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General Abstract 4 

GENERAL ABSTRACT 

 

I investigated parasitic infection and immunocompetence in populations of introduced 

bird species in New Zealand (NZ) that had experienced a range of population bottlenecks (11-808 

individuals), and compared these parameters to non-bottlenecked conspecifics in the United 

Kingdom (UK).  My aims were two-fold; firstly to assess if population bottlenecks are linked to 

increased parasite loads and/or decreased immunocompetence, and secondly, to assess at what 

severity of bottleneck these effects become evident.  I found that ectoparasite load (chewing lice, 

Order: Phthiraptera, Sub-Orders: Amblycera & Ischnocera) was significantly higher in the more 

severely bottlenecked species in NZ than in the UK, whilst this difference became non-significant 

at more moderate bottlenecks.  The difference was mainly driven by the Sub-Order Amblycera.  

The prevalence of avian malaria (Plasmodium spp.) was significantly negatively correlated to 

bottleneck size within NZ, after controlling for body mass. Total leucocyte and differential 

lymphocyte counts were elevated in the less bottlenecked species that were infected with malaria, 

whilst the populations at the more severe end of the bottleneck spectrum did not exhibit such a 

response. Furthermore, heterophil/lymphocyte (HL) ratio (a parameter used as an indicator of 

environmental and/or immunological stress), was significantly raised in the more bottlenecked 

species when compared to their UK counterparts, and this difference was correlated with the size 

of the bottleneck.  Immunocompetence was further assessed by the experimental challenge of six 

introduced birds species in NZ with the mitogen phytohaemagglutinin (PHA). Immune response 

to PHA was significantly correlated to bottleneck size, but in the opposite direction to that 

predicted; immune response was greater in the more bottlenecked species.  However, this may be 

an indication of increased investment in immunity, due to increased parasite and pathogen 

pressure or differential investment in varying components of the immune system.  Finally, the 

immune response to PHA was compared in nestlings of two species that had experienced very 

different bottlenecks (70 vs. 653).  After controlling for ectoparasitic infestation, I found no 

difference between the two species; however, this finding may be confounded by interspecific 

competition.  Overall, my findings suggest that more severe population bottlenecks may result in 

increased susceptibility to pathogens, and impact on the immune system. This has a number of 

implications for the development of conservation protocols, and future avenues of research are 

suggested. 
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INTRODUCTION 

 

Population bottlenecks occur when a population undergoes a temporary, large 

reduction in number (Keller et al., 2001) and can cause a reduction in genetic diversity, 

both in terms of heterozygosity and allelic diversity (England et al., 2003).  This has now 

been demonstrated in a number of wild populations (Ardern et al., 1997; Bodkin et al., 

1999; Bouzat et al., 1998; Bradshaw et al., 2007; Hajji et al., 2007; Hoelzel, 1999; 

Hudson et al., 2000; Keller et al., 2001; Nyström et al., 2006; Packer et al., 1991; Zhang 

et al., 2004). Decreased genetic diversity can be associated with reduced fitness (Reed 

and Frankham, 2003), and has been linked to extinction risk (Frankham, 1998).   

In addition to bottleneck effects, the resulting small populations are often prone to 

high levels of inbreeding, since mate choice is reduced and individuals are more likely to 

mate with kin (Hedrick and Kalinowski, 2000).  The negative impact of inbreeding on a 

population, termed inbreeding depression, is well known and encompasses a suite of 

interrelated fitness effects, including a reduction in reproductive success, an increase in 

physical defects, and greater susceptibility to parasites and pathogens (Crnokrak and 

Roff, 1999; Keller and Waller, 2002). 

Endangered and fragmented populations, by definition, experience a population 

bottleneck, and hence understanding the fitness implications of bottlenecks is essential 

for conservationists.  Although the aim of conservation measures will be to increase the 

population size of such species, even populations that recover to their pre-bottleneck size 

may continue to be affected by the genetic consequences of passing through an earlier 

bottleneck.  In some situations, conservation projects may even intentionally create 



 

Introduction  6 

population bottlenecks through translocation schemes and in the captive breeding of 

threatened species.  The incidence with which bottlenecks are encountered by 

conservation biologists is set to increase, in large part due to the predicted rise in the 

number of threatened and endangered species, but also as habitat restoration schemes 

come to fruition, and the potential for translocations increase.  

Ideally, to investigate the consequences of population bottlenecks, one would 

compare populations of the same species that have and have not experienced (or before 

and after) a bottleneck.  Unfortunately, the existence of pre- and post-bottleneck 

populations of the same species is a rare occurrence in the wild, especially in the case of 

endangered species.  A striking exception to this is the numerous human-introduced 

species that have established in areas outside their native range (Briskie, 2006).  The 

introduced bird species of New Zealand are a good example of this system as during their 

establishment each species passed through a bottleneck.  In the late 19
th
 century 

acclimatisation societies in New Zealand (NZ) introduced at least 137 exotic bird species, 

of which 28 species are extant today (Veltman et al., 1996).  The majority of these 

species were imported from the United Kingdom (UK), where they are still extant, and 

careful records were kept of the numbers that survived the voyage and were subsequently 

introduced.  The number introduced varied per species, and so introduced birds in New 

Zealand today are represented by populations that have experienced a range of 

bottlenecks.  The elegance of this system is that it allows comparison between pre- and 

post-bottlenecked populations (i.e., between UK & NZ) for a range of bottleneck sizes.  

This enables investigations to be made, not only of how bottlenecks may affect fitness 
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traits, but additionally, at what size bottleneck these fitness effects cease to be evident (or 

at least of lesser concern) in comparison to the source population.   

GENETIC CONSEQUENCES OF BOTTLENECKS 

A key assumption in this model system, is that the introduced bird populations of 

New Zealand exhibit the genetic consequences of experiencing a bottleneck (i.e., 

decreased heterozygosity and/or a reduction in allelic diversity).  There are two major 

factors to consider when making this assumption.  Firstly, the introduction of exotic bird 

species to New Zealand did not occur in a single introduction event, but multiple times 

for each species, with many introductions occurring at several different geographic 

locations across New Zealand, and with the releases of birds taking place over a number 

of years between the early 1860s to the late 1890s (Lever, 1987).  The details of these 

introductions are summarised in Table 1.  Secondly, most of the species were imported 

by the Acclimatisation Societies in New Zealand from southern ports in England, UK 

with the exception of the common myna, Acridotheres tristis, which originated from an 

introduced Australian population (Baker and Moeed, 1987; Lever, 1987).  Whilst the 

assumption is that these birds were caught within a reasonable distance of the south coast 

of the UK, if trapping took place in the autumn or winter (when large flocks form), then 

birds may represent a mixture of over-wintering European and resident British 

populations.  

The spatial and temporal complexity of the bird introductions to New Zealand 

may mean that genetic effects of passing through a bottleneck during their establishment 

may not be a simple linear relationship with the demographic size of that bottleneck.  

This is because the speed with which a population experiences a reduction in number, the 
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length of time the population remains bottlenecked, and the rapidity of recovery of 

population size all influences the genetic consequences to that population (Beebee and 

Rowe, 2008; Frankham et al., 2002).  For example, a rapid fall in population size is 

expected to have more serious long-term genetic consequences than a gradual decline 

(Beebee and Rowe, 2008), whilst a short term bottleneck, followed by a fast recovery 

may have less impact (or at least a different effect) than a more extended bottleneck, with 

a gradual increase (Beebee and Rowe, 2008; England et al., 2003).   

Although it is beyond the scope of this study to model how differences in 

introduction effort, geographic spread, and temporal patterns of each bottleneck may 

have affected the genetic consequences to the post-bottlenecked populations, it is clear 

from Table 1 that the introduction history was broadly similar for the majority of the 

species.  In other words, most of the species in my study were introduced at multiple 

locations in New Zealand, in varying numbers, and over a span of 10-20 years. In lieu of 

a more direct measure of a genetic bottleneck, I have assumed that the consequences of 

this temporal and geographic pattern of introduction will have had similar consequences 

of the genetic outcomes for the majority of species.  Thus for the purposes of this study, I 

have assumed the number of birds released in total, at all location and times (excepting 

those known to have failed) is a reasonable estimate of the demographic bottleneck size.  

In addition to the ‘shape’ of the demographic bottleneck, the effective population 

size (Ne) also effects the genetic consequences of a bottleneck (Beebee and Rowe, 2008; 

Frankham et al., 2002).  Ne represents the number of individuals contributing to the 

breeding population, and is influenced by a number of factors including sex ratios and 

reproductive success (Beebee and Rowe, 2008).  The effective population size is 
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generally significantly lower than the census numbers (Nc) of a population (Beebee and 

Rowe, 2008).  Frankham (1995), in a meta-analysis of almost 200 studies (from 102 

species), looked at the estimated ratio of Nc:Ne and found that the average was around 0.1 

(although it ranged hugely from 0.0009 to 1.04). This means that, on average, the 

effective population size is an order of magnitude less than the census size for a 

population.  In the context of my study, the implication is that the genetic bottleneck the 

introduced species experienced may be an order of magnitude greater in severity than it 

appears from the founding population size, and therefore that even the species introduced 

in the greatest numbers (e.g. blackbird, 808 birds), may have effective population sizes of 

only 80 breeding adults, and a species such as the cirl bunting (11 individuals introduced) 

may well derive from only one breeding pair.   

Ideally, detailed molecular studies would help resolve the effects of the complex 

demographic bottlenecks on current levels of genetic diversity in introduced species in 

New Zealand, however, the evidence is equivocal.  A number of studies were conducted 

in the 1980’s and 1990’s, which examined the genetic differentiation of introduced bird 

species in New Zealand (Baker, 1992; Baker and Moeed, 1987; Baker et al., 1990; Merilä 

et al., 1996; Parkin and Cole, 1985; Ross, 1983), but the results from these studies were 

somewhat mixed.  Merilä et al. (1996) conducted a review of studies on genetic 

differentiation in introduced bird species (globally, not limited to New Zealand), and 

found that average heterozygosity and the number of polymorphic loci was positively 

correlated with the number of birds introduced.  All of these studies employed allozymes 

to estimate levels of genetic diversity between native and introduced populations 

however, given the low resolving power of allozymes (particularly in birds; Crochet 
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(2000)), further studies employing higher resolution molecular markers (e.g., 

microsatellites) are warranted, before any conclusions can be drawn.  Nevertheless, it 

seems a logical expectation that the more severe a bottleneck experienced by a 

population, the less genetic diversity it is likely to retain, with all else being equal 

(Beebee and Rowe, 2008).   

FITNESS CONSEQUENCES OF BOTTLENECKS 

The value of introduced birds as a model system for the study of the fitness 

consequences of bottlenecks is well illustrated by Briskie & Mackintosh (2004), who 

examined reproductive success in bottlenecked populations.  They compared hatching 

success of introduced birds within New Zealand and found it was significantly lower in 

species that had been founded by less than 150 individuals, and was only equal to pre-

bottleneck populations in species founded by more than 600 individuals.  Thus, these 

authors were able to use a study of introduced species to highlight the need to limit the 

severity of bottlenecks in the management of endangered native species. 

Parasites are ubiquitous in nature, constituting more than half of all animal 

species (Loye and Zuk, 1991; Price, 1980).  By definition, parasites exist by utilising the 

finite resources of their host for all, or at least part, of their lifespan (Szep and Møller, 

2000).  Such exploitation is predicted to incur a negative effect on host fitness, and these 

costs have been comprehensively studied in birds.  A variety of negative impacts of 

parasitism on host fitness have been found, including reductions in survivorship, 

fecundity and growth rates (for reviews see Lehmann, 1993; Møller, 1997). Evidence is 

mounting that decreased genetic diversity renders individuals even more prone to disease 

and parasitic infection (Arkush et al., 2002; Hawley et al., 2005; Hedrick et al., 2001; 
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O'Brien and Evermann, 1988; Pearman and Garner, 2005), as does increased inbreeding 

(Acevedo-Whitehouse et al., 2003; Cassinello et al., 2001; Coltman et al., 1999). 

