that measures 

of variability could be better than saturation level for highlighting babies’ underlying 

instability due to immature physiological systems, but the combination of variability 

and level through the CV are believed to be even better.  

Identification and summarisation of useful OS features quantitatively hold 

great promise for improved monitoring of oxygenation instability and diagnosis of 

severe ROP for preterm babies. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Neonatal oxygenation  

Preterm babies are at an increased risk of morbidity, mortality, and hospital re-

admissions than term babies (Petrini et al., 2009; Darlow et al., 1997). Each year, 

around 4,800 babies who are born within the period of less than 37 completed weeks 

gestation are admitted to neonatal intensive care units (NICUs) in New Zealand. Of 

these, about 4% or 200 are extremely preterm babies born before 28 weeks gestation 

and out of this figure, nearly 80% are discharged home alive (Cust et al., 2003). 

However, these babies do have considerably higher risk of poor growth, respiratory 

illness, visual deficits, cerebral palsy, sensori-neural and cognitive disabilities, 

educational and behavioural impairment than term babies (Darlow et al., 1997).  

 

The condition of premature babies is characterised by physiological adaptation 

to extra-uterine life. Sudden unpredictable physiological instabilities, such as 

variations of blood oxygen level, heart rate, or respiratory patterns are common in 

preterm babies (Baird, 2004). Frequently, these conditions resulted from a complex 

combination of neonatal illnesses, immaturity of organ development and function, 

iatrogenic factors arising from parental handling and hospital procedures (Murdoch 

and Darlow, 1984), and environmental factors (Hay, 1969)  such as room temperature, 

light, and noise. Hence, physiological variability is partly intrinsic to the baby and 

equally induced by external factors. This poses a challenge to clinicians of how best to 

treat the preterm babies prudently without inflicting unnecessary harm.  

 

Now, modern intensive care has given hope in enabling many preterm babies 

to survive. One of the most important aspects of this care is help with the breathing 

and monitoring of the blood oxygen level because they have very immature lungs. 

Preterm babies frequently have breathing difficulties and require treatment with 

supplementary oxygen to improve the lung perfusion and the oxygen content, which 

changes every few seconds and is difficult to be controlled exactly. Oxygen content, 

however, should be maintained sufficiently high as insufficient blood flow or low 
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oxygen content in the blood (hypoxaemia) and excess of oxygen content 

(hyperoxaemia) do have adverse effects on the tissue oxygenation (Silverman, 2004). 

This, in turn, can lead to complications of prematurity or could trigger a cascade of 

respiratory events.  It is extremely important that the oxygen level is monitored so as 

to ensure that oxygen content is adequate when caring for the babies.  

 

1.1.1 Complications of prematurity 

The process of blood flow and maintaining of oxygen content at certain level 

are integrated to meet the metabolic needs of tissues for ensuring a healthy human 

body. During breathing in a natural environment, molecules of oxygen are transported 

by the blood to the tissues of the body. Most of the molecules consumed by the tissue 

are metabolised. A small fraction of the consumption, however, is constantly 

converted to oxygen free radicals and reactive oxygen species. However, when overly 

produced, these by-products overwhelm the body’s natural defence system and may, 

at least partly, play a role in development of tissue injury in preterm babies (Saugstad, 

1998).  

 

An inappropriate amount of oxygen content in the blood or inspired air may be 

harmful to preterm babies due to their under-developed biological systems. 

Oxygenation of the tissues depends on lung perfusion, which needs to adequately 

match the ventilation areas of blood capillaries. A ventilation-perfusion mismatch 

may cause hyperoxaemia and hypoxaemia, both of which have been implicated in 

diverse organ injury such as lung (Jobe & Bancalari, 2001), brain (McDonald, 1964) 

and retinal injury in preterm babies (Askie et al., 2009). On occasions when the 

amount of oxygen used exceeds what is needed, free radicals and reactive oxygen 

species are increased in hyperoxaemia and in re-oxygenation after hypoxaemia, which 

invariably lead to oxidative stress. However, according to Saugstad (1998), preterm 

babies are vulnerable to oxidative stress due to inadequate antioxidant protection, and 

this may expose the babies to oxidant-related morbidities such as bronchopulmonary 

dysplasia (chronic neonatal lung disease), retinopathy of prematurity (ROP) and 

periventricular haemorrhage. 
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1.1.2 Maturation of physiological systems 

Physiological systems in preterm babies continue to develop after birth. 

Nevertheless, a delay in the maturation progress could place a baby at a greater risk of 

severe cardiorespiratory events (Gaultier, 1995), which are reflected by patterns of 

periodic breathing and apnea (a pause in the regular breathing), bradycardia (a slow 

heart rate) and hypoxaemia of oxygenation (Henderson-Smart et al., 1986). Some of 

the observed patterns are thought to be mediated through a sensory nervous system in 

blood vessels, also known as peripheral chemoreceptor reflex, which monitors 

chemical concentrations in blood with advancing gestation and postnatal age (Rigatto 

et al., 1975). It is common for apnea, bradycardia and hypoxemia to occur 

concurrently, with early onset of bradycardia during apnea being pre-mediated by 

hypoxaemia (Henderson-Smart et al., 1986). Of particular concern, persistent events, 

even if subtle, may cause delayed mental, motor and poorer language development at 

later years in preterm babies (Mattia and deRegnier, 1998). These ramifications, 

however, would largely depend on the ability of babies to recover from any single 

events, and to stabilise after being given appropriate interventions (Balfour-Lynn et 

al., 2009).  

    

1.2 Previous research of oxygenation studies  

Numerous studies have been conducted to differentiate instability arising from 

physiological immaturity or complications of prematurity so as to decrease mortality 

and improve morbidity in this high-risk group during postnatal period. Research has 

found that illnesses such as respiratory distress, anaemia of prematurity and gastro-

oesophageal reflux may contribute to variations in heart rate and breathing patterns 

(Baird, 2004). The investigation and treatment for some of these complications have 

been initiated using physiologic data from electronic monitors, for instance, by 

utilising heart rate variability analysis that quantifies the oscillations in the ECG 

signals (Malik et al., 1996). Existing use of heart rate and respiratory rate variability 

suggests potential for predicting outcome therefore permitting timely intervention. 

Changes in heart rate variability have been found to be able to predict morbidity and 

mortality in fetal (Yum & Kim, 2003) and neonatal patients (Griffin et al., 2007) 

based on heart rate characteristics. Measures of respiratory rate variability and 

severity indices have been developed to study prolonged ventilation in adult patients 
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(Seely et al., 2014) and to describe pulmonary status in ventilated preterm patients 

(Madan et al., 2005). 

 

 Establishing evidence-based information on the links between varying oxygen 

levels and the development of neonatal organs, however, remains a challenge to the 

clinicians because an appropriate range of oxygen levels that would not cause 

hyperoxic (abnormal increase of oxygen supply to the organs and tissues) or hypoxic 

(insufficient oxygen supply to the organs and tissues) injury is still unknown (Higgins 

et al., 2007; Askie, 2013). Results from several randomised control trials (BOOST II 

Group, 2013; SUPPORT Study Group, 2010) have found that high oxygen saturation 

(OS) levels predispose to ROP, which is the leading cause of blindness and visual 

disability in newborns, while high inspired oxygen concentrations exacerbate neonatal 

chronic lung disease, which is associated with poor growth, neuro-developmental 

impairment and long term respiratory morbidity (Jobe & Bancalari, 2001). However, 

insufficient oxygen also leads to poor growth and neuro-developmental impairment 

due to brain damage (McDonald, 1964), and mortality due to hypoxic respiratory 

failure (BOOST II Group, 2013). These studies showed that there is a crucial need to 

seek “safe” OS ranges for the most vulnerable premature babies. In a 2004 editorial in 

Pediatrics (Silverman, 2004), Dr William Silverman, formerly of Columbia 

University, stated, “…there has never been a shred of convincing evidence to guide 

limits for the rational use of supplemental oxygen in the care of extremely premature 

infants. For decades, the optimum range of oxygenation (to balance four competing 

risks: mortality, ROP-blindness, chronic lung disease and brain damage) was, and 

remains to this day, unknown”. 

 

 Oxygen mediated retinal injury is one of the critical areas in need of urgent 

study (Cole, 2010). A major area of concern is investigating various possible oxygen-

related determinants that contribute to the development and progression of ROP. 

Early findings of the role of oxygen in inducing ROP were conducted using 

transcutaneous electrodes for measuring transcutaneous oxygen or umbilical catheters 

for measuring oxygen tension in arterial blood gases; these technologies were later 

replaced by OS monitoring of pulse oximeters. Nevertheless, oxygenation monitoring 

using these methods has been shown not to improve ROP outcome in preterm babies 

requiring intensive care (Flynn et al., 1987; Kinsey et al., 1977; Quine and Stenson, 



5 

 

2008). Times series data generated by the monitors, however, could be more useful as 

the source data for more complex analysis by mathematical or statistical modelling. 

Studies using regression models have found that standard deviation (SD) of 

transcutaneous oxygen in the first 2 weeks of life was a significant predictor of severe 

ROP (Cunningham, et al., 1995); increased fluctuations in arterial oxygen tension, as 

quantified by coefficient of variation (CV), imposed a higher risk of developing 

threshold ROP in very-low-birth-weight premature babies (York, et al., 2004; Saito et 

al., 1993); and desaturation episodes (intermittent falls in oxygen levels) of OS were 

higher in babies with severe ROP (Di Fiore et al., 2010). Until now, comparative 

studies have not been done to evaluate which measures of oxygen could possibly 

provide better insight in describing the link between oxygenation fluctuations and 

ROP.  

 

 Several early clinical trials (1951-1969) that investigated the effects of 

restricted versus unrestricted oxygen concentrations on ROP and mortality had 

reported that severity of ROP was reduced with the restriction of oxygen (Askie et al., 

2009). Nonetheless, it was observed that some babies in the restricted oxygen group 

still developed ROP whilst many babies never developed ROP in the unrestricted 

oxygen group. This indicates that oxygen is not the only independent risk factor of 

ROP, and that there are other factors that also contribute to the cause of ROP. For 

instance, lower birth weight and younger gestational age (GA) at birth (Darlow et al., 

2004; McColm & Fleck, 2001; Good et al., 2005) have been identified as having the 

greatest association with the risk of ROP. Male gender (Jacobson et al., 2009; Darlow 

et al., 2004); greater illness severity (Hagadorn et al., 2007) measured by the Score for 

Neonatal Acute Physiology (Richardson et al., 1993); clinical oxygen (Kinsey et al., 

1956; Lala-Gitteau et al., 2007); and upregulation of vascular growth factor (Chen and 

Smith, 2007) are amongst other important contributors of this eye disorder. ROP may 

also relate to poor postnatal growth (Wikstrand et al., 2011; Hellstrom et al., 2009), 

postnatal steroid exposure (Halliday et al., 2003) and oxidative stress (Saugstad, 

1998). 

  

Monitoring the development of physiological systems in preterm babies is an 

area in need of additional study (Raju et al., 2006). Several studies were set up to 

investigate symptoms of delayed maturation in babies born less than 35 weeks GA, of 



6 

 

whom occurrences of apnea, bradycardia, hyperoxemia and hypoxemia events were 

recorded longitudinally for six months (Hunt et al., 1996; Hunt et al., 2011).  The risk 

for these events was highest at 36 weeks post-menstrual age (PMA) but declined with 

age at 44 weeks PMA. Further, such events that occurred more than four times (Hunt 

et al., 2004) and prolonged beyond 40 weeks PMA (Poets et al., 1991) were found to 

be associated with poor performance of gross and fine motor skills, and cognitive 

ability. The extent of morbidity in relation to the cardiorespiratory events may explain 

the concern on whether some preterm babies, particularly the late-preterm ones 

(babies of 33 to 36 weeks gestation), are clinically ready for NICU discharge (Engle 

et al., 2007) when their physiological systems are still immature. It is, therefore, 

important to detect pre-discharged babies with suspected unstable health conditions to 

ensure necessary treatments could be provided with the aim of improving the babies’ 

outcome.   

 

Whereas pre-discharge criteria have been established for respiratory and heart 

rates to guide interventions during neonatal transition prior to hospital discharge 

(American Academy of Pediatrics, 2004), evidence-based guidelines have been 

difficult to be obtained for oxygenation of a preterm baby (Higgins et al., 2007; Askie, 

2013). Nevertheless, there have been several observational studies describing the 

oxygenation patterns and typical values of OS during the first days and months after 

birth in preterm babies. Most of these studies have considerable interest in saturation 

level (Rhein et al., 2014; Harigopal et al., 2011; Hunt et al., 2011; Beresford et al., 

2005; Ng et al., 1998; Poets et al., 1992), and some common summary statistics that 

have been used are mean, median, percentiles, and median baseline (median of the 

means). These studies focus on OS level and not on variability in OS.  

 

Some clinicians believe that information about the health state of preterm 

babies is contained in the variability of physiological systems. Studies have found that 

preterm babies with very low birth weight and/ or complications are more likely to 

exhibit lower level or higher variability of blood oxygen. For example, babies with 

severe ROP that require retinal surgery have higher oxygen variability (York et al., 

2004; Saito et al., 1993); babies with chronic lung disease have greater number of 

desaturation episodes (Durand at al., 1992); and babies with infection have increased 

hypoxaemia and apnoea incidences (Hofstetter et al., 2007). A statistic that is often 
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used to represent variability in OS data is SD (Cunningham et al., 1995; DiPietro et 

al., 1994). An alternative but infrequently used measure to quantify OS is CV (Grove 

et al., 2005; York et al., 2004; Saito et al., 1993), which quantifies the variability of 

OS relative to the mean level. 

  

 Appropriate measures of blood oxygen need to be identified for distinguishing 

preterm babies at high risk of ROP or babies with unstable oxygenation. This would 

be a daunting task since the definition for optimal high and low limits for OS to guide 

oxygenation monitoring in either healthy or oxygen supplemented preterm babies is 

still not clearly defined, which in part, could be due to the absence of clarity on how 

often and/or what length and duration of an apneic episode and hypoxemia is safe 

(Cole et al., 2003; Silvestri et al., 2002), and lack of knowledge on what suitable 

measures can sufficiently summarise the instability in blood oxygen. That this 

knowledge has not been forthcoming is due to the complexity and multitude of 

information involved, which precludes most medical researchers from examining the 

physiology as the interrelated system that it is. Much existing research in this area has 

examined individual measures of oxygenation, but not all of them together, which is 

specifically what is being sought in this thesis. Such measures need to be carefully 

chosen to ensure that they possess blood oxygen features that reflect the instability of 

oxygenation in a baby. 

 

1.3 Thesis objectives 

There exist wide disparities in current policies and practices of oxygenation in 

preterm babies among neonatal care providers due to limitations in current knowledge 

on how to appropriately manage the oxygen for newborn babies. There is a need to 

determine useful measures of OS for saturation monitoring, to better understand the 

links between OS and retinal injury (Cole et al., 2003), and to investigate whether 

some indication of health status of preterm babies could be determined from certain 

measures of routinely collected OS data. These are the motivations for this research, 

which is structured as two studies, New Zealand Retinopathy of Prematurity (NZ-

ROP) and New Zealand Late Preterm Babies (NZ-LP), with separate groups of 

babies.  
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The goal of NZ-ROP and NZ-LP studies is to provide some information on 

several aspects of oxygenation that could support the clinician’s assessment when 

evaluating the risk of severe ROP and health status of preterm babies in NICUs. 

Oximeter OS data and other clinical information are utilised in the two studies for 

detailed statistical modelling and various techniques. Some statistical measures based 

on the continuously collected saturation data are then identified to provide additional 

insights into physiologic conditions in unstable premature babies and pathologic 

conditions in sick babies. 

 

Altogether, there are three specific aims in this thesis, two of which are the 

aims of NZ-ROP and the other is the aim of NZ-LP. Specifically, the aims of NZ-

ROP are: 

1. to determine any plausible relationships between saturation levels, three 

measures of variability of OS (specifically SD, CV and desaturation), and 

severe ROP and 

2. to identify dominant predictors that have stronger relationship with severe 

ROP. 

 

The aim of NZ-LP is to determine whether three statistical summaries (mean, SD and 

CV) of the OS recordings are potentially useful in the clinical care of late preterm 

babies. 

 

1.4 Study method 

Various methods have been identified to achieve the research objectives of 

NZ-ROP and NZ-LP. With respect to the first two objectives, the study of NZ-ROP is 

carried out in two phases. The first phase involves pre-processing of OS data to render 

them suitable for analysis. The data were recorded from the Masimo SET oximeters 

and were obtained from the BOOST-NZ trial. This was a double-blind randomised 

trial (Darlow et al., 2014) with its own objectives in investigating OS targeting in two 

groups of preterm babies, of whom each baby was randomly allocated with one of two 

types of oximeters. The oximeters had two features: trial-imposed offsets of either 

+3% or -3% in the OS range 85-95% that masked the trial intervention, and machine 

artefact inherent in the oximeters. Both of these features influenced the OS readings. 

Part of the pre-processing includes identifying the type of oximeter used for each 
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baby, removal of the offsets and correction of the artefact. Novel algorithms through 

interpolation techniques are developed, implemented, and validated to adjust for these 

features. Subsequently, an appropriate period for summarising the OS data has to be 

determined. For this, some clinical factors such as the onset of ROP (Palmer, 2006) 

and age of the babies are taken into consideration. 

 

The second phase of NZ-ROP involves the analysis of predictors that could 

contribute to the development of severe ROP. This includes identifying whether some 

measures of saturation levels or variability of OS are related to severe ROP. As 

opposed to previous research that had studied measures of oxygen fluctuations 

separately based on older technology, this research considers four summary statistics 

of OS readings of non-invasive oximeters: mean for measuring saturation level; SD 

for measuring saturation variability; CV as a composite measure of variability relative 

to the mean level, and desaturation as another variability measure. By doing so, the 

degree of relationship between each measure of OS and severe ROP could be 

evaluated. These statistics are computed from the OS readings and are analysed as 

part of the predictors in the regression analysis for predicting risk of severe ROP in 

very young preterm babies less than 28 weeks GA. The all-subsets logistic regression, 

which produced models with all possible combinations of predictors, is employed. 

During the model verification stage, identification of outlying observations and 

appropriate functional forms for the continuous predictors is checked using 

conventional, robust (Cantoni & Ronchetti, 2001) and generalised additive statistical 

modelling (Hastie and Tibshirani, 1990). The performance of the models is measured 

by the area under the receiver operating characteristic (ROC) curve (AUC), and 

validated using a repeat-stratified 10-fold cross-validation technique (Kohavi, 1995; 

Refaeilzadeh et al., 2009). Single-, multi-predictor, and model averaging approaches 

are used to assess the relationships between the OS statistics, seven other clinical 

predictors, and severe ROP, as well as to identify dominant predictors that are 

strongly related to the diagnosis of severe ROP. The analysis by the model averaging 

approach is based on several measures computed by averaging over all models. 

 

Data for NZ-LP were obtained from the Christchurch Women’s Hospital. 

These data consisted of OS readings of 31 preterm babies that were recorded from the 

Masimo Radical oximeters. Except for one baby, most of the recordings were 
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conducted when the babies were 34 to 36 weeks PMA. The babies were clinically 

well at the time of enrolment for the study, however, two babies were soon identified 

as being clinically mildly unstable. Using these data, some measures of OS features 

are evaluated whether they could be informative to the clinicians when monitoring 

late preterm babies potentially with unstable health conditions. To address this issue, 

statistical summaries of mean, SD and CV of OS are evaluated in a two-phase 

analysis. In the first phase, all suspected erroneous data are identified and assigned 

with a lesser weight through the use of an appropriate weighting function. In the 

second phase, the distribution of saturations for several stable and unstable babies is 

assessed using nonparametric kernel density technique (Wand & Jones, 1995). 

Subsequently, the OS readings of each baby are summarised using the three statistical 

measures, and the ability of these measures to distinguish the unstable babies is 

investigated. This could be done in two ways. One is through the use of graphical 

approach, i.e. by assessing the capability of each measure in identifying the two 

babies as outlying data points as well as quantifying the level of extremeness of these 

outliers from the main data set. Clustering technique is another approach that can be 

considered, i.e. each measure is used to group the babies into clusters, such that babies 

within a cluster looked more “similar” with respect to the measure than babies from 

different clusters. This is performed using the hierarchical clustering method (Sneath, 

1973) in conjunction with a dendogram and a clustering performance index (Calinski 

& Harabasz, 1974) to assess the overall results.  

 

1.5  Contributions and significance of research 

Oxygen has been established as one of the key factors of ROP (Cole, 2010). 

However, more information is required pertaining to the relationships between 

oxygenation fluctuations and ROP, particularly so with respect to GA, timeline of the 

onset, or relationship with other risk factors (Cole et al., 2003). Studies have been 

done to improve the understanding of the origin and mechanism of ROP, but not 

without limitations. There is a subjective interpretation of outcome due to the different 

oxygen monitoring devices used, a lack of knowledge of whether and which measures 

of OS are related to the severity of ROP, and a lack of understanding on the 

relationships between oxygenation, other clinical and postnatal factors, and severe 

ROP. These issues underscore the importance of conducting a detailed and 

comprehensive analysis in understanding the development (or healing) of severe ROP, 
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and these are addressed in NZ-ROP. It is a study that investigates multiple 

determinants, including four OS measures, of severe ROP in extremely low GA (<28 

weeks GA) babies. 

 

 Defining the “appropriate” blood oxygen levels or dose of supplemental 

oxygen in preterm babies is one of the primary interests in the perinatal and neonatal 

medical community. However, this goal has been hindered as to which best method of 

monitoring and what features of the oxygen readings to analyse are still debated. 

Previous studies have attempted to address these issues by suggesting several typical 

measures of the saturation levels when investigating babies’ oxygenation during the 

early life. In NZ-LP, three summary statistics based on OS variability and levels are 

considered and assessed for saturation monitoring of late preterm babies. 

 

The contributions of NZ-ROP and NZ-LP are the identification of OS 

measures of variability as the useful features of blood oxygen for examining and 

detecting babies who may be at future risk for severe ROP and babies that may have 

unstable health conditions prior to hospital discharge. Specifically in NZ-LP, 

measures of SD and CV perform better than mean for separating mildly unstable 

babies in one group and all stable babies in another group. In NZ-ROP, a measure for 

desaturation events is found to be strongly associated with severe ROP. Additionally, 

the study demonstrates that a combined impact of four factors: frequent episodes of 

desaturation, longer duration of ventilation support, extremely low birth weight and 

high degree of immaturity is substantial on the development of ROP sufficiently 

severe to require retinal surgery.  

 

Influential evidence on the relationships between oxygen and ROP 

occurrences are now emerging, with past studies showing that fluctuations of 

oxygenation (Cole, 2010) and treatment of oxygen therapy (Kinsey et al., 1977) have 

a role in this neonatal complication. The data from the BOOST-NZ oxygen targeting 

trial could be used to investigate the risk factors of severe ROP. However, these are 

new data sets and have not been analysed in any other studies. In particular, the OS 

readings are influenced by the trial-imposed offsets and software artefact of the 

oximeter, and the oximeter’s type for each baby is masked from the parents and 

neonatal care providers. As such, these hinder the OS data to be directly used for NZ-
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ROP. Substantial efforts are carried out to manage and process the NZ-ROP data set 

so as to ensure that the oximeter’s type is identified and the affected OS values are 

adjusted using novel algorithms to reflect the actual readings. 

 

Implementation of the algorithms is also essential for other studies on preterm 

babies. The OS data could be useful to study patients of neonatal morbidities 

associated with the use of oxygen such as bronchopulmonary dysplasia (Askie et al., 

2003) and damage to the postnatal growth of length, weight, and head circumference 

(Tin et al., 2001). The presence of the offsets and artefact in the data, however, could 

mask certain borderline threshold of saturations for each morbidity; thereby, could 

result in failure to identify babies with potentially severe outcomes. 

 

The research outcomes of NZ-ROP and NZ-LP are important to the health 

care providers and academia. The knowledge that the research seeks will contribute to 

the wider neonatal community (neonatologists, paediatricians, ophthalmologists, and 

neonatal nurses) and towards better understanding of oxygen instability and its 

monitoring, and management of high-risk babies within and across the population of 

New Zealand preterm babies. This information would increase awareness in 

enhancing the care of high-risk newborn babies and stimulate ideas to develop 

evidence-based preventive and corrective strategies for future neonatal treatment. The 

research can also be important for academia as it provides a thorough description of 

the projects, which can be analysed and critiqued from different angles, for instance, 

using the regression analysis for NZ-ROP. The investigation of ROP determinants, 

which includes measures of oxygenation fluctuations and other clinical predictors, 

may confer better understanding on the extent of their relationship with severity of 

ROP. Consequently, the outcomes of predictive models for ROP may be of use to 

clinicians when evaluating vulnerable young babies at risk of the sight-threatening 

disease.  

 

Continuous oxygen monitoring plays an important role in assessing the health 

of preterm babies. In the clinical care of these vulnerable babies, appropriate tools are 

required for identifying medical complications (Higgins et al., 2007; Raju et al., 

2006). Successful identification of OS measures is therefore important for monitoring 

the oxygenation status of premature babies during their early weeks of life. This 
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would allow the clinicians to control and reduce factors that aggravate oxygen lability, 

and evaluate current care practices for oxygen supplemental administration.  

 

As well as contributing to health care provision, all New Zealand high-risk 

babies will benefit from up-to-date evidence-based research from the two studies, 

with the goal to reduce the likelihood of developing neuro-developmental disability or 

ROP sufficiently severe to require laser therapy. The reduction in such morbidities 

and financial burden would enhance their quality of life and benefit their family and 

the society (Saigal and Doyle, 2008).  

 

Overall prematurity accounts for much of the cost and disability from NICU 

care. Preterm babies contribute disproportionately to the work loads of neonatal 

intensive care units (Cust et al., 2003). According to Darlow and colleagues (2007), 

these babies have increased morbidity across a range of health and developmental 

outcomes at two years of age compared with healthy controls. The outcomes from the 

studies could be essential to reduce the burden of disability on health service 

resources in the community, in terms of time commitments and workloads of the 

NICUs medical team and specialist visit. In turn, these could reduce the long-term 

costs to New Zealand’s health system and social services. The exact size of this cost 

saving, however, can only be estimated accurately by a formal economic evaluation. 

 

1.6 Overview of the thesis 

 The structure of the thesis is as follows. Consequences and issues related to 

instability in blood oxygen level as well as the current challenges in managing these 

concerns are addressed in Chapter 1. NZ-ROP is described in Chapter 2 until Chapter 

5; Chapter 3 and Chapter 5 form the main parts of the thesis. NZ-LP is discussed in 

Chapter 6.  

 

Chapter 2 reviews on the pathological details and risk factors of ROP, 

motivation and relevant background of NZ-ROP. Description is also given for the 

three main components (OS readings, diagnosis of ROP status, and clinical and 

postnatal information) of data that are used in the analysis.  
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Chapter 3 concentrates on the pre-processing of OS data that were recorded 

using Masimo SET oximeters. Some of the challenges faced in processing these data 

include unmasking the oximeter’s type for each baby involved in the study, and 

removing the effects of artefact and trial-imposed offsets from the OS readings. An 

outline of procedure for identifying the type of oximeter, and description for 

development and implementation of two novel algorithms for adjusting the two 

features are provided in this chapter. These steps are important to render the data 

suitable for use in the regression modelling, which is the focus of Chapter 4 and 5.  

Additionally, validation of the algorithms is also demonstrated using the offset and 

non-offset data of a UK preterm baby.  

 

Chapter 4 provides the background material of statistical techniques used for 

analysing plausible relationships between four measures of OS, seven other 

predictors, and severe ROP. These relationships are examined simultaneously using 

all-subsets regression. The approaches that are used here extend the work of previous 

studies, which have mainly focused on single regression model and single measure of 

oxygen, and utilised older technology of blood oxygen monitoring.  

 

The results and discussion of NZ-ROP are presented in Chapter 5. Various 

ideas are forwarded in this chapter when analysing the OS features (saturation level 

and variability) and other predictors for severe ROP diagnosis. For instance, using 

subtle patterns in the oxygenation of babies with and without ROP to locate a suitable 

period for summarising the OS measures; fitting regression models with one predictor 

from each group of common predictors that are highly correlated for handling 

multicollinearity; and grouping of common predictors of similar risk factor groups for 

examining the relative importance of ROP’s predictors with respect to their 

relationship with this eye disorder.  

 

Chapter 6 describes the investigation of NZ-LP. A review is presented on the 

previous works of obtaining some typical measures of saturation levels as the 

common values for oxygenation monitoring. Treatments are outlined for missing or 

unreliable OS readings and description of techniques is given to evaluate the ability of 

three statistical summaries: mean, SD, and CV of OS. The results of the analysis are 
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illustrated using an extremeness index of the box plots, and a hierarchical clustering 

method.  

 

Concluding remarks for the thesis and recommendations for future direction of 

research are given in Chapter 7. 
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CHAPTER 2 

NZ-ROP STUDY-BACKGROUND 

 

2.1 Introduction  

This chapter reviews the background of ROP, which includes the historical 

aspect, pathophysiology or development in the developing retina, classification and 

treatment of ROP severity as well as the group of babies at risk and related risk 

factors.  Previous and recent developments in ROP studies are also discussed. For 

instance, the guidelines for safe OS monitoring in clinical practice, investigations on 

the relationship between arterial oxygen tension, transcutaneous oxygen and OS, and 

on oxygenation fluctuations and ROP. A brief description of a study on ROP 

predictors is given in the final section. 

 

2.1.1 ROP in preterm babies  

 ROP is an abnormality of the retina and disorder of immature retinal blood 

vessels in babies born prematurely. The incomplete formation of the retina is due to 

failure of retinal blood vessels to develop normally and to grow to the entire retina. In 

the absence of timely and appropriate treatment, it can progress aggressively to retinal 

detachment leading to visual loss. ROP is a visual impairment threat to babies in 

various parts of the world, particularly so in countries with access to neonatal care of 

resuscitation (Gilbert et al., 2005).  

 

Oxygen therapy for neonatal treatment was introduced in the 1930s in the US 

and soon, it became widespread to other industrialised countries. As proper devices 

for measuring blood oxygen levels were unavailable, clinicians found it difficult to 

target supplemental oxygen that meets each baby’s need. The first epidemic of ROP 

was first reported in 1942 (Kinsey et al., 1956) and by 1950s, the role of breathing 

unrestricted supplemental oxygen as the major cause was discovered by three 

randomised control trials. As a result of these trials, the use of oxygen in nurseries 

was drastically curtailed, where the babies were often administered with less than 

40% of supplemental oxygen. Such a restriction resulted in a decrease in blinding 

ROP, but there were also increased mortality and morbidity rates (Cross, 1973). The 
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second epidemic occurred in the 1970s, in which advances in health systems for both 

antenatal and neonatal care have contributed to the survival of a greater proportion of 

high-risk babies. Extreme prematurity, with some cases as young as 23 weeks GA, 

was the driving force for this epidemic to persist (Slidsborg et al., 2008; Zin and Gole, 

2013); thus, stimulating clinicians to develop methods for preventing and detecting 

potentially blinding ROP. In the last decade or so, the rate of children who develop 

blinding ROP has been increasing in newly industrialising and developing countries 

(Gilbert et al., 2005). This is termed as the third epidemic.  

   

2.1.2 Severe ROP worldwide 

ROP is one of the three leading causes of childhood blindness in the world for 

the past 10 years (Kong et al., 2012). In 2010, it was estimated that nearly 22% or 

184,700 of surviving preterm babies had some degree of ROP. Of these, almost 6.7% 

or 12,300 babies developed mild or moderate visual impairment and a further 10.8% 

progressed to severe impairment or become blind (Bleincowe et al., 2013). Incidence 

for ROP, however, differs enormously per country as it depends on the standards of 

health care and socioeconomic development. ROP was once considered as a disease 

that mostly occurred in developed countries; nonetheless, incidence of ROP has been 

emerging in middle-income countries and urban areas of low income countries, in 

which these account for 65% of visual impairment in children. Lowest income 

regions, however, have very low percentage of ROP cases with mortality among 

premature babies as high as 50% due to lack of good quality health care facilities for 

babies and pregnant women (Gilbert et al., 2005).  

 

More ROP incidences are now being reported for severe ROP. This generally 

refers to sight threatening ROP at advanced stages for which treatment will be 

offered. The incidence of severe ROP in several high-, middle-, and low-income 

countries over the past two decades (Zin and Gole, 2013) is summarised in Table 2.1. 

It can be seen that severe ROP is emerging as a major cause of blindness in middle-

income nation such as China, and regions such as Southeast and South Asia, Latin 

America and parts of Eastern Europe. In these places, many of the cases have been 

reported to occur in more mature (32-36 weeks of GAs) and larger (>1500g of birth 

weights) babies. Such a phenomenon could be due to the rapid improvement in the 

maternal and neonatal facilities, which in part, has induced delivery of moderately to 
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late premature babies for non-medical reasons (Zin and Gole, 2013). In high-income 

countries, incidences of ROP are widely ranged from nearly 4% to 35% (Table 2.1). 

However, blindness and severe visual impairment is more prevalent among newborns 

with low GAs <28 weeks or extremely low birth weights <1000g (Horbar et al., 

2012).   

