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Abstract: A minimal cardiac model that accurately captures the essential cardio-
vascular system dynamics has been developed. Standard parameter identification
methods for this model are highly non-linear and non-convex, hindering clinical
application, given the limited measurements available in an intensive care unit.
This paper presents an integral based identification method that transforms the
problem into a linear, convex problem. Five common disease states including
four fundamental types of shock, are identified to within 10% without false
identification. Clinically, it enables medical staff to rapidly obtain a patient specific
model to assist in diagnosis and therapy selection.
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1. INTRODUCTION

Heart disease is difficult to diagnose and treat
due to often confusing clinical data that does not
directly point to the problem. The body’s natural
reflex actions can hide a particular disease state.
Hence, medical staff often rely on experience and
intuition.

A minimal cardiac model has been developed
that captures the major dynamics of the cardio-
vascular system (CVS) (Smith et al., 2004). To
assist medical staff in diagnosis and treatment, a
fast accurate patient-specific parameter identifi-
cation method is required. The model is minimal

in the sense that a minimum number of variables
and equations are used to describe the common
heart disease states.

However, the model does not lend itself to a con-
vex identification problem (Smith, 2004). Thus,
potentially false solutions could be found. Fur-
thermore, to implement common non-linear re-
gression identification methods (Carson and Co-
belli, 2001) requires many computationally expen-
sive model simulations (Smith, 2004). Hence, com-
putational intensity severely limits the number of
optimization iterations available to find a solution
in a clinically useful time period.



In this paper, the model is reformulated in terms
of integrals of measured data so that patient
specific identification is linear and convex and
does not require the differential equations of the
model to be solved. Five common disease states,
including the four fundamental types of shock,
are simulated from onset. Each disease state is
then identified in the presence of 10% uniformly
distributed noise. The body’s reflex actions to
keep the pressure in the aorta stable are included.
The model parameters are identified to capture
the dynamic progression of each disease from the
initial healthy state using the pressure waveforms
through the aorta and pulmonary artery, the flows
through the ventricles and their maximum and
minimum volumes. More importantly, all of these
measurements are available in critical care using
Swan-Ganz catheters or ultra-sound.

2. METHODOLOGY
2.1 Cardiac Model

The full model consists of six elastic chambers as
shown in Figure 1.
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Fig. 1. The full six chamber cardio-vascular sys-
tem model

For simplicity, only the differential equations asso-
ciated with the left ventricle are shown, see (Smith
et al., 2004) for a description of the full model.
For computational efficiency, the differential equa-
tions for the left ventricle are defined (Hann et
al., 2005q):
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where H in Equation (11) is the Heaviside func-
tion, Q. and Qnt are the flows through the aortic
valve and mitral valve of the left ventricle, P,,,
P,y and B are the pressures in the aorta, pul-
monary vein and left ventricle, Vj, is the volume
in the left ventricle, Vyps is the septum volume and
Pyeri is the pressure in the pericardium (Smith et
al., 2004). The Heaviside formulation of Equations
(1) and (2) provides an open on pressure close on
flow valve law (Smith et al., 2004) such that:

LaVQav =Py — Pao — RayQavy, Qume =0 (12)
Lthmt = Ppu - B, — Rthmta Qav =0 (13)

where Equation (12) holds during ejection stage
and Equation (13) holds during filling.

2.2 Reflex actions

The effect of heart disease and shock on the
CVS can be significantly altered by the body’s
natural reflex response that attempts to maintain
enough blood pressure and flow to sustain life. The
affect of reflex actions can thus often mask the
underlying problem and must be accounted for in
the CVS model.

Reflex actions included are divided into four
groups: vaso-constriction, venous constriction, in-
creased heart rate (HR) and increased ventricular
contractility (Burkhoff and Tyberg, 1993). Their
activation is assumed to be proportional to the
drop in the average pressure in the aorta (Pyo).
The proportionality constants are estimated based
on clinically observed CVS hemodynamic re-
sponses reported in the literature (Braunwald,
1997; Despopoulos and Silbernagl, 2001; Parrillo
and Bone, 1995).