Given the negative effect of parasites it is not surprising that hosts have developed 

an array of defences against parasitic attack (behavioural, mechanical and physiological) 

and a key component in this armoury is their immune system.  Much work has been done 

on the role of immune defences in relation to avian life history and sexual selection (e.g. 

Zuk and Johnsen, 1998; Zuk and Stoehr, 2002), and studies have found a link between 

individual survivorship and the strength of immune response when challenged with a 

novel antigen (Møller and Saino, 2004). A reduction in genetic diversity has also been 

linked to decreased immunocompetence (Hawley et al., 2005; Sanjayan et al., 1996), and 

inbreeding has been shown to have detrimental effects on immune function (Reid et al., 

2003).  

Whilst links have been made between immunocompetence, inbreeding, and 

genetic diversity, there is a paucity of studies investigating the relationship between 

population bottlenecks and immunocompetence in wild populations.  One exception is 

work by Hale and Briskie (2007), comparing a severely bottlenecked population (founded 

by 5 individuals) of the endemic New Zealand robin (Petroica australis) with its source 

population.  The birds in the bottlenecked population displayed significantly weaker 

responses to an immune challenge (in the autumn) than the source population.  However, 

whether this result is typical of other birds, and whether a similar response occurs in 

populations that have been subject to less severe bottleneck sizes, is unknown. 

Parasites and pathogens have been implicated in the population decline of a 

number of endangered species (Dobson and McCallum, 1997) and emerging infectious 
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diseases are an acknowledged conservation issue (Dobson and Foufopoulos, 2001; 

Wikelski et al., 2004).  Hence, whether population bottlenecks have a negative impact on 

immunity, or cause increased susceptibility to parasitic attack, and at what size of 

bottleneck this impact starts to compromise the long-term viability of populations, are 

questions of crucial relevance to conservation. 

OUTLINE OF THESIS 

In this study I examine the relationship between population bottlenecks and both 

level of parasitic infection and immunocompetence.  Specifically, I examine whether 

parasite load increases and immunocompetence decreases with severity of bottleneck 

size, and if so how large a bottleneck is required to limit these negative effects when 

founding a population.  I address these questions using the introduced bird species of 

New Zealand as a study system, comparing across a range of different bottlenecks 

(founding population size) in species within New Zealand, and comparing them directly 

to their non-bottlenecked conspecifics in the UK.  

In Chapter 1, I examine the relationship between ectoparasite burden of chewing 

lice (order: Phthiraptera, suborders: Amblycera and Ischnocera) and population 

bottleneck size in ten introduced NZ bird species in comparison to their conspecifics in 

the UK.  I quantify parasite load of chewing lice on these species in both countries using 

a dust-ruffling technique (Walther and Clayton, 1997), and relate differences in burden to 

the bottleneck size the species have experienced in NZ.  I test the hypothesis that parasite 

burden is higher in NZ populations that have experienced the more severe bottlenecks, 

and that this difference will cease to exist for populations founded from larger numbers. 
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In Chapter 2, I continue my exploration of the role population bottlenecks play in 

parasitic infection by relating the prevalence of avian malaria (a protozoan blood 

parasite) in introduced NZ bird species, to the bottleneck size experienced during their 

establishment.  I extend this investigation by examining the immunological responses 

(measured by leucocyte profiles) of these populations to malarial infection, and predict 

that the more severely bottlenecked populations may be less able to mount an immune 

response to the infection.  In addition, I compare haematological profiles between the NZ 

populations and their source populations in the UK. 

The effect of population bottlenecks on immunocompetence is further 

investigated in Chapter 3, by experimentally challenging adult birds in six introduced 

bird species in New Zealand with a novel antigen (phytohaemagglutinin, PHA).  This 

foreign protein induces an immune reaction in the host that is expressed as an epidermal 

swelling and can be readily measured as an index to immunocompetence strength.  I 

predict that a positive relationship will exist between the strength of the immune response 

and the size of the bottleneck (i.e., the number introduced). 

In Chapter 4, I utilise the same immunological assay as Chapter 3 (PHA 

challenge) to compare nestling immunocompetence in two closely related bird species 

(the myna, Acridotheres tristis, and the starling, Sturnus vulgaris) that were introduced to 

New Zealand in differing numbers (and hence experienced different bottlenecks).  I 

investigate immune response in the context of ectoparasitic infection and growth rates, 

and predict that starling nestlings (the less bottlenecked species) will exhibit stronger 

immune responses (after controlling for ectoparasitic infection) and be less growth 

restricted following immune challenge than myna nestlings. 
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Finally, in the General Discussion, I summarise my findings, and contextualise 

them in terms of conservation implications and beneficial future research.    

Each chapter was written as a stand alone paper, in preparation for publication, 

and hence there is an inevitable degree of repetition. 
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Table 1. Details of the introduction history of bird species introduced into New Zealand used in this study.  All data is taken from Lever 

(1987), and excludes introductions noted as unsuccessful. 

Species Introduction number 

 Total Mean Max Min 

Number of 

Introduction 

events 
1
 

Locations 
2
 

Years 

Introduced 

Period 

introduced 

(in years) 

Blackbird  Turdus merula 808 54 152 2 17 (2) Ak, C, Nl, Ot, SI 1862-1889 27 

Chaffinch  Fringella coelebs 377 34 70 5 16 (5) Ak, C, Nl, Ot, Wl 1862-1877 15 

Cirl Bunting   Emberiza cirlus 11 6 7 4 2 (0) Ot, Wl 1871-1881 10 

Common Myna  Acridotheres tristis 70 35 40 30 3 (1) Np, Wl 1875-1877 2 

Dunnock  Prunella modularis 284 18 80 1 17 (1) Ak, C, Np, Ot, Wl 1867-1882 15 

Goldfinch  Carduelis carduelis 519 40 103 1 15 (2) Ak, C, Nl, Ot, Wl 1862-1883 21 

Greenfinch  Carduelis chloris 66 13 33 2 7 (2) Ak, C, Nl, Ot 1862-1875 13 

House Sparrow  Passer Domesticus 111 14 47 1 9 (0) Ak, C, Nl, Ot, Wn 1862-1871 9 

Redpoll  Carduelis flammea 599 60 209 1 10 (0) Ak, C, Nl, Ot, Wl 1862-1875 13 

Song thrush  Turdus philomelos 474 40 96 2 14 (2) Ak, C, Ot, Wl 1865-1880 15 

Starling  Sturnus vulgaris 653 47 100 3 15(1) Ak, C, Nl, Ot, Wl 1865-1883 18 

Yellowhammer  Emberiza citrinella 462 42 312 1 12 (1) Ak, C, Nl, Ot, SI 1862-1879 17 

Mean Total 369.5 33.6 104.08 4.42 11.42 (1.42) n/a n/a 14.58 

 

1
 Numbers in brackets are number of introduction events  mentioned in text, where no introduction numbers are known. 
2
. Location codes: Ak – Auckland, C- Christchurch/Canterbury, Nl – Nelson, Np – Napier, Ot – Otago, SI – Stewart Island,  Wl – Wellington, Wn - Wanganui 
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CHAPTER 1 

POPULATION BOTTLENECK SIZE AND ECTOPARASITIC 

LOADS IN INTRODUCED NEW ZEALAND BIRDS 

ABSTRACT 

 

Population bottlenecks are a serious concern for conservation biologists as they 

may lead to a reduction in genetic diversity and increased inbreeding which may cause 

increased susceptibility to parasitic infection.  I examined the relationship between 

ectoparasite burden (chewing lice; order: Phthiraptera, suborders: Amblycera and 

Ischnocera) and population bottleneck size in ten introduced bird species of New Zealand 

(NZ) in comparison to their conspecifics in the United Kingdom (UK).  Species in NZ 

that were introduced in low numbers (i.e., had experienced more severe bottlenecks) had 

higher ectoparasite loads (measured by prevalence and abundance) than their source 

populations in the UK, a relationship that was no longer evident at moderate bottleneck 

sizes.  Intensity of infection tended to be higher in NZ, but was not correlated with 

bottleneck size.  When the two suborders of lice (Amblycera and Ischnocera) were 

examined separately the relationship between bottleneck and parasite burden was 

stronger in Amblycera.  Species that had experienced severe bottlenecks had higher 

genera richness of parasites in NZ, whilst the less bottlenecked species had greater 

diversity of genera in the UK.  Further work is required to investigate if these 

relationships are present in endangered species, which may experience stronger fitness 

reductions due to increased environmental stresses. 
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INTRODUCTION 

RELEVANCE OF POPULATION BOTTLENECKS TO CONSERVATION  

It is an inevitable truth that many conservation schemes must ultimately deal with 

the consequences of population bottlenecks.  When endangered species are brought ‘back 

from the brink’ by conservation initiatives, the process is one of increasing populations 

that have been reduced drastically in size (i.e., they have experienced a bottleneck), 

usually as a consequence of human activities.  Captive breeding and translocation 

projects are another source of bottleneck events within the conservation arena.  However, 

in these instances, the severity of the bottleneck (i.e., the number of individuals founding 

a population) is to some extent under the control of the conservation practitioner. 

Population bottlenecks are a serious concern for conservation biologists because 

they can lead to a reduction in genetic diversity, both in terms of heterozygosity and 

allelic diversity (England et al., 2003).  This has now been demonstrated in a number of 

wild populations (Ardern et al., 1997; Bodkin et al., 1999; Bouzat et al., 1998; Bradshaw 

et al., 2007; Hajji et al., 2007; Hoelzel, 1999; Hudson et al., 2000; Keller et al., 2001; 

Nyström et al., 2006; Packer et al., 1991; Zhang et al., 2004).  Decreased genetic 

diversity can be associated with reduced fitness (Reed and Frankham, 2003).  Indeed, a 

reduction in genetic diversity has been linked to extinction risk (Frankham, 1998).  A 

recent study conducted by Spielman et al. (2004) comparing heterozygosity of threatened 

and non-threatened related taxa confirmed that the heterozygosity of threatened species 

was on average 35% lower than in the non-threatened counterparts. 
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When population size is very small (as in the case of a bottleneck), mate choice is 

reduced and individuals are more likely to mate with kin, thereby increasing levels of 

inbreeding.  Inbreeding leads to a reduction in heterozygosity (Keller and Waller, 2002) 

and hence  may be a main driver of the loss of genetic variation in populations that have 

experienced a bottleneck.  The negative impact of inbreeding on a population, termed 

inbreeding depression, is well known and encompasses a suite of interrelated fitness 

effects, including a reduction in reproductive success, an increase in both physical defects 

and susceptibility to parasites and pathogens (Crnokrak and Roff, 1999; Keller and 

Waller, 2002). 

While it is clear that population bottlenecks may have severe consequences for a 

population’s fitness, and ultimately to its survival, the questions for conservation 

managers are: ‘What are the exact fitness effects of bottlenecks?’ and ‘When is a 

bottleneck severe enough to cause negative effects?’  To address these questions we need 

to determine which fitness traits are affected by population bottlenecks, and at what 

severity of bottleneck reductions in fitness are observed in those traits that might pose a 

significant threat to the health and survival of the post-bottlenecked population.  