 

Table 2.1: Severe ROP incidence in some high-, middle-, and low-income 

countries (adapted with permission from Zin and Gole, 2013) 

Country 
Country group 

by income 
 Period 

Number of 

babies 

Incidence 

(%) 

United States High  2003-2007 6866 16.0  

United Kingdom High  1987-1998 484 5.2  

Australia  High  1992-2009 373 15.0  

Canada High  2006-2007 1866 3.9  

Germany High  1993-2007 1473 14.8  

Sweden High  2007-2009 506 34.8  

Argentina Upper middle  2008-2010 1169 13.4  

Brazil Upper middle  2004-2006 3437 3.4  

China Upper middle  2009-2010 2185 13.1  

Romania Upper middle  2002-2007 1783 15.2  

India Lower middle  1999-2002 1083 11.0  

Pakistan Lower middle  2003-2006 68 20.6  

Vietnam Lower middle  2001 225 9.3  

Bangladesh Low  1998-2003 114 4.4  

  

2.1.3 Significance of ROP problem 

ROP is a public health issue with economic and social implications. Premature 

babies with ROP face visual impairment including blindness. The impact on these 

survivors of prematurity when entering the society with potential life-long blindness is 

particularly tragic. They may have more difficulty in securing employment; therefore, 

hindering them from producing economic benefits to the society and in turn, requires 

aid from their families or social services. Blindness due to severe ROP also negatively 

affects neuro-developmental function. Babies with unfavourable visual acuity fare 
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worse functional outcomes, with 77% have self-care disability, 50% continence 

disability, 43% motor disability, and 66% social cognitive disability (Msall et al., 

2000). The adverse sequels resulting from these disabilities affect the quality of life of 

the children and inflict a long-term burden on their families, society, and health care 

resources (Saigal and Doyle, 2008).  

 

Disabilities impose great strains on the family. Many parents with a disable 

child have reported additional pressures and stresses on their other children, health 

and marriage when coping with their child's disabilities. Also, these parents are less 

likely to be engaged in full-time employment; hence, they tend to have lower 

household incomes and savings (Saigal and Doyle, 2008).  

 

Caring for the severely disabled individuals entails considerable utilisation and 

cost of health care resources. According to Tommiska and colleagues (2003), who 

studied the costs of caring extremely low birth weight babies in Finland for the period 

1996-1997, the average health care cost of raising severely disabled babies in the first 

two years is 68-fold compared to normal healthy babies. The higher costs are related 

to the treatments received during hospitalisation, specialist consultation, other health 

care services, and parents’ travel, accommodation and loss of earnings. 

 

High incidence of severe ROP, associated with disability and rising cost of 

health services, represents a significant health impact in all countries. With recent 

developments showing improved survival rates of premature babies (Horbar et al., 

2012) and large numbers of ROP babies entering the society (Blencowe et al., 2013), 

ROP remains an ongoing concern. Eradicating ROP would enhance the quality of life 

of these babies and benefit their family and the community.  

 

2.1.4 Assessment, classification and treatment of ROP 

With vast improvements in the medical care, it is now possible to diagnose 

ROP through retinal examination by an ophthalmologist. Currently, more hospitals in 

many countries are starting to impose a regulation that all babies at risk of sight-

threatening ROP should be examined in screening programs. Guidelines for 

examining and classifying of ROP were first developed in 1984 by an international 

group of pediatric ophthalmologists and retinal specialists (Committee for the 
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Classification of Retinopathy of Prematurity, 1984). These guidelines were updated 

recently, which recommended that the first eye examination needs to be performed as 

early as 31 weeks PMA for babies born <28 weeks GA, and at four weeks after birth 

for more mature babies (Fierson et al., 2013). When no ROP is detected during the 

first visit, follow-up exams are needed every one to three weeks until the eyes are 

fully vascularised or worsening condition is found. As proper screening programs are 

not properly established in the less and moderate developing countries, some 

ophthalmologists follow the US guidelines, i.e. birth weight ≤1500 g or ≤30 weeks 

GA, or 1500 g - 2000 g or >30 weeks GA for high risk babies (American Association 

for Pediatric Ophthalmology, 2006), and some follow the UK guidelines, i.e. birth 

weight <1500 g and/ or <32 weeks GA (Wilkinson and Royal College of 

Ophthalmologists of the United Kingdom, 2008). However, according to Gilbert and 

colleagues (2005), these guidelines from two highly developed countries may not suit 

countries such as India, China, Latin America, and Eastern Europe, in which larger 

and more mature babies are developing threshold ROP. The researchers then 

suggested that wider screening criteria and appropriate timing of examination be 

adopted according to the local data.  

 

Classification 

By convention of the current guidelines (Fierson et al., 2013; American 

Association for Pediatric Ophthalmology, 2006; Wilkinson and Royal College of 

Ophthalmologists of the United Kingdom, 2008), the overall ROP status of an eye is 

indicated by the worst stage of retinopathy. ROP is graded into five stages of 

increasing severity (stages 1-5). In the early stages 1 and 2, the eyes could get better 

on their own or in some cases, they progress to stage 3. If untreated, the eyes are 

exposed to the risk of potentially blinding stages 4 and 5. The schematic view of 

retina in Figure 2.1 illustrates the progression of ROP from normal to mild ROP of 

stages 1 and 2, to severe ROP of stage 3. The quadrant labelled A shows the retinal 

pattern of premature blood vessels. Quadrant B shows the first stage of ROP. The 

blood vessels have stopped developing and the normal retina is now separated from 

the premature retina by a sharp line. Stage 2 ROP, as shown in quadrant C, occurs 

when the line of separation advances to an elevated ridge of tissue. In quadrant D, 

more serious stage 3 ROP is present when new blood vessels extend from the ridge 

toward the center of the eye. As stage 3 advances, the separation between the retina 
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that has blood vessels in the back of the eye, and the retina that does not have blood 

vessels in the front of the eye becomes even clearer. Treatment is then required to 

destroy the retina without the blood vessels. After the treatment, ROP could either 

subsides on its own or continues to affect the retina to detach partially (stage 4) or 

totally (stage 5). 

 

 

UK Retinopathy of Prematurity Guideline, 2008 

 

2.2 Risk factors of ROP  

Figure 2.1: Stages of retinopathy based on a diagrammatic view of retina. The white 

area in the centre is the optic nerve, the grey lines are the arteries, and the black lines 

are the veins. (Reprinted from “UK Retinopathy of Prematurity Guideline 2008” 

(Wilkinson et al., 2008) with permission of the Royal College of Paediatrics and Child 

Health). 

  

Treatment of established ROP 

A majority of extremely preterm babies will show some degree of ROP, which 

sometimes resolves naturally without treatment. A small proportion, however, go on 

A 

Normal retina 

D 

Stage 3 ROP 

 

C 

Stage 2 ROP 
B 

Stage 1 ROP 
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to develop severe ROP in one or both eyes that progress to serious vision impairment 

when untreated. To prevent the adverse effects, treatments such as cryotherapy and 

laser therapy are used. The latter is often used as the current standard of care as laser-

treated eyes have been reported to have better structural and visual acuity than 

cryotherapy (Ng et al., 2002). Recently, bevacizumab drug (Mintz-Hittner et al., 

2011) was introduced in lieu of or in addition to laser treatment. The treatment of 

ROP with bevacizumab, however, is still at an experimental stage with patterns of 

recurrence and long term side effects remain to be further investigated. More evidence 

through randomised trials is needed to determine its safe and effective dose, and 

whether it is superior to laser (Darlow et al., 2013). 

 

2.2 Pathophysiology of ROP   

 The development of ROP is surrounded by intricate connections with many 

factors including premature lung function (Askie et al., 2003), immature retinal tissue 

(Smith, 2005), variable tissue oxygenation (Cole, 2010) as well as demographic and 

postnatal factors (Darlow et al, 2005). Most recently, the role and impacts of vascular 

endothelial growth factor (VEGF) on the development of ROP have been explored 

(Chen and Smith, 2007). VEGF is excreted following from the deficiency of oxygen 

in the tissue and it is associated with the development of new blood vessels.  

 

An adequate balance between oxygenation and regulation of VEGF is 

important for normal retinal formation (Chen and Smith, 2007; Pierce, 1996). A 

perturbation in oxygenation, however, will alter the delicate balance of the growth 

factor regulation and inevitably leads to the progression of clinical retinopathy. In 

early fetal life, the retina is devoid of blood vessels. After premature birth, treatment 

with supplemental oxygen may flood the immature retina with oxygen, resulting in 

higher exposure of the baby to oxygen concentration. This hyperoxia interrupts the 

natural hypoxia process in the retina. This leads to the downregulation of VEGF 

production and causes cessation of existing vessels growth. When the oxygen 

treatment stops, the retina becomes severely hypoxic, causing high secretion of 

VEGF. Such an overproduction stimulates new vessels to grow abnormally, extending 

from the ridge in the retina toward the center of the eye. These vessels are weak and 

prone to haemorrhage, scarring and contraction; thus, leading to detachments of retina 

and loss of vision. 
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2.3 Previous and current research in ROP 

2.3.1 Guidelines for blood oxygen levels to minimise the risk of ROP 

Monitoring blood oxygen levels is vital in neonatal care. Since 1970s and 

1980s, three types of devices have been used to assess a baby’s oxygenation status. 

These include transcutaneous oxygen electrode that requires regular calibration and 

can cause skin burns from prolonged use, and umbilical arterial catheter that has been 

considered as the optimum method for estimating blood oxygen levels. However, the 

latter is invasive and mostly limited to intermittent monitoring. A non-invasive pulse 

oximeter may be utilised to measure OS continuously. Its relative convenience of 

usage, which consists of a sensor that could be placed on the finger or toe of a patient, 

has made it as the predominant method of monitoring oxygenation in many NICUs. 

 

Studies have found that arterial oxygen tension (PaO2), transcutaneous oxygen 

(PtcO2), and OS do not correspond linearly (Hintz et al., 2002). Hence, care must be 

taken when using the relationships between these measurements to interpret the 

readings. In particular, lower OS levels of less than 70% generally are less accurate 

(Giuliano and Higgins, 2005) whilst higher OS levels of 97-100% can correspond to a 

wide range of PaO2 values starting from 60 mmHg to as high as 400 mmHg, or higher 

when a baby breathes supplemental oxygen. Likewise, a decreasing accuracy of linear 

relationship between PaO2 and PtcO2 has been observed at lower and higher readings 

of PaO2. For instance, a PtcO2 of 45 mmHg may correspond to a PaO2 of 50 mmHg or 

higher than 80 mmHg. As readings between these instruments differ, it remains a 

challenge to ascertain episodes of hypoxaemia, hyperoxaemia and desaturation in the 

oxygenation monitoring of preterm babies.  

 

Reliable detection of the three events, as mentioned above, is crucial for 

avoidance of oxygen-related diseases such as ROP (Di Fiore et al., 2010) and chronic 

lung disease (American Academy of Pediatrics, 2002). Values of PaO2 ranging from 

<40-50 mmHg have been considered to be the thresholds for defining episodes of 

hypoxaemia (Bohnhorst et al., 2000; Poets & Southhall, 1994) whilst an upper limit of 

80 mmHg has been shown to have sufficient sensitivity to detect hyperoxaemia 

(Bohnhorst et al., 2002). Desaturation is the frequency of intermittent falls in OS. 

According to Hunt and colleagues (1999), occurrences of desaturation are common 
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either during short respiratory pauses or periodic breathing. OS levels of not more 

than 80% or 85% have been used as thresholds for defining desaturation episodes in 

full term babies (Hunt et al., 1999; Stebbens et al., 1991) and preterm babies (Di 

Fiore, 2004; Poets et al., 1992). A critical range of oxygen tension and OS in preterm 

babies receiving supplemental oxygen is still unknown. Flynn and colleagues (1992) 

later found that ROP occurred more often with oxygen tension above 80 mm Hg and 

thereafter, PaO2 of 50-80 mmHg as a safe range to avoid ROP was accepted by 

professional consensus (American Academy of Pediatrics, 2002). Another study on 

the role of OS in fetal growth reported that normal fetuses develop with OS of 70-

80% in utero (Nicolini, 1990); many clinicians, however, are relying on 85-95% in 

monitoring preterm babies (Cole et al., 2003).  

 

With limited information on the link between oxygen tension and OS, efforts 

have been made to transpose oxygen tension of 50-80mm Hg into equivalent OS 

values. These included targeting a higher range of 90-95% (Vijaykumar, 1997) and a 

lower range of 80-95% (Tin et al., 2001; Anderson et al., 2004; Sun et al., 2002; 

Chow et al., 2003) shortly after birth. Outcomes from these observational studies 

suggested that retinal surgery may reduce by 61-100% if a lower range of OS policy is 

adopted. Such a recommendation, however, was met with a concern because lower 

saturation ranges may compromise neuro-developmental and survival outcomes (Cole 

et al., 2003). To guide future clinical practice in the administration of supplemental 

oxygen to newborn babies, a group of collaborated randomised control trials from 

nine countries are studying the effects of two different ranges of OS levels on the 

health of very preterm babies less than 28 weeks GA (Cole et al., 2003; Askie et al., 

2011). Recent results from these trials suggested that incidence of severe ROP was 

reduced with lower saturation ranges below 90%; however, the risk of mortality was 

increased (SUPPORT Group, 2010; Vaucher et al., 2012; Schmidt et al., 2013; 

BOOST II Group, 2013).  

 

2.3.2 Oxygen fluctuations and ROP 

 The role of oxygen fluctuations in the development of ROP was not fully 

understood until animal studies were carried out in the early 1950’s (Ashton et al., 

1954).  Rats, cats, mice and rabbits were often used to study the effects of alternating 

or clustering of oxygen fluctuations on retinal development as their retinal structure at 
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birth is closely comparable to that in preterm babies. Mimicking oxygen-induced 

retinopathy, the newborn animals were exposed to varying concentrations of oxygen 

for continuous or intermittent periods. These studies later gave rise to other animal 

models of retinopathy and studies involving extremely premature babies as young as 

23 weeks GA (Di Fiore et al., 2010).  

 

 Clinical human and animal studies have shown that oxygen fluctuations, 

hypoxia and hyperoxia in the early weeks of life during oxygen therapy increased the 

risk for severe or threshold ROP. PtcO2 variability was reported to be a significant 

predictor of severe ROP in the first two weeks of life (Cunningham et al., 1995), and 

increased fluctuations of PaO2 may expose premature babies to a higher risk of 

developing threshold ROP (Saito et al., 1993; York et al., 2004). In experiments done 

in newborn rats, alternating hypoxia and hyperoxia caused severe retinopathy 

(Werdich et al., 2004; Penn et al., 1994; McColm et al., 2004; Coleman et al., 2008). 

Severity is worsened when fluctuations in oxygen occurred in wider ranges (Penn et 

al., 1995), hypoxic clusters (Coleman et al., 2008), small increments (Werdich et al., 

2004), or repeated hypoxic periods (McColm et al., 2004). These studies illustrate a 

plausible explanation that increased hypoxic episodes may be associated with the 

development of severe ROP, a finding which was later confirmed by Di Fiore and 

colleagues (2010). In their study, the babies in the group of ROP sufficiently severe to 

require laser therapy (LaserROP) had increased frequency of hypoxaemic events as 

well as longer period of supplemental oxygen compared with babies in the 

NoLaserROP group through the first four to five weeks of life. Because longer 

periods on oxygen therapy may subject a baby to greater episodes of hypoxia, 

hyperoxia and oxygenation fluctuations (Tin et al., 2001; Cole, 2010), clinical 

practices accompanied by frequent adjustments of supplemental oxygen need to be 

eradicated.  

 

2.3.3 Postnatal and clinical determinants of ROP 

ROP is a disease of prematurity that was discovered about seven decades ago 

after oxygen therapy was introduced into the newborn nursery. At that time, it was 

also noted that all of the initial patients weighed under 1600 g (Kinsey et al., 1956; 

Kinsey et al., 1977). The use of oxygen is now closely monitored and is no longer 

implicated as the sole or even the primary factor of ROP. Nevertheless, serious 
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retinopathy persists until today, with prematurity (Darlow et al., 2005) and birth 

weight (Good et al., 2005) remain as the dominant risk factors of this vision 

threatening disorder.  

 

Many clinicians believe that events in the postnatal period of premature babies 

may be critical in determining the onset of ROP. A multitude of factors have been 

investigated as having associations with ROP. Whilst prematurity, low birth weight, 

and the use of oxygen therapy (McColm and Fleck, 2001) have been consistently 

found as the strongest risk factors of ROP, recent studies have also suggested that 

there are close relationships between postnatal weight gain (Wikstrand et al., 2011; 

Hellstrom et al., 2009), insulin-like growth factor (IGF-1) (Hellstrom et al., 2003) and 

severe ROP. Using a screening algorithm, these investigators demonstrated that poor 

development in weekly weight gain and IGF-1 serum levels that prolonged provide an 

early indication of babies at high risk of severe ROP. IGF-1 has been shown to be 

important for development of normal retina (Hellstrom et al., 2003), and growth of 

fetal and neonate through regulation of insulin glucose levels (Giudice et al., 1995). 

However, high overall glucose levels during the first month of life were found as a 

predictor of severe ROP (Chavez-Valdez et al., 2011). Infection is another area of 

concern in the neonatal development as it is a major cause of mortality and morbidity 

(Hofstetter et al., 2007; American Academy of Pediatrics, 2002). A meta-review by 

Bharwani and Dhanireddy (2008) showed that systemic infection such as candida 

sepsis is associated with a higher proportion of ROP severe enough to require surgical 

treatment.   

 

There have been other clinical factors that have not been consistently 

confirmed with univocal results or clearly proven in large studies, but have been 

postulated to be associated with ROP. Among factors that have been studied are 

genetic disease, multiple gestation pregnancies, maternal bleeding, intakes of iron, 

vitamins E and A, breast milk feedings, light exposure. There are also several reports 

on the damaging effects of high carbon dioxide levels (Hauspurg et al., 2011) and 

frequent blood transfusions (Romagnoli, 2009) on exacerbating the severity of ROP. 

Although the findings are suggestive, additional investigations are warranted if these 

events persist in the neonatal care.   
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Gender has been identified as one of the risk factors since an early report of 

ROP in 1942, where male babies were noted to be more likely to acquire the disease 

than female babies. Whilst this outcome has been confirmed by several studies in the 

US (Di Fiore et al., 2010; Jacobson et al., 2009) and a large network in Australia and 

New Zealand (Darlow et al., 2005), others found no relationship between male gender 

and severity of ROP (Gunn et al., 2012; Austeng et al., 2010). The finding that male 

babies are prone to the risk of ROP is in accordance with some earlier evidence that 

being male is associated with increased chances of mortality and morbidity at extreme 

prematurity (Synnes et al., 1994). Likewise, babies with prenatal growth restriction 

have been suggested to be more susceptible to these adverse outcomes. Currently, 

many clinicians are starting to study whether restriction in intrauterine growth could 

have contributed towards the development of the eye disease. Consequently, there 

appears to be an increasing inclination to use weight-for-GA rather than birth weight 

as the basis of cohort selection (Qiu et al., 2012; Regev et al., 2003) since the former 

has been shown to provide a clearer relationship between morbidity, GA and birth 

weight (Synnes et al., 1994). The benefit of utilising weight-for-GA over birth weight, 

however, is still debated as not all studies consistently found similar associations, 

which in part, could be due to various criteria being used for defining weight-for-GA 

itself.  

 

The efficacy of steroids on reducing mortality, morbidity and improving lung 

maturation in fetal and preterm babies has been reviewed by Halliday and colleagues 

(2003) based on 21 randomised controlled trials. Both prenatal and postnatal steroids 

appear to be associated with a reduction in the severity of ROP (Console et al., 1997; 

Jagielska et al., 2008). The protective effect of the latter, however, is demonstrated 

only when administered within 4 days of birth (Halliday et al., 2003), which also 

resulted in adverse side effects of body systems and neuro-developmental impairment. 

Timing of administration again plays an important role when a study reported that any 

late treatments given after three weeks of life or those that prolonged for more than 

two weeks may pose an increased risk of severe ROP in very low birth weight babies 

(Karna et al., 2005). A large multi-center randomised trial has been suggested to gain 

a consensus on recommended timing and dosage for both short and long-term use of 

steroids in clinical practice.  
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2.4 NZ-ROP study 

The influence of clinical determinants of ROP in preterm babies is 

multifaceted (McColm and Fleck, 2001). Many of them are inter-related, and have 

been found to be associated not only with ROP but also with other various 

complication of prematurity. The simultaneous presence of these factors seems to 

indicate babies’ underlying conditions of being more ill from severe disease status. 

  

Reducing the severity of ROP is extremely important in protecting very 

premature babies from the risk of vision impairment or blindness. More studies are 

beginning to shed light on the many factors involved in the disease; in particular, 

fluctuations of blood oxygen levels of PaO2 (York et al., 2004) and PtcO2 

(Cunningham et al., 1995). However, the role of OS, combined with other factors, on 

the development of ROP is still less clear today. A study, NZ-ROP, was then 

undertaken to examine whether some measures of OS could provide some insight on 

the link between fluctuations of OS and severity of ROP. NZ-ROP was analysed 

using a subset of data from the BOOST-NZ trial. 

 

2.4.1 BOOST-NZ trial 

The BOOST-NZ is the New Zealand arm of a group of collaborated 

international randomised controlled trials (described in Section 2.3.1) for investigating 

the optimal range of OS in extreme premature babies being treated with supplemented 

oxygen (Darlow et al., 2014). Specifically, the aim of the trials is to determine 

whether targeting the lower range 85-89% compare to upper range 91-95%, beginning 

within 24 hours of birth until 36 weeks PMA, leads to any difference in outcomes of 

death or survival with neuro-developmental disability diagnosed at two years of age. 

Additionally, postnatal growth and several neonatal illnesses such as ROP are 

investigated as the secondary outcomes.  

 

The trial received approval from the Multi-Region Ethics Committee and 

obtained written consent from all parents. Enrolment of babies started in September 

2006 and ended in December 2009. Recruitment of extremely preterm babies was 

undertaken at five NICUs in New Zealand. Some postnatal data were recorded upon 

enrolment such as gestation age and weight at birth, and gender whilst other variables 

were documented prospectively until the baby reached 36 weeks PMA or had an early 
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discharge, for instance, survival, OS, duration of oxygen therapy and neonatal 

illnesses. To achieve the trial’s objectives, each enrolled baby was randomly assigned 

with a lower-target group with OS target of 85-89% or a higher-target group with OS 

target of 91-95%, and, therefore was allocated with one of two types of pulse 

oximeters to record the OS readings. These oximeters were specially programmed 

such that the readings between 85-95% were offset to either higher or lower than the 

actual saturation to blind the treatment allocation to family, clinical staff and 

outcome-assessors. Details of these offsets are described in Chapter 3, Section 3.3. 

 

NZ-ROP has different objectives from the BOOST-NZ, although the data were 

taken from the latter. Whilst the BOOST-NZ attempted to assess the effect of two 

different OS ranges on the health of preterm babies, NZ-ROP is focused on 

identifying the potential relationships between four statistical summaries of OS, 

several postnatal factors and ROP alone. The differences in these objectives between 

the two studies have some implications on the OS data. Because the readings of the 

oximeters were influenced by the trial-imposed offsets, these effects must be removed 

before the OS data can be used in the NZ-ROP analysis. The procedures to adjust 

these offsets are detailed in Section 3.4.   

   

2.4.2 NZ-ROP data  

There were 340 premature babies that were enrolled in the BOOST-NZ. 

Babies were eligible for inclusion in NZ-ROP if they had been admitted to the NICUs 

between September 2006 and December 2009 with gestation less than 28 weeks, were 

less than 24 hours old, and were alive until 36 weeks PMA. Babies were excluded if 

they had known congenital anomalies affecting oxygenation. A total of 83 of the 

eligible babies did not meet the inclusion criteria for the following reasons: they were 

deceased before 36 weeks PMA, had not reached the end point of the eye 

examination, were still depending on supplemental oxygen, had withdrawn from the 

study before 36 weeks PMA, or had no OS data for at least two weeks after 27 weeks 

PMA. Overall, a total of 257 babies who met the inclusion criteria of NZ-ROP (Figure 

2.2) and had the most complete information were included in the retinopathy study. 

Of these, 38 babies developed at least stage 3 ROP, and another 3 developed stage 2 

ROP but were treated with laser retinal surgery. This resulted in 13.6% (or 41/301) of 
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severe ROP cases. The ROP status, clinical and postnatal information as well as the 

OS data for these 257 babies were utilised in the NZ-ROP analysis.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Flowchart of study population in NZ-ROP and ROP outcome 

 

Oxygen saturation 

The BOOST-NZ trial used specially adjusted and masked Masimo SET pulse 

oximeters (Masimo Corporation, Irvine, CA, United States) for comparing the effects 

of OS targeting in two groups of preterm babies. Within 24 hours after a baby was 

born and parental consent was obtained, randomisation of oximeter was performed 

and the oximeter with labelled serial number was attached to the baby. Data 

39 babies died before 

PMA 36 weeks 

301 babies available for 

ROP screening 

340 babies born with a 

GA < 28 weeks 

11 babies had no OS 

data ≥2 weeks after 27 

weeks of PMA 

1 baby withdrawn before 

PMA 36 weeks  

14 babies still required 

supplemental oxygen 

18 babies still required 

eye examination  

257 babies included in 

NZ-ROP analysis 

219 babies with ROP 

stage 0-2 

 

38 babies with ROP 

stage ≥3 

 

3 babies treated with 

retinal surgery 

 

20 babies treated with 

retinal surgery 

 

18 babies not treated 

with retinal surgery 

 

41 babies with severe 

ROP 
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acquisition commenced once a good waveform was obtained and OS was recorded 

once every 10 seconds for a continuous duration until 36 weeks PMA or discharged, 

whichever occurred earlier. The data was downloaded at least every fortnightly. The 

allocated oximeter must remain with the baby even when the baby is transferred to 

another NICU while still in oxygen. 

 

The OS readings from the oximeter were used as the basis of computation for 

four OS measures that have been chosen as the severe ROP predictors: mean, SD, CV 

and desaturation of OS levels. These measures were computed for each baby after 

adjustments were made on the OS readings to remove the effects of the trial-imposed 

offsets (refer Section 3.4), and a suitable time interval was chosen (refer to Section 4.2 

and Section 5.2). All subsequent analyses for NZ-ROP were based on the adjusted 

data. 

 

Status of ROP 

The babies’ eyes were examined according to the BOOST-NZ protocol by 

experienced ophthalmologists to monitor and detect for any signs of ROP. The stage 

of ROP was recorded during these eye examinations, which started when the babies 

were at the age of four to six weeks after birth, and thereafter fortnightly until the eye 

was considered to be no longer in danger of developing severe ROP. These are when 

the eyes are fully vascularised or the vessels have reached zone III. For this study, the 

status of ROP (denoted as severe or no severe ROP) for each baby was recorded 

according to the most advanced ROP stage observed throughout all visits. Severe 

ROP was defined as stage 3 and above or had undergone laser therapy whilst no 

severe ROP was defined as stage 2 and below including no diagnosis of ROP.  

 

2.6 Summary 

ROP continues to be a significant visual impairment threat in very preterm 

babies. Incidence of ROP is high among the most immature and smaller babies in 

developed nations, but has now emerged among older and bigger babies in middle-

income countries and urban areas of low-income countries (Gilbert et al., 2005). The 

use of supplemental oxygen that was initially implicated as the primary cause of ROP 

is now being closely monitored whilst prematurity and birth weight remain as the 

strongest risk factors of ROP (McColm and Fleck, 2001). There is also a growing 
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evidence of close relationships between ROP and male gender, poor postnatal weight 

gain, prenatal growth retardation, IGF-1 and VEGF (Hellstrom et al., 2003; Hellstrom 

et al., 2009). Guidelines for recommended screening criteria and timing of 

examination according to babies’ birth weight and GA are adopted in various parts of 

the world to detect high-risk babies. Thereby, this would enable them to receive 

appropriate and timely treatment as needed. Eyes that progressed to serious ROP are 

treated with retinal surgery such as cryotherapy or laser therapy (American 

Association for Pediatric Ophthalmology, 2006; Wilkinson and Royal College of 

Ophthalmologists of the United Kingdom, 2008).). 

 

 Recent developments have indicated that stable IGF-1 and VEGF (Hellstrom 

et al., 2003; Hellstrom et al., 2009), reduced fluctuations of blood oxygen levels 

(Cole, 2010), and close monitoring of oxygen therapy (Schmidt et al., 2013; BOOST 

II Group, 2013) in the early neonatal life are important for the development of normal 

retinal formation. Any slight perturbations in oxygenation will alter the delicate 

balance of the growth factors’ regulation and inevitably leads to the progression of 

clinical retinopathy. In animal models of induced retinopathy, varying concentrations 

of oxygen for continuous or intermittent periods in the form of alternating, clusters, 

wider ranges, small increments and repeated episodes exacerbate the severity of ROP. 

However, there is still no clear answer of what range of OS is optimal for newborn 

babies receiving supplemental oxygen. This issue is currently being studied by a 

group of international trials (Askie et al., 2011). 

 

Further studies are also needed to shed light on the link between OS 

fluctuations and ROP. A study (NZ-ROP) was conducted to determine whether 

measures of variability and saturation levels of OS are related to the development of 

severe ROP. This investigation involved 257 babies born <28 weeks GA that were 

enrolled in the BOOST-NZ trial (Darlow et al., 2014). Data consisted of ROP status, 

OS data and postnatal information. The latter includes the age and weight of the 

babies at birth, gender, and details of some treatment for oxygen therapy. The eyes 

examinations were conducted by trained ophthalmologists until the eyes were fully 

vascularised. The status of ROP for each baby was classified as severe ROP or no 

severe ROP, as indicated by the worst stage of ROP observed throughout all visits. 

The OS readings were recorded continuously within 24 hours after birth until 36 
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weeks PMA from Masimo pulse oximeters. The BOOST-NZ, which has its own 

separate objectives from NZ-ROP, had used specially programmed oximeters for 

studying the effects of two types of oxygen intervention. These modifications had 

resulted in the OS readings between certain ranges to be displayed higher or lower 

than the actual saturation. As such, some mechanism is needed to render the data 

suitable for use in NZ-ROP. 

 

High incidence of severe ROP, associated with disability and rising cost of 

health services, represents a significant health impact in all countries. ROP affects the 

quality of life of the children and inflict a long-term burden on their families, society, 

and health care resources (Saigal and Doyle, 2008). Various measures have been 

developed such as providing better antenatal care to reduce the rate of preterm birth. 

There have also been improvements in the neonatal care practices to reduce the risk of 

ROP blindness through adequate human and equipment resources, timely diagnostic 

screening and examinations with appropriate treatment to prevent progression to 

blindness, and identification of criteria for determining babies at high risk of severe 

ROP (Bleincowe at al., 2013; Gilbert et al., 2005). Such interventions in managing 

these most vulnerable patients can contribute significantly to their visual diagnosis. 
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CHAPTER 3 

PRE-PROCESSING OF OXYGEN SATURATION 

DATA FOR NZ-ROP 

 

3.1 Introduction  

Recruitment of babies for the BOOST-NZ trial was completed at the end of 

2009. The data, which were collected from five hospitals, were received in two 

batches - November 2009 and August 2010. There were three main components (refer 

to Chapter 2, Section 2.6) of the data: the clinical data, the ROP status, and the OS 

data from the oximeter. These data were processed before they could be used for 

further analysis. Data checking and verification were conducted for the first two 

components. 

 

The OS data were processed in three stages: data clean-up, data adjustments 

and data summary. The first stage mainly dealt with the inspection and organisation of 

the data, including accounting for signal quality. Data adjustments stage was a crucial 

stage involving the identification of high and low saturation oximeters used for the 

BOOST-NZ trial, removal of the trial-imposed offsets and correction of artefact from 

the Masimo oximeters. In the final stage, summary statistics were computed, which 

formed part of the predictors for the regression analysis in Chapter 5.  

 

3.2 Data clean-up  

 The readings from the oximeter were recorded within 24 hours after birth until 

36 weeks PMA or early discharge from the hospital. They were uploaded about once a 

fortnight to a file, which was named according to the baby’s case number and the 

upload date. The files were checked for consistency in the filename and content. 

Whenever necessary, re-labelling of filenames, organisation of data for each baby, 

and systematic removal of mismatched or duplicated readings were performed. After 

the database was cleaned and properly organised, the quality of the OS values was 

accounted for. Readings with low signal quality indicated by the oximeter, such as 

‘low indicator quality signal’, ‘low perfusion’, or ‘sensor off’ were discarded. Several 

factors could have contributed to the low signal quality, for instance, malpositioning 
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of oximeter’s probe due to a patient movement, low blood flow to the measurement 

site, or unreliable readings during the initial start-up of the oximeter. Upon advice 

from a pediatrician, readings less than 50% were also omitted, as they are unrealistic 

because no preterm baby would normally survive with such low OS. An algorithm 

that removed the noise in the OS readings and assembled all data is provided in 

Appendix A.1. The following flowchart summarises the clean-up process performed 

for each baby. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Flowchart of data clean-up procedure 

 

3.3 Operation of Masimo oximeters for BOOST-NZ  

The oximeters used for the BOOST-NZ trial had two features that were 

addressed before the OS data could be used for the ROP-NZ study. The first was the 

trial-imposed offsets for the OS readings. The oximeters used in the BOOST-NZ trial 

had been altered to read either higher or lower than the true saturation for readings 

between 85-95%. A low saturation oximeter displayed 88-96% when the saturation 

was actually lower at 85-95%, that is, the displayed reading is the true reading plus 

3% but bounded above at 96%. Similarly, a high saturation oximeter displayed 84-

92% when the saturation was actually higher at 85-95%, that is, the displayed reading 

Re-labelling and organisation 

of data 

Removal of mismatched or 

duplicated readings 

Removal of low quality 

readings 
Low IQ signal  

OS values < 50%  

Sensor-off  

Low perfusion 
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is the true reading minus 3% but bounded below at 84%. To prevent unmasking, the 

oximeters displayed a transition from true to offset values and vice versa. The 

transition always occurred incrementally over several seconds, showing intermediate 

values between 85-87% for a low saturation oximeter and between 93-95% for a high 

saturation oximeter. 

