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Abstract

An automated image analysis system for determination
of myosin filament orientations in electron micrographs of
muscle cross-sections is described. Analysis of the distri-
bution of the orientations is important in studies of muscle
structure, particularly for interpretation of x-ray diffraction
data. Filament positions are determined by filtering with
a point spread function that incorporates the local sym-
metry in an image. Filament orientations are determined
by correlation with a template that incorporates the salient
filament characteristics and the orientations classified us-
ing a Gaussian mixture model. Application to micrographs
and comparison with manual classification of orientations
shows that the system is effective.

1. Introduction

Vertebrate muscle fibers contain the contractile proteins
myosin and actin which are organised into long thin strands
known as myofibrils. The myofibrils exhibit a striated pat-
tern and the repeating unit is known as the sarcomere, which
is the basic contractile unit of muscle [1]. The structure
of this complex system is studied by both electron mi-
croscopy and x-ray diffraction. Myosin filaments pack in
a semiregular lattice and can be imaged directly by elec-
tron microscopy of thin transverse sections (about 50nm
thick) through the so-called bare region on each side of the
M-band. In this region, myosin filaments are roughly tri-
angular in shape and devoid of actin filaments and other
molecular components so that such micrographs are ideal
for image analysis. Luther and Squire [2] determined, by vi-
sual analysis of micrographs, that in many muscles, such as
those from frogs, the myosin filaments adopt one of two dif-
ferent orientations that are distributed in a semi-systematic
manner. Using these results, they described some general
characteristics of the distribution of orientations which were
confirmed by a more quantitative analysis by Millane and

Goyal [3]. The myosin filament disorder has implications
for the contractile mechanism of the muscle, and a good
statistical model of the disorder is needed for rigorous inter-
pretation of x-ray diffraction data from muscle fibres. The
micrographs are quite noisy, and manual analysis is slow,
tedious, difficult and prone to error, and the accuracy of the
results is difficult to assess quantitatively. However, to ob-
tain a good statistical picture of the disorder, it is necessary
to analyse a number of micrographs both within and be-
tween species. We have therefore developed a method for
automated analysis of these kinds of micrographs to allow
rapid and quantitative determination of the filament orien-
tations.

Location of the myosin filaments is described in Section
2. In Section 3, determination of the filament orientations
is described, and in Section 4 classification of the orienta-
tions is described. Results of application of this system to
two micrographs are presented in Section 5. Concluding
remarks are made in Section 6.

2. Location of filaments

An example micrograph is shown in Fig. 1. It is a thin
transverse section through a frog sartorius muscle fibre con-
taining the myosin filaments (the dark regions that can be
seen to lie on an approximately triangular lattice). The
images used here have pixel values from O (black) to 255
(white). There are large variations between images due to
many factors such as specimen type, sample preparation,
etc. The first step in the analysis is to locate all the myosin
filaments inside a myofibril (the ordered region surrounded
by an amorphous boundary that can be seen in Fig. 1).

We have previously described an algorithm that uses
greyscale morphology to determine the filament locations
[4, 5]. This algorithm uses h-dome extraction [6] to locate
local maxima in the image. However the result is sensitive
to the threshold value &, and the lattice symmetry is used
to determine the optimum threshold value. Even with the
optimum threshold, the noisy nature of the images means
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Figure 1: Electron micrograph of a slice of frog sartorius
muscle.

that erroneous maxima are also identified, and these are re-
moved by further iterative morphological processing that
also uses the lattice symmetry. The morphological algo-
rithm is quite successful [4, 5], but is quite complex and
does not use the lattice symmetry in the most efficient man-
ner.