INTRODUCED BIRDS AS A MODEL STUDY SYSTEM 

The most informative way to answer questions about the fitness effects of 

population bottlenecks is by comparing populations that have or have not been through 

bottlenecks.  However, the existence of pre- and post-bottleneck populations of the same 

species is a rare occurrence in the wild, especially in the case of endangered species 

which, by definition, have already passed through severe bottlenecks.   
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A striking exception to this is the numerous human-introduced species that have 

established in areas outside their native range.  Such species offer unique opportunities 

for a study of pre- and post-bottlenecked populations of the same species (Briskie, 2006), 

with the introduced bird species of New Zealand being a good example.  In the late 

1800’s, Acclimatisation Societies introduced numerous bird species to New Zealand 

(Lever, 1987; Thompson, 1922), a number of which are successfully established today.  

The majority of these species were imported from the United Kingdom (UK), where they 

are still extant, and careful records were kept of the numbers that survived the voyage and 

were subsequently introduced.  The number introduced varied per species, and so 

introduced birds in New Zealand today are represented by populations that have 

experienced a range of bottlenecks.  The elegance of this system is that it allows 

comparison between pre- and post bottlenecked populations (i.e., between UK & New 

Zealand) for a range of bottlenecks.  This enables investigations to be made, not only of 

how bottlenecks may affect fitness traits, but additionally, at what size bottleneck these 

fitness effects cease to be evident (or at least of lesser concern) in comparison to the 

source population.   

The usefulness of introduced birds as a model system for the study of bottlenecks 

is well illustrated by Briskie & Mackintosh (2004), who examined reproductive success 

in bottlenecked populations.  They compared hatching success of introduced birds within 

New Zealand and found it was significantly lower in species that had been founded by 

less than 150 individuals.  Moreover, when they compared hatching success in introduced 

birds to their UK counterparts they discovered that hatching success was only equal to 

pre-bottleneck populations in species founded by more than 600 individuals.  Thus, these 
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authors were able to use a study of introduced species to highlight the need to limit the 

severity of bottlenecks in the management of endangered native species. 

PARASITES AND FITNESS EFFECTS 

Parasites are ubiquitous in nature, constituting more than half of all animal species 

(Loye and Zuk, 1991; Price, 1980).  By definition, parasites exist by utilising the finite 

resources of their host for all, or at least part, of their lifespan (Szep and Møller, 2000).  

Such exploitation is predicted to incur a negative effect on host fitness, and these costs 

have been comprehensively studied in birds.  A variety of negative impacts of parasitism 

on host fitness have been found, including reductions in survivorship, fecundity, and 

growth rates (for reviews see Lehmann, 1993; Møller, 1997).   

Populations that experience a bottleneck, and hence a decrease in genetic diversity 

and increased inbreeding, may be more susceptible to parasitic infection, leading to an 

associated reduction in fitness.  A recent comparative study of three species of captive 

gazelle (Gazella spp.) confirmed that the species founded from the smallest population 

(i.e., the most severely bottlenecked), had the highest level of inbreeding and exhibited 

the highest level of gastrointestinal parasitic infection (Cassinello et al., 2001).  This 

effect has also been observed at the individual scale; a study of an isolated population of 

Soay sheep (Ovis aries) found that more inbred individuals had higher levels of nematode 

infection (Coltman et al., 1999).  In addition, Acevedo-Whitehouse et al. (2003), working 

on Californian sea lions (Zalophus californianus), observed that individuals exhibiting 

helminth and bacterial infections were more inbred than non-infected individuals.  

Furthermore, a recent study in which several frog (Rana latastea) populations of differing 

genetic diversity were exposed to a novel virus (Pearman and Garner, 2005), found that 
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populations with higher genetic diversity had significantly higher rates of survival 

following exposure. 

In birds, parasites are as diverse as they are pervasive, ranging from 

ultramicroscopic viruses to (the often larger than host) brood parasites.  Unsurprisingly, 

for a group of organisms with this breadth, effects on host fitness differ depending on the 

parasite in question (Loye and Zuk, 1991).  In this study I focus on ectoparasite loads of 

birds that have passed through bottlenecks, specifically the prevalence and abundance of 

ectoparasitic chewing lice (Order: Phthiraptera) of the suborders Amblycera and 

Ischnocera.  Both suborders are obligate parasites, completing their entire life cycle on 

the host (Clayton and Tompkins, 1994; Møller and Rozsa, 2005); however, Ischnocera 

and Amblycera lice differ somewhat in their attributes.  Ischnocerans spend their entire 

life cycle living and feeding on the host’s feathers and are dependent on vertical 

transmission from parent to offspring (Clayton and Tompkins, 1994; Møller and Rozsa, 

2005).  In contrast, amblycerans are faster moving, sometimes leave the host when it is 

disturbed or dying (Lindell et al., 2002), feed on the dermis and blood of the host, and 

hence activate the immune system (Møller and Rozsa, 2005).  These differences suggest 

that host defence mechanisms may differ between suborders (Møller and Rozsa, 2005), 

and that differential fitness costs may be incurred by the two taxonomic groups.  

The negative impact of ectoparasitic infection is well documented (Barbosa et al., 

2002; Booth et al., 1993; Lehmann, 1993; Møller, 1997).  Furthermore, recent work has 

found links between decreased heterozygosity and increased prevalence of ectoparasitism  

in a wild population of lesser kestrels (Falco naumanni)(Ortego et al., 2007), and 
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between inbreeding and ectoparasitism in fruit flies (Drosophila nigrospiracula) in the 

laboratory (Luong et al., 2007). 

STUDY AIMS 

To assess the effects of population bottlenecks on parasite loads, I compared 

introduced species in New Zealand to their non-bottlenecked source populations in the 

UK.  Ten species of bird were examined; all species are passerines and all have large 

populations in both countries.  However, the populations of these species in New Zealand 

were established in the late 1800’s from founding populations ranging from a low of 66 

to a high of 808 individuals.  Thus, the objectives of my study are to (i) investigate if 

population bottlenecks cause an increase in the prevalence and/or intensity of ecto-

parasite load, and if so (ii) at what size bottleneck that difference is no longer detectable.  

My prediction is that if the genetic effects of bottlenecks adversely impact host fitness, 

parasite loads (both prevalence and abundance) will be higher in severely bottlenecked 

species, compared to their non-bottlenecked populations in the UK.  Furthermore, I 

predict that this difference will cease to be evident at more moderate bottlenecks, where 

effects on heterozygosity and inbreeding are reduced, indicating the number of founders 

required to avoid future negative impacts.  Because of the differences in life history of the 

different ectoparasite taxa, I analysed both groups separately (Ischnocera & Amblycera) 

and together (Phthiraptera).  If population bottleneck effects on these groups are 

specifically via immune function, effects may be greater for Amblycera which are more 

likely to initiate an immune response from the host.  
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METHODS 

STUDY POPULATIONS & GENERAL METHODOLOGY 

The ten study species are all passerines that were successfully introduced into 

New Zealand in the late 1800’s and are still extant today in their native range in the UK.  

The number of individuals of each species released in New Zealand (i.e., the introduction 

effort) was carefully recorded by the Acclimatisation Societies responsible for their 

introduction (Lever, 1987; Thompson, 1922).  I used introduction effort, calculated as the 

total number released for each species, excluding any introductions that were specifically 

recorded as being unsuccessful, as a surrogate for population bottleneck size.  

Introduction effort was different for each species, and hence corresponds to a range of 

bottlenecks (see Table 1 for a full list of species and the bottlenecks they experienced).   

Birds were caught by passive mist-netting or trapping in a number of locations in 

the South Island and the south of the North Island, New Zealand (Wellington, 

Martinborough, Blenheim, Ward, Kaikoura, Lincoln, Dunedin) and in various southern 

sites in the UK (sites in Bedfordshire, Cambridgeshire, Suffolk, Norfolk, Devon 

Hertfordshire and East Sussex).  Ectoparasite populations are known to fluctuate 

seasonally (Chandra et al., 1990; Wilson et al., 2002).  Hence, as it was not possible to 

sample all populations in all seasons, I restricted my sampling to the autumn months for 

each hemisphere (Southern hemisphere: March-May 2006; Northern hemisphere: 

September-November 2005) to control for seasonal effects. 



 

Ectoparasitic loads  27

The data set presented here is comprised of samples collected by two different 

researchers (myself and C. J. MacLeod).  The collection methods by each researcher are 

described below. 

ECTOPARASITE COLLECTION. 

Ectoparasites were collected by myself using a modified dust-ruffling technique 

(Clayton and Drown, 2001; Walther and Clayton, 1997), which employs a pyrethrin-

based insecticide to remove the parasites.  Pyrethrin is a commonly used insecticide, and 

is safe for use on birds (Walther and Clayton, 1997).  The insecticide (Johnsons Cat & 

Dog Flea Powder, Johnson’s Veterinary Products Ltd, UK) contained a mixture of 0.1% 

pyrethrin and 0.8% piperonyl butoxide (a synergist that improves the efficacy of 

pyrethrin), and has been shown to have no effect on survival of Rock Doves (Columbia 

livia) (Clayton and Tompkins, 1995). 

On capture, birds were immediately individually placed in a new paper bag which 

lined a cloth bird bag, and held until ready to be processed.  On removal from the bag, the 

bird was held over a shallow collecting tray lined with clean paper, a metal identification 

ring was attached and basic biometrics taken.  The bird was then dusted with sufficient 

insecticide powder to cover the plumage, whilst being held over the collecting tray (see 

Figure 1).  The insecticidal powder was thoroughly distributed throughout the bird’s 

feathers by hand, and the plumage ‘ruffled’ for a period of 3 min to dislodge the 

parasites.  The bird was then returned to the paper bag for a period of 15 min, and the 

contents of the collecting tray tipped into a 1.5 ml screw-top vial (SARSTEDT Australia 

Pty. Ltd, Australia) containing 90% ethanol.  After 15 min the ruffling process was 

repeated for another 3 min and the bird released.  The content of the paper bag was 
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emptied onto the paper in the collecting tray, and everything on the paper emptied into 

the vial of 90% ethanol.  A digital kitchen timer with an alarm was used throughout to 

ensure consistency of timing.  To avoid contamination, a new paper bag and collecting 

tray paper was used for each individual.  Before a new bird was processed, the collecting 

tray was swabbed with alcohol as were the latex gloves worn by the researcher. 

Samples collected by C.J MacLeod (C.J.M.) were made at the same time as those 

collected by myself, in both New Zealand and the UK but at different locations within 

each country.  This allowed us to combine our data and increase our survey effort and 

sample sizes above that what each could accomplish alone.  The ectoparasite collection 

methods used were very similar; birds were held in paper bags, and the same protocol of 

dust-ruffling for 3 min, holding for 15 min and ruffling for a further 3 min was employed.  

The insecticide used in New Zealand by C.J.M. differed in the active ingredient (Vitapet 

Dog Flea Powder, 10g/kg Permethrin, Vitapet Corporation, Lower Hutt, NZ), however, 

permethrin is a synthetic derivative of pyrethrin that has the same insecticidal effects.  

There were no significant differences in prevalence (Fisher’s exact test) or mean intensity 

(Bootstrap t-test) between the two data sets (S.E.A & C.J.M), in either country (S.E.Allen 

unpubl.).  Birds were dust-ruffled over a large funnel, with a 1.5 ml vial attached to the 

base.  After the dust ruffling procedure, the funnel contents were flushed into the vial 

with 90% ethanol.   

IDENTIFICATION OF ECTOPARASITES. 

Ectoparasite samples were identified and quantified by either Ricardo Palma (Te 

Papa Museum, Wellington), or Terry Galloway (University of Manitoba, Canada).  

Chewing lice (Phthiraptera) were identified to the genus level.  There are difficulties 
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differentiating species of louse in some genera at certain life stages (R. Palma. pers. 

comm.), and some taxonomic ambiguities exist (MacLeod et al. unpubl. data), therefore 

all analyses took place at the genus level or higher (see Table 1 for details of the genera 

identified per host species).  Ectoparasites other than chewing lice were identified to 

genus or order, and were present in very low numbers. 

QUANTIFICATION OF ECTOPARASITES. 