 

A second feature of the BOOST-NZ oximeters was an algorithmic artefact that 

made it less likely for OS values between 87-90% to be displayed. Instead, they were 

displayed either as higher or lower (mainly higher) values surrounding the region. As 

a consequence, the true values in the region were moved to either side of the region. 

This, in turn, created a ‘dip’ in the frequencies for the affected region.  

 

As the offsets and the dip region masked the true OS values, it is important 

that the affected values be adjusted to reflect what would have been actually read. 

These adjustments must be made before further analysis can be carried out.  

 

3.4 Adjustments for offsets and dip artefact  

 The algorithms to implement these adjustments were developed in two stages. 

The first stage entailed the identification of the oximeter type (high or low saturation) 

for each baby. In the subsequent stage, adjustments were made for the offsets and the 

dip artefact according to the type of the oximeter. The algorithms for the adjustments 

are described in the next two sub-sections, 3.4.1 and 3.4.2.  

 

3.4.1 Procedure for identifying high or low saturation oximeters  

To unmask the oximeter’s type, the OS readings were summarised as relative 

frequencies and plotted for each baby. Upon careful inspection of the relative 

frequency plots, two distinct patterns for the two types of oximeters were identified. 

For the first type, there was an almost-flat region at saturations 85-87% caused by the 

transition mechanism (Section 3.3), and a notable peak at 96% (Figure 3.2).  
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Figure 3.2: A typical OS pattern for low saturation oximeters: SD(85-87%) is smaller 

than SD(93-95%) and a peak occurs at 96%   

 

For the second type, on the other hand, the almost-flat region occurred at 93-

95% and a peak at 84% (Figure 3.3). From these patterns, it was apparent that the first 

corresponded to low saturation oximeters, and the second to high saturation 

oximeters. These patterns were used to distinguish the oximeter’s type. The resulting 

offset identifications were further verified by checking the serial number of the 

oximeter for each baby. To be consistent, babies using the same oximeter should be 

identified as having the same offset. 

 

 

Figure 3.3: A typical OS pattern for high saturation oximeters: SD(93-95%) is smaller 

than SD(85-87%) and a peak occurs at 84%  
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 The procedure to identify the offsets was summarised as follows: 

 Calculate the standard deviation (SD) of the relative frequencies at saturations 

85-87% and 93-95%. 

 Assign a high saturation oximeter if a peak occurs at 84% saturation and 

SD(85-87%) > SD(93-95%); else assign a low saturation oximeter if a peak 

occurs at 96% saturation and SD(85-87%) < SD(93-95%); else treat as 

unassigned. 

 Ensure consistency of the assigned cases by checking that all babies using the 

same oximeter have the same offset. 

 Assign each of the unassigned cases as high or low by matching its serial 

number with those in the assigned group. Note that there were no unassigned 

cases without matching serial numbers in the assigned group. 

 

3.4.2 Algorithm for adjusting offsets and dip artefact  

 Having identified the type of the oximeter, the next step was to develop and 

implement algorithms for adjusting the offsets and the ‘dip’ artefact. Separate 

algorithms were needed depending on the oximeter type. The details for the two 

algorithms are as follows: 

 

(i) Algorithm for low saturation oximeters (offset is +3%) 

 

 

Figure 3.4: Effects of offset and ‘dip’ artefact, as indicated by the circles, for low 

saturation oximeters 
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 Figure 3.4 depicts the distribution of the OS readings from a baby that was 

assigned to a low saturation oximeter. Recalling how the offset for a low saturation 

oximeter was achieved as well as the ‘dip’ artefact presence in the oximeter, the 

following features are relevant. Firstly, there was a three-point flat region at 

saturations 85-87% due to the transition mechanism (described in Section 3.3). 

Secondly, an unusual peak at 96% was also observed, resulting from true saturations 

of 93-95% being returned as 96% along with the true saturation of 96%. Thirdly, the 

‘dip’ region at 87-90% now occurred at 90-93% because of the offset. Therefore, a 

three-step algorithm was developed to estimate the true readings. Each step consists of 

a linear or quadratic interpolation constrained by two reliable end points, and by an 

appropriate conservation of relative frequencies. Using kr and kr
~  to denote the 

displayed and adjusted relative frequencies, respectively for saturation k. The 

algorithm for low saturation oximeters is outlined as follows: 

 

Step 1: Adjust the three-point flat region. 

Estimate 84
~r  and 85

~r  by quadratic interpolation constrained by true relative frequencies 

at saturations 83% and 86% (i.e. 83r  and 89r  before the offset removal), and 

redistributing the relative frequencies in 88:84r  to 85:84r  (see Figure 3.5(a)). Hence, solve  

,2)8584()8584(

,8686

,8383

22
88

84

2

89

2

83

cbar

cbar

cbar

k

k 








 
(3.1) 

simultaneously for a, b and c, and use them to estimate 84r and 85r : 

.85 ,84,ˆˆˆ~ 2  kcbkakrk  (3.2) 

 

Next, remove the +3% offset to recover the relative frequencies at saturations 86% to 

92% by setting 86:92 89:95r r , (Figure 3.5(b)).  

 

Step 2: Estimate 90:87
~r to adjust for the ‘dip’ artefact. Solve for a and b from equations 

bar

bar





91~
86~

91

86
 (3.3) 
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and use these estimates to interpolate linearly the relative frequencies in the ‘dip’ 

region (Figure 3.5(c)), 

.90 ,...,87,ˆˆ~  kbakrk  (3.4) 

      

Step 3: Adjust the region near the peak at 96%.  

Estimate 96:93
~r by quadratic interpolation constrained by true relative frequencies at 

saturations 92% and 97%, and redistributing the relative frequency in 
96r  to 96:93

~r (see 

Figure 3.5(a)). Hence, solve 
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(3.5) 

 

simultaneously. Use the estimates of a, b and c from the three equations to interpolate 

for 96:93
~r (Figure 3.5(d) and Figure 3.5(e)), 

2 ˆˆ ˆ, 93,...,96.kr k a kb c k     (3.6) 
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Figure 3.5 Corrections for offsets and dip artefact for low saturation oximeters 

 

(ii) Algorithm for high saturation oximeters (offset is -3%).   

 

Figure 3.6: Effects of offsets and ‘dip’ artefact, as indicated by the circles, for high 

saturation oximeters 
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 Similar to the low saturation oximeter, the high saturation oximeter also has 

the peak, ‘dip’ artefact, and the three-point flat region. However, the three features are 

located at different saturations (Figure 3.6). A peak was noted at 84%, resulting from 

true saturations of 85-87% being returned as 84% along with the true saturation of 

84%. This peak corresponds to the true reading of 87%; therefore, comprising part of 

the ‘dip’ region (87-90%). The three-point flat region, which is the effect of masking 

the true saturations, is depicted by the circle at 93-95%. An algorithm to adjust for 

these features is described below along with the results of the implementation (Figure 

3.7). 

 

Figure 3.7: Results of corrections for offsets and dip artefact for high saturation 

oximeters 

 

Step 1: Adjust the three-point flat region. 

Adjustment for the region within the three-point values at 93-95% involves estimating 

95r  and 96r  by quadratic interpolation constrained by true relative frequencies at 

saturations 94% and 97% (i.e. 91r  and 97r before the offset removal), and redistributing 

96:92r  to  96:95
~r  (see Figure 3.7(a)). Hence, solve 
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(3.7) 

 

simultaneously for a, b and c, and use them to estimate 95r  and 96r , 

.96,95,ˆˆ~ 2  kcbkakrk  (3.8) 

       

Next, remove the %3  offset to retrieve the true relative frequencies at saturations 

88% to 94% by setting 91:8594:88
~ rr  , (Figure 3.7(b)).   

    

Step 2: Adjust the region near the peak at 84%.  

Estimate 87:84r  by quadratic interpolation constrained by true relative frequencies at 

saturations 83% and 88%, and redistributing the relative frequency in 84r  to 87:84
~r . 

Hence, solve equations 
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(3.9) 

 

to estimate a, b and c. Use them to interpolate for 87:84
~r  (Figure 3.7(c) and Figure 

3.7(d)), 

.87,...,84,ˆˆ~ 2  kcbkakrk  (3.10) 

  

Step 3: Repeat step 2 from the algorithm for low saturation oximeters to adjust for the 

relative frequencies in ‘dip’ region, i.e. 90:87
~r  (Figure 3.7(e)). 

 

Finally, for both algorithms, normalise all relative frequencies from 84% to 96% 

(Figure 3.5(f)) and Figure 3.7(f)), 
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The MATLAB program for the implementation of the two algorithms is provided in 

Appendix A.2. 

    

3.4.3 Validation of the adjustment method  

 The algorithms were validated using data sets obtained from the United 

Kingdom. These data were OS readings from an extremely preterm baby, who 

received ventilation and supplemental oxygen during the study. The baby was 

monitored for two consecutive periods totaling about 24 hours. In the first period, OS 

readings were taken using a low saturation Masimo oximeter, while in the second 

period, a high saturation Masimo oximeter was used. For both periods, a non-offset 

Siemens oximeter was also used as benchmark. 

 

 Each algorithm (refer Sections 3.4.1 and 3.4.2) was then implemented on the 

corresponding offset Masimo readings, and the results were compared with the 

Siemens recordings. Figures 3.8 and 3.9 show the unadjusted (blue line) and adjusted 

data (red line) alongside the Siemens data (brown line). It can be seen that the 

adjusted data are remarkably close to the Siemens data. Using the algorithms, all of 

the three features – the peak, ‘dip’ artefact, and three-point flat region – that appear in 

the lower and higher saturation target oximeters have been adjusted successfully to 

determine the true OS recordings. 
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Figure 3.8: Comparison of unadjusted and adjusted readings from a Masimo low 

saturation oximeter and a Siemens oximeter  

 

 

Figure 3.9: Comparison of unadjusted and adjusted readings from a Masimo high 

saturation oximeter and a Siemens oximeter  

 

3.5 Summary statistics for the OS data  

 After the preceding pre-processing stages, the adjusted OS readings for each 

baby were checked to ensure that there is adequate data for obtaining OS summary 

statistics. 
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3.5.1 Checking for incomplete data  

 Readings of OS of each baby were recorded once every 10 seconds by a 

Masimo pulse oximeter. Therefore, a complete recording for a week for each baby 

should contain 60,480 data points. However, in reality some data points may be 

missing; this is indeed the case for the NZ-ROP data. Figure 3.10 illustrates that about 

65-80% of the babies have almost complete weekly data (99%), whilst only 5-10% of 

babies have about 50% of weekly data. These results suggest that the occurrence of 

missing data is low and hence should not affect the computation of OS summary 

statistics.  

 

 

Figure 3.10: The relative frequency of infants with percentage of missing points in 

NZ-ROP data  

 

3.5.2 Data summary  

 The last step in the pre-processing procedure was to define statistical 

summaries for the OS readings. Four summary statistics were selected to measure the 

variability and level of OS: mean (meanOS), standard deviation (sdOS), coefficient of 

variation (cvOS), and desaturation (dstOS) of OS. The meanOS served as a measure 

of the OS level, sdOS and dstOS were measures of the OS variability, and cvOS 

measured the OS variability relative to its mean. These statistics are defined as 

follows: 

meanOS = ,~
100

50


k

krk  (3.12) 

  

sdOS = ,meanOS~ 2
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2 
k

krk  (3.13) 
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cvOS ,meanOSsdOS  (3.14) 

and 

dstOS = 
80

50

,k

k

r


  (3.15) 

 

where kr  is assumed to be kr  for k < 84% or k > 96%.  

 

3.6 Summary 

The OS data were obtained from a multi-centre randomised control trial; they 

were recorded using Masimo oximeters. However, these data cannot be used directly 

for the NZ-ROP project due to some features that resulted from the design of the 

oximeters. Therefore, the data were pre-processed in several stages, which included 

data adjustments and data summary. The oximeters had trial-imposed offsets and 

machine artefact, both of which affected the readings displayed on the oximeters; 

thus, resulting in higher or lower saturations readings between 85%-95%. To adjust 

for these two features, algorithms based on linear and quadratic interpolations were 

developed. Subsequently, these algorithms were validated using data sets of an 

extremely preterm baby from the United Kingdom, which consisted of offsets and 

non-offset OS data. The result was satisfactory; the adjusted data were very close to 

the non-offset data; hence, suggesting that the features had been carefully adjusted to 

reflect the true OS readings.  

 

The final pre-processing stage was the computation of the OS summary 

statistics. However, to ensure adequacy of data for the computation, the total record of 

available OS readings in each baby was checked. A close inspection on the data for 

the period of 28 to 35 weeks PMA revealed that at least two-thirds of the babies had 

nearly 99% of weekly data. Nevertheless, there was a small percentage (5-10%) of 

babies, of whom half of their weekly data were missing. The low percentage of 

missing weekly data for each baby should not affect the computation of the OS 

statistics. Four OS statistics were then defined to measure the variability (cvOS, sdOS, 

and dstOS) and level (meanOS) of OS; these statistics were part of the predictors for 

the regression analysis in Chapter 5. 
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CHAPTER 4 

METHODOLOGY FOR NZ-ROP 

 

4.1 Introduction  

The first objective of the NZ-ROP project is to establish whether four OS 

summary statistics are associated with the risk of extremely preterm babies 

developing severe ROP. These measures, as defined in Chapter 3 (Section 3.5.2), 

however, need to be computed upon specification of a time interval. In this chapter, 

the methods used to analyse the NZ-ROP are described, which include the techniques 

for identifying relevant time interval to summarise the OS data, strategy for 

developing predictive models, statistical modelling using logistic regression and 

validation procedure for the models. The chapter is concluded with a detailed 

description of methods for examining the degree of relationship of each predictor with 

severe ROP. 

 

4.2 Time interval to summarise the OS statistics 

 The OS data were electronically sampled every 10 seconds. There were two 

issues with these data that must be addressed before they can be used for the 

calculation of the OS measures: specifying sufficient amount of data and identifying 

time period that could detect the fluctuations of neonatal oxygenation. Previous 

studies were examined to investigate the effects of oxygen fluctuations on preterm 

babies. It was noted that the data were aggregated: five and 10 days of receiving 

oxygen therapy (York, et al., 2004); weekly for three (Cuninngham at al., 1995); four 

(Flynn et al., 1992); and eight (De Fiore at al., 2010; Saito et al., 1993) consecutive 

weeks of postnatal age. Aggregation of one week data is in accord with the guidelines 

for retinal screening of premature babies (Fierson et al., 2013) with the 

recommendation that babies need to be examined from as much as once in three 

weeks down to within one week depending on the categories of risk. This information 

lends support that a week of data was sufficient for quantifying the OS data. In 

Section 3.5.1, it has been demonstrated that the total recording of OS measurements 

for each baby was adequate for weekly data summaries. 
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 For the second issue that is to determine the appropriate time period for the 

calculations of the OS measures, a pediatrician was consulted and the factor of time 

throughout the course of ROP was considered. Over the range of birth weight up to 

1250 gram, ROP has been shown to develop from about 32 to approximately 41.5 

weeks PMA (Good et al., 2005), and progressed to severe ROP at a median of 35 

weeks PMA in preterm babies born less than 25 weeks GA (Coats et al., 2000). The 

development of ROP is characterised by growth of retinal blood vessels (see Section 

2.2) and recent research data have suggested that this disease progresses in two 

distinct phases: the cessation of vessels growth after premature birth and uncontrolled 

growth of vessels that may lead to retinal detachments and blindness (Chen and 

Smith, 2007; Hellstrom et al., 2003). The first phase advances to the second phase at 

about 30–32 weeks PMA. As the timing to intervene medically in the development of 

retinopathy is critical, the pediatrician then recommended that the association between 

the level and variability of OS, and ROP be identified in the earlier weeks of PMA so 

as to curb and prevent more severe ROP cases in very young babies.  

 

Consequently, potential time periods were investigated, which included 

visualising the trend of the group means of the OS measures from 28 until 35 weeks 

PMA. It was necessary to start at 28 weeks PMA since the oldest baby recruited for 

the BOOST-NZ was born at 27 weeks GA. Further, the following was looked into: (i) 

any significant differences between the severe and no severe ROP groups using the 

two-sample t-test, and (ii) the biggest drop or highest peak of the group means in a 

particular week. After evaluating the results across the eight successive weeks, 29 

weeks PMA was used. The justification for choosing this particular PMA is discussed 

in Chapter 5 together with the results of the logistic regression when applied to the 

chosen PMA. 

 

4.3 Logistic regression modelling 

4.3.1 The model 

The logistic regression model is one case of the broader class of generalised 

linear models (GLMs) introduced by Nelder and Wedderburn (1972). A GLM is 

specified by two components: 

 a response variable y that follows one of the exponential family 

distributions, and 
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 a link function, g, which links the conditional mean of the response to a 

linear combination of predictors, that is  Xg )( , where X is a row 

vector of predictors (with 1 as the first element of X when an intercept 

is included), β is a column vector of parameters, and )( XyE

 

For a binary logistic regression model (Cox, 1958), the response variable is 

1y  or 0, which corresponds to the presence or absence of an event. The link 

function in this case is    1log)(logit)(g ; hence, the model can be written 

as      

)exp(1

)exp(

Xβ

Xβ


 . (4.1) 

     

Parameter estimation 

 Logistic regression models were fitted in MATLAB (The MathWorks, Inc 

1984-2010) using the ‘glmfit’ function. The function employs the iterative reweighted 

least squares (IRWLS) and produces the estimates for the regression coefficient ˆ
j  of 

j-th predictors, standard error  ˆ
jSE   and p-value.    

  

4.3.2 The response and predictors of the logistic regression  

 The records of all eye examination visits of 257 babies were examined (i) to 

confirm the end point of the eye examination, and (ii) to determine the binary status of 

ROP stage. For each baby, an ophthalmologist verified the most advanced ROP stage 

and classified the status as either presence (‘1’) or absence (‘0’) of severe ROP. These 

binary judgements were the response variable (y = 1 or 0) in the logistic regression 

models. 

  

There were 11 predictors considered in the analyses,  

 the four OS measures: cvOS, sdOS, meanOS, and dstOS, 

 weight at birth (weight), which  is recorded in grams,  

 age at birth (GA), which is measured in days; GA was not categorised by week 

(23 to 27 weeks GA) because of the small number of severe ROP babies in 

three of the GA categories (23, 26, and 27 weeks GA),  
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 gender with ‘1’ as male and ‘0’ as female, 

 number of days receiving ventilation during hospitalisation (daysVentilate),  

 number of days receiving supplemental oxygen during hospitalisation 

(daysO2),  

 dependency on supplemental oxygen at 36 weeks PMA (O2W36) with ‘1’ as 

presence of dependency and ‘0’ as absence of dependency,  

 weight-for-GA (wGA), which was formed from the information of weight 

combined with GA. It has been suggested that monitoring of babies classified 

by birth weight alone may introduce bias in identifying infants who are at risk 

of a poor outcome as there is no distinction of the size for age and maturity 

(Roberts and Lancaster, 1999). wGA was categorised according to the 

Australian national birth-weight-for-GA percentile charts (Roberts and 

Lancaster, 1999). To create the categories for the percentiles, the sparseness of 

the data in the large-for-GA (>75th percentile) and small-for-GA (<25th 

percentile) groupings was considered. Therefore, the data were divided into 

three percentile groups and were coded as follows: 1, >75th (reference group); 

2, 25th to 75th; and 3, <25th.  

 

The set of the 11 predictors consists of eight continuous predictors, two binary 

predictors, and one categorical predictor. To gain a better understanding of each 

predictor, their profile based on kernel densities and box plots were constructed 

separately for the severe ROP and no severe ROP groups. These series of plots are 

useful in discovering the structure of the data, in that potential distinct patterns 

between the two groups and outlying observations are highlighted.  

  

To complement the graphing of the data, the independent two-sample t-test, 

was applied to test for a difference in the group means between the severe and no 

severe ROP groups for the continuous predictors. Likewise, for the binary and 

categorical predictors, the chi-squared test was used to examine if there exists a 

difference in ROP status due to these predictors: gender, O2W36, or wGA.  
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4.3.3 Collinearity  

 Regression methods are sensitive to correlated predictors. When one or more 

predictors are linearly related with other predictors in the data set, this could 

potentially produce unreliable parameter estimates with inflated standard errors; thus, 

reducing the power of testing the affected coefficients (Belsley et al., 1980). To detect 

collinearity, one could examine the pairwise correlation coefficient, together with the 

95% confidence interval (CI). Alternatively, we could identify collinearity by 

computing the variance inflation factor (VIF) (Marquardt, 1970) computed from 

21 (1 )jR , 2

jR  is the square of the multiple correlation of the j-th predictor regressed on 

the other predictors in the model.  

 

 To handle collinearity, the predictors were separated into groups as follows: 

 predictors with pairwise correlations of about 0.8 and above (ignoring the 

sign), and with extremely high VIF were grouped together, and 

 predictors not correlated with non-group members were grouped individually. 

 

In any given model, the combinations could consist of at most one predictor from 

each group of the strongly correlated predictors.   

 

4.3.4 Predictor selection 

 Predictor selection is a difficult but an important task, which requires one to 

consider carefully depending on the inferential goals and the nature of the data set. Of 

the various procedures for entering predictors into the model, the commonly used 

procedure is stepwise selection (Miller, 2002). For studies with a large number of 

predictors (say, more than 50), the stepwise selection provides a practical way of 

dropping predictors that do not contribute to the model. Its usage, however, has not 

been without criticism. It can only produce a single model with no guarantee of being 

a good one as it is capable of producing poor parameter estimates (Chatfield, 1995). 

The resulting model can be misleading as some authentic predictors may have been 

omitted, or a number of predictors with deleterious effects may have gained entry 

(Derksen and Keselman, 1992).  
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The alternative procedure that was used in this project was all-subsets 

regression, which produced single- and multi-predictor models for all possible 

combinations of predictors (Miller, 1990). There was different combination of 

predictors in each model; thus, the predictions for babies at risk of developing severe 

ROP differ as well. Additionally, an approach based on a weighted average of the 

models was employed to circumvent the need to base inference on only one or several 

models. Single- and multi-predictor models, and model averaging approaches were 

then used to analyse potential association between the predictors and severe ROP. The 

following sections provide the outlines for the three analyses.  

 

4.3.5 Single- and multi-predictor analyses  

We examined all models that were obtained from the all-subsets regression. 

The results for single-predictor models were discussed in terms of the odds ratio 

(OR), p-value, as well as fitted probabilities of severe ROP and no severe ROP for 

selected predictors. The unadjusted OR is estimated as 

 

 ˆOR exp X   (4.2) 

 

and the corresponding 95% confidence limits for the OR are 

  ˆ ˆexp 1.96X SE   
 

, where X  interquartile range of predictor for 

continuous predictors, and 1X   for categorical predictors. Note that the ORs for 

continuous variables depict the odds of severe ROP for patients at the 75th percentile 

of the distribution of the variable versus patients at the 25th percentile.  

 

For the analysis of multi-predictor models, the models were ranked according 

to their respective AUC (refer to Section 4.5.2 and Section 4.6.3), and the number of 

occurrences of each predictor in the list of the first ten top models was recorded. The 

fitted probabilities of severe ROP and no severe ROP also were plotted to assess the 

prediction performance of several top models.  
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4.3.6 Model averaging analysis  

The degree of relationship between the predictors and severe ROP is likely to 

vary in the single- and multi-predictor models. Thus, a model averaging approach was 

undertaken to determine the degree of relationship between each predictor with severe 

ROP. This approach takes into account all models, hence all predictors, and weights 

the predictors accordingly. The analysis was based on three model-averaged 

measures: the p-values and ORs (with 95% CI) for each predictor that were computed 

by averaging over all models that contain the specific predictor, and fitted 

probabilities for severe ROP and no severe ROP groups that were computed by 

averaging over all models.  

 

Let J be the set of indices of models that contain predictor j. The model-

averaged p-value and model-averaged OR would have the form  

 

, ,( ),m j m j

m J

w f x


  (4.3) 

 

where f is a function of xmj for predictor j in model m, and 

 

,

AUC

AUC

m
m j

u

u J

w






 
(4.4) 

 

i.e. wm,j are the normalised AUCs over all u models that contain predictor j. By 

definition, ,0 < 1m jw  and , 1m j

m J

w


 for fixed j.  

 

Following from equation (4.3), each measure that is constructed in this form 

will be a weighted average of some function f of predictor j in model m. For model 

averaged p-value, , ,( )m j m jf x P , where Pm,j denotes the p-value of predictor j in 

model m and for model-averaged OR, , ,( )m j m jf x OR , where mjOR  denotes the OR 

of predictor j in model m, as obtained from equation (4.2). The latter is accompanied 
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with a model-averaged 95% CI, 
, , , ,,m j m j m j m j

m J m J

w L w U
 

 
 
 
  , where mjL  and mjU are, 

respectively, the lower and upper confidence limits for mjOR .  

 

 The model-averaged fitted probabilities are computed as ˆ ,m m

m M

w


 π where ˆ
mπ  

is a vector of fitted probabilities of severe ROP for the observations in model m, and 

m
m

m M

AUC
w

AUC





are the normalised AUCs over all M models, with 0 < 1mw  and 

1m

m M

w


 .  

 

In the model-averaged analysis, the degree of relationship of each predictor 

with severe ROP was ranked according to its respective model-averaged p-value. 

Accordingly, the OR of the predictor was evaluated, and the model-averaged fitted 

probabilities were summarised in the form of boxplots. These results were then 

compared with those obtained from the single- and multi-predictor models, and the 

relations between these predictors and severe ROP were summarised. 

 

4.4 Diagnostics 

 Careful fitting of the statistical models during the model building is important 

to avoid losing clinically important predictors, especially after adjusting for other 

predictors. Before these models can be concluded as being adequate for the data, they 

need to be checked for an appropriate functional form for each (continuous) variable, 

and for any outlying observation in the data.  

 

Several diagnostic tools were used to accomplish the two aspects. For the first 

part, a direct way of checking was to plot the smoothed partial residuals from the 

logistic models and the Generalised Additive Models. For detecting outlying points, 

approximated jacknife residuals (Williams, 1987), Cook’s statistic (Cook and 

Weisberg, 1982), hat matrix (Belsley et al., 1980) and a diagnostic measure from the 

robust logistic regression (Cantoni and Ronchetti, 2001) were visually and jointly 

assessed.  
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It is important to identify outlying points as their presence not only affects the 

parameter estimates but also other statistics computed from the model. As a result, 

this causes the regression relationship to appear to look stronger than it is, or non-

existant leading one to abandon the model. Once the outlying points were detected, 

the sources of the errors were identified and the degree of their discrepancy on the 

data was assessed. This included analysing the data with and without the suspect 

observations.   

 

4.4.1 Linearity assumption for continuous predictors  

 At the predictor selection stage, it is quite common to assume that each 

predictor is linearly related to the log odds of the response. This assumption, however, 

may not always hold after the initial modeling of the predictors. The subject matter 

knowledge was taken into account to assess the appropriate scale of the predictors and 

to guide the transformation of the predictors. Increased variability in oxygenations 

(York et al., 2004), desaturation episodes (De Fiore et al., 2010), and duration of 

oxygen therapy (Gallo et al., 1993) have been reported to be associated with the 

development of ROP. On the other hand, GA and weight have been found to have the 

opposite effect on the risk of severe ROP (Darlow et al., 2005).    

 

Logistic regression partial residuals 

The first approach to assess the parametric scale for each continuous predictor 

was to use the partial residuals from the logistic model. A plot of the partial residuals 

against a predictor is helpful, in that the linearity of a predictor can be examined on 

the basis of other predictors. Along with the plot, a lowess smoother (Cleveland, 

1993) was applied on the residuals to create a clearer visual of the functional shape. 

The partial residual ijz  from a logistic regression model for the i-th observation of the 

j-th predictor, ijx , as given by Landwehr, et al. (1984) is 

 

ˆ ˆ ,
ˆ ˆ(1 )

i i
ij ij j

i i

y
z x




 


 


 (4.5) 
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where the first term corresponds to the variance-adjusted residual, j̂  is the parameter 

estimate for the j-th predictor, iy  is the i-th response, and i̂ is the predicted 

probability of severe ROP for the i-th observation. 

 

Generalised additive logistic model 

As an alternative, the structure of a continuous predictor can be evaluated by 

fitting a generalised additive logistic model (GAM), which is defined as  

     

logit  0

1

( ) ,
p

j j

j

f x 


   (4.6) 

 

where 0  is the intercept parameter, )(jf  is a smooth nonparametric function of the 

j-th predictor, and p is the number of predictors.  

 

Additive models were enhanced by Hastie and Tibshirani (1990), the former 

author who developed the gam library in R. The library offers two types of smoother, 

cubic spline and lowess. The degree of smoothing depends on the smoothing 

parameter; higher penalties are imposed for more complex nonparametric fitted 

curves. gam uses the back-fitting algorithm, which is well-discussed in Hastie and 

Tibshirani (1990). The fitting process for a GAM involves two levels of iteration. The 

first iteration entails the GLM fitting using IRWLS procedure and the second iteration 

implements the back-fitting algorithm to estimate the jf s for the additive model 

(Faraway, 2006: Chapters 6 and 12). 

      

We experimented with both cubic spline and loess smoothers with several 

values of smoothing parameter on the eight continuous predictors. The differences in 

the results were very minimal between the two smoothers; for cubic spline, there was 

not much improvement when applying a smoothing parameter greater than three. 

Consequently, a cubic spline with a smoothing parameter equals to three was 

employed.  
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Piecewise linear regression model 

The fit of a GAM provides a smoothed estimate of the predictor effect which 

can then be plotted to check for nonlinearity. In the case when the linearity 

assumption is violated, it could indicate an appropriate transformation required for a 

predictor. For strong violations of the assumption, for instance a U-shaped 

relationship, an extra (or multiple) term can be flexibly added to the predictor. 

Polynomial and piecewise linear regressions (also known as linear splines) are among 

the common choices for the expansion. The latter (Smith, 1979) generally consists of 

at least two segments of linear fit with a continuous joint between the segments; this 

joint is also known as the knot. With two line segments and a knot, a single-predictor 

piecewise model for a logistic regression can be written as  

    

logit ),()()( 210 kxIkxx jjj    (4.7) 

 

where k is the position of the knot, and )(I  is the binary indicator variable of the j-th 

predictor, that is, 1)( AI  if A is true and 0 otherwise.  

 

4.4.2 Logistic regression diagnostics 

The discussions of outliers in regression normally involve detecting and 

handling several types of outliers; these include identification of outliers from the 

influential observations and large leverage values. Leverages are not necessarily 

influential points but have the potential to affect the fit.  A leverage ih  of the i-th 

observation can be extracted from the diagonal elements of the hat matrix H 

(Pregibon, 1981), 

 

21121 )( WXWXXXWH TT  , (4.8) 

 

where W is a n n  matrix of weights from the IRWLS procedure for fitting GLMs, 

and X  is the ( 1)n p  design matrix of predictors.  

 

For detection of the influential observations, we used the Cook’s distance 

(Pregibon, 1981), which measures the overall influence of each observation on the 

parameter estimates. The influence statistic is   
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

p

ββββ
C i

TT

i
i

WXX
, (4.9) 

 

where iβ-
ˆ  denotes the estimates of the parameters with the deletion of the i-th 

observation from the data.  

 

 The third diagnostic measure to check for the unusual points is a half-normal 

plot of approximated jacknife residuals. In the plot, the absolute residuals for n 

observations were sorted and compared with the quantiles of the half-normal 

distribution, 













12

1

n

in
, for i = 1,…, n. With all points in one tail, we did not 

anticipate a straight line trend as the residuals were not expected to be normally 

distributed. Instead, we looked for those points that deviate from the trend. The 

residuals developed by Williams (1987), with the deletion of i-th observation, 

represent the approximation to the jacknife residuals: 

 

2 2

, , ,(1 )L i i SD i i SP iz h z h z   , (4.10) 

 

where ,
ˆ ˆ ˆ( ) (1 )(1 )SP i i i i i iz y h       and  ,

ˆ (1 )SD i i i i iz sign y d h   . The 

numerator for the former is known as the Pearson residual, and for the latter the 

deviance residual. To define id , let yyyf  1)1()|(   denote the Bernoulli 

likelihood function for π evaluated at y, then ])ˆ|()|(ln[2 iiiii yfyyfd  .  