‘We have now developed a simpler approach that uses lin-
ear filtering with a point spread function (psf) that incorpo-
rates the filament size and lattice regularity at the outset.
Inspection of Fig. 1 shows that the lattice on which the fila-
ments lie is not regular over large distances but is reasonably
regular on a local scale. The variation in the lattice over the
entire image is larger but is still rather small. The idea is to
use this local symmetry to generate a psf that can be used
to filter the whole micrograph image. Formation of the psf
is as follows: The user defines the approximate coordinates
of the centre of a filament and its six nearest neighbour fil-
aments on the micrograph image. These centre coordinates
do not need to be particularly accurate. The twelve near-
est neighbour spacings between the filaments are calculated
and averaged. The orientations between the twelve nearest
neighbour vectors are calculated and averaged modulo 60°.
The average spacing and orientation is used to define a psf
consisting of seven disks arranged in a hexagon as shown
in Fig. 2. The diameter of the disks is set equal to half the
average spacing (this is a common feature throughout dif-
ferent muscle micrographs). This then defines the psf for a
given image.

The psf is convolved with the image (implemented by
multiplying the DFTs of the image and the psf and calcu-
lating the inverse DFT), producing a filtered image with
distinct intensity peaks at the filament positions and a con-
siderably reduced noise level compared to the original im-
age. The advantage of this approach over the morpholog-
ical approach is that the constraints of local maxima and

Figure 2: The filter point spread function used to determine
the filament positions.

local hexagonal symmetry are incorporated into a single
step. The result is that a cleaner estimate of the peaks cor-
responding to the filaments is obtained much more easily.
The regional maxima of the filtered image are determined
as the connected regions (based on 8-neighbourhoods) of
pixels with the same value, whose external boundary pixels
all have smaller values. The centroids of the regional max-
ima structures are the estimates of the filament positions.

It is worth pointing out that, at first sight, these images,
such as that shown in Fig. 1, have the appearance of a tex-
ture and might be susceptible to analyses such as texture
segmentation [7]. However, while the region of a whole
myofibril resembles a texture, a delineation of the myosin
filaments does not correspond to segmentation of different
textures.

3. Determination of filament orientations

Having determined the approximate locations of most of
the filaments as described in the previous section, the next
step is to estimate the orientation of each filament. The ap-
proach used is template matching, which is a common tech-
nique for locating parameterised features in images [8]. In-
spection of many filaments in micrographs shows that they
generally have an approximate equilateral triangular shape.
A template is first constructed as a triangle of specified size
(edge length). For pixels on the edge of the triangle, the
pixel value is set to the fraction of the pixel within the trian-
gle. The basic idea is to correlate the template at different
orientations with the image of a filament and take the orien-
tation of the template that gives the maximum correlation as
the estimate of the orientation of the filament. Experimenta-
tion with the approach showed that better discrimination in
the estimated orientations is obtained by modifying the tem-
plate as follows. Since the filaments in the micrographs do
not have sharp edges, a better template is obtained by blur-
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Figure 3: Template used to determine the filament orienta-
tions.

ring the triangular template with a square of 5 x 5 pixels. In
addition, a triangular region in the centre of the template is
set to zero such that the inside border of the template has a
single line of pixels of the maximum value of the template.
This appears to help because some filaments have holes in
the centre and because the central region of the mask tends
to swamp the correlation. A template is illustrated in Fig. 3.

The best discrimination is obtained if the template size
and position accurately correspond to the size and position
of the filament in the image. Since the filament positions
and sizes are known only approximately, a four-dimensional
search is conducted over a range of positions (z and y),
sizes (represented by the template edge length s) and ori-
entations 6 of the template. The range of orientations used
is {0, A0, 210, ...,120° — AQ} where A@ = 4°. The range
of template edge lengths used is dynin < 5 < dmaa, Where
the values of d,,iy, and dy,q, depend on the raster spacing,
but are easily determined for a particular image. The range
of positions used also depends on the specific case and an
interval of 0.5 pixels is used.