Parasitic infection is generally quantified in three ways:  prevalence, intensity and 

abundance.  According to Bush et al. (1997), prevalence is calculated as the number of 

hosts infected by one or more parasite of a taxonomic group, divided by the total number 

of hosts; intensity is the number of individual parasites found on a host, and abundance is 

the number of parasites on a host, irrespective of whether the host is infected or not.  

Thus mean intensity is therefore the total number of parasites found in a sample of birds, 

divided by the number of hosts infected by that parasite, and mean abundance is 

calculated as the total number of parasites (i.e., total number of phthirapterans, 

amblycerans, or ischnocerans) divided by the total number of hosts sampled and includes 

hosts with no parasites. 

In this study, I calculated all three measures of parasite load but primarily used 

abundance and prevalence to quantify and analyse parasite loads across populations and 

species.  The use of abundance is preferable to intensity when wishing to examine and 

compare whole host populations, including hosts that harbour no parasites (Bush et al., 

1997).  It should be noted that mean abundance is the product of mean intensity and 

prevalence, and thus not an independent measure of parasite load from prevalence. 
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STATISTICAL ANALYSES 

The number of parasites in Phthiraptera (PHTH), Amblycera (AMBL) and 

Ischnocera (ISCH) were analysed separately.  My aim was to compare differences in 

prevalence and abundance of ectoparasites within host species, between the two 

countries, New Zealand (NZ) and UK, and to investigate whether these differences are 

related to bottleneck size.  

As age and sex of a host are known to influence parasite load (Wilson et al., 

2002), the data were examined to see if these variables required inclusion in the final 

models.  Generalized Linear Mixed Models (GLMMs) were used to investigate age 

effects, as  GLMMs enable analysis of data that are structured into groups and are non-

normally distributed (Paterson and Lello, 2003).  A GLMM was fitted to each data set 

with a binomial error term fitted for prevalence, and a quasipoisson error term for 

abundance and intensity.  Age (‘hatch year’ or ‘after hatch year’), country (NZ or UK), 

and the interaction between age and country were fitted as fixed effects, and species as a 

random effect.  Birds of unknown age were excluded.  The term of interest in the model 

was the interaction between age and country which, if significant, would suggest that age 

effects differed between countries.  This interaction term in the PHTH and AMBL data 

sets was non-significant (at P < 0.05) for both prevalence and abundance, indicating that 

age class can be excluded as a variable.  Ischnocera lice were not found on enough 

species in both countries to conduct this analysis, and hence the ISCH data set was not 

examined.  However, it seems fair to make the assumption that age classes would not 

differ between countries for Ischnocera parasite load anymore than they would for 

Amblycera.  
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A different approach was necessary to investigate the influence of sex class on 

parasite load, as unfortunately, sex was unknown for a subset of the UK data.  Therefore, 

only the NZ data was checked to see if prevalence, intensity or abundance was affected 

by sex class.  GLMMs were run with sex (male or female) as the fixed effect, and species 

as the random effect (with a binomial error term fitted for prevalence, and a quasipoisson 

error term for abundance and intensity), after excluding birds of unknown sex.  Sex was 

not found to have a significant effect on abundance, intensity or prevalence (P < 0.05) in 

any of the three data sets (PHTH, AMBL or ISCH).  Hence, for all subsequent analyses 

sample populations were not subdivided into age or sex categories, and birds of unknown 

age and/or sex were included in the data sets. 

Prevalence, mean intensity and mean abundance were calculated for each species 

in both NZ and UK for all three data sets (PHTH, AMBL, ISCH; see Table 2).  For 

completeness,  the variance-to-mean ratio (a measure of aggregation) is also reported. 

The difference in prevalence between the UK and NZ was calculated for each bird 

species, for all three data sets.  Linear regressions were then fitted to these differences, 

with bottleneck (log-transformed) as the explanatory variable and difference in 

prevalence (UK – NZ) as the response variable.  

Mean intensities were compared between countries by calculating the percentage 

change from the UK value to the NZ value.  Intensity comparisons were conducted on a 

reduced number of species, as comparison was only possible when populations in both 

countries were infected with the louse sub-order in question.  Linear regressions were 

fitted between percentage change in mean intensity against bottleneck (log transformed). 
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The difference in mean abundance (which is a composite of mean intensity and 

prevalence) between the two countries was also calculated (UK – NZ per species) and 

linear regressions fitted against bottleneck (log transformed).   

Comparisons of prevalence, mean intensity, and mean abundance were also made 

on a species-by-species basis.  Prevalence was compared using Fisher’s exact test, and 

mean abundance and intensity compared using a bootstrap test (see Rosza et al. (2000) 

for details), using the software Quantitative Parasitology 3.0.  

To investigate differences in richness of parasites at the genus level, the difference 

in genera richness between the two countries was regressed against bottleneck size (log 

transformed). 

 All statistics, other than the individual species comparisons (using Quantitative 

Parasitology 3.0) were carried out using R v2.6.2 (R Development Core Team, 2008). 

RESULTS 

Difference in prevalence between UK and NZ: 

The difference in Phthiraptera prevalence on birds in the UK and NZ was 

positively correlated with the population bottleneck the NZ birds had experienced (F = 

6.54, df = 8, r
2 
= 0.45, P = 0.03).  At severe bottlenecks, prevalence tended to be higher in 

NZ, whilst at more moderate bottlenecks the reverse was true (Figure 2a).  The difference 

in prevalence of amblyceran lice between the UK and NZ exhibited the same 

relationship, and this correlation was also significant (F = 6.23, df = 8, r
2 
= 0.44, P = 0.04,  

Figure 2b). Prevalence differences in ischnoceran lice again exhibited a similar trend as 
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phthirapterans and amblycerans, but this trend was not significant (F = 2.51, df = 8, r
2 
= 

0.24, P = 0.15, Figure 2c).   

Difference in intensity between UK and NZ: 

The proportional change in parasite intensity between the two countries was 

regressed against bottleneck size.  No correlation was found between bottleneck size and 

change in intensity for either the phthirapteran or amblyceran data set, (P = 0.30 & P = 

0.29, respectively); however, the majority of species experienced higher intensities in NZ 

(see Figures 3a and b).  The correlation between change in intensity and bottleneck size 

for ischnoceran lice was found to be positive (P = 0.03), indicating that the difference in 

intensity increased significantly at larger bottlenecks.  However, the regression was only 

conducted on three species, and lacks statistical rigor.  All three species had higher 

intensities in NZ (see Figure 3c). 

Difference in abundance between UK and NZ 

A positive correlation was found between the differences in mean abundance of 

Phthiraptera lice and bottleneck size (see Figure 4a).  At severe bottlenecks, mean 

abundance was greater in New Zealand than the UK, while at less severe bottlenecks, the 

differences in mean abundance became less.  This correlation was highly significant (F = 

11.96, df = 8, r
2 
= 0.60, P = 0.009).  The same highly significant correlation was found if 

mean abundance of amblyceran lice was regressed against bottleneck size (F = 11.88, df 

= 8, r
2 
= 0.60, P = 0.009, Figure 4b).  The regression of difference in mean abundance of 

Ischnocera lice against bottleneck, was non-significant (P = 0.13), although the trend was 

in the same direction as the amblyceran data (see Figure 4c.)   
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Within-species comparisons. 

The prevalence, mean intensity, and mean abundance of Amblycera and 

Ischnocera were compared between the UK and New Zealand on a species-by-species 

basis.  Prevalence of Amblycera was found to be significantly higher in New Zealand in 

the two species that had experienced the most severe bottlenecks – greenfinch (P < 0.05), 

house sparrow (P < 0.05), and tended towards significance in third most severely 

bottlenecked species, the dunnock (0.05 < P < 0.1).  Mean abundance of Amblycera was 

also significantly higher in house sparrows (P < 0.05) in New Zealand.  No other species 

exhibited significant differences in prevalence, abundance, or intensity for Amblycera 

lice.  No significant differences existed for Ischnocera load for any species, 

Genera richness 

The difference in the number of genera of chewing lice (Phthiraptera) found on 

host populations in the UK and NZ (see Table 1) was regressed against bottleneck size, 

there was a positive, non-significant trend with populations in New Zealand that had 

experienced more severe bottlenecks having greater genera richness than in the UK (F = 

4.49, df = 8, r
2 
= 0.36, P = 0.067).  The reverse was true for species that had gone through 

more moderate bottlenecks (Figure 5).   

 

DISCUSSION 

In this study I found that the ectoparasite load of chewing lice (Order: 

Phthiraptera) on introduced bird species in New Zealand was significantly affected by the 

severity of the bottleneck that each species had experienced, when compared to their 
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source populations in the UK.  Species in NZ that were introduced in low numbers (and 

therefore had experienced more severe bottlenecks), had a significantly higher 

ectoparasite load when compared to their non-bottlenecked counterparts in the UK, while 

loads were similar between the two countries at more moderate bottlenecks.   

Ectoparasite load was quantified using three measures: (1) prevalence, which is 

the number of birds in a population that were infested with ectoparasites; (2) mean 

intensity, defined as the average number of parasites on infested individuals (i.e., 

excluding zero-class individuals); and (3) mean abundance, which is the average number 

of parasites per bird, including un-infested individuals.  Both prevalence and mean 

abundance (which accounts for intensity of infection) were correlated with the size of the 

population bottleneck.  Although intensity did not demonstrate the same correlation, it 

also tended to be higher in NZ birds.  The implication of these correlations is that 

ectoparasitic infection increases with severity of bottleneck, and in general, species that 

passed through the most severe bottlenecks were found to have more individuals infested 

with lice (higher prevalence).  As the analyses were conducted on intraspecific 

differences, this pattern is independent of any species specific levels of infestations.   

The two suborders of chewing lice, Amblycera and Ischnocera, were also 

examined individually.  I found that prevalence, mean intensity and mean abundance of 

Amblycera exhibited the same relationship with population bottleneck size as 

Phthiraptera.  The regression between bottleneck size and change in mean abundance was 

particularly strong, with almost 60% of the variance in differences between mean 

amblyceran abundance in the two countries being explained by the bottleneck size the NZ 

populations experienced.  Intensity was not correlated with bottleneck size: in 4 out of 6 
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species, intensity was higher in NZ (although these differences were not significant in 

single species comparisons).  When species were analysed individually, it was found that 

significant differences in prevalence existed for the two species that had experienced the 

most severe bottlenecks – greenfinches, house sparrows (bottlenecks of 66 and 111 

respectively). and tended towards significance in the third most bottlenecked species the 

dunnock (bottleneck of 284).  

Whilst the differences in prevalence and mean abundance of Ischnocera between 

the two countries exhibited the same trend as for Amblyceran lice, the relationship was 

not significant.  Change in mean intensity was correlated with bottleneck size, and 

increased as bottleneck size increased, but a comparison was only possible between three 

species, and so the statistical rigor of this regression is weak, although in all three 

instances intensity was higher in NZ.  It would appear that ischnoceran load is less 

affected by population bottlenecks in the host populations studied than Amblyceran load.  

However, this result may be due to lower numbers of ischnocerans being collected 

overall, and therefore a lack of statistical rigor, rather than a biologically significant 

difference. 

When differences in genera richness were investigated, I found a trend indicating 

that species that had experienced severe bottlenecks had higher genera richness in New 

Zealand, whilst the less bottlenecked species had greater diversity of genera in the UK.  