 

 There is, however, no exact threshold value as to what constitutes a large 

leverage and Cook’s statistic values. Several rule-of-thumbs have been suggested 

from the literature; for example, a leverage is suspected of being an outlier when 

nphi )1(2   (Hoaglin and Welsch, 1978). However, Belsley et al. (1980) warned 

that in general this cut-off detects too many high-leverage values. The same issue 

occurs for the Cook’s statistic. To be stringent with the cut-off, we fixed the threshold 

to np )2(2   for leverage and )22(8  pn for iC (Belio, 2005). 
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Detection for outliers in multiple regressions based on conventional 

procedures can frequently be a difficult task, especially if multiple extreme values 

exist in the data set or the number of predictors is large. Observations with high 

leverage may sometimes fail to stand out in the diagnostic plots, and so the regression 

analysis will produce poor results. In the view of this, the robust regression was 

considered and used in tandem with the conventional procedures.   

 

4.4.3 Robust logistic regression diagnostics 

 The application of the robust methods is not limited to estimation and 

hypotheses testing in regression. Because the estimators are developed so that they are 

resistant to the outliers, the procedure can also be used to screen for outlying points. 

There are three main approaches toward the robustness problem in regression: the 

Huber-type M-estimation (Huber, 1981) for detecting outliers in the y-direction; the 

Mallows-type bounded influence estimation (Mallows, 1973) for a moderate 

percentage of outliers in the x-direction, or high leverage points; and the high 

breakdown point estimation for a high percentage (at most 50%) of outliers.  

 

Several methods had been developed for the class of generalised linear 

models, for instance the Bianco and Yohai estimator (Bianco and Yohai, 1996; Croux 

and Haesbroeck, 2003), and the Cantoni and Ronchetti estimator (Cantoni and 

Ronchetti, 2001). The latter was used in this analysis. It is an M-estimator of 

Mallows-type, of which the effect of outlying values in the y-direction is controlled by 

placing a bound on the influence function, and in the x-direction by setting weights on 

the observations in the predictors. A suggested bounded function to ensure robustness 

in the y-space is 
( )

ˆ ˆ(1 )

t i

i i

z

 
 (see equation 4.11), whilst a choice of weights to down-

weight high leverage values is the diagonal elements of the hat matrix.  

 

The Cantoni and Ronchetti estimator is defined for a class of robust estimators 

in the general setup of generalised estimating equations. The j-th estimating equation 

can be written as 
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where  

, , ,
(z)

(z) , ,
t

z z t

sign t z t


 
 



 (4.12) 

 

is the Huber function (Huber, 1981) with a tuning constant t, *

ih is the i-th diagonal 

entry of 1( )T TX X X X , and 
*
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conditional expectation can be written explicitly as 

ˆ ˆ ˆ ˆ1 1
ˆ ˆ ˆ ˆ(1 ) (1 )

ˆ ˆ(1 )ˆ ˆ ˆ ˆ(1 ) (1 )

i i i i
i t i t i t i t

i ii i i i

   
     

    

         
                           

.  

 

  

 The method described by equation (4.11) has been implemented in the 

robustbase library in R via the ‘glmrob’ function. It yields the estimates of the 

parameters along with their standard error and p-value.  The function also returns a set 

of weights with respect to their residual for each observation; these are denoted as the 

Mallows robust weights, 
ˆ ˆ

ˆ ˆ ˆ ˆ(1 ) (1 )

i i i i
t

i i i i

y y 


   

    
   
       

.  

 

4.4.4 Outliers detection 

Identification of multiple outlying points involves several stages. First, the 

sign of the parameter estimates in all models was examined whether it was similar to 

that in the single-predictor analysis and generally indicated in the literature. Models 

that contained parameters estimates with the opposite sign were listed. Next, the 

conventional and robust diagnostic measures for these models were computed and 

plotted concurrently to detect all candidate outliers. The occurrences of suspected 

observations that exceeded the suggested thresholds of the diagnostic measures were 

recorded. The listed models were then re-fitted with the exclusion of the suspected 

observations, and their impact on the sign and standard error of the parameter 

estimates was assessed. Identification of outliers was finalised using the results from 
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these stages.  To determine on how best to handle the outliers, we examined the effect 

of the outliers on the results obtained from the logistic regression and robust logistic 

regression performed on the full data set, and logistic regression with the outliers 

omitted. 

  

4.5  Assessment of models 

4.5.1 Fitting of Model  

In the previous section (Section 4.4.1), the preliminary assessment of the linearity in 

structure of the continuous predictors were described.  The partial residuals from the 

logistic regression models and GAM were plotted and the patterns were noted. Next, a 

test of adequacy of a linear relationship via a likelihood ratio (LR) test was performed 

to verify whether a nonlinear term in the form of cubic spline, piecewise or 

polynomial was worth considering for each predictor.  

 

 The LR test was used to evaluate the change in the deviance between two 

models: a model that was fitted with a linear term and another model that was fitted 

with a nonlinear term. A significant change in the deviance signifies that the model 

with the nonlinear term is significantly different from the linear model, and therefore, 

the nonlinear term is favourable for the predictor. If there are indications from the 

results that a nonlinear term could be needed for the predictors, simpler nonlinear 

parametric models such as linear piecewise or quadratic models are suggested as the 

alternatives to the cubic spline as they are more parsimonious and easier to interpret. 

Separate comparisons were then made between a linear model and a piecewise linear 

model, or between a linear model and a quadratic model. Using the results from the 

linear and nonlinear model fittings, the proposed functional form for each predictor 

was finalised. 

 

Throughout the comparisons between models to verify suitable functional 

forms of the predictors, the LR test was used in conjunction with the Akaike 

Information Criterion (AIC). When two models are compared, a model with a lower 

AIC value is preferred. However, there is often no one single best model when the 

difference in AICs between two models is assessed. Therefore, consideration must 

then be given to other models whose AIC values are close to the minimal AIC (Hilbe, 

2009).  The AIC is defined as 
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AIC = -2LL + 2q, (4.13) 

 

where LL is the model log-likelihood and q is the number of unknown parameters in 

the model. 

 

4.5.2 Measuring the performance of model 

The error rate, ROC curve and the associated AUC are popular measures to 

estimate the performance of binary classifiers such as the logistic regression model in 

the medical research. However, the AUC has been shown to exhibit several desirable 

properties over the error rate including decision threshold independent (Bradley, 

1997). The AUC summarises an ROC curve; its value reflects the overall performance 

of the model in discriminating between babies who will or will not develop severe 

ROP.  A large value of an AUC indicates better discriminative ability of a model. An 

assignment to a class by random chance has an AUC of 0.5 whilst a perfect 

classification corresponds to a maximum AUC value of 1.0, in which all subjects are 

classified correctly. 

  

A common approach to compute the AUC is to construct the ROC curve from 

the sensitivity (the proportion of correctly identified of diseased subjects) and 

specificity (the proportion of correctly identified of non-diseased subjects), as 

calculated from different threshold values, and then to estimate the area under it by 

numerical integration. An easier alternative that does not require explicitly 

constructing the ROC curve is to use the Wilcoxon statistic (Hanley and McNeil, 

1982) to estimate the AUC ( ), that is 
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where ,
ˆ , 1,...,D i i v  and ,

ˆ , 1,..., ( )ND l l n v   are the predicted probabilities for the 

diseased and non-diseased subjects, respectively, and 
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The estimate is more meaningful when accompanied with a CI. A convenient 

choice would be the approximate 95% CI given by  

 

)ˆvar(96.1ˆ   , (4.16) 

 

provided that the sample size is sufficiently large, and is not near the boundaries. An 

estimate of the variance of ̂  is given analytically by the DeLong estimate (DeLong 

et al., 1988), which is computed as follows.   

 

For each diseased subject i, compute the quantities 
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Similarly, for each non-diseased subject j, compute the quantities 
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The variance for ̂  is then estimated as  

 

1 1ˆvar( ) D NDV V
v n v

  


  (4.19) 

 

The all-subsets logistic models were re-fitted to the NZ-ROP data after 

diagnostics of model fits were undertaken. The fitted regression models were able to 

generate a fitted probability of severe ROP for each baby, and this was used to 

calculate the AUC for each model. The performance of the individual models were 



66 

 

then assessed by analysing the AUCs. Note that both the AUC and the fitted 

probabilities were computed via a cross-validation technique (Section 4.6.3).  

                              

4.6 Validation of model  

 It is important to examine if a developed model will yield a good predictive 

performance in other data sets. A good calibration of the model requires a validation 

on at least one independent data set. Nevertheless, if this is not feasible, one could 

withhold a percentage of the data from the model fitting process. An ideal procedure 

when the data set is large would be to divide the data into three subsamples: the 

training set for fitting the model, the test set for generating the predictive probability, 

and the validation set for validating the probability. However, when the amount of 

data is limited, sample-reuse validation schemes such as holdout validation and cross-

validation could be employed. These techniques use sampling without replacement, in 

which data are partitioned into two subsets: one serves as the training set and the other 

as the test set.  

 

4.6.1 Basic idea of cross-validation 

 The basic form of cross-validation is K-fold cross-validation. First, the data are 

partitioned into K equally (or almost equally) sized folds. One fold is used for testing 

and the remainder for training. To ensure equal chance of validation for each data 

point, the sets are rotated in K successive iterations such that within each iteration, a 

different fold of the data is held-out for testing and different K – 1 folds are used for 

training. Figure 4.1 demonstrates an example of K-fold cross-validation procedure 

with K = 3. The darker sections depict the subset of data that are used for training 

while the lighter sections represent the subset for testing. Occasionally, the subsets are 

stratified before the validation starts, and the cross-validation is repeated for several 

rounds, hence, yielding a repeat-stratified K-fold cross-validation scheme.  

 

 To compute an overall estimate of a performance metric such as AUC, two 

approaches that utilise the results of the folds during the cross-validation can be used. 

One is the pooling strategy, which involves collecting the model predictions from all 

folds and calculating the AUC on these combined outputs. Another is the averaging 

strategy, in which an AUC is computed separately for each fold and subsequently, 

these AUCs are averaged to produce an overall AUC. 
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       (a) 

 

 

             (b) 

Figure 4.1: Procedure of K-fold cross-validation for K = 3, which displays (a) 

partition of data and rotation of folds for each of the three successive iterations, and 

(b)  training and testing of data within each iteration. 

 

4.6.2 Assessment of several validation schemes 

 Several studies have been carried out to review (Refaeilzadeh et al., 2009) and 

assess various cross-validation and bootstrap procedures (Kim, 2009; Parker et al., 

2007; Kohavi, 1995). A brief summary of the comparison is presented in Table 4.1.  

 

 The studies compared a variety of simulation settings and real-world data with 

differing characteristics to evaluate the performance of most of the procedures (Table 

4.1). Many interesting results were demonstrated, including the 0.632+ bootstrap (a 

variant of the bootstrap) which displays superior performance for small sample case. 

However, it suffers from a bias problem for small and even more for large data, hence 

performing poorly as compared to a repeated cross-validation with ten folds. A repeat 

hold-out scheme faces the same fate as the 0.0632+ bootstrap, in that it also has a bias 

problem, particularly so for small data. Overall, both schemes show less stable 

performance for small and large sample cases. 

 

 

 

 

  

Model fitting, ̂  

Train 

Model 

 

Test 

Model prediction, ̂  
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Table 4.1: Evaluation of different validation methods 

Validation method Advantage Limitation 

Resubstitution 

validation 

All available data are used Over-fitting 

   

Holdout validation No overlap between 

training and test set 

Inefficient use of data; 

Results are highly affected 

by the choice of partition 

size for training and test 

sets 

   

K-fold cross-validation Available data are fully 

utilised 

High dependency on the 

choice of K; Higher bias 

for smaller K and data 

   

Leave-one-out cross-

validation 

Nearly unbiased 

performance 

estimation 

Very large variance and 

computationally expensive 

for large data  

   

Repeated K-fold cross-

validation 

Reduced variance  Computationally 

expensive 

   

Bootstrap Low variance; best for 

small data 

Very large bias   

  

The repeated-stratified 10-fold cross-validation was unanimously 

recommended for general use due to its most stable performance as compared to its 

contenders. Its attractive features such as stratification and repeated runs of the 

validation have been identified as being extremely useful for reducing both the bias 

and variability. The choice of K = 10 is often suggested as 90% of the data are used 

for model fitting, hence, allowing generalisability of the results for the case when all 

data are used. Additionally, the cross-validation based on ten folds has less biased 

estimation of model performance; the bias is more apparent with smaller K (Kohavi, 

1995). 

 

4.6.3 Validation for NZ-ROP data 

For the NZ-ROP data, we chose to implement a repeat-stratified 10-fold cross-

validation (RS10CV) based on the following grounds.  

 

1. It was not possible to get an external data set from the same population. The 

BOOST-NZ trial is part of an International Network, which consists of several 
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countries such as Australia, United Kingdom, Canada, Europe, and USA. The OS data 

from these trials were recorded from the Masimo oximeters, which employed 

different algorithms from that of the New Zealand study oximeters. 

 

2. It was not realistic to perform hold-out validation because of the small sample size 

( 41)v   in the severe ROP group. 

 

3. RS10CV appears to be the best method among its competitors. Results from the 

simulation studies (Kim, 2009; Parker et al., 2007; Kohavi, 1995) have shown that 

across the variants of internal validation (resubstitution, hold-out, leave-one-out, K-

fold, repeated-K-fold, and 0.632+ bootstrap), RS10CV has low estimation bias and 

excellent trade-off between bias and variance. It was, therefore recommended for 

various usages such as selection of models, estimation of AUC and error rate, and 

assessment of multiple classifiers. 

 

Cross-validation procedure for AUC and predicted probability 

To examine the performance of a model, and to verify that it could provide 

good prediction for new data sets, the AUC and its 95% CI were computed from 

100,000N   repeats of RS10CV as follows:  

  

1. Stratify the data according to their diseased status, yielding two groups of sizes v 

and (n − v) for the diseased and non-diseased groups, respectively. 

2. Randomly divide each of the groups into ten mutually exclusive folds of equal (or 

almost equal) size. 

3. Combine the diseased and non-diseased groups for each folds. 

4. Treat the first fold as the test set and the remaining nine folds as the training set. Fit 

the regression model to the training set, and obtain the regression estimates. 

5. Apply the regression estimates to the test data, and calculate the predicted 

probability for each observation in the test set. 

6. Rotate all folds and repeat step 4 to step 5 for all ten folds.  

7. Repeat step 2 to step 6 N times. For each repeat, store the predicted probability for 

each observation, that is, ,
ˆ , for 1,..., and 1,...,B i i n B N   . 
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8. Estimate an overall predicted probability for each observation by averaging across 

all N repeats, that is, 

,

1

1
ˆ , 1,...,

N

i B i

B

i n
N

 


    (4.20) 

 

9. Calculate an AUC and its 95% CI using the estimated probabilities from step 8 in 

equations (4.14) to (4.19).  

 

4.7 Computational aspects 

 All analyses were conducted in MATLAB (v. 2010a) and R x64 2.12.0. 

Several packages that were used in R were gam, stats, faraway, splines, and 

robustbase. 

 

4.8  Summary  

The methodological background for the NZ-ROP analysis was addressed in 

this chapter. There were two stages of analysis involved: establishing a suitable time 

interval to summarise four OS statistics, and modelling of these measures and several 

additional ROP predictors aiming to investigate the relations between 11 predictors 

and severe ROP, and to identify the key risk predictors for the disease. 

 

The OS data were recorded at every 10 seconds within 24 hours after birth 

until 36 weeks PMA. To determine a suitable interval to compute the summary 

statistics for the OS data, an approach using an analysis of eight PMA weeks was 

used. It took into account the gestational age at birth of the oldest baby recruited for 

the NZ-ROP study. A time interval of 29 weeks PMA was finally chosen as it was 

able to detect the most distinct patterns that help to distinguish between babies with or 

without severe ROP.  

 

 Logistic regression models were developed to estimate the probability that a 

baby is at risk of developing severe ROP. The predictors for the models were weight 

at birth, GA, gender, weight-for-GA, duration of receiving ventilation, duration of 

receiving supplemental oxygen, and dependency on supplemental oxygen at 36 weeks 

PMA. Four new measures of pulse oximeter OS, whose relationship with ROP needed 
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to be determined, were also added to the list of predictors. The response variable was 

defined as the presence or absence of severe ROP.  

  

 Several predictors were identified to be strongly correlated, hence the 

predictors were separated into correlated and uncorrelated groups. Consequently, 

combinations of at most six predictors (from each group) were to be used in any one 

of the models. The models’ adequacy was examined using the conventional and 

robust diagnostic tools, and generalised additive modelling. All-subsets regression, 

which produced single- and multi-predictor models for all possible combinations of 

predictors, was performed to identify predictors that can best describe the 

relationships with severe ROP. The performance of these models was measured by 

their respective AUC, which was validated using a repeat-stratified 10-fold cross-

validation technique. Additionally, an approach based on the weighted average of the 

models was employed to determine the degree of relationship of the predictors with 

severe ROP. The analysis was based on three model-averaged measures: the p-values 

and ORs (with 95% CI) for each predictor, and fitted probabilities for severe ROP and 

no severe ROP babies, which were computed by averaging over all models.  

 

   

 

 

 

 

 

 

 

 

 

 

 

 



72 

 

CHAPTER 5 

RESULTS AND DISCUSSION FOR NZ-ROP 

 

5.1 Introduction  

Continuous advances in neonatal care have resulted in increased survival of 

babies at risk of developing ROP. It is a vision-threatening complication that could 

progress to visual impairment and blindness in preterm babies when treatment is not 

provided in time. Each year, it is estimated that over 200 extremely preterm babies in 

New Zealand are at high risk of developing severe ROP (Cust et al., 2003) and endure 

ongoing morbidity such as visual deficits (Darlow et al., 1997). 

  

Neonatal examination programmes are currently in practice in many countries 

to enable early diagnose of ROP among high-risk babies. Upon detection, the choices 

on specific treatments or decisions are based on an assessment of patient risk. Careful 

attention to pivotal factors that increase the risk of development of ROP might 

enlighten the role of interventions that could further lower the morbidity rate of this 

eye disease.  

 

A number of studies have been carried out to understand the underlying risk 

factors of ROP with the aim to prevent and control the disease. Among those that 

have been reported to be associated with an increased risk to develop ROP are low 

GA (Darlow et al., 2004), low birth weight (McColm and Fleck, 2001), use of oxygen 

therapy (Lala-Gitteau et al., 2007; Kinsey et al., 1956), and gender (Jacobson et al., 

2009). These factors are widely studied and more understood than that of oxygen 

fluctuations. Further, simultaneous analyses involving many key factors to unveil the 

most prominent ones are limited. Using data of preterm babies admitted to five 

neonatal NICUs in New Zealand, this study aims to provide a comprehensive analysis 

of relations between multiple clinical and postnatal factors and severe ROP. This 

chapter is focused on determining the usefulness of OS summary statistics for 

discriminating babies at risk of developing ROP, and the degree of relationship of 

these statistics and other factors with severity of ROP. Section 5.2 addresses the 

examination on identifying a suitable time interval for OS statistics. This is followed 
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by the details of the regression predictors according to ROP status in Section 5.3. The 

analysis from model fittings and diagnostics are shown in Section 5.4, while the 

results from using some common regression techniques and model averaging 

approach are presented in Section 5.5. The implications and limitations of the study 

are discussed in Section 5.6. All conclusions are summarised in the final section, 

Section 5.7. 

 

5.2 Time interval for computing OS summary statistics 

 As described in Chapter 3, four OS summary statistics were defined to be used 

for the regression analysis to investigate the relationship between measures of OS 

features and severe ROP. The OS data are time series data; hence, the time interval for 

computing the statistics must be determined. To facilitate the analysis, we looked for 

patterns that help distinguish babies with or without severe ROP in order to locate a 

pattern that indicates a good separation between the two groups at a particular time 

interval. 

 

5.2.1 Determining the time interval 

A simple analysis of eight weeks of data from 28 to 35 weeks PMA was 

performed to determine the best time interval for summarising the OS data. The 

following steps were performed for each of the severe and no severe ROP groups:  

 calculate a weekly value of meanOS from 28 to 35 weeks PMA for each baby; 

 calculate a group mean for each individual week; and    

 repeat the above steps for sdOS, cvOS, and dstOS. 

 

Figure 5.1 shows the group means of the four statistics with 95% CI for the 

eight-week time period. Looking closely across all statistics, it can be seen that there 

is good separation between the two groups of babies, as depicted by the non-

overlapping CIs of the mean values, for nearly all PMAs. To verify whether these 

differences are statistically significant, a two-sample t-test was applied to compare the 

group means of each statistic at each PMA. 
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Figure 5.1: Group means (with 95% CIs) of four OS statistics for 28 to 35 weeks 

PMA: first panel, cvOS; second panel, sdOS; third panel, meanOS; and fourth panel, 

dstOS   

 

 Table 5.1 presents the results from the t-test, which reveals that there are 

significant differences in the mean values of the statistics between the two groups of 

babies at nearly all weeks of PMA. This finding suggests that there are significant 

differences in the oxygenation profiles between the two groups of babies. To 

determine a particular time period of PMA(s) that would be appropriate for 

constructing the OS summary statistics, the eight-week OS data were scrutinised more 

closely. 
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Table 5.1: Group means of (a) cvOS, (b) sdOS, (c) meanOS, and (d) dstOS with 

respect to ROP status and PMA 

PMA 

(weeks) 

Mean of cvOS (95% CI) 
p-value 

No severe ROP Severe ROP 

28 0.054 (0.051,0.057) 0.067 (0.061,0.073) 3.0E-04 

29 0.058 (0.055,0.060) 0.068 (0.063,0.073) 1.2E-03 

30 0.059 (0.056,0.061) 0.065 (0.060,0.070) 3.1E-02 

31 0.057 (0.055,0.059) 0.065 (0.061,0.070) 5.2E-03 

32 0.054 (0.052,0.056) 0.063 (0.058,0.068) 3.0E-03 

33 0.052 (0.050,0.055) 0.063 (0.058,0.068) 8.6E-04 

34 0.051 (0.048,0.053) 0.057 (0.052,0.062) 5.0E-02 

35 0.048 (0.045,0.050) 0.058 (0.052,0.065) 1.4E-03 

      

 (a) 

 

PMA 

(weeks) 

Mean of sdOS (95% CI) 
p-value 

No severe ROP Severe ROP 

28 4.969 (4.743,5.196) 6.037 (5.531,6.542) 4.1E-04 

29 5.320 (5.078,5.503) 6.178 (5.737,6.619) 1.3E-03 

30 5.398 (5.207,5.589) 5.888 (5.480,6.297) 4.6E-02 

31 5.250 (5.049,5.452) 5.950 (5.555,6.345) 6.9E-03 

32 5.001 (4.803,5.199) 5.752 (5.357,6.146) 3.5E-03 

33 4.869 (4.656,5.083) 5.747 (5.296,6.198) 1.3E-03 

34 4.740 (4.512,4.968) 5.274 (4.812,5.736) 6.3E-02* 

35 4.469 (4.244,4.695) 5.362 (4.797,5.926) 2.1E-03 

      

 (b) 
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PMA 

(weeks) 

Mean of meanOS (95% CI) 
p-value 

No severe ROP Severe ROP 

28 92.87 (92.48,93.26) 90.93 (90.15,91.72) 1.6E-04 

29 92.51 (92.14,92.87) 90.66 (89.89,91.43) 1.3E-04 

30 92.62 (92.26,92.98) 91.12 (90.38,91.85) 1.3E-03 

31 93.03 (92.63,93.42) 91.30 (90.60,92.00) 6.6E-04 

32 93.50 (93.10,93.90) 91.89 (91.06,92.72) 2.0E-03 

33 93.91 (93.49,94.32) 91.82 (90.89,92.74) 1.0E-04 

34 94.39 (93.98,94.81) 92.93 (91.96,93.91) 6.5E-03 

35 94.79 (94.38,95.20) 92.95 (91.94,93.96) 5.0E-04 

      

(c) 

 

PMA 

(weeks) 

Mean of dstOS (95% CI) 
p-value 

No severe ROP Severe ROP 

28 0.043 (0.037,0.048) 0.071 (0.057,0.085) 3.4E-04 

29 0.049 (0.042,0.055) 0.078 (0.065,0.092) 5.0E-04 

30 0.048 (0.042,0.054) 0.065 (0.052,0.079) 2.3E-02 

31 0.046 (0.040,0.052) 0.063 (0.052,0.075) 2.3E-02 

32 0.039 (0.034,0.045) 0.056 (0.044,0.067) 2.3E-02 

33 0.037 (0.031,0.042) 0.060 (0.046,0.074) 1.7E-03 

34 0.033 (0.028,0.039) 0.045 (0.034,0.055) 9.9E-02* 

35 0.028 (0.023,0.033) 0.048 (0.034,0.061) 2.2E-03 

      

 (d) 

p-values are from t-test for comparing differences in the mean values of OS statistics 

between severe ROP and no severe ROP babies. *p-values > 0.05. 

 

Figure 5.1 illustrates that the group means of cvOS, sdOS, and dstOS exhibit 

similar patterns over time:  (i) an increasing trend followed by a decreasing trend with 

a maximum occurring at 29 weeks PMA, and (ii) higher mean values for severe ROP 

babies. The statistic meanOS displays patterns that are opposite to these. Taken 

together, these indicate that OS has highest variability and lowest level at 29 weeks 

PMA, thus, making it a candidate time interval for summarising the OS data. A 
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further observation from Table 5.1 is that the largest differences (indicated by 

P<0.0005) occur at 28 weeks PMA for cvOS, sdOS, and dstOS; and at 28, 29, and 33 

weeks PMA for meanOS. These suggest that 28 weeks PMA should also be 

considered for summarising the OS data.  

 

Subsequently, in addition to 28 and 29 weeks PMA considered separately, a 

combined data set from both weeks was also assessed. These results are shown in 

Table 5.2. Comparing them with the earlier results for 28 and 29 weeks PMA in Table 

5.1, we see that the p-values for the combined data remain significant for all four 

statistics, and are consistently smaller than those for 29 weeks PMA. Three pairwise t-

tests were then conducted for babies with ROP for the three periods: between 28 and 

29 weeks PMA, 28 weeks PMA and the combined data, and 29 weeks PMA and the 

combined data. Likewise, these tests were also performed for babies without ROP. 

Table 5.3 presents the p-values from the six tests. The results indicate no significant 

difference in the means of OS statistics between the pairwise time periods (the 

smallest p-value, P>0.05). Therefore, any of these three time periods could be used to 

obtain the OS summary statistics for the regression analysis for investigating the 

influence of risk factors for severe ROP.   

 

Table 5.2: Group means of cvOS, sdOS, meanOS, and dstOS, with respect to ROP 

status, based on a combined data set of 28 and 29 weeks PMA 

OS statistic 
Mean (95% CI) 

p-value 
No severe ROP Severe ROP 

cvOS 0.057 (0.055,0.059) 0.068 (0.063,0.073) 5.3E-04 

sdOS 5.242 (5.035,5.448) 6.146 (5.704,6.587) 8.4E-04 

meanOS 92.65 (92.28,93.10) 90.80 (90.03,91.57) 1.1E-04 

dstOS 0.046 (0.040,0.052) 0.074 (0.061,0.088) 1.9E-04 

      

p-values are from t-test for comparing differences in the mean values of OS statistics 

between severe ROP and no severe ROP babies; the differences between the two 

groups are significant. 
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Table 5.3: P-values from t-test for comparing differences in means of OS statistics 

between pairwise time periods in severe ROP and no severe ROP babies 

OS 

statistic 

No severe ROP  Severe ROP 

T1 vs. T2 T1 vs. T3 T2 vs. T3  T1 vs. T2 T1 vs. T3 T2 vs. T3 

cvOS 0.0637 0.1245 0.7296  0.6599 0.7478 0.9005 

sdOS 0.0531 0.1018 0.7431  0.6801 0.7510 0.9198 

meanOS 0.2268 0.4342 0.6589  0.6264 0.8057 0.8073 

dstOS 0.2158 0.4897 0.5613  0.4798 0.7331 0.6981 

        

Time periods are indicated as T1: 28 weeks PMA; T2: 29 weeks PMA; and T3: 

combined 28 and 29 weeks PMA. 

 

Hence, a separate all-subsets regression was conducted involving OS statistics 

derived from each time period. The results from the three regression analyses were 

quite similar, in that, the predictor variables that were significantly associated with the 

ROP status were the same – albeit a slight difference in the regression coefficients. 

However, the AUC of the models were slightly higher and the p-values of the 

regression coefficients were much smaller (by at most 86%) for 29 weeks PMA. 

Hence, only the results based on 29 weeks PMA will be presented in this chapter in 

Section 5.5. 

 

5.2.2 Discussion 

Recent studies have shown that mature babies tend to have increased and more 

stable OS levels (Hofstetter et al., 2007), whilst babies with complications of 

prematurity such as chronic lung disease are more likely to exhibit lower OS levels, 

leading to greater frequency of desaturation episodes (McEvoy at al., 1993). Using 

continuous OS monitoring by oximeters, we observed higher OS variability (cvOS, 

sdOS, and dstOS), and lower levels (meanOS) in babies with stage 3 ROP and above, 

or requiring laser therapy, which are in accordance with the findings from the 

previous studies. 

  

Previous findings that increased oxygen fluctuations occur in the earlier weeks 

of life rather than later (York et al., 2004; Cunningham et al., 1995; Saito et al., 1993) 

are quite compatible with our observations at 28 and 29 weeks PMA for babies with 



79 

 

severe ROP. In those studies, which used intermittent sampling of oxygenation, the 

CV of arterial oxygen (York et al., 2004; Saito et al., 1993) and SD of oxygen tension 

(Cunningham et al., 1995) were significantly elevated in babies with threshold ROP 

(York et al., 2004) or with stage 3 or higher ROP (Cunningham et al., 1995; Saito et 

al., 1993) within the first two weeks after birth.  

 

In an early study of ROP (Pierce at al., 1996), it was suggested that irregular 

hypoxic events in oxygenation may induce abnormal retinal development in the later 

phase of ROP.  This was then supported by Di Fiore et al. (2010), who reported that 

babies who went on to develop severe ROP requiring laser therapy had higher 

hypoxic events, with an increasing trend during the first four to five weeks of life. 

Their data were recorded at 2-second sampling rate, and a desaturation or hypoxic 

event was defined as a fall in OS below 80% for duration between 10 seconds and 3 

minutes. The babies were born at 24 to 27 weeks GA. In our study, we used a 10-

second sampling rate, and defined dstOS as the percentage of OS readings below 

80%. The babies had almost similar ages as those in the Di Fiore et al. (2010) study. 

Our data show higher dstOS in babies with severe ROP than in the other group of 

babies with an increasing trend observed during 28 to 29 weeks PMA (refer Table 

5.1), which agree well with Di Fiore et al.’s (2010) results.  

 

There have been numerous threads of evidence pointing out the importance of 

time course, starting from 30 weeks PMA, in relation to the progress of ROP. One 

study (Good et al., 2005) observed that the vision threatening disease started to 

develop from about 32 to approximately 41.5 weeks PMA. Another (Coats et al., 

2000) found that progression to severe ROP occurred at a median of 35 weeks PMA 

in preterm babies born less than 25 weeks GA and of birth weight up to 1250 gram. 

The progress of ROP from phase one to phase two (as described in Section 4.2) has 

been suggested to be associated with oxygen-regulated growth factors, VEGF and 

IGF-1 (Smith, 2005; Chen and Smith, 2007). Hellstrom and colleagues (2003) 

measured the mean of IGF-1 prospectively at a weekly interval; the growth factor was 

most deficient at 30-33 weeks PMA among severe ROP babies compared to less 

severe or no ROP babies. They concluded that low IGF-1 levels after preterm birth 

appeared to inhibit retinal vascular development. Smith (2005) further showed that 

when the cessation of blood vessel development persisted until 30-32 weeks PMA, 
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hypoxia that precipitates the second phase of retinal detachments and loss of vision 

will occur.  This second destructive phase can be avoided if some preventive 

measures are taken during the chain of events in the first phase.  

 

These studies reiterated that the timing of changes in the course of ROP 

development is important. They showed that some of the factors contributing to the 

first phase of ROP were observed from 30 weeks PMA in a premature child.  In our 

data, we noted that there were marked differences in the OS statistics between babies 

with and without severe ROP, with higher variability and lower levels of OS in severe 

ROP babies in the earlier weeks of PMA, particularly 28 and 29 weeks. It may 

therefore be possible to examine and hence detect the retinal disorder as early as 28 

weeks PMA.  

  

5.3 The response and predictors for logistic regression  

The study population included 257 preterm babies from 23-27 weeks GA. 

They were admitted to five hospitals: Christchurch Women’s Hospital, National 

Women’s Hospital, Middlemore Hospital, Wellington Hospital, and Dunedin 

Hospital, between September 2006 and December 2009. This cohort represented 

85.4% of the 301 BOOST-NZ babies that survived until 36 weeks PMA. The 257 

babies were divided into two groups based on their individual highest stage of ROP. 

41 babies were categorised into the severe ROP group (‘1’), comprising stage 3 and 

above or requiring laser surgery. The remaining 216 were placed into the no severe 

ROP group (‘0’), comprising babies with no ROP (115, 44.7%), ROP stage 1 (60, 

23.3%), and ROP stage 2 (41, 15.9%), all of whom did not require laser surgery. 

