

Communicative effectiveness of individuals with dysarthria following traumatic brain injury

Dr Megan McAuliffe, Sonja Carpenter, & Dr Catherine Moran University of Canterbury, Christchurch, New Zealand

BACKGROUND

- Approximately 10-60% of individuals who sustain a TBI will exhibit persistent dysarthria and reduced speech intelligibility¹.
- · Research in dysarthria subsequent to TBI has commonly focused on the physiological impairment²⁻⁴.
- The relationship between level of intelligibility and perceived communicative effectiveness in individuals with dysarthria following TBI remains unexplored.
- An understanding of these relationships is important to the development of speech interventions focused upon the improvement of communicative effectiveness and quality of life.

RESEARCH QUESTIONS

- · Do individuals with TBI and their communicative partners agree on the communicative situations that present the most difficulty?
- Does a correlation exist between level of speech intelligibility and perceived communicative effectiveness?

HYPOTHESES

- · Individuals with TBI and their communicative partners will agree on the communicative situations that present the most difficulty.
- For speakers with TBI, a correlation will exist between level of intelligibility and perceived communicative effectiveness.

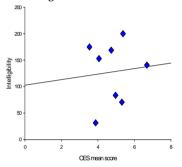
METHOD

- Participants: Eight adults with chronic dysarthria subsequent to severe TBI (mean age = 45 years, SD = 11 years) and their nominated communication partner. All participants with TBI were at least 24 months post-injury.
- Tasks: (1) conversational speech sample (TBI participants) and (2) Communicative Effectiveness Survey⁵.
- Communicative Effectiveness Survey (CES): Seven-point scale where 1= "not at all able" and 7= "very effective". Administered separately to individuals with TBI and their communicative partner to avoid interference effects.

METHOD

- Intelligibility: Rated by 10 students of speech pathology using direct magnitude estimation (free modulus paradigm). Intelligibility described as "the ease with which speech could be understood"6.
- Statistics: CES ratings of TBI participants and their communicative partners compared using Mann-Whitney U tests with alpha at 0.01 7 . Spearman rank order correlation employed for correlation analysis.

Table: Mean CES results for the participants with dysarthria following TBI and their communicative partners.


Communicative Situation	TBI	TBI
	participant	partner
Speaking to a friend when you are emotionally	3.63	2.21
upset or when you are angry		
Having a conversation with someone at a distance	3.81	3.81
Conversing with a stranger over the telephone	4.00	3.57
Participating in a conversation with strangers in a quiet place	4.19	4.88
Having a long conversation	4.56	3.36
Being part of a conversation in a noisy environment	4.63	4.06
Talking over the phone to service people	4.81	3.21
Having a conversation while travelling in a car (as a passenger)	4.81	5.13
Speaking to young children	5.00	4.88
Conversing through the outdoor speaker system	5.00*	2.25*
Conversing with someone who is hard of hearing	5.00	4.36
Speaking outdoors (e.g., sporting event)	5.06	4.44
Having a conversation with a few friends	5.69*	4.38*
Speaking in front of a small group	5.93	4.71
Conversing with a familiar person over the telephone	6.25	5.19

^{*}Trends towards statistical significance observed (p<.05 but greater than p<.01).

RESULTS

- · In general, participants with dysarthria perceived their communicative effectiveness as higher than their communication partners. However, this was statistically significant.
- Speaking to a friend when upset or angry was reported as most difficult task, followed by having a conversation with someone at a distance.

Figure: Relationship between intelligibility and average CES rating.

· There was no relationship between level of speech intelligibility and average ratings of perceived communicative effectiveness (r=.02, p=.93).

DISCUSSION

- · Individuals with dysarthria following TBI tended to rate their communicative effectiveness higher than their communication partners. It is possible that the TBI group exhibited reduced insight into their communication problems.
- Increased participant numbers may have resulted in the observed trends becoming significant.
- · The lack of correlation between level of speech intelligibility and perceived communicative effectiveness highlights the need for careful examination of activity and participation during assessment and goal setting.
- Future research should include: (1) larger participant numbers and (2) examination of cognition in the group with TBI.

ACKNOWLEDGEMENTS: New Zealand Neurological Foundation Small Project grant 0533-SPG & members of the TBI support group, Canterbury Branch, Brain Injury Association of New Zealand.

- Sellars, C., Hughes, T., & Langhorne, P. (2005). Speech and language therapy for dysarthria due to nonprogressive brain damage (Review)
- Sellars, C., Hughes, T., & Langhorne, P. (2005). Speech and language therapy for dysarthria due to nonprogressive brain damage (Review).

 Cochrame Databases of Systemide: Reviews, & 1-11.

 Blumberger, J., Sullivan, S. J., & Clement, N. (1995). Diadochokinetic rate in persons with traumatic brain injury, 9.797-804.

 Jaeger, M., Herttich, I., Stattrop, U., Schonle, P. W., & Ackenman, H. (2000). Speech disorders following severe traumatic brain injury; Kimenatic analysis of syllable repetitions using electromagnetic articulography. Folia Phoniatrics at Logopaedics, 52, 187-198.

 Wang, Y.T., Kent, R. D., Dulty, J. R., Thomas, J. E., & Western, C., 2000). Alleranting motion rate as an index of speech motor disorder in traumatic brain injury. Clinical Linguistics and Phonetics, 18(1), 57-84.

 Hassad, K. (1996). Optimizing communicative effectiveness: Bringing (together. In Yorkston, K.M., Beakelman, D.R., Strand, E.A., & Bell, K.R.

 Nauagement of motor speech disorders in children and adults (p. 463-541).

 Tallera, K., & Wester, C. (2004). All strands and loadness manaplations in dysarthria: Acoustic and perceptual findings. Journal of Speech, Language.

 All Scholars, M. (1982). Research procedures in speech, Language, and hearing. Baltimore: Williams & Wilkins.