To some extent this appears to contradict the hypothesis that introduced species 

experience a ‘release’ from their native parasites (MacLeod et al., 2008b; Torchin et al., 

2003).  However, my results may be more an indication of the abundance of different 

genera, as opposed to their existence per se.  The fact that avian lice ‘miss the boat’ and 
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fail to establish on introduced bird populations in New Zealand has been well 

documented (Paterson et al., 1999), but whilst bird species introduced in low numbers 

have a lower diversity of lice genera than their source populations (as predicted by the 

‘missing the boat’ theory), this reduction may be tempered by a concomitant increase in 

the abundance of surviving lice genera, meaning they are more often detected in New 

Zealand.  Additionally, host switching events, whereby parasites colonise new hosts, may 

also have occurred following bird introductions in New Zealand, especially as a number 

of the bird species were close relatives (Torchin and Mitchell, 2004).  Introduced bird 

species that experienced severe bottlenecks may be more prone to being colonised (or re-

colonised) by lice genera originating from populations of related bird species, that were 

introduced in higher numbers, with subsequently higher parasite richness, or indeed by 

native parasites.  Such potential occurrences have fascinating and significant 

implications, both for enemy release theories (Torchin et al., 2003), and for conservation 

management at a community level.   

Birds host an extensive parasite fauna, ranging from microscopic viruses to the 

larger than host brood parasites, and ectoparasites represent only one component of this 

parasitic fauna.  Ectoparasites however are a good candidate for study, as they can be 

readily sampled from wild host populations with minimum disturbance to the bird (e.g., 

the dust-ruffling procedure takes less than 30 mins).  Whilst phthirapterans were not the 

only external parasites I collected, they were the only group to be reliably found on 

enough hosts (and host species) for comparisons to be made.  The other ectoparasites 

collected (e.g., Diptera, Siphonaptera) were found in such low numbers, that the sampling 

effort would require amplification to unrealistic levels to detect any trends and accurate 
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quantification would be complicated by the increased mobility of these taxa.  Feather 

mites (Astigmata) were the only other class of arthropod found in any significant number 

on the birds sampled, however current evidence suggests they form a commensalistic 

relationship with the host (Walter and Proctor, 1999), and whether they exert fitness costs 

is ambiguous.  

Introduced populations of birds in New Zealand that had experienced severe 

population bottlenecks had higher louse loads than their source population, and whilst the 

fitness consequences of this increase is beyond the scope of this study, it seems 

reasonable to assume that costs are incurred.  Chewing lice (Order: Phthiraptera) are 

obligate parasites, that complete their entire life cycle on a bird’s body surface, and have 

a number effects on host fitness.  For example, they cause feather damage (Barbosa et al., 

2002; Pap et al., 2005), which in turn impacts on flight behaviour (Barbosa et al. 2002), 

and has increased energetic costs (Booth et al., 1993).  Chewing lice load has also been 

negatively linked to body condition and territory ownership (Whiteman and Parker, 2004) 

and to over-winter survival (Clayton et al., 1999).  Furthermore, there are ‘hidden’ costs 

to ectoparasitism, as behavioural adaptations designed to reduce parasite load (e.g., 

preening) are both energetically costly, and decrease time available for other important 

functions such as foraging and predator vigilance (Lehmann, 1993).   

The two suborders of chewing lice, Amblycera and Ischnocera, may induce 

differing fitness costs.  Ischnocera spend the entirety of their life cycle on a bird’s 

feathers, feeding on the non-living parts of the feather barbules, and rarely coming into 

direct contact with the host’s living tissues (Clayton et al., 1999; Clayton and Tompkins, 

1994; Møller and Rozsa, 2005).  Consequently, the main fitness effects they impose on a 
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host are believed to be due to feather damage, and the energetic costs associated with this 

(Barbosa et al., 2002; Booth et al., 1993; Clayton, 1990).  Amblyceran lice, on the other 

hand, feed on the skin and blood of hosts (Møller and Rozsa, 2005), and also act as 

vectors for several endoparasites (Clayton, 1990).  Amblycera would thus be expected to 

stimulate both the immunological and behavioural defences of a host.  Indeed, 

amblyceran infestation is known to stimulate scratching and dermatitis (Clayton and 

Tompkins, 1995) in hosts, an expected response to ectoparasitic stimulation of the 

immune system (McLaren, 1990).  Furthermore, in an interspecific comparison, Møller & 

Rozsa (2005) found that amblyceran, but not ischnoceran, taxonomic richness was 

predicted by immune response, suggesting an interaction between Amblycera lice and 

host immunity that is absent for Ischnocera.  It would be predicated then, that amblyceran 

lice are more virulent than ischnocerans, stimulating costly immunological and 

behavioural responses, whilst introducing further infection and directly feeding on host 

nutrients (blood).  In a study of chewing lice load on Galapagos hawks (Buteo 

galapagoenisis), Whiteman and Parker (2004) found that whilst correlations between 

louse abundance and body condition existed for both suborders, it was stronger for 

amblycerans.   

In my study, I found that amblyceran prevalence and abundance was much more 

strongly correlated to population bottleneck size than ischnoceran load.  In fact, when 

species were analysed individually, the three species that had experienced the most severe 

bottlenecks (greenfinches, house sparrows and dunnocks, with bottlenecks of 66, 111 and 

284, respectively) all exhibited significantly (or in the case of dunnocks, tending towards 

significantly) higher prevalence of amblyceran lice in NZ, whilst significant differences 
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did not exist for Ischnocera.  It seems then, that populations that have experienced a 

severe bottleneck are more prone to infestation by ectoparasites that incur higher fitness 

costs, activating immunological and behavioural defences and directly competing for host 

resources. 

Whilst my study strongly suggests that a negative correlation exists between 

ectoparasite load and population bottleneck size, it is unknown whether bottlenecked 

populations experienced a reduction in fitness which subsequently led to an increase in 

parasite load, or vice versa.  Population bottlenecks may reduce genetic diversity and 

increase levels of inbreeding, and a number of studies have found evidence that these 

factors lead to increased parasitism (Acevedo-Whitehouse et al., 2003; Cassinello et al., 

2001; Coltman et al., 1999; Ortego et al., 2007).  A study of the effects of inbreeding on 

susceptibly to ectoparasitism in fruit fly (Drosphila nigrospiracula) – mite (Macrocheles 

subbadius) system, (Luong et al., 2007) found that inbreeding increased susceptibility 

and that this appeared to mediated by energetic constraint.  These authors also found that 

more inbred lines of flies exhibited lower stamina, and that exhausted flies were more 

likely to suffer parasitism, suggesting that more inbred flies were less able to mount 

suitable, energetically costly defensive behaviour (Luong et al., 2007).   

Immunocompetence has been linked to genetic diversity (Hawley et al., 2005; 

Sanjayan et al., 1996), and some studies have demonstrated a decrease in immunological 

responses in more inbred or bottlenecked populations (Hale and Briskie, 2007; Reid et 

al., 2003; Reid et al., 2007).  Effects on immunity could be mediated directly through 

genetic impoverishment, or, as immune defence is itself costly (Lochmiller and 

Deerenberg, 2000), through more general energetic constraint processes.  
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In my study system, it would seem likely that defence against amblyceran lice 

(but not ischnoceran) is partly dependent on mounting suitable immunological defences 

(Møller and Rozsa, 2005), and hence if bottlenecked populations of birds are 

immunocompromised it may explain why significantly higher amblyceran, but not 

ischnoceran loads exist on these populations.  However, in a concurrent study on 

immunity (measured via the PHA stimulated immune response) in the same study species 

(Chapter 3), I found that species that had experienced more severe bottlenecks had 

stronger immune responses.  This suggests that birds that are experiencing higher parasite 

loads are investing more in immunological defence than less bottlenecked species, 

presumably to the detriment of other energetically costly processes.   

Factors other than the bottleneck a population experiences could account for 

variation in parasitic load.  Previous studies have found links between host life history 

(e.g., polygyny, group-living) and risk of parasitism (see Møller (1997) for review).  

However, to a large extent, the design of this study avoids these confounding factors, as 

comparisons are made within species.  Potentially, species could change their life history 

characteristics when introduced to a novel environment, and so introduced bird species in 

New Zealand may differ from their source populations in a trait that influences parasite 

load.  The species examined in this study have similar life histories and are found in the 

same locations (indeed several species form mixed flocks in the autumn and winter), so if 

such a change did occur following introduction, then one would expect it to take place in 

all species equally, and therefore the trend with bottleneck would not be evident.  Parasite 

abundance may also be linked to host population density (Arneberg et al., 1998), and 

recent work has found that densities of introduced bird species are considerably higher in 
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New Zealand than in the UK (MacLeod et al., 2008a).  Whilst these densities do not 

correlate to bottleneck size (S.E.Allen unpubl. data), it is of note that two severely 

bottlenecked species (greenfinch and house sparrow) are found at very high densities in 

New Zealand, and this avenue of study requires further investigation.   

The findings of this study suggest that species that experience severe population 

bottlenecks will be more likely to suffer higher parasite loads, even though many species 

in my study passed through bottlenecks of several hundred birds. It should be 

remembered that the species these data were collected from are introduced birds that have 

successfully established in a new country.  These species are in fact more successful in 

New Zealand, their introduced range, than in the UK, their source country (MacLeod et 

al., 2008a), suggesting that conditions are more favourable in their introduced range.  

However, one implication of the work here is that despite birds being introduced to 

perhaps a relatively benign environment, the negative effects of population bottlenecks 

are still exhibited, suggesting that for species under greater environmental stress (i.e., 

endangered species) the effects might be stronger and expressed at even larger bottleneck 

sizes.  Studies investigating the effect of bottlenecks on endangered and threatened 

species are required to investigate this hypothesis. 

Taken literally, my observations on high parasite loads in species passing through 

relatively large bottlenecks would suggest that conservation practitioners should aim to 

conduct translocations with numbers in the hundreds, rather than the tens of individuals, 

to avoid potential deleterious impacts linked to increased parasite burdens.  In most 

instances this will be unrealistic (in some cases the total global population of an 

endangered species will be less than that), however the rule of thumb for translocation 
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should perhaps be ‘the bigger the better’.  In the early 90’s the average number of 

individuals translocated was 75 individuals (Wolf et al., 1996), my findings suggest that 

at these numbers populations will experience increased parasitism.  Whilst this may be 

unavoidable, it should not be discounted, and management plans would benefit from 

incorporating these considerations.  Furthermore, these findings may have community 

level implications.  For example, commonly in New Zealand a number of different 

endangered bird species are translocated to the same predator-free offshore island (e.g., 

TiriTiri Matangi, Ulva), which will already have extant populations of bird species.  As 

population bottlenecks may increase parasite abundance and potentially the likelihood of 

colonisation by new parasites, then interspecific interactions on crowded islands may 

exacerbate this.   

In conclusion, the introduced bird species of New Zealand that experienced 

relatively severe bottlenecks (66-284) had higher parasite loads than their source 

populations, a relationship that was no longer evident at moderate bottleneck sizes.  