 

The percentage of severe ROP in extremely premature babies in New Zealand 

for the 40-month period was 13.6% (41/301), which was comparable with 15.0% of 

the Australian (Gunn et al., 2012) and 16.0% of the American (SUPPORT Group, 

2010) studies. Severe ROP was also seen in 14.8% in a German (Schwarz et al., 2011) 

study. These figures have been summarised in Chapter 2, Table 2.1. When comparing 

the incidence of severe ROP in New Zealand over a 12-year period, it was noted that 

the incidence based on BOOST-NZ data was higher (P=0.0079) than the rate 6.9% 

(20/288) seen in the 1998-1999 study (Cust et al., 2003). Overall, premature babies 

survival improved slightly, from 79% in 1998-1999 to 89% in 2006-2009 (P=0.0004). 
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With relatively small sample size in both studies, the observed increased (from 42% 

to 65%) survival of 23 weeks GA babies was not significant (P=0.2021). However, 

there was a particular rise (from 68% to 84%) in survival of 24-25 weeks GA babies 

(P=0.0014). 

 

Recent reports have indicated that over the past two decades, incidences of 

certain prematurity problems including respiratory and ROP illness have been rising 

in developed countries (Slidsborg et al., 2008). Such complications, however, are in 

accordance with the improved survival rate of very premature babies due to 

improvement in fetal monitoring technology and neonatal intensive care (Horbar et 

al., 2012). Our results support these trends, showing more premature babies survived 

from 1998 to 2009.  

 

5.3.1 Characteristics of severe ROP and no severe ROP babies 

Table 5.4 summarises seven postnatal variables, and four OS statistics 

according to the ROP status; these variables are the predictors for the regression 

models. The entries for weight and GA in Table 5.4 show that babies in the severe 

ROP group tend to be smaller (P=3.2E-08) and younger (P=1.8E-07). This is also 

observed in the composite variable wGA, where the percentage of severe ROP babies 

is higher in the <25th percentile category (34% vs. 16%, P=0.012). Additionally, they 

have significantly higher duration of ventilation (mean 28 days vs. 9 days, P=2.2E-11; 

median 23 vs. 4 days, P=6.5E-07) and supplemental oxygen (mean 102 days vs. 52 

days, P=1.7E-09; median 100 vs. 43, P=2.3E-06). Since the severe ROP babies 

require extended intensive care due to late recovery from respiratory problems, this 

might perhaps explain for their dependency on oxygen at 36 weeks PMA (P=4.3E-

05). Prematurity, weight, and prolonged exposure to oxygen therapy have been 

consistently identified as the risk factors for ROP (Wilkstrand et al., 2011; Di Fiore et 

al., 2010).  

 

Overall, there are more male babies in the study (139, 54%), but there is no 

significant difference between the severe ROP and no severe ROP babies (P=0.688). 

As discussed previously in Section 5.2, the mean values (at 29 weeks PMA) between 

the two groups differ for cvOS, sdOS, dstOS, and meanOS. 
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Table 5.4: Summary of severe ROP and no severe ROP babies 

Variable 
Severe ROP 

(n = 41)a 

No severe ROP 

(n = 216)a p-valueb 

cvOS 0.068 (0.017) 0.058 (0.019) 1.2E-03 

sdOS (%) 6.18 (1.44) 5.32 (1.64) 1.9E-03 

meanOS (%) 90.7 (2.53) 92.5 (2.82) 1.3E-04 

dstOS  0.078 (0.044) 0.049 (0.049) 5.0E-04 

 [0.079 (0.048, 0.110)] [0.035 (0.013, 0.072)] 5.2E-05 

weight (g)  730 (157) 917 (199) 3.2E-08 

GA (weeks) 25.3 (1.2) 26.3 (1.1) 1.8E-07 

daysVentilate (days) 28 (24) 

[23 (4, 41)] 

9 (13) 

[4 (1, 11)] 

2.2E-11 

6.5E-07 

daysO2 (days) 102 (65) 

[100 (45, 143)] 

52 (43) 

[43 (17, 79)] 

1.7E-09 

2.3E-06 

O2W36   26 (63%) 65 (30%) 4.3E-05 

wGA (percentile)   0.012 

>75thc 8 (20%) 76 (35%)  

25th to 75th 19 (46%) 106 (49%)  

<25th 14 (34%) 34 (16%)  

gender    21 (51%) 118 (55%) 0.688 

    
aEntries in table are mean(SD) and [median(interquartile range)] for continuous data;  

and frequency count (%) for categorical data. 

bp-values are from t-test for difference in means, Mann-Whitney test for difference in  

medians, and chi-squared test for difference in frequency counts. 

cReference group for wGA 

  

The characteristics of the continuous variables were further explored by 

examining their densities, using the kernel density estimators and box plots. Figure 

5.2(a) illustrates the density of each variable according to ROP status. The red line 

represents the density for the severe ROP group, and the blue line for the no severe 

ROP group. The density for dstOS, daysVentilate and daysO2 is notably skewed, 

which lend support for using the Mann-Whitney test, median, and interquartile 

summaries in Table 5.4 above. 
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There is a higher probability mass in regions corresponding to greater 

variability in severe ROP babies at 29 weeks PMA (refer Figure 5.2(a) for cvOS, 

sdOS and dstOS), which is consistent with increased variability of OS in severe ROP 

cases observed in a number of studies (Di Fiore et al., 2010; York et al., 2004; 

Cunningham et al., 1995; Saito et al., 1993). Additionally, it was observed that babies 

who developed severe ROP also had lower OS levels as can be seen from the mode 

for severe ROP, which is to the left of the mode for no severe ROP (refer from Figure 

5.2(a) for meanOS). The OS level is still being actively studied to determine its 

influence on the progression of ROP. Previous trials (Anderson et al., 2004; Sun et al., 

2002; Tin et al., 2001) focused on assessing the effects of lower (85-89%) and higher 

ranges (91-95%) of OS on the occurrence of ROP (refer Section 2.3.1). A policy of 

lower OS less than 93% had been suggested to control severe cases (Chow et al., 

2003). However, a recent trial (Support Study Group, 2010) has reported a higher rate 

of death in the lower OS group; therefore, expressing concern for the increasing 

support of lower range of OS. Note that these trials have not considered the issue of 

whether optimum OS would differ according to PMA.  

 

The pairwise box plots in Figure 5.2(b) depict that there are potentially 

outlying points occurring in all variables except GA. Upon closer inspection, most of 

these potential outliers correspond to the same babies. The impacts of these 

observations will be further investigated and discussed in Section 5.4.2.  
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(a)  

 

(b) 

Figure 5.2: Kernel density plots (a), and box plots (b) for continuous variables of NZ-

ROP according to ROP status  
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5.3.2 Collinearity among the predictors 

   The variables were checked before regression models were fitted in order to 

detect whether collinearity exists among them. Figure 5.3 displays scatterplots for 

each pair of continuous variables with binary ROP status encoded in red and blue 

colours. In addition, estimate of the Pearson correlation (95% CI) for each pair of 

variables are shown in Table 5.5. From both Figure 5.3 and Table 5.5, we 

immediately observe that all OS statistics (cvOS, sdOS, meanOS, and dstOS) exhibit 

strong correlation with absolute value greater than about 0.8, and that the correlation 

for daysVentilate and daysO2 is also quite strong being close to 0.8. 

 

 

Figure 5.3: Scatterplots for each pair of predictors in NZ-ROP with binary ROP status 

encoded in red and blue (red dots indicate severe ROP cases and blue dots indicate no 

severe ROP cases)  
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Table 5.5: Estimates of Pearson correlation (with 95% CI) for each pair of predictors 

 

Variable  sdOS meanOS dstOS GA weight days Ventilate daysO2 

cvOS 0.997 -0.788 0.881 -0.469 -0.430 0.385 0.501 

  (0.997, 0.998) (-0.830, -0.736) (0.850, 0.906) (-0.560, -0.368) (-0.525, -0.325) (0.275, 0.484) (0.403, 0.587) 

         

sdOS  -0.746 0.849 -0.465 -0.415 0.361 0.476 

   (-0.796, -0.686) (0.811, 0.880) (-0.556, -0.363) (-0.512, -0.309) (0.250, 0.463) (0.376, 0.566) 

         

meanOS   -0.850 0.411 0.475 -0.485 -0.617 

    (-0.881, -0.812) (0.304, 0.508) (0.374, 0.564) (-0.573, -0.386) (-0.687, -0.535) 

         

dstOS    -0.432 -0.442 0.463 0.543 

     (-0.526, -0.327) (-0.535, -0.338) (0.361, 0.554) (0.450, 0.624) 

         

GA     0.623 -0.438 -0.457 

      (0.542, 0.692) (-0.532, -0.334) (-0.549, -0.355) 

         

weight      -0.512 -0.590 

       (-0.597, -0.415) (-0.664, -0.504) 

         

days 

Ventilate 

      0.738 

      (0.677, 0.789) 
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Table 5.6: VIF for eight continuous variables 

Variable VIF  

weight 5.8 

GA 2.9 

gender 1.1 

wGA 3.1 

daysVentilate 2.4 

daysO2 4.0 

O2W36 2.0 

cvOS 5851 

sdOS 4616 

meanOS 27 

dstOS 39 

 

Collinearity was also checked using VIF (Table 5.6). An inspection for each 

variable shows that the VIFs for cvOS, sdOS, meanOS, and dstOS, ranging from 27 to 

5851, were high compared to the rule-of-thumb threshold of 10 suggested by 

Marquardt (1970). These outcomes were consistent with the earlier results from the 

estimates of the correlation.  

 

Further examinations revealed that (i) there were problems with the sign of the 

parameter estimates i.e. whenever a regression model contained at least two of the OS 

statistics, (ii) only one parameter estimate was significant for models containing both 

daysVentilate and daysO2, and (iii) only one parameter estimate was significant for 

models containing both weight and wGA. All of these variables are of great interest to 

the clinicians for identifying patients who will require treatment for severe ROP.  

 

These results indicate that substantial correlation existed between certain 

groups of variables: the four OS statistics, two oxygen therapy variables, weight and 

size for GA. All-subsets regression was employed, in which each regression model 

was fitted with a combination of at most six predictors, with at most one variable from 

each group of the strongly correlated variables as follows.  
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 GA 

 gender 

 O2W36 

 one of cvOS, sdOS, meanOS, or dstOS 

 one of daysVentilate or daysO2  

 one of weight or wGA.  

 

This restriction on the occurrence of predictors in each model was not far from the 

rule-of-thumb suggested by Harrell et al. (1984) that not more than about 10v  

predictors should be considered in a model. Here, v is the smaller of the sample sizes 

for the two groups of babies, which in our case is 41 babies for the severe ROP group. 

The resulting total number of possible models is 359.  

 

5.4 Logistic regression model fitting and diagnostics  

 Results from diagnostics of model fits are presented in two parts. Firstly, 

verification of linear structure of continuous predictors is presented in Section 5.4.1. 

For predictors that appear to have nonlinear structure, fitting based on nonlinear 

models were considered. Secondly, the outcomes from detecting potential outlying 

observations are explained in Section 5.4.2.  

 

5.4.1 Examination of structure of continuous predictors 

 The linearity in the structure of the continuous predictors was first checked 

using the partial residuals from the logistic regression, and was again examined using 

generalised logistic additive models (GAMs). Figure 5.4 shows the partial residual 

plots for the eight continuous variables. As it was difficult to discern a pattern in the 

plots of the residuals, a lowess curve was fitted through the points of each plot. The 

smooth for the eight predictors are relatively flat. Additionally, note that the residuals 

that occur mostly above the lowess smooth belong to the severe ROP group. A more 

careful look at the residuals indicates that there appear to be several strongly 

influential observations. Most of them are from severe ROP babies, which correspond 

to the same observations that were identified by the box plots in Section 5.3.1. The 

effects of the outliers are revisited in Section 5.4.2. 
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Figure 5.4: Partial residual plots of eight continuous predictors. The circles denote the 

residuals and the solid line depicts the smoothed residuals using a lowess smoother. 

 

 Additionally, GAM was used to check the linearity assumption for the 

predictors. Recall that the nonlinear term that we are using in GAM is based on cubic 

spline (refer Section 4.4.1). To check the structure of each predictor, several models 

based on the combinations of at least two predictors were fitted, and the GAM fit for 

each predictor was plotted separately; the structure for individual predictors was 

found to be quite similar among the models. Consequently, only results from models 

with two predictors are presented in this section.  

  

Each two-predictor model contains a predictor and GA, which is well-known 

as an important risk factor for severe ROP. An examination to determine the 

appropriate fit for GA was then carried out. A GAM consisting of a nonlinear term for 

GA and a linear term for weight was fitted; weight was chosen as it is another 

important risk factor for severe ROP. Through the GAM fitting for GA (Figure 5.5), it 

is noted that the curve has an approximately monotonically decreasing pattern as GA 

increases. It is noted that the curve decreases steeply in two periods of GA: from 23 

weeks GA (160 days) to about 24 weeks GA (170 days), and from 26 weeks to 27 
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weeks GA. To determine whether a linear structure is adequate for GA, a linear model 

(consisting of a linear term for GA and weight) and GAM were compared. The first 

two entries (denoted by Model 1) in Table 5.7 present the results of the fittings. A 

smaller AIC value for the linear model and a large p-value from the LR test 

(P=0.3577) lend a support on using a linear term for GA. Recall that the null 

hypothesis for the test states that simpler model holds.  

 

Using this result, the structure for the remaining seven predictors was 

examined by fitting a GAM that contained each predictor fitted as a nonlinear term 

together with GA fitted as a linear term. The resulting curves of the predictors with 

the structures chosen by the GAM fits are displayed in Figure 5.5. For most of the 

predictors, there are wider ranges at the extremes of the standard-error curves, which 

are due to fewer data points at the extreme regions. The smooth appears to be linear 

for weight, daysVentilate, and daysO2. Risk appears to be decreasing monotonically 

as weight increases, with babies of weights less than 750 g facing higher risk of 

severe ROP. In contrast, daysVentilate and daysOS produce the opposite effect on this 

retinal disorder. The data show that the risk escalated rapidly after the babies were 

exposed to more than 20 days of ventilation, and 50 days of supplemental oxygen. 

The trends for the four OS statistics, however, warrant for a closer inspection. It can 

be seen that a straight line could fit between the pointwise standard error curves for 

cvOS and sdOS. On the other hand, the GAM fits of meanOS and dstOS seem to 

exhibit some form of nonlinear characteristics. To ascertain whether these patterns are 

the appropriate structure for the seven predictors, a further evaluation was undertaken 

by comparing a linear model (consisting of linear terms for GA and the predictor) 

against the GAM. 
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Figure 5.5: Plots of GAM fit for eight continuous predictors, with pointwise standard 

errors and partial residuals included. The black solid line represents the fitted cubic 

spline )(s , the dotted lines represent the upper and lower pointwise twice-standard-

error curves, and the dots represent the residuals. The rug plots at the bottom of each 

graph show the occurrences of the data values. 

 

The results from fitting linear model and GAM for each of the seven 

predictors together with GA (denoted by Model 2 to Model 8) are summarised in 

Table 5.7. Notice that the AIC for the linear model is no larger than the one for the 

GAM for weight, sdOS, daysVentilate, daysO2, and cvOS, which suggests that a 

linear term would suffice for these five predictors. An examination of the p-values of 

the LR test, which yielded large values (P>0.05) re-affirm these results. Opposite 

results, however, were obtained for dstOS and meanOS. The AIC based on GAM is 

smaller, with significant p-value from the LR test (P=0.0209) for dstOS, and 

marginally significant (P=0.0677) for meanOS. These results indicate that a nonlinear 

term could be needed for the two predictors. From the shape of the GAM curves in 

Figure 5.5, it appears that linear piecewise or quadratic models could provide 

alternatives to the cubic spline. These simpler nonlinear parametric models are more 

parsimonious and easier to interpret. 
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Table 5.7: Comparison between models with linear term, and 

GAM with nonlinear term for continuous predictors 

 Modelb AIC p-valuea 

1. weight+GA 194.5 0.3577 

 weight+s(GA) 196.4  

2. weight+GA 194.5 0.3590 

 s(weight)+GA 196.5  

3. cvOS+GA 204.8 0.1367 

 s(cvOS)+GA 204.8  

4. sdOS+GA 205.1 0.2272 

 s(sdOS)+GA 206.1  

5. meanOS+ GA 201.5 0.0689 

 s(meanOS)+ GA 200.1  

6. dstOS+ GA 204.3 0.0209 

 s(dstOS)+ GA 200.6  

7. daysVentilate+GA 190.1 0.5981 

 s(daysVentilate)+GA 193.0  

8. daysO2+GA 191.4 0.1798 

 s(daysO2)+GA 191.9  

ap-values are from the LR test for comparing a model with linear terms (first 

row) against a model with a nonlinear additive term (second row). 

b )(s denotes a cubic spline.   

 

Based on these analyses, it is concluded that six of the predictors would 

adequately be modelled as linear. The remaining two predictors, namely meanOS and 

dstOS required further investigation, which will be discussed next.  

 

 The fitted cubic spline for meanOS shows an interesting pattern of a steady 

increasing risk as the level of OS increases up to about 89% followed by a sharp 

decrease. Accordingly, the curve could be partitioned into two regions with a knot at 

89% when fitted with a piecewise linear function. MeanOS was then examined 
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separately, using a piecewise linear model with a knot at k denoted as pw ),( k , and a 

quadratic model denoted as poly )( . To determine which model will be better for 

meanOS, a linear model (consisting of linear terms for meanOS and GA) and a 

piecewise linear model were compared using the LR test and AIC. Likewise, a 

separate comparison between a linear model and a quadratic model was performed. 

The results for these models (denoted by Model 1 and Model 2) are displayed in Table 

5.8. No significant difference is found, either between a linear model and a two-

segment piecewise linear model (P=0.0987), or between a linear model and a 

quadratic model (P=0.5614). These results are reflected in the models’ AICs, which 

are very close together. The GAM fit that corresponds to meanOS also has a hint of a 

peak at 89% and a trough at 93%. Therefore, a three-segment piecewise linear model 

with knots at 89% and 93% was fitted (not shown in Table 5.8). This, however, 

yielded a similar outcome as obtained from the two-segment piecewise linear model. 

Therefore, we concluded that a linear model would suffice for meanOS.  

 

 Next, we investigated the nonlinear feature in dstOS. From Figure 5.5, it can 

be seen that there was a gradual increase in risk of severe ROP with increasing dstOS, 

and thereafter, a steady decrease as dstOS passes a threshold at about 0.15%. The 

decreasing trend in the upper range of dstOS is interesting as this suggests that the risk 

of developing severe ROP weakens gradually after dstOS increases to a certain level. 

We considered two nonlinear parametric models for dstOS: a piecewise linear model 

with a knot at 0.15% (thus having a positive slope in the left hand segment and a 

negative slope in the right hand segment), and a quadratic model. In both models, 

dstOS was fitted together with GA fitted as a linear term. Evaluation was made to 

determine which one of these models was most appropriate for dstOS. The results, 

denoted by Model 3 and Model 4, are represented in Table 5.8. The AIC for the two-

segment piecewise linear model is much lower than that of the linear model; this is 

further supported by the small p-value (P=0.0028). An improved result, however, is 

not achieved from the quadratic model, which yields a higher AIC and a larger p-

value (P=0.0110) as compared to the piecewise linear model; thus, justifying the 

preference for using a two-segment piecewise linear model for dstOS in the ROP 

analysis.  
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Table 5.8: Comparison between models with a linear term, and models 

with a nonlinear parametric term for meanOS and dstOS 

 Modelb AIC p-valuea 

1. meanOS+GA 201.5 0.0987 

 pw (meanOS, 89)+GA  200.7  

2. meanOS+GA 201.5 0.5614 

 poly (meanOS)+GA  203.1  

3. dstOS+GA 204.3 0.0028 

 pw(dstOS, 0.15)+GA  197.4  

4. dstOS+GA 204.3 0.0110 

 poly(dstOS)+GA  199.8  

ap-values are from the LR test for comparing a model with linear terms (first 

row) against a model with a nonlinear parametric term for meanOS or dstOS 

(second row).  

bpoly )( denotes a polynomial fit and pw ),( k denotes a piecewise linear 

regression fit with a knot at k.   

 

There appears to be a conflicting phenomenon on the contribution of dstOS to 

the risk, in which there is a decreasing trend as dstOS passes a threshold. This pattern 

seems to contradict with the clinicians’ intuition that ROP risk should increase with 

increasing desaturation episodes of preterm babies (Di Fiore et al., 2010). Fetuses are 

regularly treated with prenatal steroids. These steroids have been suggested to provide 

a protective effect against the risk of ROP (Jagielska et al., 2008; Console et al., 

1997). In this study, the medical history of the babies was examined; the clinical 

records of the 13 babies in the right-hand segment of dstOS showed that they had all 

received steroids during their prenatal period to promote fetal lung development. 

Hence, this provides the plausible explanation for the phenomenon of the negative 

slope of the right-hand segment. 
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5.4.2 Detection of outlying observations   

 The analyses that had been performed so far, had not taken into account the 

presence of outlying points. However, earlier on, we have noted the existence of 

several suspicious observations from the box plots (Figure 5.2(b) in Section 5.3.1) and 

partial residual plots (Figure 5.4 in Section 5.4.1). These observations could be 

candidate outliers, which are normally detected by identifying overly influential 

points and high leverage values.  

 

 In this section, results from the analysis of detecting outlying points are 

presented. The analysis was performed using a combination of conventional 

diagnostic measures and a robust measure (refer to Section 4.4.4). Identification of 

multiple outlying points involves a three-step approach. In the first exploratory step, 

all-subsets regression was fitted to the full data, and the sign of the parameter 

estimates in all models was examined. Results showed that “incorrect” sign in some 

of the estimates occurred in 21 models, each containing three or four predictors. Here, 

“incorrect” was defined as having the opposite sign to that indicated in the single-

predictor analysis and generally indicated in the literature. In the second step, the 

conventional and robust diagnostic measures for these 21 models (with full data set) 

were fitted and plotted to detect all candidate outliers. The occurrences of suspected 

data points that exceeded the suggested thresholds of the diagnostic measures were 

recorded. In the third step, these observations were further examined by assessing 

their impact on the sign and the standard error of the parameter estimates. The list of 

outliers was then finalised using results from both steps two and three.    

 

To identify data points that are candidate outliers, four diagnostic measures 

were used: approximated jackknife residual, Cook’s distance statistic, leverage from 

hat matrix, and Mallows robust weight, which is used in order to identify observations 

assigned with small weights.  Recall in Section 4.4.2 that none of these diagnostic 

measures is reliable enough on its own to detect all outliers. This is illustrated in the 

following example (refer Figure 5.6 and Table 5.9) based on a model, with dstOS, 

weight, and daysVentilate as predictors. The jackknife residual plot shows that 

observations 130 and 157 are quite isolated from the main data. These observations, 

along with observations 204 and 207, also receive small Mallows weights, with values 

between 0.1 and 0.35. This indicates that the four observations are potentially 
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influential for both modelling and inference. Notice that two of them (observations 

130, 207) attain the maximum values of the Cook statistic. In particular, there is a 

leverage point (observation 8), which is assigned with a high weight of one by the 

Mallows weight. Results from these plots suggest that there appear to be five 

candidate outliers, namely, observations 8, 130, 157, 204, and 207. 

 

Figure 5.6: Diagnostic plots for model dstOS+weight+daysVentilate. Jackknife 

residuals (top left); Cook’s distance against leverage (top right); Marlows weight 

against leverage (bottom left); and Marlows weight against Cook’s distance (bottom 

right). The dotted lines denote the thresholds, )22(8  pn  for Cook’s distance and 

np )2(2   for leverage. The numbers beside the circles correspond to the observation 

numbers. 

Table 5.9: Identification of candidate outliers from diagnostic 

measures for model dstOS+weight+daysVentilate 

Diagnostic measure Candidate outliers 

Jackknife residuals  130, 157 

Cook’s distance 130, 207 

Leverage 8 

Mallows weight 130, 157, 204 
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 A list of five potential outliers emerging from the 21 models in step two is 

produced in Table 5.10. Observations 130, 157, and 204 have the highest frequency 

among other observations, occurring in 20 of the 21 models (95%). Observations 8 

and 207 are another two candidate outliers, which occur in 19 (90%) and 12 (57%) of 

the 21 models, respectively. This result provides evidence of aberrant observations 

that deserve further investigation. 

 

Table 5.10: Candidate outliers and their occurrences in 21 

models, as identified by four diagnostic measures 

Candidate outlier Occurrences in models (%) 

130 20 (95) 

157 20 (95) 

204 20 (95) 

8 19 (90) 

207 12 (57) 
 

  

 It is known that atypical observations can have a large impact on the 

maximum likelihood estimates, leading to biased estimators and wrong interpretations 

of the fitted models (Rousseeuw and Leroy, 1987). In the next step, the effect of these 

candidate outliers on the sign and standard error of the parameter estimates was 

assessed. Using the list of potential outliers from step 2, the 21 models were re-fitted 

after removing the five observations. Some changes were observed in the models’ 

estimates and standard errors, which resulted in appropriate signs for the estimates in 

all models. Taken together the results from steps two and three, observations 157, 

130, 204, 8 and 207 were flagged as outliers. 

 

The following analysis was carried out to determine on how best to handle the 

five observations. Three approaches were used: logistic regression on the full data set 

(denoted as MLE), robust logistic regression on the full data set (denoted as Robust), 

and logistic regression with the five outliers omitted (denoted as MLE2). The robust 

estimation of the parameters is via the Mallows estimator, as defined by equation 

(4.11) in Section 4.4.3, with tuning constant t = 1.2 and weight 
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function ( ) 1i iw X h  . The various results yielded by these approaches are 

demonstrated in the following cases. 

 

Case I 

 The results in Table 5.11 summarise a case of an incorrect sign of a parameter 

estimate for predictor meanOS, produced by MLE as shown in the first column. 

Nevertheless, the sign changes when the robust method is used or when the outliers 

are removed. The estimates from both MLE and robust methods are quite different, in 

that the estimated standard errors of the non-robust method are smaller, and the 

parameter estimates are somewhat larger than their robust counterparts. For the 

remaining three predictors, it can be seen that the parameter estimates of MLE2 are 

relatively close to the MLE estimates.  

 

Table 5.11: Comparison of parameter estimates between logistic and robust logistic 

estimation for a model, meanOS+weight+daysVentilate+O2W36 

 MLEa   Robusta  MLE2b 

Predictor 
Parameter 

estimate 
SE 

 Parameter 

estimate 
SE 

 Parameter 

estimate 
SE 

Constant -0.625 7.859  14.605 11.063  8.507 8.739 

meanOS 0.013 0.088  -0.149 0.123  -0.081 0.097 

weight -0.004 0.001  -0.004 0.002  -0.004 0.001 

daysVentilate 0.030 0.012  0.012 0.017  0.034 0.014 

O2W36 0.496 0.451  0.230 0.593  0.287 0.486 

      

Model is estimated with afull data or with bexclusion of observations 130, 157, 8, 204, 

and 207.  

 

Case II 

A second case is illustrated based on a model, with sdOS, GA, daysO2, and 

wGA as predictors. Table 5.12 shows a surprising finding when the robust method 

estimates a negative sign for sdOS. A close inspection at Mallows robust weight 

showed that observation 204 was not assigned with a low weight. A positive sign is 

obtained only when observation 204 is removed from the analysis. The re-fitted 
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MLE2 model, which excludes the observation, takes into account the atypical nature 

of the observation in the estimation procedure.  

 

Table 5.12: Comparison of parameter estimates between logistic and robust logistic 

estimation for a model, sdOS+GA+daysO2+wGA 

 MLEa  Robusta  MLE2b 

Predictor 
Parameter 

estimate 
SE 

 Parameter 

estimate 
SE 

 Parameter 

estimate 
SE 

Constant 12.720 5.384  13.128 6.062  13.069 5.393 

sdOS 0.004 0.146  -0.027 0.167  0.045 0.151 

GA -0.087 0.028  -0.089 0.031  -0.090 0.028 

daysO2 0.011 0.004  0.013 0.005  0.010 0.004 

wGA (pct):         

   25th to 75th  0.366 0.491  0.099 0.554  0.391 0.491 

        <25th 1.040 0.575  0.962 0.625  1.037 0.576 

         

Model is estimated with afull data or with bexclusion of observation 204. 

 

Case III     

A further example based on cvOS, weight, and gender as predictors (given in 

Table 5.13) shows the effect of observations 130, 157, 8, 204, and 207. These 

observations seem to increase the MLE estimate of gender. The negative sign for 

gender, which is correct for NZ-ROP data, is attained only when the five observations 

are removed from the data. 
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Table 5.13: Comparison of parameter estimates between MLE and robust estimation for 

a model, cvOS+weight+gender 

 MLEa  Robusta  MLE2b 

Predictor 
Parameter 

estimate 
SE 

 Parameter 

estimate 
SE 

 Parameter 

estimate 
SE 

Constant 1.535 1.329  0.946 1.409  1.181 1.408 

cvOS 13.468 11.411  18.496 12.414  28.290 12.750 

weight -0.005 0.001  -0.005 0.001  -0.005 0.001 

gender 0.040 0.371  0.121 0.395  -0.0208 0.396 

         

Model is estimated with afull data or with bexclusion of observations 130, 157, 8, 204, 

and 207. 

  

With these results, the all-subsets logistic models were re-fitted to the NZ-

ROP data. The model fittings excluded the previously identified five outlying 

observations. Diagnostic checking (as in Section 5.4.1) was again undertaken; the 

parametric forms of the predictors are almost similar to those obtained in the earlier 

analysis. Figure 5.7 depicts the GAM fits for the OS statistics. Overall, there is an 

increasing trend of risk that corresponds to cvOS and sdOS, and decreasing trend for 

meanOS, whilst the nonlinear form for dstOS appears to be clearer. The OS statistics 

for variability have a downward trend for larger values; this trend, however, is more 

prominent in dstOS. Additionally, there was little evidence of any distinct outlying 

observations in the reduced data set. The performance of these models was then 

assessed and the results are presented in the next section.  



101 

 

 

Figure 5.7: Plots of GAM fit (excluded observations 157, 130, 204, 8, and 207) for 

four statistics of OS (cvOS, sdOS, meanOS, and dstOS), with pointwise standard 

errors and partial residuals included. The black solid line represents the fitted cubic 

spline )(s , the dotted lines represent the upper and lower pointwise twice-standard-

error curves, and the dots represent the residuals. The rug plots at the bottom of each 

graph show the occurrences of the data values. 
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5.5 Comparative performance of models 

 The logistic regression models were fitted using all-subsets regression, which 

performed predictor selection by fitting separate logistic regressions on the 

combinations of at most six predictors. In total, 359 models were fitted, which 

included the single-predictor and multi-predictor regression models. The predictors 

were seven clinical and postnatal factors and four OS statistics, whilst the response 

variable was severe ROP or no severe ROP. Predictors that were most influential in 

discriminating babies at risk of developing severe ROP were assessed and identified. 

These are discussed in the following sections.  

 

5.5.1 Single-predictor models 

The parameter estimates  ̂  for single-predictor logistic regression models are 

reported for each of the eleven predictors in Table 5.14, accompanied by their 

respective SEs, p-values, and ORs (depicted in Figure 5.8). With the exception for 

gender (P=0.595), all predictors were significant for severe ROP (P<0.05), with 

meanOS, weight and GA showing protective associations. Strong relation (P<1.0E-6) 

with severe ROP was demonstrated by the following predictors: weight, GA, 

daysVentilate, daysO2, and dstOS. The first three variables are well known risk 

factors for severe ROP. Within the wGA category, babies born with lower weight for 

GA had a higher risk of ROP (OR = 4.15, 95% CI = (1.52, 11.31)). There were 

relatively few babies (Table 5.15) in this category (47 out of 252 or 18.7%), but their 

severe ROP rate was high (13 out of 47 or 27.7%).  
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Table 5.14: Single-predictor logistic regression models of NZ-ROP 

Predictor ̂ (95% CI) SE p-valuec 
Unadjusted ORe 

 (95% C1) 

cvOS 43.00 (21.63, 64.37) 10.90 8.0E-5 3.406 (1.853, 6.261) 

sdOS (%) 0.485 (0.236, 0.734) 0.127 1.3E-4 3.288 (1.784, 6.057) 

meanOS (%) -0.338 (-0.489, -0.187) 0.077 9.9E-6 0.286 (0.163, 0.500) 

dstOS (%)a     1.6E-7d  

< 0.15% 25.38 (15.76, 35.00) 4.909 2.3E-7 4.380 (2.502, 7.668) 

≥ 0.15% -128.7 (-232.1, -25.27) 52.77 0.015 0.031 (0.002, 0.505) 

weight (g) -0.007 (-0.009, -0.005) 0.001 8.7E-8 0.129 (0.070, 0.240) 

GA (days) -0.131 (-0.180, -0.082) 0.025 1.1E-7 0.194 (0.105, 0.358) 

daysVentilate (days) 0.064 (0.040, 0.088) 0.012 2.5E-8 2.884 (1.957, 4.252) 

daysO2 (days)  0.020 (0.012, 0.028) 0.004 1.2E-7 4.446 (2.499, 7.911) 

O2W36  1.506 (0.775, 2.237) 0.373 5.5E-5 4.509 (2.170, 9.366) 

wGA (percentile)     0.017d  

 > 75thb      

25th to 75th 0.631 (-0.290, 1.552) 0.470 0.180 1.879 (0.748, 4.721) 

< 25th 1.423 (0.419, 2.427) 0.512 0.005 4.150 (1.521, 11.31) 

gender -0.187 (-0.877, 0.503) 0.352 0.595 0.829 (0.416, 1.653) 
a dstOS is fitted with a piecewise linear function with a knot at 0.15%. 
b Reference group   
c p-value is from the Wald’s test.  
d p-value is from the LR test.  
e The unadjusted ORs for continuous variables depict the odds of severe ROP for patients at the 75th percentile of the distribution of the variable versus   

patients at the 25th percentile. 
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Figure 5.8: Unadjusted ORs (with 95% CIs) of severe ROP based on 252 babies in 

NZ-ROP for all predictors. For continuous variables, the value depicted reflects the 

odds of severe ROP for babies at the 75th percentile of the distribution of the variable 

versus patients at the 25th percentile. 