Specifically, vaso-constriction is simulated in the
model based on increasing the systemic resistance
R.ys by 35% for a drop in average P,, from
100 mmHg to 80 mmHg. Similarly, venous con-
striction, HR and ventricular contractility are in-
creased based on increasing the venous dead space
Vi,ve, HR and the left and right ventricle free wall
contractilities Fesvs and FEes vt by 67%, 80 to
120 beats per minute and 35% respectively for
a drop in average P,, to 80 mmHg. For example
Figure 2 shows how Vjy . is varied as a function of



AP,, which is the amount the average P,, differs
from 100 mmHg. In the model simulations, reflex
actions are applied every heart beat.
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Fig. 2. Varying Vg v as a function of AP,,

2.8 Integral parameter identification

Consider the left ventricle Equations (12) and
(13), and Equations (3)-(6), and assume that Q,y,
Ql‘ﬂt7 PaOa ‘/iv,maxa ‘/lv,rniny Alvf7 ‘/;pt and Pperi
are either measured or estimated. In this case,
the unknown input patient specific parameters
are Ray, R, Rsys, Feslv and Py 1y¢. Integrating
Equation (3) from ¢, to ¢ during ejection and from
ty to t during filling gives an expression for W (t)
defined:

t
Viv(t) = ‘/lv(te) - / Qavdt7 te <t < tf (14)
te

t
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where,

t. = beginning of ejection stage (16)
t; = beginning of filling stage (17)

WViv(te) = Viy max = max left ventricle volume
(18)

WViv(tf) = Viv,min = min left ventricle volume
(19)

Integrating Equation (4) from 0 to ¢, solving for
Vao(t) and then using Equations (5) and (6) yields:
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which assuming that P, =
constant can be written as

»co 18 an unknown

t t
Paoz aoO"’an/ Qa,v"’A/ Pao+Bt (21)
0 0

where,

E Eoo Py
Vaoo = EaoVao(0), A= _fayos’ B= —ETSCO
(22)

are treated as unknown constants.

Thus, the best linear least squares fit of Equation
(21) to the measured pressure waveform P,, over
one particular heart beat will determine F,, and
Rgys over that heart beat. Similarly, given an
approximation to Vip, and Ppeyi in Equation (8),
Equations (12) and (13) can be integrated across
the filling and ejection stages respectively and a
linear optimization can be set up to determine
Rav, Rty Fesive and Py yr (Hann et al., 2004).
The right ventricle can be treated similarly.

The end result is that given the pressure wave-
forms through the aorta and pulmonary artery,
the flows into and out of the left and right ventri-
cles and their maximum and minimum volumes,
a system of linear equations can be defined:

AB = (23)
g = [Qa Pioo, Ppan PpaOv PVCO] (24)
o= [Lava Lmt; Ltcv LpVa Ecs,lvf; PO,lvf7 Ecs,rvf;

PO,rvf7 Rava Rmt7 th, Rpw Evca Epua an; Epa7
Rsys, Rpul] (25)

where A is an N x 18 matrix, N >> 18 is the
number of chosen integration periods over which
the parameters are constant, b is an N x 1 vector, a
are the patient specific parameters and the initial
conditions, Paoo, Ppuo, Ppao and Pyg are treated
as extra unknown variables. Equation (23) can
then be solved by linear least squares to uniquely
determine a.

2.4 Simulating Disease States

The disease states that are simulated are Peri-
cardial Tamponade, Pulmonary Embolism, Car-
diogenic Shock, Septic shock and Hypovolemic
Shock. Pericardial tamponade is an excessive
build up of fluid in the pericardium limiting ven-
tricular expansion. It is simulated by reducing
the pericardium dead-space volume Vj pcq by 20
ml every 10 heart beats for a total of 50 heart
beats. Pulmonary Embolism is caused by a blood
clot obstructing the pulmonary circulation and
is simulated by increasing the resistance R, by
20% every 10 heart beats for 50 heart beats.

Cardiogenic shock occurs when the heart is un-
able to pump a sufficient amount of blood to
provide oxygen to the tissues and myocardium
(Braunwald, 1997; Parrillo and Bone, 1995). Lack
of oxygen supply to the myocardium causes fur-
ther depression of cardiac function by decreas-



ing ventricular contractilities and increasing di-
astolic elastance (Hollenberg et al., 1999). Hence,
a patient beginning to suffer from left ventricu-
lar infarction due to a coronary artery becoming
blocked is simulated from an initial healthy state.
The left ventricle contractility is reduced in piece-
wise constant steps to 50% of normal and diastolic
elastance is increased in piecewise constant steps
to a factor of 2.5 due to ischemia.

Septic shock is a common type of distributive
shock that is characterized by a drop in systemic
vascular resistance. The beginning stages of septic
shock are simulated by decreasing the systemic
resistance Rgys by 6% every 10 heart beats for 50
heart beats, giving a net 30% decrease in Rsgys.

Finally, hypovolemic shock is caused by a severe
drop in total blood volume, significantly reducing
stressed blood volume. It is due to dehydration,
hemorrhage or other fluid losses from the body. It
is simulated by reducing the total volume of the
blood by 250 ml every 10 heart beats for 50 heart
beats totalling a 1 litre blood loss.