Further work is required to investigate if this pattern is also present in endangered 

species, which may experience stronger fitness reductions due to increased environmental 

stresses. 
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TABLES 

Table 1. List of bird species and the  population bottleneck they experienced in New 

Zealand (calculated as the maximum number of successfully introduced individuals from 

Lever (1987)) and parasite genera found on host species in this study in the United Kingdom 

(UK) and New Zealand (NZ) 

 

    

Species Bottleneck UK NZ 

 

Greenfinch 

Carduelis chloris 

66 Menacanthus 

Myrsidea 

Menacanthus 

Myrsidea 

Brueelia 

House Sparrow 

Passer Domesticus 

111 Philopterus Menacanthus 

Brueelia 

 

Dunnock 

Prunella modularis 

284 None Menacanthus 

Myrsidea 

Philopterus 

 

Chaffinch 

Fringella coelebs 

377 Menacanthus 

Ricinus 

 

Menacanthus 

Yellowhammer 

Emberiza citronella 

 

462 None Brueelia 

 

Song Thrush 

Turdus philomelos 

474 Menacanthus 

Brueelia 

Menacanthus 

Philopterus 

 

Goldfinch 

Carduelis carduelis 

519 Menacanthus 

Myrsidea 

Menacanthus 

Myrsidea 

 

Redpoll 

Carduelis flammea 

599 Menacanthus 

Philopterus 

 

None 

Starling 

Sturnus vulgaris 

653 Menacanthus 

Myrsidea 

Sturnidoecus 

 

Menacanthus 

Blackbird 

Turdus merula 

808 Menacanthus 

Myrsidea 

Philopterus 

Brueelia 

Menacanthus 

Philopterus 
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Table 2.  Summary statistics for ectoparasites collected on NZ and UK populations a) Phthiraptera, b) Amblycera and c) Ischnocera.  See 

methods section for definations of the summary statistics.  Intensity and aggregation can not be calculated for prevalances = 0%, dashed 

lines (---) indicate where this is the case. 

a) Phthiraptera 

 

Species Sample size Prevalence Abundance Intensity Aggregation 

 UK NZ UK NZ UK NZ UK NZ UK NZ 

Carduelis chloris 61 49 3.28 22.45 0.07 1.84 2.00 8.18 2.48 20.11 

Passer Domesticus 47 89 17.02 44.94 0.38 2.33 2.25 5.18 3.58 9.04 

Prunella modularis 61 61 0.00 13.11 0.00 0.31 --- 2.38 --- 4.45 

Fringella coelebs 35 50 5.71 2.00 0.09 0.02 1.50 1.00 1.63 1.00 

Emberiza citrinella 5 21 0.00 9.52 0.00 0.10 --- 1.00 --- 0.95 

Turdus philomelos 31 30 19.35 26.67 0.45 2.07 2.33 7.75 3.08 22.02 

Carduelis carduelis 59 86 6.78 4.65 0.17 0.50 2.50 10.75 3.29 27.89 

Carduelis flammea 16 17 18.75 0.00 0.19 0.00 1.00 --- 0.87 --- 

Sturnus vulgaris 13 9 69.23 33.33 3.62 2.11 5.22 6.33 7.63 9.17 

Turdus merula 62 74 34.43 40.54 3.97 3.12 11.52 7.70 102.05 21.27 
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b) Amblycera 

 

Species Sample size Prevalence Abundance Intensity Aggregation 

 UK NZ UK NZ UK NZ UK NZ UK NZ 

Carduelis chloris 61 49 3.28 20.41 0.07 1.80 2.00 8.80 2.48 20.60 

Passer Domesticus 47 89 0.00 28.09 0.00 1.27 --- 4.52 --- 6.92 

Prunella modularis 61 61 0.00 8.20 0.00 0.21 --- 2.60 --- 5.34 

Fringella coelebs 35 50 5.71 2.00 0.09 0.02 1.50 1.00 1.63 1.00 

Emberiza citrinella 5 21 0.00 0.00 0.00 0.00 --- --- --- --- 

Turdus philomelos 31 30 12.90 13.33 0.39 1.70 3.00 12.75 3.56 26.70 

Carduelis carduelis 59 86 6.78 4.65 0.17 0.50 2.50 10.75 3.29 27.89 

Carduelis flammea 16 17 6.25 0.00 0.06 0.00 1.00 --- 1.00 --- 

Sturnus vulgaris 13 9 61.54 33.33 3.54 2.11 5.75 6.33 7.94 9.17 

Turdus merula 62 74 24.59 37.84 3.79 2.99 15.40 7.89 107.10 22.27 
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c) Ischnocera 

 

Species Sample size Prevalence Abundance Intensity Aggregation 

 UK NZ UK NZ UK NZ UK NZ UK NZ 

Carduelis chloris 61 49 0.00 4.08 0.00 0.04 --- 1.00 --- 0.98 

Passer Domesticus 47 89 17.02 24.72 0.38 1.06 2.25 4.27 3.58 12.29 

Prunella modularis 61 61 0.00 6.56 0.00 0.10 --- 1.50 --- 1.59 

Fringella coelebs 35 50 0.00 0.00 0.00 0.00 --- --- --- --- 

Emberiza citrinella 5 21 0.00 9.52 0.00 0.10 --- 1.00 --- 0.95 

Turdus philomelos 31 30 6.45 16.67 0.06 0.37 1.00 2.20 0.97 3.66 

Carduelis carduelis 59 86 0.00 0.00 0.00 0.00 --- --- --- --- 

Carduelis flammea 16 17 12.50 0.00 0.13 0.00 1.00 --- 0.93 --- 

Sturnus vulgaris 13 9 7.69 0.00 0.08 0.00 1.00 --- 1.00 --- 

Turdus merula 62 74 9.84 4.05 0.11 0.11 1.17 2.67 1.19 2.68 
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FIGURES 

Figure 1.. Ectoparasite collection and an example of a chewing louse. 

a) Goldfinch (Carduelis carduelis) being ‘dust-ruffled’ over a collecting tray to obtain 

ectoparasite samples. 

 

b) Menacanthus eurysternus
a
 (Phthiraptera: Amblycera: Menoponidae), a commonly found 

ectoparasite.   

 

 

a
 Voucher specimen (T.Galloway, University of Manitoba, Canada) collected from a starling (Sturnus 

vulgaris) in Canada. 
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Figure 2.  Difference in prevalence between the UK and New Zealand (UK-NZ) in relation 

to the population bottleneck (log scale) the NZ birds experienced of a) Phthiraptera, b) 

Amblycera and c) Ischnocera. Solid lines indicate a significant linear regression, dashed 

indicate non-significant. 
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Figure 3.  Difference in mean intensities between the UK and New Zealand populations 

(UK-NZ) in relation to the population bottleneck (log scale) NZ birds experienced of a) 

Phthiraptera, b) Amblycera and c) Ischnocera. Solid lines indicate a significant linear 

regression, dashed indicate non-significant. 
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Figure 4.  Difference in mean abundance between the UK and New Zealand populations 

(UK-NZ) in relation to the population bottleneck (log scale) NZ birds experienced of a) 

Phthiraptera, b) Amblycera and c) Ischnocera. Solid lines indicate a significant linear 

regression, dashed indicate non-significant. 
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Figure 5.  Difference in number of Phthiraptera Genera between UK and NZ populations in 

relation to population bottleneck (log scale). 
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CHAPTER 2 

THE INFLUENCE OF POPULATION BOTTLENECK SIZE ON 

IMMUNOCOMPETENCE AND INFECTION BY AVIAN 

MALARIA IN INTRODUCED BIRDS OF NEW ZEALAND 

ABSTRACT 

Population bottlenecks may lead to a reduction in genetic diversity and an 

increase in inbreeding, which together can result in a decrease in fitness.  One 

consequence of population bottlenecks may be a reduction in immunocompetence and an 

associated increase in susceptibly to parasites and pathogens.  This is of conservation 

significance, as bottlenecks are frequently encountered in species under conservation 

management and disease has been implicated in the demise of a number of endangered 

species.  In this study, I investigated haematological responses and prevalence of avian 

malaria (Plasmodium & Haemoproteus spp.) in introduced bird species of New Zealand 

that experienced a range of bottleneck sizes during their establishment.  I found that 

heterophil/lymphocyte ratio (a measure of chronic stress or current infectious disease) 

was significantly higher in species that had experienced severe bottlenecks, when 

compared to their non-bottlenecked conspecifics in the United Kingdom.  Prevalence of 

avian malaria was negatively correlated with bottleneck size (species experiencing more 

severe bottlenecks had higher prevalence) within New Zealand.  Furthermore, less 

severely bottlenecked species exhibited elevated lymphocyte and total leucocyte counts 

in response to malarial infection, whilst more severely bottlenecked species did not.  

Overall, these results suggest that population bottlenecks may be linked to a decrease in 

immunocompetence and increased susceptibility to malaria.  The implications for 

conservation are discussed, and recommendation for future study made. 
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INTRODUCTION 

POPULATION BOTTLENECKS & CONSERVATION RELEVANCE 

Parasites and pathogens have been implicated in the population decline of a 

number of endangered species (Dobson and McCallum, 1997) and emerging infectious 

diseases are an acknowledged conservation issue (Dobson and Foufopoulos, 2001; 

Wikelski et al., 2004).  Any conservation project, therefore, must consider the 

immunological health of a population and guard against increased susceptibility to 

disease. 

Population bottlenecks are commonplace in conservation, occurring whenever a 

population experiences a significant reduction in size.  Whenever a captive breeding 

programme is implemented or when individuals of a threatened species are translocated 

to found a new population, a bottleneck occurs.  The reduction of populations to small 

numbers through such bottlenecks is hypothesized to cause reductions in genetic 

diversity, both in terms of decreased allelic diversity, and decreased heterozygosity as a 

result of inbreeding (England et al., 2003; Keller and Waller, 2002).  These predicted 

genetic effects have now been demonstrated in a number of wild populations  (Ardern et 

al., 1997; Bodkin et al., 1999; Bouzat et al., 1998; Bradshaw et al., 2007; Hajji et al., 

2007; Hoelzel, 1999; Hudson et al., 2000; Keller et al., 2001; Nyström et al., 2006; 

Packer et al., 1991; Zhang et al., 2004).  Furthermore, a decrease in genetic diversity has 

been correlated with a reduction in fitness (Reed and Frankham, 2003), and increased 

extinction risk (Frankham, 2005).   
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Whilst it is becoming clear that population bottlenecks, via inbreeding and genetic 

impoverishment, may have severe consequences to a population’s fitness, and ultimately 

to its survival, the question of relevance for conservation managers is how are these 

fitness costs manifested, and at what severity of bottleneck?   

Evidence is mounting that decreased genetic diversity renders individuals more 

prone to disease and parasitic infection (Arkush et al., 2002; Hawley et al., 2005; Hedrick 

et al., 2001; O'Brien and Evermann, 1988; Pearman and Garner, 2005).  For example, a 

recent study by MacDougall-Shackleton et al. (2005) found that increased heterozygosity 

decreased the individual risk of infection by avian malaria (Haemproteus spp.) in an out-

bred population of white-crowned sparrows (Zonotrichia leucophrys oriantha). 

A decrease in immunocompetence has also been linked to reduced genetic 

diversity (Hawley et al., 2005; Sanjayan et al., 1996), and inbreeding has been shown to 

have detrimental effects on immune function.  For example, work on an insular, 

pedigreed population of song sparrows (Melospiza melodia) found that more inbred 

individuals had lower immune responses (Reid et al., 2003).   

Despite the inference that population bottlenecks may render a population more 

prone to disease, due to the associated reduction in genetic diversity and increased 

inbreeding, few studies have explicitly examined this prediction.  In a recent study, Hale 

and Briskie (2007) compared a severely bottlenecked population (founded by 5 

individuals) of the endemic New Zealand robin (Petroica australis) with its source 

population and found that birds in the bottlenecked population were 

immunocompromised.  However, little other work has been done on this subject and 

research on the interplay between genetic diversity and disease resistance in bottlenecked 
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populations is urgently required.  For conservation biologists, questions of most urgent 

relevance are whether population bottlenecks decrease immunocompetence and increase 

susceptibility to disease and, if so, at what size bottlenecks are these fitness problems 

manifested? 

INTRODUCED BIRDS AS STUDY SYSTEM 

Introduced species offer unique opportunities for a study of pre- and post-

bottlenecked populations of the same species (Briskie, 2006), and the introduced bird 

species of New Zealand are a good example.  In the late 1800’s Acclimatisation Societies 

introduced numerous bird species (mainly from the United Kingdom – UK) to New 

Zealand (Lever, 1987; Thompson, 1922), a number of which are successfully established 

today.  The number introduced was carefully recorded and varied per species, and so 

introduced birds in New Zealand today are represented by populations that have 

experienced a range of bottlenecks.  The elegance of this system is that it allows both 

interspecific comparisons across a range of bottlenecks, and intraspecifc comparisons 

between pre- and post- bottlenecked populations (i.e., between the U.K. & New Zealand).  