 

Table 5.15: Predictor weight-for-GA and severe ROP 

 Severe ROP  

no./ total (%) 

wGA (percentile)   

> 75tha 7/83 (8.4%) 

25th to 75th 18/122 (14.8%) 

< 25th 13/47 (27.7%) 

  

a Reference group    

 

The ̂  for meanOS is negative, which suggests that severe ROP cases are less 

likely with higher OS levels at 29 weeks of PMA. For OS statistics for variability 

(cvOS, sdOS and the lower range of dstOS), their ̂ s are all positive; thus indicating 
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that higher variability implies a higher probability of severe ROP. dstOS is the most 

dominant predictor (P=2.3E-7) among the four OS statistics, with the risk of severe 

ROP increased with increasing dstOS up to 0.15% (OR = 4.380, 95% CI = (2.502, 

7.668)). Figure 5.9 shows the box plots of fitted probabilities of severe ROP and no 

severe ROP calculated from the model containing dstOS; it can be seen that the two 

groups of babies are well-separated. These results lend support to the clinicians’ 

suspicion that OS fluctuations could be an early indicator of ROP. 

 

Figure 5.9: Box plots of fitted probabilities of severe ROP and no severe ROP for a 

single-predictor model, dstOS. The 25th, 50th, and 75th quartiles are 0.1361, 0.246, and 

0.370 for severe ROP, and 0.047, 0.079, and 0.171 for no severe ROP, respectively. 

 

5.5.2 Multi-predictor models 

The all-subsets regression comprised of 359 models. Potential interaction was 

assessed among selective predictors such as between OS statistics and gender, and 

O2W36. However, no appreciable interaction effect was detected.  Table 5.16 shows 

15 models listed according to their AUCs; the first ten were the top models, whilst the 

remaining five contained several combinations of OS statistics and risk factors that 

clinicians felt were important for ROP. The predictors that were highly related to 
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severe ROP in the single-predictor analysis remained important here. After adjustment 

with other key clinical factors, strong relationships with severe ROP were shown by 

dstOS, GA, weight, and daysVentilate; dstOS appears in all the top ten models and 

each of the other three appears in eight of these models. Other variables such as 

gender, O2W36, wGA, and daysO2 appear less often (four times for gender, three 

times for O2W36, and only once for wGA and daysO2). dstOS was the most 

important predictor among the four OS statistics, as indicated by its presence in the 

top models.  

 

Table 5.16: Selected multi-predictor regression models of NZ-ROP 

Ranka Modelsc AUC (95% CI) 

1b dstOS, weight, daysVentilate 0.853 (0.792, 0.914) 

2 dstOS, GA, weight, daysVentilate 0.853 (0.792, 0.914) 

3 dstOS, weight, gender, daysVentilate 0.852 (0.792, 0.912) 

4b dstOS, GA, weight, O2W36 0.851 (0.787, 0.915) 

5 dstOS, GA, weight, daysO2 0.851 (0.790, 0.912) 

6 dstOS, GA, weight, daysVentilate, O2W36 0.851 (0.788, 0.914) 

7 dstOS, GA, weight, gender, daysVentilate  0.849 (0.790, 0.909) 

8 dstOS, GA, gender, daysVentilate, wGA 0.848 (0.786, 0.911) 

9 
dstOS, GA, weight, gender, daysVentilate, 

O2W36  
0.848 (0.785, 0.911) 

10b dstOS, GA, daysVentilate 0.847 (0.788, 0.905) 

    

37b dstOS, GA, wGA  0.835 (0.771, 0.899) 

63b meanOS, GA, weight  0.829 (0.766, 0.893) 

107b cvOS, weight, O2W36  0.822 (0.753, 0.891) 

115b sdOS, weight, O2W36  0.821 (0.753, 0.889) 

176b meanOS, GA, wGA 0.815 (0.744, 0.886) 

    

a Actual rank from 359 models. 

b p-value of each predictor is less than 0.05. 

c dstOS is fitted with a piecewise linear function with a knot at 0.15%. 
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In Table 5.16, there are several models containing predictors with p-values 

less than 0.05 and AUCs well above 0.8. Note that the performance of individual 

models depends on the combination of predictors in each model. The box plots of the 

probabilities of severe ROP and no severe ROP predicted using the top model with 

dstOS, weight, and daysVentilate as predictors are shown in Figure 5.10.  

 

Figure 5.10: Box plots of fitted probabilities of severe ROP and no severe ROP for a 

multi-predictor model, dstOS+weight+daysVentilate. The 25th, 50th, and 75th quartiles 

are 0.174, 0.384, and 0.622 for severe ROP, and 0.016, 0.039, and 0.138 for no severe 

ROP, respectively. 

 

With 11 predictors being investigated, we aim to pare down the variables to a 

smaller number that impacts the outcome the most, and hence, useful for 

discriminating between babies with good or poor outcome. One possible way is to 

consider a number of potential models, which differ in terms of combination of 

predictors and predictions for babies at risk of developing severe ROP, as seen from 

Table 5.16, Figure 5.9, and Figure 5.10. Alternatively, rather than to base inference on 

only one or several models, a weighted average of the models could be employed to 

circumvent the need for predictor or model selection. Using this approach, all models, 
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hence all predictors were taken into account and weighted accordingly. The results for 

NZ-ROP using a model averaging strategy are illustrated in the next section.  

 

5.5.3 Model averaging approach 

To determine predictors that have a strong relationship with severe ROP, a 

model averaging approach (refer Section 4.3.4) was adopted, in which model-

averaged p-values were calculated. Additionally, the OR (with 95% CI) for each 

predictor, and fitted probabilities for the risk of severe ROP were also computed by 

averaging over all models. Together with the analyses of the single- and multi-

predictor models, the results are discussed in Section 5.6.  

 

Model-averaged p-values and ORs  

 With the model-averaged p-value, the relative dominance of the predictors 

with respect to their relationship with severe ROP can be quantified. Table 5.17 

presents the strength of each predictor, as ranked according to their corresponding p-

values. Highly influential variables in this group of predictors, with model-averaged 

p-values less than 0.01, were lower range of dstOS (< 0.15%), weight, GA, and 

daysVentilate. Other variables such as the upper range of dstOS (≥ 0.15%) and 

daysO2 were marginally associated with the risk of severe ROP. From Table 5.17, it 

can be seen that (i) dstOS was the strongest predictor among the four OS statistics, (ii) 

weight and GA were more important individually than when combined as wGA, and 

(iii) daysVentilate was the dominant predictor among the three oxygen therapy 

variables, i.e. daysO2 and O2W36. Overall, these predictors represent a subset of risk 

factors that could be clinically useful in identifying babies potentially at risk of severe 

ROP.  
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Table 5.17: Model-averaged p-values and ORs of severe ROP based on 

252 babies in NZ-ROP 

Predictor p-valuea 
ORa (95% CI) 

dstOS (< 0.15%)b 0.0073 2.800 (1.455, 5.399) 

weight 0.0075 0.261 (0.102, 0.685) 

GA 0.0088 0.318 (0.157, 0.646) 

daysVentilate 0.0093 2.045 (1.330, 3.146) 

dstOS (≥ 0.15%)b 0.0423 0.020 (0.001, 0.883) 

daysO2 0.0816 2.527 (1.244, 5.170) 

wGA (< 25th percentile) 0.1154 3.305 (1.011,10.85) 

meanOS 0.1371 0.563 (0.287, 1.107) 

cvOS 0.1428 1.932 (0.941, 3.975) 

sdOS 0.1457 1.926 (0.933, 3.986) 

O2W36 0.2447 2.097 (0.849, 5.230) 

wGA (25th to 75th percentile) 0.2568 1.847 (0.657, 5.198) 

gender 0.3472 0.670 (0.298, 1.507) 

   

        a p-values and ORs are obtained from model averaging. 

        b dstOS is fitted with a piecewise linear function with a knot at 0.15%. 

 

Table 5.17 also provides the model-averaged ORs for severe ROP for each 

predictor; the results are depicted in Figure 5.11. The OR for dstOS (< 0.15%), of 

which the predominant relation with severe ROP has been noted earlier (Table 5.16), 

was quite pronounced. Even after adjustment for all other clinical predictors, preterm 

babies at the upper quartile of the dstOS (< 0.15%) distribution were nearly three 

times more likely to develop severe ROP than babies at the lower quartile, (OR = 

2.800, 95% CI = (1.455, 5.399)). The presence for high ROP risk, however, was not 

apparent in the other three OS statistics, or in O2W36 and gender. 
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Figure 5.11: Model-averaged ORs (with 95% CIs) of severe ROP based on 252 babies 

in NZ-ROP for all predictors. For continuous variables, the value depicted reflects the 

odds of severe ROP for babies at the 75th percentile of the distribution of the variable 

versus patients at the 25th percentile. 

 

Model-averaged fitted probabilities 

 A summary of the model-averaged fitted probabilities is presented in Figure 

5.12. The upper quartile of the estimated probabilities for the severe ROP group was 

0.426, whilst the lower quartile for the no severe ROP group was 0.035. Overall, a 

good separation exists between the two groups (Kolmorov-Smirnov two-sample test, 

P=2.9E-8). This suggests that the model averaging approach performs well in 

discriminating between babies who will or will not develop severe ROP.  
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Figure 5.12: Box plots of fitted model-averaged probabilities of severe ROP and no 

severe ROP. The 25th, 50th, and 75th quartiles are 0.147, 0.275, and 0.426 for severe 

ROP, and 0.035, 0.069, and 0.176 for no severe ROP, respectively. 

 

5.6  Discussion 

The influence of clinical determinants of severe ROP in extremely preterm 

babies is multifaceted, involving many factors. In this study based on a cohort of 

babies less than 28 weeks GA, we attempted to provide an analysis of relationships 

between eleven postnatal predictors including OS statistics, and severe ROP.  

 

The best subset of predictors 

Single-, multi-predictor, and model averaging analyses were performed to 

identify predictors that can best describe the relationships with severe ROP. Some of 

the results from the three analyses were identical, whilst others differed in terms of the 

strength of association between predictors and outcome. We observed that these 

predictors could be categorised into three cases. 

 

 Case I: dstOS, weight, GA, and daysVentilate emerged as the most highly 
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significant predictors in the single-predictor and model averaging analyses. 

Additionally, they appeared no less than eight times in the top ten models in 

the multi-predictor analysis.  

 Case II: cvOS, sdOS, meanOS, wGA, and O2W36 were significantly 

associated to severe ROP in the single-predictor analysis. However, the 

individual effects of these variables were negated when adjusted for other 

variables. Gender was not significant in the single-predictor and model 

averaging analyses. 

 Case III: Besides daysVentilate, daysO2 was another highly associated oxygen 

therapy variable in the single-predictor analysis. However, unlike 

daysVentilate, the strong effect of daysO2 did not persist in the multi-predictor 

analysis and was only marginally associated (P=0.082) with the adverse 

outcome of ROP in the model averaging.  

 

Taking the results produced by these three analyses together, it appeared that 

dstOS, weight, GA, and daysVentilate were dominant risk factors for severe ROP. 

Therefore, these factors emerged as the best subset of predictors among the eleven 

initially considered. Note that this combination of four predictors appeared as the 

second top model in the multi-predictor analysis.  

 

As we scrutinised closely the results from all three analyses, it can be seen that 

the results from the single- and multi-predictor analyses tended to be more liberal, 

whilst the model averaging approach was somewhat more conservative. We illustrate 

this in the following examples. 

 

 In the single-predictor analysis, nearly all predictors were significantly 

associated with the outcome, with very small p-values. In contrast, many of 

them did not remain significant in the model averaging analysis.  

 The fitted probabilities obtained from the top model (Figure 5.10) in the multi-

predictor analysis and those from the model averaging analysis (Figure 5.12) 

were broadly similar, in that, discrimination between the two groups of babies 

with severe ROP and no severe ROP was very distinct. However, the former 

had more fitted probabilities that were closer to 1 for the severe ROP group. 
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We believe that the subtle differences in the three approaches indicate two extreme 

limits of performance; hence, the actual relationships could be somewhere between 

these two limits.   

 

Oxygen fluctuations 

 Early studies on newborn rats exposed to oxygen-induced retinopathy showed 

that repeated hypoxic episodes (McColm et al., 2004; Coleman et al., 2008), 

alternating hypoxia and hyperoxia, small increments (Werdich et al., 2004), or wider 

range of oxygen fluctuations (Penn et al., 1995) caused severe retinal 

neovascularisation. In studies involving preterm babies, increased fluctuations of 

oxygen in the early weeks of life were reported as a critical factor for development of 

severe or threshold ROP (Saito et al., 1993; Cunningham et al., 1995; York et al., 

2004). Except from York et al., (2004), information on the magnitude of the risk due 

to OS fluctuations is very limited as it has not been investigated in-depth and 

extensively. In our study of preterm babies at 29 weeks PMA, we examined the 

relation of variability and level of OS (using four OS statistics) on the development of 

severe ROP, and found that desaturation was the most significant OS predictor 

(model-averaged P=0.007) for severe ROP. This finding is in accord with De Fiore et 

al. (2010), who studied the association of severe ROP with multiple factors including 

desaturation episodes (P<0.001). Importantly, after adjustment with other clinical 

predictors, we noted that the relationship of desaturation with severe ROP risk was the 

strongest among all OS statistics (model-averaged OR = 2.800, 95% CI = (1.455, 

5.399)). cvOS was another statistic that we had considered for OS variability; its 

contribution to the risk of developing severe ROP (model-averaged OR = 1.93, 95% 

CI = (0.94, 3.98)) was broadly similar to the study by York et al. (2004), which 

reported increased risk of severe ROP (OR = 1.69, 95% CI = (0.95, 2.99)) for preterm 

babies based on a 10% increment of CV of PaO2 after receiving 30 days of oxygen 

therapy.  

 

There have been previous studies that had investigated the impact of different 

OS levels on the morbidity of preterm babies including ROP. For instance, four 

studies (Tin et al., 2001; Anderson et al., 2004; Sun et al., 2002; Chow et al., 2003) 

have suggested that a OS target range of about 80-95% may reduce retinal surgery by 
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61-100%. Recent studies, however, showed that lower saturation targets reduce the 

incidence of severe ROP but may also increase risk of death (SUPPORT Group,  

2010; Vaucher et al., 2012; Schmidt et al., 2013); BOOST II Group, 2013). The 

HOPE ROP study (McGregor et al., 2002) examined the progression rate to threshold 

(severe) ROP in two groups of preterm babies, one with median OS greater than 94%, 

and the other less than 94%, in room air when ROP was first diagnosed. They found 

that fewer babies progressed to threshold ROP in the higher OS group compared to 

the lower OS group (32% vs 46%, P<0.004). Our data showed that with lower 

meanOS, there is a higher risk of severe ROP (model-averaged OR = 0.563, 95% CI = 

(0.287, 1.107)), which appeared to be consistent with the neonatal physiology at 29 

weeks PMA as advised by a pediatrician. The basis for this phenomenon is not fully 

known but may be attributed to persistent hypoxia that occurs at the end of phase one 

ROP. This induces an overproduction of the VEGF growth factor and eventually leads 

to the second phase of retinal detachments (Smith, 2005).   

 

Demographics 

 Lower GA and birth weight are the strongest and most consistently identified 

risk factors for ROP (McColm and Fleck, 2001; Good et al., 2005). We observed 

similar findings, wherein the risk increased for babies born earlier or with lighter 

weight. In the US, initial eye examinations have been recommended for babies born at 

less than 30 weeks GA, or with birth weight less than 1500 g, or between 1500 g to 

2000 g in the case of high risk babies (American Association for Pediatric 

Ophthalmology, 2006). Our observations re-emphasised the importance of monitoring 

these babies with timely eye examinations and consistently scheduled ophthalmologic 

follow-ups. 

  

Recent evidence has shown that the incidence of ROP cases has risen in the 

group of extremely premature babies in several developed countries, and that the 

increase was more notable in lower birth weight babies (Slidsborg et al., 2008). As 

GA and weight reflect different aspects of fetal wellbeing, i.e. maturity and growth, 

some studies on ROP started to use relative weight for GA (wGA). However, the 

adverse effects of low wGA on ROP among preterm babies are difficult to determine 

from published findings because these varied from one study to another. Some studies 

report that being born low wGA increases the risk of severe ROP (Qiu et al., 2012; 
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Slidsborg et al., 2008; Darlow et al., 2005), whilst others found no association 

between wGA and severe ROP (Austeng et al., 2010; Filho et al., 2009; Allegaert et 

al., 2009), which is in accordance to what we have obtained in our study. These 

conflicting results may be due to different ways of defining the low wGA group, such 

as (i) restriction on percentiles for GA (e.g. birth weight < 10th percentiles for GA or 

birth weight < 4th percentiles for GA); (ii) use of growth chart that differ according to 

countries (Australia, Canada, and Sweden); and (iii) use of single-centre versus 

multiple-centre data.  

 

 It has been suggested that the relationships between GA, weight and morbidity 

are less clear partly due to using cohorts of babies based on weight alone. In contrast, 

low wGA babies are shown to have higher rates of morbidity in cohorts selected on 

the basis of GA and weight (Qiu et al., 2012; Regev et al., 2003). This might explain 

why wGA is sometimes preferred over weight when assessing the impact of growth 

restriction on the development of ROP. Our data, however, showed that when weight 

and GA are considered individually, their relationship with the severity of ROP is 

stronger than when they are combined as wGA. 

 

Gender has been increasingly recognised as a critical determinant in babies 

with ROP. Darlow et al. (2005) and Jacobson et al. (2009) have identified male 

gender to be significantly associated with an increased risk of ROP. In this study, it 

was not an important risk factor before and after adjustment for other factors. This 

was also observed in other comparable studies of ROP that involved a larger number 

of babies (Austeng et al., 2010; Gunn et al., 2012). More generally, whilst female 

babies were noted to have a survival advantage, male babies were found to be more 

susceptible to complications of prematurity and mortality (Synnes et al., 1994). The 

basis of the better outcomes for female babies is unclear, but may relate to the 

development of organ maturation during fetal growth (Ingemarsson, 2003). 

 

Oxygen therapy 

It has long been evident that ROP was observed more often among babies 

treated with extended duration of oxygen therapy during the perinatal period (Kinsey 

et al., 1956; Lala-Gitteau et al., 2007). This was further supported by Di Fiore et al. 

(2010), Cunningham et al. (1995), and our study, which found that babies who 



116 

 

developed severe ROP had received longer duration of ventilation and supplemental 

oxygen as compared to the no severe ROP group; these findings are summarised in 

Table 5.18.  

 

    Table 5.18: Findings on duration of oxygen therapy and ROP status 

Oxygen 

therapy 

Study Severe 

ROPa 

No severe 

ROPa 

p-valueb 

Ventilation Di Fiore et al., 2010 

Cunningham et al., 1995 

NZ-ROP 

40 (18) 

50 (34) 

28 (24) 

14 (15) 

29 (23) 

9 (13) 

< 0.001 

< 0.01 

2.2E-11 

Supplemental 

oxygen 

Di Fiore et al., 2010 

Cunningham et al., 1995 

NZ-ROP 

51(12) 

104(42) 

102(65) 

34 (20) 

70 (69) 

52 (43) 

< 0.001 

< 0.001 

1.7E-09 

a Mean (SD) 

b p-values are from t-test for difference in means. 

 

The impact of greater periods of assisted ventilation and supplemental oxygen 

on the health of young newborns is of great concern especially in extremely preterm 

babies as they are often given oxygen therapy due to their under-developed cardio-

respiratory system. It is therefore relevant to ascertain which of the factors related to 

oxygen therapy has greater association with ROP. Our analysis of three factors - 

duration of ventilation, duration of supplemental oxygen, and use of supplemental 

oxygen until 36 weeks of PMA - disclosed that the first is the strongest predictor for 

severe ROP, rather than the other two. Recall that the risk of severe ROP increases 

with longer duration of ventilation (Table 5.15).  

 

 Apart from ROP, there have been numerous other reports on ventilation-

related complications such as bronchopulmonary dysplasia, cancer, and cerebral 

palsy. Bronchopulmonary dysplasia that is in a form of inflammation of the lungs and 

airways is quite common in preterm neonates who are ventilated and exposed to 

oxygen (Askie et al., 2003). An increased risk of childhood leukemia has been 

reported for babies who were resuscitated with 100% oxygen at birth; the odds ratio 

was 2.6 when a facemask and bag were used, and increased to 3.5 for manual 

ventilation lasting 3 minutes or more (Naumburg et al., 2002). In a another study of 



117 

 

newborn babies exposed to prolonged sessions of oxygen therapy, the odds ratio of 

cerebral palsy was almost 3.0 in mechanically ventilated very low birth weight babies 

(Collins et al., 2001). 

 

Limitations of study 

 There are several possible limitations to this study. First, the wGA categories 

were defined based on the Australian national growth charts (Roberts and Lancaster, 

1999). The charts were chosen due to the absence of locally derived charts and close 

similarity in the demography and environmental factors of New Zealand and 

Australia. However, Indigenous babies (28230, 4%) were not included in the 

Australian charts as their correct GAs were difficult to be obtained (Roberts and 

Lancaster, 1999). This issue could cause a small number of babies in this study to be 

inappropriately classified for certain wGA categories. Second, inter and within centres 

variability in certain aspects of care and clinical monitoring of patients is inherent in 

this study. As trial protocols had been implemented in BOOST-NZ to ensure 

homogeneity among care providers when providing treatments to patients, the 

resulting variability is believed to be minimal and does not influence the conclusions 

of the study. The third and final limitation, the ROP incidence in this study pertains 

only to babies of birth weight < 1500g and < 28 weeks of GA. Previous studies have 

reported on severe ROP cases among low birth weight babies that were older than 

those in this analysis (Regev et al., 2003). There are possibilities that these older 

babies were inadvertently not screened for ROP screening, which could lead to under-

estimation of ROP incidence for low birth weight babies.  

  

Despite these limitations, this study was based on a comprehensive database 

collected prospectively and consistently throughout the study period. It clearly 

documents some important risk factors of severe ROP for extremely preterm babies 

born in several hospitals in New Zealand.  

 

5.7  Summary 

The OS data from an eight-week period (28 to 35 weeks PMA) were analysed 

to determine a suitable time period for computing OS statistics to be used in the 

logistic regression. We observed that (i) there were significant differences in the 

means of the OS statistics between the two groups of babies at nearly all weeks of 
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PMA, with the largest difference occurring at 28 or 29 weeks PMA; (ii) cvOS, sdOS, 

and dstOS were significantly higher in babies who develop severe ROP while 

meanOS was significantly lower, and (iii) the maximum value for variability and 

minimum value for level were attained at 29 weeks PMA. Taking into account the 

results from the 28 and 29 weeks PMA, and combined data, all findings for OS 

statistics of the NZ-ROP study were reported based on 29 weeks PMA. 

 

Single-, multi-predictor, and model averaging analyses were performed to 

investigate the relationships between levels, variability of OS, and severe ROP; the 

relationships between multiple risk factors and severe ROP; and the respective degree 

of importance of these factors with the disease. We identified that there is a 

relationship between dstOS and severe ROP, and we confirmed weight, GA, and 

daysVentilate as significant risk factors for severe ROP. Of these variables, we found 

that (i) dstOS was the strongest predictor among the four OS statistics, (ii) weight and 

GA were more important individually than when combined as wGA, and (iii) 

daysVentilate was the most prominent predictor among the three oxygen therapy 

variables. Our analysis also identified four factors that formed a set of the most 

dominant factors of severe ROP in preterm babies: desaturation of OS levels, baby’s 

age and weight at birth, and duration of exposure to oxygen therapy (ventilation 

support).   
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CHAPTER 6 

NZ –LP STUDY: INVESTIGATION OF SOME 

STATISTICAL SUMMARIES OF OS DATA 

 

6.1 Instability in neonatal oxygenation 

Preterm infants display physiological instabilities such as low OS level and 

variation of heart rate and respiratory patterns.(Baird, 2004) These instabilities arise 

from a combination of immature organ development, neonatal illnesses (Hofstetter  et 

al, 2007), clinical interventions (Murdoch and Darlow, 1984), and environmental 

factors (temperature, light and noise). This makes it difficult to distinguish 

instabilities that are merely due to prematurity from those partly caused by neonatal 

illnesses that affect cardiorespiratory functions. Determining the cause, so as to 

provide appropriate clinical care that avoids unnecessary and potentially harmful 

interventions often presents a challenge.  

 

Various measures and techniques have been developed to detect instabilities in 

heart rate and respiratory (Seely et al., 2014). Fetal heart rate variability has been 

quantified to monitor fetal wellbeing in high-risk pregnancies and labour (Yum and 

Kim, 2003). Validated measures of prediction of neonatal illness have been developed 

based on heart rate characteristics (Malik et al., 1996; Griffin et al., 2007). Indices or 

scores have been calculated from respiratory support data to describe the severity of 

pulmonary status and respiratory failure in ventilated preterm babies (Madan et al., 

2005; Subhedar et al., 2000).  

 

However, a similar level of understanding has not been reached for OS. It is 

known that an inappropriate amount is detrimental for premature infants, with both 

hypoxaemia and hyperoxaemia capable of tissue injury in preterm babies (Silverman, 

2004). But what the appropriate amount is and what features of OS are useful are still 

unclear (Cole et al, 2003). There is a considerable uncertainty regarding the OS 

threshold below which additional inspired oxygen should be given to babies (Cole et 

al, 2003).  

 



120 

 

 In the absence of gold standard for code of practice for oxygen monitoring, 

many clinicians use clinical experience and limited information defined for term 

babies as surrogate values for preterm babies (Silvestri et al., 2002; Balfour-Lynn et 

al., 2009). Such information was often presented in the form of saturation level, i.e. 

mean, median, and median baseline (Hoppenbrouwers et al., 1992; Hunt et al., 1999), 

and the data were gathered under various settings using conventional devices. Hence, 

there were some variations in the definitions suggested for normal oxygenation for 

full term babies.  

 

 A convenient source of OS measurements is pulse oximeter, which is routinely 

used in many modern NICUs. A set of oximeter OS data from preterm babies 

admitted to an NICU was obtained. The data consisted of OS measurements recorded 

for ten babies at 34 weeks, nine babies at 35 weeks and 31 babies at 36 weeks PMA. 

All babies were healthy but two were considered to be mildly unstable and require 

greater attention. Due to the small sample size, a modest investigation was carried out 

at 36 weeks PMA to explore whether some common statistical summaries of the OS 

recordings are useful in the clinical care of late preterm babies. Three statistical 

measures: the mean, SD and CV, which is the ratio of the SD to the mean, were 

investigated. The potential usefulness of each measure was assessed by its ability to 

distinguish the two unstable babies from the others using box plots and a hierarchical 

clustering technique. 

   

6.2 Studies on oxygenation in healthy preterm babies 

One of the knowledge gaps still remains involving oxygenation in healthy 

preterm babies is the lack of a standard reference range of OS (Silvestri et al., 2002; 

Balfour-Lynn et al., 2009). These ranges, also referred to as reference ranges, 

reference intervals and normal values, are an important tool in medical area. They 

serve as a guideline to clinicians and medical practioners in interpreting results 

obtained from the patients. In clinical term, a normal range consists of a range of 

values that typically represent the proportion of healthy individuals that take their 

values of a variable. Thus, values lying outside the range may suggest the presence of 

an illness or a disorder. 
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A clear definition of what constitutes normal oxygenation for preterm infants 

has been difficult to obtain. This could be partly due to the absence of clarity on how 

often and/or how long a baby could be allowed on low concentration of oxygen level, 

lack of both longitudinal data and knowledge on the dynamics of the preterm infants, 

and limited study on suitable measures that can adequately summarise the instabilities 

in OS. Previous studies on OS in term and preterm babies had used readings from the 

conventional oximeter, umbilical artery catheters and oxymonitor electrodes. These 

studies had focused on the saturation level, and the most common measure used was 

the median baseline. To compute this measure, the means of individual babies were 

first calculated using “clean” segments of data, and then the median of these means 

was obtained. A segment is classified as “clean” when the duration is at least ten 

seconds and at least 15 seconds away from any respiratory pause; the respiratory rate, 

amplitude and waveform are regular; and there is no occurrence of movement artefact 

(Hunt, et al., 1999). 

 

6.2.1 Full term babies studies 

Previous studies that contributed important information on the oxygenation in 

early life for healthy term babies have been extensive (Poets, 1998; Hunt, et al., 1999; 

Bakr and Habib, 2005; Samuel, et al., 2013; Rhein et a., 2012; Terrill et al., 2014). 

The studies involved between 34 and 4274 babies born more than 36 weeks GA. The 

investigators evaluated the impact of GA, activity state (sleeping, quiet, fussy, 

crying), altitude of hospitals, and type of monitoring device on OS at the time of 

measurement. They reported that the OS values increase to a small degree with 

increasing postnatal age, fussy/ crying newborns have lower OS values compared to 

quiet and sleeping newborns, babies born at high altitude have significantly lower OS 

values than those born at sea level, and the difference of OS values were about 2% 

between several oximeters that employ different algorithms. The OS values of the 

newborns were computed as mean, median or median baseline for several specific 

duration such as a 24- to 72-hour period from admission to discharge (O’Brien et al., 

2000; Samuel et al., 2013), and the two to six months after birth (Terrill et al., 2014; 

Hunt et al., 1999; Poets et al., 1998; Stebbens et al., 1991; Poets et al., 1991). Median 

baseline of OS greater than 95% has been suggested as “normal” for healthy babies 

(Hunt et al., 1999; Balfour-Lynn et al., 2009), which indicates that the acceptable 

range of oxygenation in term healthy babies is relatively narrow.   
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6.2.2 Preterm babies studies 

According to Rhein, et al. (2012) and our own findings, published data relating 

to oxygenation pattern and typical values in preterm babies have been limited. It was 

also noted that the number of babies in those studies was small, ranging from 28 to 55 

babies (27 – 36 weeks GA). These babies were monitored under various conditions 

and settings: there were babies with periodic breathing (Razi et al., 2002) and lung 

complications (Poets, et al., 1992; Hofstetter et al., 2007), babies monitored within a 

laboratory setting (Hoppenbrouwers, et al., 1992), babies studied within their first 

week (Richard et al., 1993; Ng, et al., 1998) or first month of life (Harigopal et al., 

2011; Rhein et al., 2012), and babies followed-up at 37 and 43 weeks PMA (Poets et 

al., 1992) and at three-monthly intervals in the first year of life (Beresford et al., 2005; 

Mok et al., 1988). These studies mostly used mean, median, median baseline, 5th and 

95th percentiles (Rhein et al., 2012; Harigopal et al., 2011; Beresford et al., 2005; Ng 

et al., 1998) to investigate the oxygen values in healthy preterm babies. The median 

(or median baseline) of the OS levels for preterm babies in these studies were from 

95% to 100%. 

 

 Late-preterm babies have received less attention than extremely preterm ones 

as they tend to be considered similar to term babies. However, there have been 

growing concerns that late-preterm babies are at an increased risk of morbidity, 

mortality and hospital readmission compared to term babies (Escobar et al., 2006; 

Engle et al., 2007). Guidelines for the evaluation and management of these babies 

have been recommended (Balfour-Lynn et al., 2009; Raju et al., 2006), addressing 

clinical care, knowledge gaps and pre-discharge of the babies. Two of the knowledge 

gaps that have been identified are the level of physiological maturity and tools to 

identify medical complications in late preterm babies. In the pre-discharge criteria 

(American Academy of Pediatrics, 2004), it was recommended that the “vital signs of 

the babies need to be within reference ranges and stable for the 12 hours preceding 

discharge, including a respiratory rate of less than 60 breaths per minute, a heart rate 

of 100 to160 beats per minute, and axillary temperature of 36.5 to 37.4°C (97.7–

99.3°F) measured in an open crib with appropriate clothing”. Note that OS levels have 

not been included in the criteria, reflecting the lack of information on this 

physiological variable. As preterm infants are often prone to life threatening events, 
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more oxygen studies are needed to aid clinicians in making health assessments or 

treatment decisions. 

 

6.3 NZ-LP study 

The typical measures to summarise OS values from the previous studies were 

based on the saturation level (mean, median percentiles, median of the means and 

median baseline). However, some clinicians also believe that the information about 

the health state of preterm babies is contained in the variability of physiological 

signals. Variability in oxygen has been suggested to be closely associated with ROP 

(Cole, 2010; Di Fiore et al., 2012). Studies have found that variability in oxygen in the 

first two weeks of life is a significant predictor of severe ROP (Cunningham, et al., 

1995), and it can increase the severity of retinopathy in newborn rats (Penn, 1995). 