3. RESULTS

A healthy human is simulated first, producing the
results shown in Table 1.
Table 1. Pressure and volume outputs
for a healthy human.

limited clinical data. Note that for hypovolemic
shock, accounting for reflex actions that change
the venous dead space volume every heart beat,
the loss of 1 litre of blood amounts to a loss of
600 ml of stressed blood volume. In this case,
the stressed blood volume is the quantity which
is identified.

The output pressures through the aorta and pul-
monary artery and the flows through the cham-
bers for all disease states are then discretized by
sampling every 0.005s and 10% random uniformly
distributed noise is added using a random number
generator in Matlab, analogous to measured data.
Figure 4 shows the non-smooth pressure in the
aorta for Pericardial Tamponade for one heart
beat after random noise is added.
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Fig. 3. The pressure though the aorta during dy-
namic simulation of the disease state pericar-
dial tamponade from onset.

Volume in left ventricle
Volume in right ventricle

111.7/45.7 ml
112.2/46.1 ml

Cardiac output 5.3 L/min
Max P}, 119.2 mmHg
Max Py 26.2 mmHg

Pressure in aorta 116.6/79.1 mmHg
25.7/7.8 mmHg
2.0 mmHg

2.0 mmHg

Pressure in pulmonary artery
Average pressure in pulmonary vein
Average pressure in vena cava

Pericardial tamponade is then simulated produc-
ing a significant rise in the pressure in the pul-
monary vein to 7.9 mmHg, a reduction in car-
diac output to 4.1 L//min and a reduction in
mean arterial pressure to 88.0 mmHg. This result
captures the physiological trends (Parrillo and
Bone, 1995; Braunwald, 1997). Figure 3 shows the
expected pressure change in the aorta.

All the other disease state simulations also pro-
duce trends in agreement with known physio-
logical response. Model responses include: signif-
icantly increased of pulmonary artery pressure
for Pulmonary Embolism; decreased mean arterial
pressure, decreased cardiac output and elevated
pulmonary vein pressure for Cardiogenic Shock;
falling blood pressures and increased cardiac out-
put for Septic Shock; and falling blood pressures
and cardiac output for Hypovolemic Shock. Ta-
bles 2-6 show the full results as “true values”.
Trend magnitudes are also in good agreement with
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Fig. 4. The pressure through the aorta for one
heart beat after 10% random uniformly dis-
tributed noise is added.

The integral method is then applied to identify
each disease state as it progresses from an initial
healthy state in the presence of 10% uniformly
distributed noise. Note that one extra parameter,
the pericardium dead-space volume Vj pcq, is in-
cluded in the optimization for all disease states.
This parameter is embedded non-linearly in the
matrix A of Equation (23), so it is optimized by
a depth first search to minimize ||A(Vp,pea)B —
b||2. Each evaluation of ||A(Vj pea)5—b||2 involves
solving Equation (23) by linear least squares. For
Hypovolemic shock the stressed volume was also
included in the optimization, which changes when
Vive changes due to reflex action. The stressed
volume was calculated from the sum of the initial



volumes in the left and right ventricles, which
are known from Equation (14), and an analogous
equation for the right ventricle, and the sum of
Vao(0), Vou(0), Vpa(0) and V4c(0), which can be
computed using the values of P.0, Ppuo, Ppao and
Py from Equation (24) and formulae similar to
Vaoo given in Equation (22).

Table 2 shows the identification results for Peri-
cardial Tamponade. The particular disease state
values of Vj peq are all identified within 3% and
all other parameters are identified within a mean
error of 10%. Tables 3-6 show the results for the
other disease states. The total mean over all dis-
ease states and values identified was 4.0%, ranging
from 0 — 10%. Note that when inertances are not
included, as shown by the numbers in brackets,
the mean and standard deviation values are sig-
nificantly reduced. The reason for this last result
is that inertances can change quite significantly
(approximately 10 —30%) without having a major
affect on dynamics. As they represent the inertia
of blood volumes, they are difficult to measure
and not well defined (Smith, 2004). The total
mean error in all parameters across all disease
states including inertances was 7.3% and without
inertances was 3.6%.

4. DISCUSSION AND CONCLUSIONS

Five disease states, Pericardial Tamponade, Pul-
monary Embolism, Cardiogenic Shock, Septic
Shock and Hypovolemic shock are dynamically
simulated from an initial healthy state with reflex
actions applied every heart beat. Results match
reported physiological trends. An integral based
optimization successively identified each disease
as it developed within mean errors ranging from
0 — 10% in the presence of significant simulated
measurement noise. The integrals are effectively
a low pass filter so the method is independent to
the chosen structure of noise. The integral method
also turns a previously non-linear and non-convex
optimization into a linear optimization with min-
imal computation required.