This enables investigations to be made, not only of how bottlenecks may affect fitness 

traits, but additionally, at what size bottleneck these fitness effects cease to be evident (or 

at least of lesser concern) in comparison to the source population.   

Briskie & Mackintosh (2004) exploited this system to examine reproductive 

success in pre- and post- bottlenecked populations, and found that hatching success was 

significantly lower in populations that had been founded by less than 150 individuals; 

hatching success was only equal to pre- bottleneck populations in species founded by 
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more than 600 individuals.  Whether other fitness traits, such as the functioning of the 

immune system and/or susceptibility to disease, might be similarly affected is unknown. 

BLOOD PARAMETERS AS AN INDICATOR OF IMMUNITY AND HEALTH 

There are a number of options open to ecologists wishing to assess the 

immunocompetence of an avian population (Norris and Evans, 2000; Salvante, 2006, and 

see Chapters 1 & 3).  One such method is the identification and quantification of 

circulating leucocytes (white blood cells) in the peripheral blood (Ots et al., 1998).  

Leucocytes form the basis of both specific and non-specific immunity, as their main 

function is offering protection against pathogenic factors (Fairbrother et al., 2004).  

Hence the creation of a leucocyte profile, offers a snapshot of a bird’s current 

immunological status.   

Elevated leucocyte number (termed leucocytosis) is often associated with 

inflammatory diseases, stress, and trauma (Campbell, 1995), and is indicated by a raised 

total white blood cell count (WBC).  Avian leucocytes fall into 6 classes – lymphocytes, 

heterophils, eosinophils, basophils, monocytes, and thrombocytes – and the proportional 

representation in the WBC of these leucocytes (termed leucocyte differential), 

particularly the heterophil and lymphocyte counts, may be indicative of the 

immunological challenge an individual is facing (Campbell, 1995).  In addition, an index 

of the relative abundance of heterophils to lymphocytes – the heterophil/lymphocyte ratio 

(HL ratio) – has been demonstrated to be a reliable stress indicator in poultry (Maxwell, 

1993), increasing in response to a number of environmental and immunological stressors. 

Static immunological monitoring techniques, such as leucocyte profiles, can be difficult 

to interpret (Norris and Evans, 2000).  For example, raised lymphocyte numbers may 
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represent either a strong base-line immunity or the presence of an infection.  However, 

assessing leucocyte profiles in tandem to assessing the prevalence of naturally occurring 

infections such as avian malaria can be informative (Ricklefs and Sheldon, 2007). 

AVIAN MALARIA – PATHOGENICITY AND FITNESS CONSEQUENCES 

Avian haemosporidian parasites (phylum: Apicomplexa, including Plasmodium, 

Haemoproteus and Leucocytozoon species) are protozoan blood parasites that include the 

avian malarial parasites.  These have been well studied because of their use as models for 

human malaria (Valkiunas, 2005), and their well-documented disastrous effect on the 

Hawaiian avifauna (e.g., van Riper et al. 1986).  Whilst traditionally only Plasmodium 

species were considered to be malarial parasites, recent phylogenetic developments 

suggest that Haemoproteus species should be included in this category (Perez-Tris et al., 

2005), and hereafter avian malaria will refer to both genera. 

Avian malarial infections are characterised by a having high prevalence 

(Valkiunas, 2005) and, whilst their pathogenicity varies, they have been clearly 

demonstrated to induce fitness costs in the host including lowered reproduction and 

survival (Dawson and Bortolotti, 2000; Marzal et al., 2005; Merino et al., 2000; Sanz et 

al., 2001) and increased predation (Møller and Nielsen, 2007).  More dramatically, avian 

malaria (of the species Plasmodium relictum) has been responsible for the widespread 

decline of the endemic birds of Hawaii (van Riper et al., 1986).  Furthermore, previous 

work has demonstrated that malarial infections cause activation of the immune system, 

including elevated WBC and lymphocytes counts (Atkinson et al., 2001; Figuerola et al., 

1999; Ots and Hõrak, 1998; Ricklefs and Sheldon, 2007), and recent studies have 
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suggested a genetic component to malarial resistance (Bonneaud et al., 2006; Westerdahl 

et al., 2005). 

Tompkins & Gleeson (2006), in a recent survey of avian malaria distribution in 

the introduced birds of New Zealand, found evidence of infection in all six species they 

sampled.  They suggested that avian malaria in New Zealand could constitute an 

emerging infectious disease, and may be linked to recent spread of the exotic mosquito 

vector Culex quinquefasciatus (the same vector that was introduced into Hawaii).  

Malarial infection in the introduced birds of New Zealand offers an ideal study system to 

investigate the effects of population bottlenecks on disease susceptibility, whilst 

simultaneously monitoring the spread of this potential disease threat.  

STUDY AIMS 

The aims of this study were two fold; first to use haematological parameters to 

gain an insight into the immunocompetence of species that had experienced a range of 

bottlenecks, and second to examine the prevalence of avian malaria in these same species 

to determine if the haematological responses of infected individuals were affected by the 

bottleneck the species experienced.   

The immunological status of the birds was assessed by creation of leucocyte 

profiles for six species of birds in New Zealand and compared to that of their non-

bottlenecked counterparts in the UK.  The prediction I tested was that more severely 

bottlenecked species (in New Zealand) exhibit lower immunological defences than 

compared to their non-bottlenecked conspecifics (in the UK).  I also assessed the 

prevalence of avian malaria of eleven introduced species within New Zealand, and 

compared the haematological response to infection in each species.  I expected species 
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that have experienced severe bottlenecks to exhibit a higher prevalence of malaria, and to 

be less immunologically able to respond to that infection. 

METHODS 

STUDY SPECIES & GENERAL METHODOLOGY 

In total eleven species were studied in New Zealand (NZ), and six in the UK (see 

Tables 1-3 for details and sample sizes).  All species are passerines that were successfully 

introduced into New Zealand in the late 1800’s and are still extant today in their native 

range in the UK.  The number of individuals of each species released in New Zealand 

(i.e., the introduction effort) was carefully recorded by the Acclimatisation Societies 

responsible for their introduction (Lever, 1987; Thompson, 1922).  I used introduction 

effort, calculated as the total number released for each species, excluding any 

introductions that were specifically recorded as being unsuccessful, as a surrogate for 

population bottleneck size.  Introduction effort was different for each species, and hence 

corresponds to a range of bottlenecks (see Table 2).   

Birds were caught by passive mist-netting or trapping in four locations in the South 

Island of New Zealand (Lincoln, Kaikoura, Ward, Blenheim, 43°38’ S 172°28’E, 42°23’ 

S 173°37’E, 41°48’ S 174°06’ E, 41°28’ S 173° 57’ E, respectively), and in the UK at a 

single site in south-east England (Rye Bay Wetlands Trust Reserve, Icklesham, East 

Sussex, 50°54’ N 0°41’ E).  All of my sampling was conducted in the autumn months for 

each hemisphere (Southern hemisphere: March-May 2006, Northern hemisphere: 

September-November 2005) to control for any seasonal effects.  On capture, birds were 
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fitted with a metal identification ring, had an age and sex assigned according to plumage 

characteristics (Svensson, 1992), and basic biometrics taken.   

Blood samples were collected by brachial veni-puncture.  The left wing was 

extended and the brachial vein swabbed with alcohol to sterilise and expose the area, the 

vein was punctured by a sterile needle (27½ gauge), and no more than 100 µl of blood 

was collected passively in a micro-capillary tube.  A drop of blood was used to make a 

blood slide, and the rest was stored in 1 ml  of Queen’s lysis buffer (Seutin et al., 1991) 

until molecular analysis.  At the end of blood collection a clean swab was held against the 

puncture wound to ensure complete coagulation.  Previous studies have demonstrated that 

blood sampling at this volume has no detrimental effects to birds (Ardern et al., 1994; 

Hoysak and Weatherhead, 1991; Lubjuhn et al., 1998). 

BLOOD COUNTS 

Blood slides were made to enable identification and quantification of leucocytes (white 

blood cells).  A drop of blood was smeared on a microscope slide, air dried and 

subsequently fixed in absolute methanol and stained using a modified May–Grunwald 

Giemsa staining method (Lucas and Jamoz, 1961).  Slides were examined to assess the 

total white blood cell count (hereafter WBC), and the proportion of different types of 

leucocyte.  An area of the slide with an evenly distributed monolayer of cells was 

selected and estimates of WBC were obtained by counting all leucocytes in 10 fields of 

view under 400 x magnification, which approximates a total of 10 000 erythrocytes (S.E. 

Allen unpubl. data).  The average of the 10 fields was then calculated, and hence WBC is 

expressed as total leucocyte count per 1000 erythrocytes.  The proportion of different 

leucocytes was assessed by examining 100 consecutive leucocytes under 1000 x 
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magnification with oil immersion, and identifying them as either lymphocytes, 

heterophils, eosinophils, basophils, or monocytes (according to Campbell (1995)).  

Differential leucocyte counts of the two most common cells (lymphocytes and 

heterophils) were obtained by multiplying these proportions with WBC (Ots and Hõrak, 

1998).  In both the WBC and the differential counts, thrombocytes (a further type of 

avian leucocyte) were excluded, as they play a significant role in haemostasis, and hence 

tend to clump making counting difficult (Campbell, 1995).  An increase in the number of 

circulating heterophils and a decrease in lymphocytes is a general avian stress response 

(Maxwell, 1993), which is sensitive to a variety of stressors including infectious disease 

and psychological disturbance (Ots et al., 1998).  Hence the heterophil/lymphocyte (H:L) 

ratio was calculated as a measure of this.  

The New Zealand slides were analysed by the same person (S.E. Allen), whilst a 

sub-sample of the UK slides were analysed by a different observer (K. Hale).  A number 

of slides (n = 14) were analysed by both observers and repeatabilities (Lessells and Boag, 

1987) were found to be acceptable (r
2
 = 0.76, 0.76, 0.83 & 0.59, for WBC, HL, 

lymphocyte and heterophils respectively, all P < 0.001). 

DETECTION AND IDENTIFICATION OF HAEMATOZOA 

A polymerase chain reaction (PCR) assay, that detects both avian Plasmodium 

spp. and Haemoproteus spp., was employed to assess haematozoan infection.  DNA from 

blood samples was extracted using a QIAamp DNA mini kit (QIAGEN, Hilden, 

Germany), following the manufacturer’s protocol.  PCR was used to amplify a c. 355 

base pair fragment of the mitochondrial cytochrome b gene, using specific malarial 

parasite primers.  Primers and PCR protocols followed Massey et al (2007)   
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A sub-sample of 20 PCR products, positive for the blood parasite PCR marker 

and chosen to span the range of bird species, were sequenced to allow parasite 

identification.  The samples were aligned to allow identification of unique haplotypes and 

these haplotypes were then identified using the BLAST search algorithm available on the 

NCBI GenBank nucleotide database. 

STATISTICAL ANALYSES 

The effect of population bottlenecks on blood parameters (WBC, differential 

counts and HL ratio) and malarial infection was investigated in a number of ways, as 

described below.  

Intraspecifc comparison between UK and NZ. 

To investigate whether the past bottleneck a population experienced affects 

current blood parameters an intraspecific comparison was conducted.  The effect of 

country, representing a comparison between a pre-bottleneck population (UK) and a post 

bottleneck population (NZ), on each blood parameter was examined using ANOVAs. 

Country was included as the explanatory variable, sex and age were included as 

covariates, and the response variable (the blood parameter) was transformed according to 

Table 1.  

Intraspecifc differences with relation to population bottleneck 

To investigate whether differences in blood parameter values between the two 

countries (i.e., populations pre- and post bottleneck) was influenced by the severity of the 

bottleneck, the relative change in each blood parameter (log (mean NZ parameter/ mean 

UK parameter)) per species was regressed against bottleneck size (log transformed).   
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Malarial prevalence in relation to population bottleneck. 

