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Extended Abstract 

1.1 INTRODUCTION 

During earthquakes, steel reinforcing bars in reinforced concrete structures may be subjected to large 

inelastic deformation in tension and compression as high as 6% strain, eventually leading to low-cycle fatigue 

failure (Mander, Panthaki, & Kasalanati, 1994). This was observed in laboratory testing and post-earthquake 

damage inspections including during the Mw 7.8 Kaikoura earthquake in New Zealand (NZ) (see Figure 1 

and Figure 2) (El-Bahy, Kunnath, Stone, & Taylor, 1999b; El-Bahy, Kunnath, Stone, & Taylor, 1999a; 

Palermo et al., 2017). Earthquakes are usually preceded and/or followed by other events of larger or smaller 

intensity; longitudinal steel failures may not occur during a first event, but in a subsequent one due to the 

cumulative damage. Seismic events can also occur several months apart and during this period, if the steel 

has experienced any post-yielding deformation during the first event, strain ageing takes place, modifying 

the mechanical properties of the material. In this document, fatigue lives for unaged and aged 12-mm 

diameter NZ-manufactured Grade 300E reinforcing bars are compared. 

 

Figure 1 Fractured longitudinal reinforcing bars in a 
bridge pier close to the Mw 7.8 Kaikoura earthquake 

epicentre. 

 

Figure 2 Detail of fractured longitudinal steel rebar. 

1.2 EXPERIMENTAL TESTING 

A benchmark strain-life curve for steel Grade 300E reinforcing bars of 12-mm diameter was derived. Steel 

specimens were subjected to completely reversed cyclic loading (R = −1) between constant-strain limits. 

Tests were conducted in strain control. Fatigue-life curves were obtained by applying a number of strain 
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amplitude cyclic histories, maintaining the mean strain equal to zero. Strain ageing effects on fatigue life 

were determined by employing the following procedure: 

 Specimens were first precycled up to a pre-identified number of cycles: 33% and 66% of the benchmark 

fatigue life.  

 The precycled specimens were aged for four hours at 100ºC in boiling water. This is equivalent to 1-

year ageing at 15ºC (Hundy, 1954; Loporcaro, Pampanin, & Kral, 2019); 

 Specimens were cyclically tested (at the same strain amplitudes as in the precycle phase) until failure. 

1.3 RESULTS 

Experimental fatigue-life results are fitted using the Coffin-Mason model and plotted in Figure 3 and Figure 

4. Figure 3 shows that the strain-life curves for the aged (33% pre-cycle) and the benchmark samples are 

approximately parallel but shifted because the fatigue life of aged samples has been reduced. In Error! 

Reference source not found., the strain and also superimposed on the unaged strain-fatigue life curve. In 

this case, the two curves are not parallel: at shorter fatigue lives the curves almost coincide, while at longer 

fatigue lives, the effect of strain ageing becomes more significant. This is explained because at very short 

lives, e.g., less than 10, the number of precycles (66% of the original fatigue life) is close to the fatigue life.  

 

Figure 3 Comparison between unaged and aged samples 
(33% pre-cycled). Coffin–Manson model using total strain. 

 

Figure 4 Comparison between unaged and aged 
samples (66% pre-cycled). Coffin–Manson model using 

total strain. 

A further observation can be made by comparing the expected remaining life (calculated as the difference 

between the original fatigue life and the precycles applied) with the actual remaining life. A drastic reduction 

in fatigue life was observed. The remaining fatigue-life loss varied from 20% to 70% in the case of those 

samples precycled up to 33% of the original fatigue life. In the case of samples precycled up to 66%, the 

reduction in the remaining fatigue life was more dramatic. It ranged from 33% to 73%, with an average loss 

of about 53%. Therefore, given the same amount of ageing time, the larger the amount of pre-cycling, the 

more significant is the remaining fatigue-life loss. 

1.4 CONCLUSIONS 

The results obtained from the experimental work show that, when the assessment of the remaining fatigue 

life of steel reinforcing bar is undertaken, strain ageing must be considered. Strain ageing not only affects 

the monotonic mechanical properties of Grade 300E steel (Loporcaro et al., 2019) but also the low-cycle 

fatigue life. The remaining fatigue life could be underestimated. 
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