For very-low-birth-weight premature babies, increased in fluctuation of oxygen may 

impose a higher risk of developing threshold ROP (Saito, et al., 1993; York, et al., 

2004). These studies show that variability derived from the OS measurements could 

provide some insight on the health conditions of babies.  

 

We therefore aimed to explore the possible usefulness of several OS statistics 

in the clinical care of preterm babies. This investigation, New Zealand Late Preterm 

Babies (NZ-LP) study, was prompted by the availability of a set of oximeter OS data 

of late preterm babies obtained from an NICU in Christchurch, New Zealand. Since 

OS level has been of considerable interest (Poets, 1998; Hunt et al., 1999; 

Hoppenbrouwers et al., 1992; Beresford et al., 2005; Rhein et al., 2012; Terrill et al., 

2014), one of the statistics investigated is the mean. Another feature of OS that has 

received some attention is variability; hence, the second statistic chosen is the SD. 

The third is the CV, which is the ratio of the SD to the mean; thus, providing a 

composite measure of variability relative to the mean level. 

 

6.3.1 Patients 

This study was an observational study that required no intervention. It was 

approved by the Upper South B Regional Ethics Committee in New Zealand. Babies 

were eligible for the study if they had been admitted to the neonatal intensive care unit 

at Christchurch Women’s Hospital between November 2004 and January 2006 with 

gestation less than 36 weeks, had never received mechanical ventilation or had 
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required continuous positive airways pressure (CPAP) for less than twelve hours. 

Babies were also excluded if they had required treatment with opiates or sedative 

drugs, were born after maternal drug use in pregnancy, had known congenital 

malformations involving the cardio-respiratory system, or had conditions requiring 

major surgery. At the time of entry to the study, babies had to be well, not requiring 

supplemental oxygen with OS consistently >92% and not have been treated with 

methylxanthine therapy in the previous seven days. The study depended on the 

availability of a Masimo Radical pulse oximeter (Masimo Corporation, Irvine, CA, 

United States) and research nurse time; hence not all eligible babies were approached 

for consent.  

 

After parental consent was obtained, an enrolled baby was connected to the 

pulse oximeter. A sensor was secured to the baby's finger or foot in a position that 

provided the most optimal signal. Data acquisition commenced once a good 

waveform was attained after the baby had been breathing spontaneously for at least 6 

hours. OS was recorded once every two seconds for a continuous duration of at least 6 

hours. Eventually, data were collected for two groups of babies: (1) Group P, 

comprising 10 babies, had OS measurements recorded once a week from 34 weeks 

PMA until discharge, there were 9 babies still in the study at 35 weeks, 6 at 36 weeks 

and 1 at 37 weeks.; and (2) Group N, consisting of 25 babies with recordings made 

only at 36 weeks PMA. For an investigation that was exclusively carried out for 36 

weeks PMA, the subset of Group P’s data taken at 36 weeks PMA was combined with 

the Group N’s data to form a data set of 31 babies altogether).  

 

Although all babies had to be clinically well to be eligible for study, two 

babies were identified as being clinically mildly unstable. Baby P17 was unstable at 

34 - 36 weeks PMA. The day following enrolment at 34 weeks PMA, she had several 

episodes of apnea requiring stimulation and was placed on low-flow nasal oxygen, 

which was continued for 3 days. There was no evidence of sepsis or other problems. 

At 35 weeks PMA, her OS readings were less than 90%for 24% of the time, some of 

these episodes were associated with feeds. She was again placed on low-flow nasal 

oxygen, which was continued for 48 hours. At 36 weeks PMA, she had brief 

desaturations with feeds and the low-flow nasal oxygen was recommenced for a 

further 3 days. Baby N21 was unstable at 36 weeks PMA when saturations less than 
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90% were recorded for almost 30% of the monitoring period. Clinical review revealed 

no problems bar a soft systolic murmur and an echo-cardiogram was undertaken, 

which was normal but showed a small patent foramen ovale. The saturations were 

consistently 93% or greater over the next few days. 

 

6.3.2 Pre-processing of OS data 

 The Masimo Radical has maximum sensitivity with OS values between 70-

100%. Readings below 70% were less reliable as they could occur from movement or 

detachment of the sensor (Giuliano and Higgins, 2005). However, as a new generation 

oximeter the Masimo Radical reduced errors from these causes. Suspect readings that 

occurred from unclear causes were retained by introducing a weighting function to 

down-weight them. This weighted each measurement between 70-100% by 1, while 

measurements between 0-69% were linearly weighted between 0 and 1. All 

subsequent analyses were based on the weighted measurements. These down-

weighted measurements constituted a very small part (about 0.3% were readings of 1-

69% and 1.2% were readings of 0%) of the total measurements that were recorded. 

The formulation for the weighting function is described in the next passage. 

 

Each measurement is assigned to a (normalised) weight according to three 

categories: the zeros, less reliable measurements (1-69%) and all measurements of 70-

100%. For the first category, the weight for each measurement is assigned as zero. For 

the remaining two categories, assignment of weight involved three stages:  

 

1. Sort all measurements 1-100% in ascending order, )()1()()1( ,...,,,..., nmm xxxx   such 

that measurements i = 1,..., m are the less reliable data and measurements i = m+1,..., 

n are the measurements of 70-100%.  

 

2. Assign weight to each of the sorted measurements. The less reliable data in some 

way reflect the unreliable level of the readings from the oximeter. Hence, the weight 

for the less reliable data is assigned as 

mixw ii ,...,1,)()(   (6.1) 
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while the weight for each measurement of 70-100% is assigned as 

nmiw i ,...,1,100)(  . (6.2) 

 

3. Redistribute the weight for all measurements in categories two and three so as to 

ensure that the weight of the measurements is proportionate within its own category. 

With normalisation of the weights, the weights of the zeros are redistributed to the 

non-zero measurements. The normalised weight for the less reliable data is given as 
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and for measurements of 70-100% is  
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 The weighted measurements of OS for each baby were summarised for each 

available PMA using three statistical measures: the mean for measuring saturation 

level, SD for measuring saturation variability and CV (= SD/ mean) as a composite 

measure of variability relative to the mean level. The weighted mean and weighted 

SD, respectively, are given by 
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Using equations (4.25) and (4.26), the weighted CV was computed as 

* *s x . (6.7) 

 

These statistics were then assessed whether they could be useful in distinguishing two 

clinically mildly unstable babies from a group of healthy babies.  

 

6.4 Methodology 

In this section, the approaches to identify unstable babies through the use of 

the three measures are outlined. First, a qualitative graphical assessment was made 

using the kernel density technique and box plots. The distribution of saturations at 

each PMA for stable and unstable babies were plotted and assessed. Subsequently, a 

quantitative appraisal was performed by using each measure in turn to group the 

babies into clusters, such that babies within a cluster looked more “similar” with 

respect to the measure than babies from different clusters. This was done using the 

hierarchical clustering (Sneath, 1973) technique together with a distance measure for 

determining the degree of similarity. The extent to which this is achieved was 

measured by an index of clustering performance. All computations were performed 

using MATLAB (v. 2010a) package. 

 

6.4.1 Graphical assessment 

Kernel density 

 Consider a random sample nxx ,...,1  for density f.  The kernel density estimator 

for f is defined as  
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where K(x) is the kernel function and h is the bandwidth that controls the degree of 

smoothing applied to the data. The following conditions are required for the bandwith 

and kernel function: 0h  , 0)( xK  and  1)( dxxK  (Wand and Jones, 1995).  

 

The computational task of the kernel density estimate requires the 

specification for the bandwidth, kernel function and adjustment at the boundaries of 

the distribution. The direct plug-in method (Wand and Jones, 1995) was employed to 
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obtain a suitable bandwith for the NZ-LP oxygen data. It has been reported as one of 

the most successful approaches among all bandwidth selection methods, both 

empirically and theoretically (Jones et al., 1996). The choice of kernel function has 

little impact on the performance of the kernel density estimator as the efficiency is 

close to unity for many distributions. The widely used Gaussian kernel function of 

zero mean and unit variance was chosen due to its simplicity. For the boundaries of 

the distribution, these were adjusted using the transformation method (Marron and 

Ruppert, 1994; Ruppert and Cline, 1994).  

 

Box plots  

The weighted CV, SD and mean were computed (using any available data sets 

of 34 weeks until 37 weeks PMA) for each baby, and the distributions of these 

measures were then assessed using box plots. In a box plot, the lower and upper edges 

of the box denote the locations of the first and third quartiles, respectively. The line 

within the box denotes the location of the median. The difference between the third 

and first quartiles, which corresponds to the length of the box, is the interquartile 

range (IQR). The lower tail of the box plot extends from the lower edge to the 

smallest point that is within 1.5 times the IQR below the lower edge. Likewise, the 

upper tail extends from the upper edge of the box to the largest point that is within 1.5 

times the IQR above the upper edge. The common convention of labeling points that 

were more than 1.5 times the IQR beyond the first or third quartile as outliers was 

adopted. The actual number of times the IQR that an outlier fell beyond the first or 

third quartile was used to indicate the extreme level of that outlier, and will be 

referred to as the extremeness index. 

 

6.4.2 Clustering analysis 

At 36 weeks PMA, in which the sample size is larger (31 babies), a more 

detailed analysis for the usefulness of mean, SD and CV statistics was conducted 

using a hierarchical clustering (Sneath, 1973) method. The squared Euclidean distance 

was employed as the distance measure, where all values computed from this measure 

serve as inputs to the clustering algorithm. Clustering performance was measured 

using the Calinski-Harabasz (CH) index (Calinski and Harabasz, 1974), which has 

been in the ranking of top three indices among 30 indices that evaluate clustering 

results (Milligan and Cooper, 1985; Arbelaitz et al., 2013).   
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Hierarchical clustering 

Hierarchical clustering is a method of grouping unlabelled objects into 

homogeneous groups such that the within-group similarity is maximised and the 

between-group similarity is minimised. Clustering of objects was performed through 

the use of pairwise distances of all observations via the agglomerative algorithm 

(Ward, 1963), the procedure is described below. 

 

1. Compute ( 1) 2n n  pairwise distances between n observations using the squared 

Euclidean distance. This is given as 

 
2
, 1,..., 1 and 1,...,E i kd x x i n k i n      . (6.9) 

 

2. Consider each observation as being apart and in its own cluster. Therefore, there are 

n clusters.  

3. Compute between-cluster dissimilarity, i.e. compute the maximum distance 

between any two clusters. Here, all pairwise distances of observations between two 

clusters are considered. 

4. Find the smallest between-cluster dissimilarity and merge the two clusters, there are 

now n-1 clusters.   

5. Repeat step 3 to step 4 until only one cluster is left.  

 

Dendogram 

The dendograms are used to illustrate the results from the hierarchical 

clustering using the mean, SD and CV. A dendrogram provides the overall insight of 

the cluster structure, i.e. informing the amalgation process of clusters at each step. It 

shows possible clusters of objects labelled on the horizontal axis, with distances 

between clusters represented by the lengths of the vertical lines. For data set that 

consisted of 30 or fewer observations, each leaf in the dendrogram corresponds to one 

observation, whereas some leaves correspond to more than one observation for data 

set that consisted of more than 30 observations. This is due to the lower branches 

being collapsed to make the complete tree looking less crowded.  
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Measuring the clustering performance 

The CH index was employed to assess the quality of the clustering outcomes. 

It quantifies the degree of separation among groups of data points, specifically, it 

measures the dispersion of the data points in a cluster and between clusters, 

respectively. A higher value of the index indicates that there is a better separation 

between clusters and greater homogeneity within each cluster, hence a stronger 

clustering result overall. The index is defined as 
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 (6.10) 

 

where n is the number of data points, c is the number of clusters, W is the within-

cluster sum of squares, and B is the  between-cluster sum of squares.  

 

6.5 Results  

Due to the small sample sizes at 34 and 35 weeks PMA, a limited longitudinal 

analysis was performed for 34 to 36 weeks PMA utilising box plots as well as 

summary statistics. Table 6.1 shows the basic demographic data of babies included in 

the study and Table 6.2 provides key summary statistics (mean, median, SD, and IQR) 

for all of the OS measurements taken at 34 to 36 weeks PMA of groups P and N. A 

pattern of increasing saturation level over time can be observed from the mean. There 

is also a pattern of decreasing variability with increasing PMA emerging from the SD. 

These trends are consistent with improving cardiorespiratory function as the babies 

matured. In these healthy babies, the improvement appears to be discernible at weekly 

intervals.     
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  Table 6.1: Summary of GA, birth weight and gender of the babies included in study  

 
GA in weeks 

mean (range) 

Birth weight in g 

mean (range) 

Gender  

Male: female 

Group P (n = 10) 31.5 (29-33) 1775 (1310 - 2630) 0:10 

Group N (n = 25) 34.2 (33-35) 2240 (1415 - 2810) 12:13 

Group P and N  

(pooled from 31 babies at 

36 weeks PMA) 

32.9 (29-35) 2008 (1310 - 2810) 12:19 

 

Table 6.2: Summary of OS (%) data in healthy preterm babies at 34 to 36 weeks 

PMA 

 
34 weeks 

(n = 10) 

35 weeks 

(n = 9) 

36 weeks 

(n = 31) 

Mean (SD) 95.4 (5.1) 96.6 (4.3) 96.9 (3.6) 

Median (IQR*) 97 (94 - 98) 98 (96 - 99) 98 (96 - 99) 

5th, 95th percentiles 81, 100 83, 100 90, 100 

                *IQR expressed as lower quartile to upper quartile 
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Figure 6.1 shows the distributions of OS for two babies – P02 and P17. OS 

was recorded from 34 weeks until 36 weeks PMA for P02 and until 37 weeks PMA 

for P17. P02 was clinically stable during this period but P17 was mildly unstable from 

34 to 36 weeks and became stable only at 37 weeks. In both cases, the general trend of 

increasing OS over time is visible. More importantly, whilst P02 had consistently high 

OS at all three PMAs, the OS for P17 was persistently low at 34, 35 and 36 weeks and 

improved markedly only at 37 weeks. As can be seen from the plots, the densities for 

P17 became wider and the concentration gradually shifted toward higher percentages 

with increasing PMAs. 

 

 

 

Figure 6.1: Kernel densities of OS for two babies, P02 (up) and P17 (down) 
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Table 6.3: CV, SD and mean of OS for individual babies at 34, 35 and 36 weeks PMA 

34 weeks  35 weeks 

Case no. CV SD mean  Case no. CV SD mean 

P02 0.036 3.5 98.0  P02 0.029 2.9 98.5 

P03 0.024 2.3 97.3  P03 0.021 2.0 98.2 

P06 0.053 5.1 96.0  P06 0.038 3.6 96.8 

P10 0.014 1.4 97.9  P10 0.020 2.0 96.4 

P11 0.014 1.4 97.2  P11 0.016 1.6 97.9 

P14 0.052 4.8 92.3  P14 0.025 2.4 95.0 

P17 0.062 5.8 92.4  P17 0.087 8.1 92.4 

P18 0.020 1.9 97.7  P18 0.018 1.8 98.4 

P19 0.091 8.1 89.0  P19 0.044 4.2 96.7 

P20 0.027 2.5 95.3      

         

36 weeks 

Case no. CV SD mean  Case no. CV SD mean 

P02 0.014 1.4 99.2  N24 0.022 2.1 98.2 

P03 0.023 2.3 98.2  N26 0.033 3.1 96.0 

P06 0.045 4.3 97.2  N28 0.027 2.5 94.2 

P10 0.014 1.4 97.7  N36 0.044 4.2 96.5 

P11 0.014 1.4 97.4  N37 0.037 3.6 95.8 

P17 0.079 7.4 93.1  N52 0.024 2.3 97.6 

N01 0.030 2.9 96.9  N56 0.010 1.0 97.2 

N02 0.032 3.2 97.1  N57 0.020 2.0 96.8 

N04 0.021 2.1 98.9  N58 0.020 1.9 96.4 

N05 0.020 1.9 99.0  N66 0.016 1.5 97.4 

N06 0.022 2.2 98.2  N76 0.015 1.5 98.6 

N13 0.038 3.6 97.1  N77 0.017 1.6 97.4 

N16 0.033 3.1 95.8  N79 0.018 1.7 97.4 

N17 0.032 3.1 96.4  N81 0.024 2.4 97.5 

N19 0.024 2.3 98.2  N82 0.016 1.5 96.9 

N21 0.082 7.3 88.9      
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6.5.1 Box plot 

The mean, SD and CV of OS for individual babies at each PMA are given in 

Table 6.3. The empirical distributions of these three statistics are illustrated using box 

plots in Figure 6.2. Each box plot represents the empirical distribution of a statistic 

(i.e. mean, SD or CV) across individual babies at a given PMA. Once again, a trend of 

increasing level and decreasing variability over time can be seen (medians of the 

means are 96.6%, 96.8% and 97.2%, medians of the SDs are 3.0%, 2.4% and 2.0%, 

medians of the CVs are 0.032, 0.025 and 0.023 at the three PMAs). Due to the small 

sample sizes of 10 and 9, respectively, for 34 and 35 weeks PMA, neither the medians 

(tested using the Wilcoxon rank-sum test) nor the distributions (tested using the two-

sample Kolmogorov-Smirnov test) of any of the statistics were statistically different at 

the 10% level of significance between pairs of PMAs (i.e. 34 versus 35 weeks, 34 

versus 36 weeks and 35 versus 36 weeks). Note that this does not rule out differences 

actually exist but it is more likely that the tests were lacked of power due to the small 

sample sizes.  

 

 

Figure 6.2: Box plots for mean (left), SD (middle) and CV (right) at 34, 35 and 36 

weeks PMA 
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Figure 6.3: Box plots for the mean (left), SD (middle) and CV (right) at 36 weeks 

PMA 

 

We now analyse the box plots for babies at 36 weeks PMA, where data from 

31 babies are pooled and represented. Recall that points that are more than 1.5 times 

the IQR beyond the edges of the box are regarded as outliers. Thus, the box plot for 

each statistical measure represents the empirical distribution of that measure across 

the 31 babies. The line within the box plot for the mean denotes the location of the 

median of the means and is situated at 97.2%; likewise, the median of the SDs is at 

2.0% and the median of the CVs is at 0.023. Each box plot flags babies P17 and N21 

as outliers. None of the other babies is flagged as an outlier. The values of the 

extremeness index for babies P17 and N21 respectively are: 2.02 and 4.56 with the 

mean, 2.92 and 2.85 with the SD, and 2.98 and 3.18 with the CV. Recall that both 

babies were clinically assessed to be mildly unstable at 36 weeks PMA. 

 

6.5.2 Clustering 

Hierarchical clustering was performed by using each statistic to group babies 

at 36 weeks PMA into clusters. Clustering was performed on each of the three 

statistics (mean, SD, CV) in turn. The results from hierarchical clustering using the 

mean, SD and CV in turn are illustrated by dendograms in Figure 6.4. To avoid 

cluttering the figure, babies P17 and N21 have been labelled explicitly but all of the 

other stable babies have simply been labelled as SB. Results of clustering outcomes 

and number of clusters depend on the decision of which horizontal lines is cut. The 

best choice is the one that maximises within-group similarity while minimising 

Post-menstrual age Post-menstrual age Post-menstrual age 
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between-group similarity at the same time. In the figure, the best choice in each 

dendogram is denoted by a common colour for objects belonging to the same group. 

This is illustrated in the first dendogram for clustering with the mean. The best 

outcome is shown as two groups, with N21 by itself in one group but with P17 

together with all of the stable babies in the other group (coloured red). Clustering of 

the means was able to isolate N21 but P17 ended up in the stable group. Using the 

SDs or the CVs, P17 and N21 were placed in one group and the rest in another group. 

To determine whether clustering using CVs and SDs had any advantage over means, 

the CH index was computed. Successful clustering of the stable and unstable babies 

into two groups is achieved using the CV (CH = 72.8) and SD (CH = 63.3) but not 

with the mean. Even though the clustering outcomes for CV and SD are the same – 

P17 and N21 in one group and all other stable babies in another group – the higher 

CH index for CV indicates that its clusters are better separated and more 

homogeneous within. Thus, the combination of saturation variability and saturation 

level in the form of the CV appears to be more effective for detecting instability than 

either variability or level taken separately. 
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Figure 6.4: Dendograms for hierarchical clustering with the mean (top), SD (middle) 

and CV (bottom) 
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6.6 Discussion 

 In this study, we observed a trend of increasing saturation level and decreasing 

variability with advancing PMA, which is consistent with improving maturity and 

stability over time. At 34, 35 and 36 weeks respectively, medians of the means were 

96.6%, 96.8% and 97.2%; medians of the SDs were 3.0%, 2.4% and 2.0%; and 

medians of the CVs were 0.032, 0.025 and 0.023. With each of the three statistical 

measures at 36 weeks PMA, the box plot flagged the two unstable babies as outliers 

and none of the other babies. Successful clustering of the stable and two unstable 

babies into two groups was achieved using the CV (CH = 72.8) and SD (CH = 63.3) 

but not with the mean.  

  

 Limited information is available on OS values in preterm babies being 

monitored longitudinally, with some reports that mean of OS tends to become more 

stable with increasing PMA (Hofstetter et al., 2007; Beresford et al., 2005; Mok et al., 

1988) Our study observed that for healthy late preterm babies, the increase in OS level 

and decrease in variability are discernible at weekly intervals, which accord to those 

prior studies. The observed changes in OS are consistent with physiological maturity 

over time and may also be associated with postnatal chemoreceptor activity (Rigatto 

et al., 1975).  

  

The group of babies in previous studies differed from our own cohort, in that, 

they had examined babies at different age ranges and pooled data from different ages. 

Our pooled data from 31 babies for 36 weeks PMA, however, are still broadly similar 

in terms of OS level. For example, for babies pooled from 29 to 36 weeks GA 

(Harigopal et al., 2011; Beresford et al., 2005) and from 30 to 34 weeks GA (Ng et al., 

1998), and studied between 2 - 14 days after birth, the medians of the means for OS 

were between 95% and 97%. From the box plot for the mean in Figure 6.3, the 

median of the means of the 31 babies at 36 weeks PMA is 97.2%. Other studies had 

included preterm babies with respiratory disorders (Hofstetter et al., 2007; DiPietro et 

al., 1994), babies monitored within a laboratory setting (Hoppenbrouwers et al., 

1992), babies studied at 37 and 43 weeks PMA (Poets et al., 1992) and babies 

followed-up at three-month intervals over the first 12 months post-delivery period 

(Beresford et al., 2005). Median or median baseline OS levels ranging from 96.25% to 

100% were obtained in these studies. The mean of our pooled data is 96.9% and the 
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median is 98%, these summary statistics are consistent with the literature. Studies 

involving full-term newborns found the median or median baseline of OS to be 98.3% 

(Samuel et al., 2013) in a 24-hour to 72-hour duration from admission to discharge, 

about 98% in the first month of age (Poets, 1998) and between 98% and 100% in the 

2 to 6 months after birth (Terrill et al., 2014; Hunt et al., 1999; Poets, 1998). 

 

 Most previous studies on OS in preterm babies concentrated on saturation 

level (mean, median, median of the means or median baseline (DiPietro et al., 1994; 

Levesque et al., 2000; Poets, 1998; Hunt et al., 1999; Hoppenbrouwers et al., 1992; 

Poets et al., 1992; Beresford et al., 2005; Ng et al., 1998) for monitoring of babies in 

an NICU. Alternative measures such as SD and CV, however, were under-utilised to 

serve as measures of variability and stability. In our study, we investigated the 

usefulness of mean, SD, and CV statistics for distinguishing unstable preterm babies. 

Our findings suggest that variability in OS gives better result than saturation level, in 

that, the two clinically unstable babies were successfully identified by SD and CV 

whereas mean was able to detect only one baby. The relatively low extremeness index 

of 2.02 for P17 exacerbated by the large value of 4.56 for N21 helps explain the 

unsuccessful clustering with the mean; P17 looks more like it belongs in a group with 

the stable babies than with N21 in an unstable group. With the SD or CV, the values 

of the extremeness index for P17 and N21 are close together and relatively large 

(around 3); thus, aiding their clustering into a group apart from the other babies. The 

larger value of the CH index for the CV suggests that the resulting clusters are more 

pronounced than for the SD. This appears to be consistent with the larger values of the 

extremeness index for both P17 and N21 obtained from the CV box plot as compared 

to those from the SD. It therefore seems plausible that variability might be more 

effective than mean level for detecting instability in OS in preterm babies, and that the 

combination of variability and level through the CV might be even better.  

 

Our results here add to the few known studies (DiPietro et al., 1994; DiFiore at 

al., 2012), suggesting that variability may reflect perinatal health conditions even 

though a baby may appear to be well. The box plots in Figure 6.3 show that the use of 

mean level or variability (SD) separately can lead to conflicting views about which of 

the two unstable babies is at greater risk. The mean appears to suggest that N21 is 

much more unstable than P17 while the SD seems to show that P17 is slightly more 
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unstable than N21. One way to resolve this is to use an appropriate composite 

measure combining mean level and variability, such as the CV.  

 

The use of the CV for quantifying OS in preterm babies is uncommon but not 

new. It has been used by studies that assessed the effect of oxygen fluctuation on ROP 

(Saito et al., 1993; York et al., 2004). The investigators found that the CV of OS was 

higher for babies with threshold ROP (York et al., 2004) or with stage 3 or higher 

ROP (Saito et al., 1993) within the first two weeks after birth. They concluded that 

increased fluctuation of arterial oxygen tension might increase the risk of developing 

threshold ROP in very-low-birth-weight premature babies. In another study 

examining the impact of echocardiography on the cardio-respiratory stability of 

preterm babies, Groves and colleagues (Groves et al., 2005) reported that the CV of 

blood pressure, heart rate and OS, albeit not clinically significant, were statistically 

higher during the echocardiography period than during the rest period. 

 

A limitation of this study that hampered stronger results was the small sample 

size of the data sets that included only two unstable babies. Nevertheless, the current 

results do help to draw attention to the use of both mean level and viability in the 

continuing quest to better understand OS in preterm babies. Further investigation is 

needed to develop tools that utilise these summary statistics for constructing the 

reference range of OS in preterm infants; this can be done in the context of studies 

with large number of patients. 

 

6.7 Summary 

The NZ-LP study was conducted to explore whether some statistical measures 

of OS recordings are useful for saturation monitoring of late preterm babies. This 

investigation involved ten babies at 34 weeks, nine babies at 35 weeks and 31 babies 

at 36 weeks PMA. All babies were healthy but two (identified as babies P17 and N21) 

were considered to be clinically unstable and required greater attention. OS readings 

were recorded continuously for at least 6 hours for each baby using a pulse oximeter. 

Each baby’s recordings were summarised using three statistical measures, the mean 

for measuring saturation level, SD for measuring saturation variability and CV as a 

composite measure of variability relative to the mean level.  
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At 36 weeks PMA, in which the data set is larger, an extremeness index of box 

plots and a clustering performance index (CH index) of the hierarchical clustering 

were computed to assess the potential usefulness of each measure, i.e. by its ability to 

distinguish the two unstable babies from the others. The extremeness index measures 

the extreme level of an outlier that fell beyond the IQR while the CH index evaluates 

the quality of the clusters produced by the clustering method. A higher value of CH 

index indicates that there is a distinct separation between groups of babies, hence a 

better result overall. 

 

With each of the statistics, both babies were flagged as outliers and none of the 

other babies. Nonetheless, the value of extremeness index with the mean was 

relatively low for baby P17, in comparison to the large value for baby N21. In 

contrast, the values of the extremeness index for the two babies, respectively, are 

relatively large and close together with the SD or CV. Thus, these helped in 

explaining the successful clustering of the babies into two groups (stable and 

unstable) using the CV and SD, with larger value of CH index was attained for the 

CV. This indicates that the grouping of the babies was markedly pronounced for the 

CV than that for the SD. These results were also supported by the larger values of 

extremeness index for CV. Taking the results together, this study show that the 

measures of SD and CV are believed to be more effective in detecting instability in 

OS in preterm babies than by using mean, but CV as the ratio of SD and mean could 

be even better than either SD or mean alone. 
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CHAPTER 7 

CONCLUDING REMARKS  

 

7.1 Overview and summary  

In this thesis, the potential value of some summary statistics for OS features in 

pulse oximeter, particularly mean level and variation in OS readings, for saturation 

monitoring in preterm babies was investigated through two studies, NZ-ROP and NZ-

LP. In the first study, four statistics were considered: mean (meanOS) for measuring 

saturation level, standard deviation (sdOS) for measuring saturation variability, 

coefficient of variation (cvOS) as a composite measure of variability relative to the 

mean level, and desaturation (dstOS) as another variability measure. With the 

exception of dstOS, similar OS statistics were used in the second study. A measure 

based on desaturation events was proposed for NZ-ROP study because generally, very 

young preterm babies experience a relatively higher percentage of OS readings below 

80% compared to healthy term and late preterm babies (Rhein et al., 2012; McEvoy et 

al., 1993). The usefulness of each statistic was assessed by its ability to identify babies 

with unstable health conditions for NZ-LP while for NZ-ROP, statistics that could 

best describe the relationship between OS and severe ROP.   

  

The first objective of NZ-ROP is to determine any plausible relationships 

between saturation level, three measures of variability of OS, and severe ROP. This 

was achieved through the fitting of logistic regression models, with the OS statistics 

as the predictors and the presence or absence of ROP as the response variable. Prior to 

the models fitting, some exploratory analysis was carried out and it was found that the 

four statistics were highly correlated. Since many clinicians believe that both 

variability and level of OS are important in describing the development of ROP, these 

predictors were separated into correlated and uncorrelated groups; thereby, each of the 

OS statistics could be assessed separately. Through single-, multi-predictor, and 

model averaging analyses, it was found that dstOS was strongly related to severe 

ROP. Importantly, after making adjustment for other predictors, dstOS was identified 

as having the greatest association with the risk of severe ROP among all OS statistics. 

These results shed additional information to the current knowledge that desaturation 
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episodes in extremely preterm babies could provide better insight on the adverse 

outcome of severe ROP than other OS statistics. 

 

ROP is a potentially blinding disease that is related to multiple risk factors, 

including fluctuations in oxygenation, immaturity, growth and exposure to oxygen 

therapy (Cole, 2010; McColm & Fleck, 2001). Guided by the current evidence in the 

literature, this research also explored the respective degree of relationships of eleven 

predictors that are related to the four risk factors, with severe ROP. From the analysis, 

dstOS, GA, birth weight, and daysVentilate emerged as four of the most important 

predictors on the list. Subsequently, a separate analysis was conducted to identify 

predictor that has the strongest relationship with severe ROP for each group of the 

risk factors, and the following results were obtained. First, dstOS was found as the 

most significant OS predictor among the OS statistics, as noted previously. Second, 

the extent of immaturity and growth’s influence on severe ROP was investigated by 

considering GA, birth weight and a composite variable birthweight-for-GA. Notably, 

weight and GA have stronger relationships with severity of ROP than when combined 

as birthweight-for-GA. Third, among three predictors of oxygen therapy, duration of 

ventilation support is the strongest predictor for severe ROP rather than duration of 

supplemental oxygen and use of supplemental oxygen until 36 weeks PMA. Taking 

these results together, the combination of desaturation of OS levels, baby’s age and 

weight at birth, and duration of ventilation support was identified as a set of most 

dominant predictors for severe ROP. A multi-variable model consisted of these 

predictors yielded the lowest AIC among all models, and an AUC of 0.853 (95% 

CI=(0.792, 0.914)). These suggest that factors related to OS fluctuations, degree of 

immaturity, growth, and exposure to oxygen therapy are of great important in 

discriminating babies potentially at risk of developing severe ROP.  

 

In NZ-LP, three OS statistics (mean, SD and CV) were investigated for their 

benefit in the clinical care of late preterm babies through the use of graphical and 

clustering approaches. OS readings of each baby were summarised using each 

statistic. Based on these statistics for 31 babies at 36 weeks PMA, an extremeness 

index that measures the extreme level of a particular outlying point, and a hierarchical 

clustering technique with a clustering performance index were employed to assess the 

ability of each measure to distinguish two clinically mildly unstable babies from a 
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group of healthy babies. The results from the two methods consistently showed that 

the two groups of babies were prominently separated with the SDs or CVs but not 

with the means. With SD and CV, both unstable babies were so very well distinct 

from the other babies that they were clustered in a same group and all stable babies in 

another group; the separation, however, was more prominent with the use of CV. 

Measures of variability such as SD and CV are believed to be more effective than 

mean for detecting late preterm babies with unstable health conditions, but the 

combination of variability and level through the CV could be even better.  

 

7.2 Data management and adjustments 

The contributions mentioned above would not be possible unless a sound data 

management and processing have been carried out through the implementation of 

several novel algorithms and procedures on OS data. Many recent studies on OS-

related information had used the new generation oximeters, including the Masimo 

Radical that is noted for its superior performance. However, the maximum sensitivity 

of OS values for the Masimo oximeter is highly sensitive with OS values between 70-

100% (Giuliano & Higgins, 2005). To account for acquisition of calibration errors, 

many studies on oxygen-related information studies had excluded artefactual 

readings, which were marked as 0% by the signal quality indicator, and erroneous 

data. For NZ-LP data, it was found that all readings between 0-69% that were 

suspected to be erroneous constituted only 1.5% from the total data. These less 

reliable readings were down-weighted linearly through the use of a weighting function 

to ensure that they will be given a lesser weight. The weighted readings were then 

incorporated into the NZ-LP analysis.  