The correlation coefficient is calculated as

T(Al” Ay? 87 9)

gt af

)]

where ¢ and f respectively stands for template and filament
image, Az and Ay are the template shifts (relative to the
filament marker), 4 and o are the mean and standard devi-
ation respectively, and the sum is over the n pixels ¢ that
overlap in the template and the filament image. The esti-
mate of the filament orientation is then taken as the value
of # that maximises r(Ax, Ay, s, 0) over Az, Ay, s and 6.
Filaments that are less triangular in shape give less reliable

orientations and lower correlation coefficients. Filaments
with correlation coefficients less than a chosen threshold
value are marked as having an unknown orientation. A good
threshold value varies between images although a value of
0.75 was found to be suitable in many cases. In addition to
the minimum correlation coefficient, the ratio of the maxi-
mum to the minimum correlation coefficient over all orien-
tations (at the values of Az, Ay and s that maximise 7) is
also recorded as a measure of the reliability of the orienta-
tion estimate.

4. Classification of orientations

As described in the introduction, the myosin filaments
in many muscles adopt one of two opposite orientations,
and it is the spatial distribution of the two orientations in
which we are interested. The difference in orientation, de-
termined as described in the previous section, for oppositely
oriented filaments is approximately 60°. As a result of im-
perfections in the muscle and errors in determining the ori-
entations, the measured orientations do not belong to two
groups that are exactly 60° apart. In practice there is a dis-
tribution of orientations that tend to fall into two popula-
tions. The objective is to classify each filament orientation
as belonging to one of two populations which we refer to
as up and down. The underlying distribution of orientations
is modelled as a Gaussian mixture consisting of two nor-
mal distributions. Since the orientations exist on the finite
interval (0, 120°), the normal distributions are wrapped on
this interval and denoted by f(u,o,6) where p and o are
the mean and standard deviation of the original normal dis-
tribution. The model distribution of filaments orientations

Fmode(0) is given by

fmodel(9) = pupf(,uupy Oup, 9)
+(1 - pup)f(,udoum.v Tdown 9)3 (2)

where p,,, is the fraction of filaments classified as up. The
parameters fiyup, ftdown s Tup,> Odown, and Dy are determined
by fitting finoder(6;) to the histogram of estimated fila-
ment orientations h(6;) over the whole image by minimis-
ing the sum of squared errors. Note that for estimated
orientations that give a good classification we expect that
Ap = |pup—Hdown| = 60°, 0yp <K 60°, 0gown < 60° and
Pup =~ 0.5. The values of the parameters Ap, tup, fdown
and p,;, can therefore be used to measure the degree to
which the data are consistent with two populations of orien-
tations of this kind. Each orientation interval §; is assigned
to either population depending on the relative dominance of
the densities at that interval, i.e.

Tup if pupf(,uupy Oups 92)
62‘ S > pdoumf(,ufdown: Tdowns 91) (3)

Tdgown Otherwise
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where 7, and 4o, represent the up and down classifica-
tions, respectively, which minimises the expected number
of misclassifications.

Figure 4: Electron micrograph of frog sartorius muscle. The
white border denotes the region of one myofibril which was
analysed. The black border denotes the subimage shown in
Figs. 6 and 8.

5. Results

The algorithms described above were implemented in
Matlab and run on 2.8GHz PC. Examples of the application
of the automated image analysis system to micrograph of
two different species, frog and turtle are presented in this
section. The automatically determined orientations were
compared with manually determined orientations. For the
manual analysis, a program was used which allows the user
to visually fit an equilateral triangle with adjustable posi-
tion, angle and size to each filament. The manually deter-
mined orientations are used to classify the orientations as
for the automated method as described above. Orientations
that cannot be reliably estimated manually are marked as
unknown and are not used in the classification.

Part of a micrograph of a cross-section of frog sartorius
muscle [2] is shown in Fig. 4 and the region of one myofibril
(inside the white border), which contains 750 filaments, was
analysed. The location algorithm described in Section 2 was
run. The algorithm took less than one minute to run and
located all 750 filaments. A subimage (corresponding to
the region outlined in black in Fig. 4) is shown in Fig. 5,
together with the region used to define the psf, the psf, the
filtered image and the final filament positions.