Note that the robustness of the method under
noise refers only to uncertainty in measurement.
It is assumed in this case that the model captures
the fundamental underlying dynamics. If some
dynamics are not captured it will show up as an
error in fitting. However, there is the option of
either adding further dynamics to the model or
making some of the parameters in a of Equation
(25) time varying similar to (Hann et al., 2005b).
The former risks adding physiological dynamics
that do not “exist” outside the noisy measure-
ments, the latter would only increase the number
of unknown parameters in Equation (23), so there
would still be a unique least squares solution.

A major advantage of the integral method is that
it allows significant flexibility in adding further
complexity to the model, such as atrial dynam-
ics without significantly affecting computational
time. Overall, the speed and accuracy of the inte-
gral based identification method demonstrates the
potential of using this model in a clinical setting,
to assist medical staff in diagnosis and therapy in
clinically useful time (3-5 minutes) on a standard
desktop computer.
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Table 2. Pericardial tamponade (determining Vj pcq). The Numbers in the brackets
are without including errors in the inertances.

True value (ml) Optimized Error (%) Mean Standard Deviation
(to the nearest ml)  value Vo,ped (all parameters)

First change 180 176 2.22 5.60 (3.42) 8.89 (4.56)

Second change 160 158 1.25 8.03 (4.25) 9.32 (3.68)

Third change 140 138 1.43 6.84 (3.20) 9.29 (4.61)

Fourth change 120 117 2.50 8.95 (5.37) 10.46 (4.92)

Fifth change 100 100 0 8.58 (3.96) 10.17 (6.73)

Table 3. Pulmonary Embolism (determining Rp1).

True value Optimized Error (%) Mean Standard Deviation
(mmHg s ml~1')  value Rpul (all parameters)

First change 0.1862 0.1907 2.41 7.93 (2.83) 10.01 (4.17)

Second change  0.2173 0.2050 5.67 6.32 (3.47) 7.62 (2.87)

Third change  0.2483 0.2694 8.50 7.26 (2.78) 9.50 (4.10)

Fourth change  0.2794 0.2721 2.60 8.90 (3.95) 10.84 (5.01)

Fifth change  0.3104 0.2962 4.59 7.64 (2.73) 9.61 (4.74)

Table 4. Cardiogenic Shock (determining [Feg 1vf, Po,ive])-

True values Optimized Error (%) Mean Standard

([mmHg ml~!, mmHg]) values [Eos,ivf, Po,lve]  (all parameters) Deviation
First change  [2.5018, 0.1564] [2.6148, 0.1478]  [0.89, 5.49] 841 (5.42) 9.15 (5.12)
Second change  [2.3038, 0.1925] [2.2960, 0.1840]  [0.34, 4.39] 5.35 (2.85) 9.22 (2.38)
Third change  [2.0159, 0.2286] [2.0246, 0.2102]  [0.43, 8.03] 6.27 (3.43) 9.04 (3.06)
Fourth change  [1.7279, 0.2647] [1.7023, 0.2386]  [1.48, 9.85] 6.73 (3.93) 9.65 (5.28)
Fifth change  [1.4399, 0.3008] [1.4331, 0.2725]  [0.47, 9.39] 8.41 (5.42) 9.15 (5.12)

Table 5. Septic Shock (determining Rgys).

True value Optimized Error (%) Mean Standard Deviation
(mmHg s ml~1')  value Rsys (all parameters)

First change  1.0236 1.0278 0.41 6.64 (3.55) 9.02 (4.06)

Second change  0.9582 0.9714 1.37 6.17 (2.23) 8.43 (4.10)

Third change  0.8929 0.8596 3.73 7.37 (3.75) 10.09 (4.94)

Fourth change  0.8276 0.8316 0.49 6.43 (3.15) 8.45 (3.35)

Fifth change  0.7622 0.7993 4.86 8.58 (4.03) 10.28 (5.04)

Table 6. Hypovolemic Shock (determining stressed blood volume).

True value Optimized Error (%) Mean Standard Deviation
(ml) value Stressed volume (all parameters)

First change 1299.9 1206.5 7.18 7.86 (4.32) 10.41 (4.52)

Second change 1177.3 1103.7 6.26 4.66 (1.73) 7.20 (2.56)

Third change  1063.1 953.8 10.28 7.34 (3.14) 10.86 (4.47)

Fourth change ~ 967.8 1018.9 5.28 5.88 (2.02) 7.52 (3.68)

Fifth change  928.5 853.4 8.10 9.40 (3.98) 9.58 (3.68)