 

In managing and processing the NZ-ROP data, substantial efforts have been 

carried out to compile the NZ-ROP data sets that were obtained from the BOOST-NZ 

trial. The data consisted of the OS data (recorded from 24-hour until 36 weeks PMA 

or early discharge), clinical data and information on eye examinations for screening of 

ROP. Reports from 932 eyes examinations for 257 baby were compiled and the 

disease status was diagnosed by an ophthalmologist as severe ROP (stage three and 

above or requiring laser surgery) or no severe ROP. An algorithm was developed to 

remove erroneous observations and to assemble all data. Complete information was 

finally collected from 257 babies for the study.  
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The OS readings of Masimo oximeters used in the double-blind BOOST-NZ 

trial were influenced by trial-imposed offsets and oximeter artefact. The offsets 

occurred due to the oximeters that were specially programmed to study two groups of 

babies, of whom each was randomly assigned to one of two types of masked 

oximeter. There was a concern for the offsets and artefact as their presence would 

affect the choice of methods in the analyses. A procedure was outlined to identify the 

oximeter’s type, and two algorithms involving linear and quadratic interpolations 

were developed and implemented on the New Zealand data to remove the effects of 

the offsets and artefact features. The algorithms were then validated using offsets and 

non-offset data sets of a UK preterm baby; the latter were considered as the reference 

data set for the analysis of the algorithms. The result was satisfactory: the oximeters 

for all babies were correctly identified, and the adjusted OS data were found to be 

very close to the non-offset data; hence suggesting that the features had been 

successfully adjusted to reflect the actual OS readings.  

 

7.3 Further work 

Managing neonatal oxygenation poses a great challenge to the healthcare 

providers since there are many issues on this complex topic that still require further 

understanding and questions that still need answers. Several critical areas have been 

identified for further research and these include the development of tools for 

measuring oxygen-related complications for newborns at various GAs, and 

investigating relations between varying oxygen levels over time, ROP, body systems 

and organs (Higgins et al., 2007). 

 

7.3.1 Curve-fitting methods 

In NZ-ROP study, the linear and quadratic interpolations were implemented 

for adjusting the offsets and oximeter artefact (described in Chapter 3), and loess and 

cubic spline smoothers (Hastie and Tibshirani, 1990) were applied for determining the 

preliminary functional form of continuous predictors in the logistic regression models 

(as outlined in Chapter 4). Other variants of spline functions (De Boor, 2001; Wahba, 

1990) and including those within the Bayesian framework (Yue et al., 2014) could 

also be explored as regression splines and smoothing splines for the application of OS 

data.  
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Another curve-fitting method to be considered for the application of OS data is 

barycentric rational interpolation (Floater and Hormann, 2007). It is a variant of 

polynomial interpolation, with a set of weights and local polynomials specified for the 

barycentric function. The ‘roughness’ of the fitted curve depends on the value chosen 

for the polynomial order. Recently, Baker and Jackson (Baker and Jackson, 2014) 

demonstrated the application of this method to golf players data. More complicated 

approaches are available based on the Fourier series regression fitting for interpolating 

time series data (Brooks et al., 2012).  

  

7.3.2 Measures of OS dynamics  

This research had focused on time-domain measures for identifying useful 

measures of OS features for neonatal oxygenation monitoring. It was found that 

variability of OS was strongly related to severe ROP diagnosis. The variation in OS, 

however, may be contributed by linear and nonlinear signals, of which the latter may 

signify an impending or presence of a particular disease. To quantify this dynamical 

aspect of OS variability, sophisticated measures of nonlinear dynamical analyses such 

as power spectral (Scargle, 1982) and entropy measures (Richman and Moorman, 

2000) will be required. These measures have been applied to quantify fetal heart rate 

features for predicting fetal distress (Cao et al., 2004), and to characterise patterns of 

hypoxemia events in preterm babies with and without severe ROP (Di Fiore at al., 

2012).  

 

7.3.3 Investigation on the behaviour of OS 

The use of simple longitudinal analysis on eight-week OS data in this study 

(Chapter 5, Section 5.2) provided some early indication on the oxygenation patterns 

among babies with and without severe ROP. This approach, however, could be 

refined using nonlinear analyses, for instance fractal analysis, across the two groups 

of babies to uncover any patterns of subtle or temporal changes in oxygenation 

behavior of OS with advancing PMAs; thereby could confer some information on the 

long-range behavior between healthy and disease states (Shang et al., 2007). Analyses 

on the nonlinear behaviors in the OS time series data may provide a further direction 

on the studies of preterm babies.   
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7.3.4 Range of measure values 

Since measures of variability of OS have been found useful, it would be 

helpful to clinicians if reference ranges of values are defined for each measure to 

monitor potential unstable babies and those at higher risk of severe ROP. Ranges (or 

control charts) developed for each advancing PMA would facilitate diagnosis and 

treatment decisions, thereby establishing the link with the state of health.  

 

7.3.5 Time-dependent predictors 

A statistical measure for desaturation episodes, which was included in the list 

of predictors for the logistic regression models developed in Chapter 5, was found to 

be strongly related to the development of ROP at 29 weeks PMA. However, given 

that the OS data were recorded continuously from 24 hours after birth until 36 weeks 

PMA, it may be possible to further exploit models with correlation structure involving 

longitudinal designs and time-varying OS measures. Development of such models 

could shed further light on the disease status over time in relation to OS fluctuations 

and other determinants. Using these models, it is also likely to investigate other 

neonatal complications associated with the use of oxygen on preterm babies, 

including chronic lung disease and potential damage to the postnatal growth of babies 

(Askie et al., 2003; Tin et al., 2001).  

 

7.4 Concluding remarks 

NZ-ROP is among the early studies that have investigated summary statistics 

of oximeter OS data, including desaturation episodes (Di Fiore et al., 2010; Di Fiore 

et al., 2012), as predictors for severe ROP. An investigation on the possible 

association between OS fluctuations at 29 weeks PMA and severe ROP revealed 

dstOS as the most significant OS statistic compared to cvOS, sdOS, and meanOS on 

severe ROP risk. The result therefore contributes to the ROP studies that desaturation 

episodes of OS along with variability of transcutaneous oxygen (Cunningham et al., 

1995; York et al., 2004), are related to the risk of developing severe ROP. The present 

study demonstrated that greater occurrences of desaturation episodes exposed preterm 

babies to an increased risk of severe ROP. Particularly, babies with higher 

desaturation episodes were nearly three times more likely to develop severe ROP than 

babies with fewer episodes. Hence, these results advocate for care practices that could 

reduce fluctuations in oxygenation such as utilising automatic oxygen controllers 
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(Claure et al., 2009) or minimising frequent manual adjustments of supplemental 

oxygen. 

 

It is noteworthy that the analyses of the NZ-ROP data conferred more 

information than other studies on the risk factors of ROP, in that, those studies have 

not investigated the relative contribution of each factor to the development of severe 

ROP. In this study for a cohort of babies of <29 weeks GA, the most significant 

predictor for each group of risk factors: exposure therapy, oxygenation fluctuations, 

immaturity and growth, was investigated. Longer periods of ventilation support, 

higher desaturation episodes of OS, and low GA and birth weight were found as the 

most important factors related to the development of severe ROP. These findings 

extend the results of Durand and colleagues (1992) who reported that very young 

babies with low birth weight, greater number of desaturation events and assisted 

ventilation, exhibit the early signs of chronic lung disease. Outcomes from NZ-ROP 

may have direct clinical implications in predicting potential babies at high risk for 

severe ROP.   

 

Multiple clinical and oxygen-related predictors were considered in NZ-ROP to 

establish important predictors of severe ROP. The circumstances by which each one 

contributes to the findings of NZ-ROP are particularly relevant towards identifying 

and managing factors that exacerbate the development of severe ROP. Therefore, all 

available clinical predictors were considered in the model fitting stage. Because each 

model contained information of certain predictors, it was vital that all models are 

included in the analyses of predictors for ROP. The model averaging approach, which 

takes into account all models, i.e. all predictors, was able to fulfill this objective; thus, 

successfully enumerating all information needed.  

 

 The analysis of determining time interval for summarising OS data of NZ-

ROP contributed in some way to the understanding of the links between onset of ROP 

and first examination after birth. The present study highlighted the pattern of OS 

during the early perinatal life of preterm babies, where it was found that a distinct 

separation on the variability and level of OS between babies with or without severe 

ROP could be observed as early as 28 weeks PMA. Whereas onset of ROP has been 

reported (Hellstrom et al., 2003; Smith, 2005) to occur from 30 weeks PMA; our 
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results here suggested the possibility of examining and hence detecting the retinal 

disorder as early as 28 weeks PMA in a premature child. Early identification of 

preterm babies at future risk of developing advanced stages of ROP would enable 

them to receive individual perinatal care; thus reducing the chance of disease 

progression and childhood blindness. 

 

An increased rate of severe ROP to 13.6% from 6.9% in premature New 

Zealand babies was seen over the past 10 years (1998-2009). The observed increase, 

which is similar to those found in several developed countries, could be partly 

accounted for by the increasing survival rate of babies born at lower GA in recent 

years. This adds weight to the current trends of ROP that there is an increasing 

population of premature babies at greatest risk of visual impairment outcome; such an 

increment is likely to result in more babies being screened or treated with surgery. It 

is therefore important that clinical information on caring for these vulnerable patients 

is managed efficiently through the process of analysing, linking and delivering the 

information to either physical or “virtual” medical decision site. The analysis on the 

relationships between saturation level and variability of OS, other clinical and 

postnatal factors, and the risk of severe ROP exemplifies the start of this process. 

 

Previous studies on OS in convalescing preterm babies have mostly reported 

the information in the form of saturation level such as mean, median and media 

baseline of OS. The observational NZ-LP study, however, found that the saturation 

variability, as measured by SD, could be more effective than saturation level for 

detecting instability in OS in late preterm babies; in that, variability may reflect 

perinatal unstable health conditions even though a baby may appear to be well; and 

that the combination of variability and level through the CV could be even better.  

 

In brief, the findings from the analyses demonstrated that identification and 

summarisation of useful OS features quantitatively hold great promise for improving 

clinical monitoring and diagnosis of high-risk preterm babies. Although different 

cohorts of babies were examined in the two studies, i.e. extremely preterm babies in 

the NZ-ROP and late-preterm babies in the NZ-LP, the results found based on the two 

studies can be combined and become more informative for the clinicians in providing 

preterm babies with appropriate health assessments and timely interventions.  
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Appendix A 

 

MATLAB programs 

 

A.1 Algorithm for cleaning and assembling NZ-ROP data 

This appendix gives the implementations of seven steps for preparing NZ-ROP data, 

which consist of OS, ROP status, clinical and postnatal data of 257 babies from 5 

centres in New Zealand. These include files conversion (Excel, text and MATLAB), 

cleaning and aggregation of data. 

 

Step 1: Creation of a folder for each baby and re-format of text files 

% 5***_02mthyy_02mthyy.txt -> 5***_2-mm-yyyy_2-mm-yyyy.txt 

% 5***_02mthyy_12mthyy.txt -> 5***_2-mm-yyyy_12-mm-yyyy.txt 

  

% 5***_12mthyy_02mthyy.txt -> 5***_12-mm-yyyy_2-mm-yyyy.txt 

% 5***_12mthyy_12mthyy.txt -> 5***_12-mm-yyyy_12-mm-yyyy.txt 

 

function [numfolder,numfiles] = createfolder(dirfiles,dirtarget) 

  

files = dir(dirfiles); 

numfiles = length(files);  

%cd(dirsource) 

cd(dirfiles) 

% for i = 1:numfiles 

for i = 3:numfiles 

     

    T = files(i).name;   

    M = T(1:4);   

    if isdir(strcat(dirtarget,M)) == 0 

        mkdir(dirtarget,M) 

    end 

    if strcmp(M,T(1:4)) == 1 

       copyfile(files(i).name,strcat(dirtarget,M)) 

            

    end 

end 

  

Folder = dir(strcat(dirtarget,'5*')); 

numfolder = length(Folder); 

 

function [numfolder,numfiles] = renamemth(dirfolder,dirsource,dirtarget) 

  

Folder = dir(dirfolder); 

numfolder = length(Folder); 
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numfiles = zeros(1,numfolder); 

listmth = {'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'}; 

listmt = {'01','02','03','04','05','06','07','08','09','10','11','12'}; 

  

for j = 1:numfolder 

    cd(strcat(dirsource,Folder(j).name)) 

    files = dir('*.txt');   

    numfiles(j) = length(files);  

    mkdir(dirtarget,Folder(j).name); 

     

    for i = 1:numfiles(j) 

        T = files(i).name;   

         

        B = strcmp(listmth,T(8:10)); b = strcmp(listmth,T(16:18));  

        C = listmt(find(B == 1)); c = listmt(find(b == 1)); 

        D = strcmp('0',T(6)); d = strcmp('0',T(14)); 

        if (find(B==1)) ~= 0 

            if D && d 

                T = (strcat(T(1:5),T(7),'-',C,'-20',T(11:13),T(15),'-',c,'-20',T(19:20),'.txt')); 

            elseif D && ~d 

                T = (strcat(T(1:5),T(7),'-',C,'-20',T(11:15),'-',c,'-20',T(19:20),'.txt')); 

            elseif ~D && d 

                T = (strcat(T(1:7),'-',C,'-20',T(11:13),T(15),'-',c,'-20',T(19:20),'.txt')); 

            elseif ~D && ~d 

                T = (strcat(T(1:7),'-',C,'-20',T(11:15),'-',c,'-20',T(19:20),'.txt')); 

            else  

                T = (strcat(T(1:5),'.unknown')); 

            end 

        end 

        movefile(files(i).name,strcat(dirtarget,Folder(j).name,'\',char(T))) 

   end 

     

end 

 

 

Step 2: Files conversion from text to MATLAB format for OS data 

function [numfolder,numfiles] = convertdata(dirfolder,dirsource,dirtarget,centre) 

  

%[numfolder,numfiles] = renamefile1(dirfolder2,dirtarget1,dirsource); 

Folder = dir(dirfolder); 

numfolder = length(Folder); 

numfiles = zeros(1,numfolder); 

  

for j = 1:numfolder 

    cd(strcat(dirsource,Folder(j).name)) 

    files = dir('*.txt');  

    numfiles(j) = length(files);  

    coxy = zeros(1,1); cflag = cell(1); cdate = cell(1); ctime = cell(1); campm = cell(1); 

     

    for i = 1:numfiles(j) 
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        T = files(i).name; % str contains filename.txt    

        fid = fopen(T,'r+');                             

         

        C = textscan(fid, '%s %n %s','delimiter',','); 

        RawOxy = C{2};  

        Flag = C{3}; 

        DateTimeAmpm = C{1}; 

        [Date,TimeAmpm] = strtok(DateTimeAmpm); 

        [Time,Ampm] = strtok(TimeAmpm); 

        fclose(fid);  

         

        coxy = [coxy;RawOxy]; cflag = [cflag;Flag]; cdate = [cdate;Date]; ctime = 

[ctime;Time]; campm = [campm;Ampm]; 

    end 

     

    n = length(coxy); 

    rawoxy = coxy(2:n); flag = cflag(2:n); date = cdate(2:n); time = ctime(2:n); ampm 

= campm(2:n); 

    M = strcat(centre,'B',Folder(j).name); 

    cd(dirtarget) 

    save(M,'date','time','ampm','rawoxy','flag')  

    clear coxy cflag cdate ctime campm C datetimeampm timeampm ans    

     

end 

 

Step 3: Re-format of filenames for each baby in MATLAB directory 

function [numfolder,numfiles] = renamefile(dirfolder,dirsource,dirtarget) 

  

Folder = dir(dirfolder); 

numfolder = length(Folder); 

numfiles = zeros(1,numfolder); 

  

for j = 1:numfolder 

    cd(strcat(dirsource,Folder(j).name)) 

    files = dir('*.txt');   

    numfiles(j) = length(files);  

    mkdir(dirtarget,Folder(j).name)     

    for i = 1:numfiles(j) 

        T = files(i).name;   

        A = strcmp('-',T(7)); B = strcmp('-',T(8)); C = strcmp('-',T(17)); D = strcmp('-

',T(18)); E = strcmp('-',T(19)); 

         

        if sum([A,C]) == 2 || sum([A,D]) == 2 || sum([B,D]) == 2 || sum([B,E]) == 2         

            if A && C 

                %T = (strcat(T(1:15),T(21:24),'-',T(18:19),'-',T(16),'.txt')); 

                T = (strcat(T(1:15),T(21:24),'-',T(18:19),'-','0',T(16),'.txt')); 

            elseif A && D 

                T = (strcat(T(1:15),T(22:25),'-',T(19:20),'-',T(16:17),'.txt')); 

            elseif B && D 

                %T = (strcat(T(1:16),T(22:25),'-',T(19:20),'-',T(17),'.txt')); 
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                T = (strcat(T(1:16),T(22:25),'-',T(19:20),'-','0',T(17),'.txt')); 

            elseif B && E 

                T = (strcat(T(1:16),T(23:26),'-',T(20:21),'-',T(17:18),'.txt')); 

            else  

                T = (strcat(T(1:5),'unknowntxt')); 

            end 

        end 

        movefile(files(i).name,strcat(dirtarget,Folder(j).name,'\',char(T))) 

    end 

     

end 

 

 

Step 4: Data cleaning for NZ-ROP data 

function Ix = cleandata(rawoxy,flag,date,GAweeks,GAdays,DOB) 

  

Ix = find(rawoxy >= 50); % Discard data below 50 

X50 = rawoxy(Ix); flag = flag(Ix); date = date(Ix);  

sig = {'normal'}; 

goodflag = strncmp(sig,flag,6); 

Igoodflag = find(goodflag == 1); 

X50 = X50(Igoodflag);  date = date(Igoodflag); 

date = char(date); 

GA = 36 - GAweeks + 1; 

meanGA = zeros(1,GA); 

for i = 1:GA  

    d = 6 - GAdays; 

     

    if (DOB(2) == '/') 

        Ia = find(date(:,2) == '/'); a = str2num(date(Ia));  

        Ib = find(date(:,3) == '/'); b = str2num(date(Ib,1:2)); 

        startdate = str2num(DOB(1)); 

        enddate = startdate + d; 

        Ic = find([a;b] <= enddate);      

                 

    else % DOB(3) == '/' 

        startdate = str2num(DOB(1:2)); 

        enddate = startdate + d; 

        if enddate >= 29 

        e = DOB(4:5); % Detect the month of birth  

        ee = strcat(DOB(4),num2str(str2num(DOB(5)) + 1));  % Detect the month of 

enddate    

        Ia = find(date(:,4) == DOB(4) & date(:,5) == DOB(5));  

             

             if enddate >= 32 

                if (e == '01') | (e == '03') | (e == '05') | (e == '07') | (e == '08') | (e == '10') | (e 

== '12') 

                    enddate = enddate - 31; 

                end 
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             elseif enddate >= 31    

                if (e == '04') | (e == '06') | (e == '09') | (e == '11') 

                    enddate = enddate - 30; 

                end 

             

             elseif ((enddate >= 30) & (e == '02')) & (DOB(7:10) == '2008') 

                    enddate = enddate - 29;   

                 

             elseif ((enddate >= 29) & (e == '02'))  

                if (DOB(7:10) == '2006') | (DOB(7:10) == '2007') | (DOB(7:10) == '2009') 

                    enddate = enddate - 28; 

                end 

             % else % Those == 28,...,31 in Feb, 30-day mth and 31-day month  

             %Ib = find((date(:,4) == DOB(4)) & (date(:,5)==DOB(5)); b = 

str2num(date(Ib,1:2)); 

             %Ic = find(b <= enddate); 

             end 

             Ib = find(date(:,3)== ee(1) & date(:,4) == ee(2)) & str2num(date(:,1)) <= 

enddate); 

             Ic = [Ia;Ib]; 

              

        else    

             Ib = find(date(:,3) == '/'); b = str2num(date(Ib,1:2)); 

             Ic = find(b <= enddate); %%% CHECK 

        end    

    end 

    oxy = X50(Ic); 

    rfadj = NZraw4(oxy); % correction for dips and offsets 

     

end 

 

Step 5: Compilation of postnatal, clinical and oxygen data  

% Convert DOB dates-format to numbers-format 

% a) import ID (4 digits babies identifier) and DOB3(dates-clock format) 

% from Excel to MATLAB 

% b)DOB2 = datestr(datenum(DOB3,'dd/mm/yyyy'),1); output=dd-mmm-yyyy 

% c) DOB = datenum(DOB,'dd-mmm-yyyy') 

% d) create .mat that consists vectors of short-term outcomes (each row 

% corresponds to each baby's information 

 

function numfiles = appendData(dirfolder,dirsource) 

  

Folder = dir(dirfolder); 

numfiles = length(Folder); 

  

for k = 1:numfiles 

    cd(dirsource) 

    f = dir('C*.mat');  

    T = f(k).name; 

    load(T,'date') 
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    date2 = date; 

    date = datestr(datenum(date, 'dd/mm/yyyy'), 1); date = datenum(date); 

    load('STO_add_babies','ID','Baby','GAdays','WeightBirth','Gender',... 

    'HighestROP','DaysVentilate','DaysO2','O2atW36','DOB2','DOB') 

    t = T(1:8);     

    post = strmatch(t, Baby, 'exact'); 

    DOB2 = DOB2(post,:); 

    DOB = DOB(post);  

    ID = ID(post); 

    HighestROP = HighestROP(post); 

    GAdays = GAdays(post); 

    Gender = Gender(post); 

    WeightBirth = WeightBirth(post); 

    DaysVentilate = DaysVentilate(post); 

    DaysO2 = DaysO2(post); 

    O2atW36 = O2atW36(post); 

    save(t,'date','date2','GAdays','DOB','DOB2','ID','HighestROP','Gender',... 

    'WeightBirth','DaysVentilate','DaysO2','O2atW36','-append') 

end 

 

Step 6: Computation of summary statistics of oxygen data (CV, Mean, SD)  

% date = datestr(datenum(date, 'dd/mm/yyyy'), 1); date = datenum(date); 

% Date and DOB have been converted to numbers using appendData.m 

% X50 and date50 = final data with (i) values >= 50 and (ii) good signals ('normal') 

% Extract cv and mean for the combined weeks  

% treatB = high (1) or low (0) readings of oxygen saturation  

  

function [cvB,meanB,F] = boostOS(dirsource,dirfolder,nweek) 

  

Folder = dir(dirfolder); 

numfiles = length(Folder); 

  

cvB = zeros(numfiles,nweek+2); meanB = zeros(numfiles,nweek+2); F = 

zeros(numfiles,1); 

for k = 1:numfiles 

     

    cd(dirsource) 

    f = dir('C*.mat');  

    T = f(k).name; F(k) = str2num(T(5:8)); 

    %load(T,'rawoxy','flag','date','DOB','HL') 

    load(T,'date50','X50','DOB','HL') 

    %Ix = find(rawoxy >= 50); % Discard data below 50 

    %X50 = rawoxy(Ix); flag = flag(Ix); date = date(Ix);  

    %sig = {'normal'}; 

    %goodflag = strncmp(sig,flag,6); 

    %Igoodflag = find(goodflag == 1); 

    %X50 = X50(Igoodflag);  date50 = date(Igoodflag); % Maintain good data 

('normal' signal flag) 

    %xdate = unique(date50); n = length(xdate); 

    %GA = 36 - GAweeks + 1; 
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    meanGA = zeros(1,nweek); sdGA = zeros(1,nweek); cvGA = zeros(1,nweek); 

    startGA = zeros(1,nweek); endGA = zeros(1,nweek); 

    startGA(1) = DOB + 1; endGA(1) = DOB + 7; 

    startW12 = startGA(1); endW12 = DOB + 14; % W12 = combined data of the first 

and second week after birth 

    startM = startGA(1); endM = DOB + 28; % M = combined data of the first until the 

fourth week after birth 

  

    for i = 2:nweek 

        startGA(i) = startGA(i-1) + 7; endGA(i) = endGA(i-1) + 7; 

    end 

    xIpol = 97; 

    for i = 1:nweek 

        Ioxy = find(date50 >= startGA(i) & date50 <= endGA(i));  

        oxy = X50(Ioxy); 

        Mem = sum(ismember(xIpol,oxy)); 

        E = isempty(oxy); 

        if ((E == 1) || (Mem == 0)) % empty vector for that week 

            meanGA(i) = NaN; sdGA(i) = NaN; cvGA(i) = NaN; % missing oxy data for 

that week 

        else 

            [sumf,sumfadjx,sumfadjx2] = NZraw4(oxy,HL); % correction for dips and 

offsets 

            meanGA(i) = sumfadjx/sumf; sdGA(i) = sqrt((sumfadjx2 - 

meanGA(i)*sumfadjx)/(sumf - 1)); 

            cvGA(i) = sdGA(i)/meanGA(i); 

        end 

    end 

    IW12 = find(date50 >= startW12 & date50 <= endW12); IM = find(date50 >= 

startM & date50 <= endM); 

    W12 = X50(IW12); M = X50(IM); 

    Mem = sum(ismember(xIpol,W12)); 

    E = isempty(W12);  

    if ((E == 1) || (Mem == 0)) 

        meanW12 = NaN; cvW12 = NaN; 

    else 

        [sumf,sumfadjx,sumfadjx2] = NZraw4(W12,HL); % correction for dips and 

offsets 

        meanW12 = sumfadjx/sumf; sdW12 = sqrt((sumfadjx2 - 

meanW12*sumfadjx)/(sumf - 1)); 

        cvW12 = sdW12/meanW12; 

    end 

    Mem = sum(ismember(xIpol,M)); 

    E = isempty(M); 

    if ((E == 1) || (Mem == 0)) 

        meanM = NaN; cvM = NaN; 

    else 

        [sumf,sumfadjx,sumfadjx2] = NZraw4(M,HL); % correction for dips and offsets 

        meanM = sumfadjx/sumf; sdM = sqrt((sumfadjx2 - meanM*sumfadjx)/(sumf - 

1)); 
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        cvM = sdM/meanM; 

    end 

  

    cvB(k,:) = [cvGA,cvW12,cvM]; CVx = cvB(k,:);  

    meanB(k,:) = [meanGA,meanW12,meanM]; MEANx = meanB(k,:); 

    save(T,'CVx','MEANx','-append') 

end 

  

 

Step 7: Computation of desaturation episodes (OS<=80% per week)  

function [dstB,nB,F] = BOOSTdesat(dirsource,dirfolder,nweek) 

  

Folder = dir(dirfolder); 

numfiles = length(Folder); 

  

dstB = zeros(numfiles,nweek+1); nB = dstB; F = zeros(numfiles,1); 

for k = 1:numfiles 

     

    cd(dirsource) 

    f = dir('C*.mat');  

    T = f(k).name;  

    F(k) = str2num(T(5:8)); 

    load(T,'date50','X50','DOB') % Use good data ('normal' signal flag) 

     

    dstGA = zeros(1,nweek); ndst = dstGA; 

    startGA = zeros(1,nweek); endGA = zeros(1,nweek); 

    startGA(1) = DOB + 1; endGA(1) = DOB + 7; 

    startW14 = startGA(1); endW14 = DOB + 28; % M = combined data of the first 

until the fourth week after birth 

  

    for i = 2:nweek 

        startGA(i) = startGA(i-1) + 7; endGA(i) = endGA(i-1) + 7; 

    end 

     

    for i = 1:nweek 

        Ioxy = find(date50 >= startGA(i) & date50 <= endGA(i));  

        oxy = X50(Ioxy); nGA = length(oxy); 

        Idst = find(oxy <= 80);  

        dst = oxy(Idst);          

        E = isempty(oxy); 

        if (E == 1)  

            dstGA(i) = NaN;  % oxy data are missing for that week 

        else 

            ndst(i) = length(dst); 

            dstGA(i) = ndst(i)/nGA; 

        end 

    end 

    IW14 = find(date50 >= startW14 & date50 <= endW14);  

    W14 = X50(IW14); nW14 = length(W14); 

    Idst = find(W14 <= 80);  
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    dst = W14(Idst); nd = length(dst); 

    E = isempty(W14);  

    if (E == 1)  

        dstW14 = NaN; 

    else 

        dstW14 = nd/nW14; 

    end 

    nB(k,:) = [ndst,nd]; 

    dstB(k,:) = [dstGA,dstW14]; DST = dstB(k,:);  

         

    save(T,'DST','-append') 

     

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



160 

 

A.2 Algorithms for adjusting the offsets and artefact of 

Masimo oximeters 

This appendix gives the implementations of procedure for identifying types of 

oximeters (high or low saturation), and algorithms to remove the effects of the offsets 

and artefact from the OS data. 

 

function [sumfreq,sumfadjx,sumfadjx2,freqadj,rfadj,rf] = NZraw4(rawoxy,highlow) 

     

tabfreq = tabulate(rawoxy); ox = tabfreq(:,1); 

sumfreq = sum(tabfreq(:,2));  

rf = tabfreq(:,3);                      % All freqs (in %) 

%maxrf = find(tabfreq(:,3)==max(tabfreq(:,3))); 

%H = [rf(85) rf(86) rf(87)]; 

%L = [rf(93) rf(94) rf(95)]; 

  

%if std(H) < std(L) 

%    highlow = 1; 

%else 

%    highlow = 0; 

%end 

  

v2 = ones(2,1); v4 = ones(4,1); 

rfadj = rf; 

idip = (87:90)'; 

  

if highlow = = 1                         % High reading @ low SAT 

    % Interpolation for r(84:85) 

    x = (84:85)'; x2 = x.^2; 

    B = [rfadj(83);rfadj(89);sum(rfadj(84:88))]; 

    A = [83^2 83 1;86^2 86 1;sum(x2) sum(x) 2]; 

    c = A \ B; 

    rfadj(x) = [x2 x v2] * c; 

     

    rfadj(86:92) = rfadj(89:95); 

    rftemp = rfadj(idip); 

     

    % Interpolation (linear) for r(87:90)   

    x = (87:90)'; 

    A = [ 86 1; 91 1]; 

    B = [ rfadj(86); rfadj(91)]; 

    c = A \ B; 

    rfadj(x) = [x v4] * c; 

     

    rfadj(idip) = max([rfadj(idip) rftemp]')'; 

     

    % Interpolation for r(93:96) 

    x = (93:96)'; x2 = x.^2; 
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    B = [rfadj(92);rfadj(97);rfadj(96)]; 

    A = [92^2 92 1;97^2 97 1;sum(x2) sum(x) 4]; 

    c = A \ B; 

    rfadj(x) = [x2 x v4] * c; 

     

    Ineg = length(find(rfadj(x) <= 0));  

    if Ineg > 0 

        rfadj(x) = rfadj(96)/4; 

    end 

     

% Low reading @ high SAT 

elseif (highlow = = 0)                    

    % Interpolation for r(95:96) 

    x = (95:96)'; x2 = x.^2; 

    B = [rfadj(91);rfadj(97);sum(rfadj(92:96))]; 

    A = [94^2 94 1;97^2 97 1;sum(x2) sum(x) 2]; 

    c = A \ B; 

    rfadj(x) = [x2 x v2] * c; 

     

    rfadj(88:94) = rfadj(85:91); % Shift to get r(88:94) 

     

    % Interpolation for r(84:87) 

    x = (84:87)'; x2 = x.^2; 

    B = [rfadj(83);rfadj(88);rfadj(84)]; 

    A = [83^2 83 1;88^2 88 1;sum(x2) sum(x) 4]; 

    c = A \ B; 

    rfadj(x) = [x2 x v4] * c; 

     

    rftem = rfadj(idip); 

     

    % Interpolation (linear) for r(87:90) 

    x = (87:90)';  

    A = [ 86 1;91 1]; 

    B = [ rfadj(86);rfadj(91)]; 

    c = A \ B; 

    rfadj(x) = [x v4] * c; 

     

    rfadj(idip) = max([rfadj(idip) rftem]')'; 

     

else 

    error('highlow is 1 or 0') 

  

end 

  

adj = (84:96)'; 

rfadj(adj) = rfadj(adj) * (sum(rf(adj))/sum(rfadj(adj))); % Normalisation of rel. freq 

freqadj = rfadj * sumfreq/100; 

sumfadjx = freqadj'* ox; 

sumfadjx2 = freqadj'*(ox.^2); 

%ymax = max(max(rf),max(rfadj)) + 0.5;  
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%plot((1:1:100),rf,'-b.',(1:1:100),rfadj,'-

r.','LineWidth',2,'LineWidth',2,'MarkerSize',25); 

%switch colr 

%    case '-r.' 

%        plot((1:1:100),rf,'-b.',(1:1:100),rfadj,'-

r.','LineWidth',2,'LineWidth',2,'MarkerSize',25); 

%    case '-g.' 

%        plot((1:1:100),rfadj,'-g.','LineWidth',2,'LineWidth',2,'MarkerSize',25); 

%end 

%xlabel('Saturation','fontsize',16); ylabel('Relative frequency (%)','fontsize',16) 

%axis([60 100 0 ymax]) 

%title(['Saturation readings' ' ' inputname(1)],'fontsize',16); 

%h = legend('raw',adjusted',2); 

%set (h,'Location','NorthWest','fontsize',13); 

%grid on 

  

%x1=CHC5150(1:22000); x2=CHC5150(22001:44000); 

x3=CHC5150(44001:65536); 

%plot((1:1:100),rfadjSEG,'--g','LineWidth',2,'LineWidth',2,'MarkerSize',25); 
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