The filament orientations were determined automatically
as described in Section 3. The average time per filament
was 0.2s and the orientation analysis for the whole image
took two minutes. The orientation distribution is shown in
Fig. 6 and two populations are clearly evident. The mean
correlation coefficient obtained for all filaments was 0.80.
Using a correlation threshold of 0.75, 699 of the orienta-
tions (93%) were above the threshold. The manual analysis
found only 580 (77%) reliable orientations. Orientations
with a correlation coefficient below the threshold or which
could not be determined manually are labelled “bad” and
are not included in the analysis. Fitting the mixture model
gave Ap = 62°, 0yp = 11°, 0gown = 9° and p,p = 0.50,
indicating that the data are consistent with two populations
of filament orientations. The mixture model is shown in
Fig. 6. Classification of the orientations was performed as
described in Section 4 and took 2 seconds for the whole im-
age. The orientations and their classification are illustrated
in Fig. 7.

The filament orientations were determined manually and
classified automatically as described above. A comparison
of the results of the manual and automatic classifications
are shown in Table 1. As seen in the table, the automat-
ically determined orientations are consistent overall with
the manual determinations. Of the 699 automatically de-
termined orientations, 554 (80%) agree with the manually
determined orientations, only 4 (< 1%) have the opposite
orientation, and the remaining 141 (20%) could not be
determined manually. As expected, there is more variety
in the identification of bad filaments. This appears to
be a good result overall for the automatic classification,
remembering that the manual classification is not a “gold
standard,” and in fact the automatic method is probably
more accurate than the manual method.

The second example is a micrograph of a cross-section
of turtle muscle containing 150 filaments shown in Fig. 8.
The myosin filaments in this image are not clear and hence
manual analysis is difficult. The results of the filament loca-
tion on a subimage are shown in Fig. 9. 149 out of the 150
filaments were located and the locations in the subimage are
shown in Fig. 9c.

The filament orientations were determined automatically
giving a mean correlation coefficient of 0.75. Using a corre-
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Figure 5: (a) Original subimage, (b) user input, (c) psf, (d)
filtered subimage and (e) determined filament posit- ions.

lation threshold of 0.65, 133 of the orientations (89%) were
above the threshold. Fitting the mixed Gaussian model gave
Ap = 61°, oyp = 15°, 04gouwn = 16° and p,;, = 0.55,
indicating that the data are again consistent with two pop-
ulations of filament orientations. The classification in the
subimage is shown in Fig. 9d.

Application of the methods described to a number of

Number

0 20 40 60 80 100 120

Figure 6: The histogram and mixture model for the frog
sartorius muscle image.

Figure 7: Outline of the triangular templates fitted to each
filament, with white and black triangles denoting the classi-
fication into up and down orientations.

other micrographs of various qualities with a variety of
noise levels and variable backgrounds produced good re-
sults in all but extremely noisy micrographs.

6. Conclusions

Electron micrographs of the A-band bare region of ver-
tebrate muscle show cross-sections of the myosin filaments
in a noisy and variable background. Automatic detection
of the filaments and determination of their orientation is
the first step in analysing the orientational disorder in the
myosin lattice. Filament positions were determined by fil-
tering with a psf that incorporates the lattice symmetry
which is derived from a local region of the image. This is
simpler than a previously implemented morphological algo-
rithm and performs just as well. Filament orientations were
determined by correlation with a suitable template and the
orientations classified using a Gaussian mixture model. A
comparison with manually classified orientations indicates
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Table 1: Comparison of the automatic and manually deter-
mined orientations from the frog sartorius muscle micro-
graph.

Automatic orientations

Classification up | down | bad | total
up 283 1 11 | 295

Manual down | 3 271 11 | 285
orientations | bad 71 70 30 | 171
total | 357 | 342 52 | 751

Figure 8: Electron micrograph of turtle muscle.

about 90% consistency, although this depends on the quality
of the image. Application to a variety of micrographs indi-
cates that the method is robust, even for quite noisy images
that would be very difficult to analyse manually.
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