The relationship between malarial infection and population bottleneck size within 

New Zealand was investigated using a generalized linear mixed effect model.  A 

binomial error structure and a logit link was specified, as the response variable (malaria) 

was binary (infected or not infected).  The maximal model included log (bottleneck), log 

(body mass), sex and age as main effects, and species nested within year and location as 

random effects.  The random effects in this instance control for any consistent year (2005 

& 2006), species (as detailed) and geographic (4 locations) differences in the prevalence 

of malarial infection.  The model was simplified by backwards elimination of variables, 

based on AIC scores.  

Interspecific comparison within New Zealand of blood parameters and 

malarial infection 

To investigate if the past bottleneck a population experienced affects 

haematological responses to malaria, interspecific comparisons were conducted within 

New Zealand on 9 species.  General linear mixed effects models (GLMMs) were fitted 

(for an explanation of GLMMs please refer to Chapter 3), for WBC, HL ratio and 

differential lymphocyte and heterophil counts on the data set of birds that had been 

assayed for malarial infection (for sample sizes see Table 3).  The maximal model 

contained bottleneck (log transformed) and malaria (2 levels – Yes or No) as the response 

variables.  Sex (fitted as 3 levels – Male, Female and Unknown), age (3 levels – After 

Hatch Year, Hatch Year, and Unknown), and mass (mean per species, log transformed) 

were fitted as covariates and species was specified as a random effect.  First and second 

order interaction terms between bottleneck, malaria and mass were also included.  In each 
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case a maximal model was fitted and explanatory variables were removed one at a time, 

using a stepwise deletion method, based on Akaike information criteria (AIC).  The 

backwards elimination of variables continued until a minimum adequate model was 

obtained. 

Each model was initially fitted to a data set excluding birds assigned to the 

‘Unknown’ sex category, as this category was confounded by species (the sex of 

dunnocks and song thrushes cannot be assigned in the autumn season).  Sex was not 

retained in any of the minimum adequate models (MAM), and so the analysis was 

repeated on the full data set, including birds of unknown sex but excluding sex as a 

variable.  All statistics were carried out using R v2.6.2 (R Development Core Team, 

2008).   

Any comparative analysis has the potential to be confounded by phylogenetic 

effects.  I used the software package “CAIC” (Comparative Analyses by Independent 

Contrast) to control for phylogeny in my analyses (Purvis and Rambaut 1994).  Note that 

at present it is not possible to control phylogenetic effects in the GLMM I used to assess 

the interactions between variables and thus I only present the results of phylogenetic 

analyses examining one variable at a time. 

RESULTS 

Intraspecifc comparison of blood parameters between UK and NZ. 

Single species ANOVAs were conducted, comparing total WBC, HL ratio and 

differential lymphocyte and heterophil counts between the two countries.  Age and Sex 

were included as covariates (sex was not determined for dunnocks or song thrushes, and 



 

Avian malaria and immunocompetence  72

hence was not included for these species; Table 1).  Greenfinches, the species that 

experienced the most severe bottleneck in this comparison (a bottleneck of 66 birds), 

exhibited significant differences (at P < 0.05) between countries in all blood parameters.  

New Zealand greenfinches had lower WBC and differential lymphocyte counts, and 

higher heterophil and HL ratios than UK birds.  House sparrows and dunnocks (the 

second two most bottlenecked species), also exhibited significant differences in the same 

direction as greenfinches, in some of the parameters (see Table 1 and Figure 1), whilst 

song thrushes exhibited differences between the two countries in WBC and lymphocyte 

counts, but in the opposite direction (i.e., higher WBC and lymphocytes counts in NZ).  

Intraspecifc differences in blood parameters with relation to population 

bottleneck size 

A linear regression of change in HL ratio (log (NZ HL/UK HL)) against 

population bottleneck size (log transformed) demonstrated a significant negative 

relationship (r
2
 = 0.68, F1,4 = 8.3, P < 0.05).  This indicates that decreases in HL ratio 

between the two countries (pre- and post- bottleneck populations) were greater in more 

severely bottlenecked species (Figure 2).  This result remained significant when 

controlled for possible phylogenetic constraints (P < 0.04).  Linear regressions between 

the differences in other blood parameters and population bottleneck size were all non-

significant and remained non-significant when controlled for phylogeny (all P > 0.05). 

Prevalence and identification of avian malaria. 

In total, 516 blood samples were tested for the presence of avian malaria in New 

Zealand, from 11 species.  All 11 species were found to be infected with malaria, but the 
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prevalence ranged considerably from 9% (in redpolls) to 95% (in song thrushes).  The 

prevalence results and samples sizes for each species are summarized in Table 2 

Of the subsample of 20 PCR products that were sequenced (to allow identification 

of the parasite), 16 were of a quality to analyse.  The sequences were aligned, and 4 

potentially unique haplotypes were distinguished.  These 4 haplotypes were compared to 

sequences deposited in NCBI GenBank (using the BLAST search algorithm).  The PCR 

assay utilised primers sensitive to both Haemoproteus and Plasmodium spp., however all 

16 subsamples sequenced were identified as Plasmodium spp.  

Malarial prevalence in relation to population bottleneck size. 

Bottleneck size (log transformed) and body mass (log transformed) were the only 

two variables retained in the final model.  Prevalence of avian malaria decreased 

significantly with bottleneck size (P < 0.05), indicating populations that had experienced 

more severe bottlenecks had a higher prevalence of malaria than less severely 

bottlenecked species (Figure 3).  This result remained significant after controlling for 

possible phylogenetic effects (P = 0.041).  Malarial prevalence exhibited a positive 

relationship with body mass (P < 0.001), indicating that species of larger body mass were 

more likely to be infected by malaria.  This analysis was repeated excluding cirl buntings, 

as they experienced the most severe bottleneck (11 birds), and exhibited very high 

prevalence (67%).  The effect of bottleneck became non-significant on removal of this 

species, suggesting that they were driving this trend. 
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Interspecific comparison within New Zealand of blood parameters and 

malarial infection 

The resulting minimum adequate models from GLMMs for WBC, HL ratio and 

lymphocyte counts are summarised in Table 4.  The model for differential heterophil 

counts is not shown as none of the variables were retained in the final model.   

The haematological response of birds infected by avian malaria only differed from 

their non-infected conspecifics in less bottlenecked species.  Essentially, individuals from 

species that had experienced more severe bottlenecks did not appear to increase their 

WBC or lymphocyte count in response to infection by malarial parasites, whilst the less 

bottlenecked species did. 

In the WBC model a positive interaction between bottleneck size and malaria 

tended towards significance (P = 0.055), whilst the main effects of malaria and bottleneck 

were non significant (P > 0.1), indicating that at severe bottlenecks the WBC count did 

not differ between infected and non-infected individuals, whilst at more moderate 

bottlenecks, infected individuals exhibited higher WBC (see Figure 4). 

In the model investigating the response of HL ratio to malarial infection, a 

number of variables were retained in the final model as they improved the overall fit (see 

Table 4).  Malarial infection status had a significant effect (P = 0.03), although somewhat 

counter-intuitively this suggested that birds infected with malaria had a lower HL ratio 

than non-infected birds.  The interaction term between malaria status and bottleneck was 

not retained, indicating that the difference in HL ratio between infected and non-infected 

birds remained constant across the range of bottlenecks. 
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The minimum adequate model explaining the response of differential lymphocyte 

counts between infected and non-infected individuals is detailed in Table 4.  The 

interaction term between malarial infection status and bottleneck size (log transformed) is 

significant (P = 0.03) and positive, indicating that difference in lymphocyte count 

between infected and non-infected individuals increases at larger bottlenecks (see Figure 

5).  The other terms retained in the final model improved model fit, but were not 

significant. 

The final model for differential heterophil count, was a null model, indicating that 

none of the variables, including malarial status and bottleneck had a significant effect.  

These analyses were repeated on a data set excluding cirl buntings (as they were 

found to be highly influential when investigating malarial prevalence).  The exclusion of 

this species did not change the significance of any of the terms in the models.  Note that I 

was unable to control for possible phylogenetic effects in these models as the statistical 

methods to do so are not available and the results should be interpreted with this possible 

confounding factor in mind. 

DISCUSSION 

Overall, I found that the size of a population bottleneck experienced by European 

species during their establishment in New Zealand had a significant effect on 

haematological responses, general stress responses and prevalence of avian malaria. 

The single species comparisons suggest that individuals from the more severely 

bottlenecked species in NZ are less immunocompetent than individuals from their source 

populations in the UK.  The most bottlenecked species in the analysis (the greenfinch, 

founded by 66 individuals) was significantly different in all categories.  Total white blood 
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cell count (WBC) and lymphocyte differential was significantly lower in greenfinches in 

New Zealand, and the heterophil count and HL ratio significantly higher.  HL ratio was 

also higher in house sparrows and dunnocks, (the next two most bottlenecked species 

founded by 111 and 284 birds respectively) but was driven by different processes 

(elevated heterophils in house sparrows and depressed lymphocytes in dunnocks).  The 

least bottlenecked species (the blackbird) exhibited no differences in any of the 

categories.  The song thrush (which experienced a moderate bottleneck of 474 birds) 

exhibited higher WBC and lymphocytes counts in NZ, however this species exhibited the 

highest prevalence of avian malaria (20 out of 21 birds), and so may be under exceptional 

immunological stress.   

Interpretation of white blood cell counts can be problematic without knowledge of 

the individual’s disease and parasite status; at a population level the same is true.  In the 

case of greenfinches and dunnocks for example, whilst lowered lymphocytes in the New 

Zealand population may be indicative of less robust immunity, it may also be that the 

populations in the UK were experiencing an immunological challenge that had activated 

the immune system, and hence elevated WBC and lymphocyte levels.  

However, the inference that more bottlenecked species are less immunocompetent 

than their UK conspecifics was strengthened by the finding that the difference in HL ratio 

between the countries (pre- & post- bottleneck) decreased as bottlenecks got bigger (i.e., 

less severe), and was highest for the more bottlenecked species in NZ.  HL ratio has been 

demonstrated to be a reliable indicator of stress in poultry and wild birds (Maxwell, 

1993).  It would appear that, when compared to their source populations, more severely 
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bottlenecked species are under higher stress than species founded by more individuals 

(less bottlenecked).   

A variety of environmental, psychological, and immunological stressors can cause 

a raised HL, and it has been demonstrated to be negatively correlated with survival 

(Kilgas et al., 2006).  Whilst this study could not assess the variety of stressors that cause 

a raised HL ratio, the design of the study sought to minimise any differences.  Handling 

birds causes a stress reaction  (Maxwell, 1993) birds in both countries were caught in the 

same fashion (mist-nets or walk in traps) and the blood sampling protocol was identical 

and carried out by the same person (S.E. Allen).  However, in the UK birds were caught 

at a large, permanent ringing site (with several hundred metres of mist nets, and a number 

of volunteers), whilst the NZ birds were caught at smaller field-sites (with generally only 

2 people present).  The expectation then, would be that the UK birds, experiencing 

increased handling times and higher noise levels would, if anything, experience greater 

handling stress.  Other environmental stresses are very difficult to assess; however in 

general it would seem that New Zealand offers a more benign environment for these bird 

species than the UK, (e.g., lower predation pressures and greater food availability) 

(MacLeod et al., 2008).  This leads to the tentative conclusion that the elevated HL ratios 

found in the more bottlenecked species may be related to immunological stress and not 

some other confounding variable.  This lends support to the conclusion that the New 

Zealand populations are immunocompromised, rather than the converse scenario that the 

UK populations are experiencing greater immunological activation.  This concept is 

further supported by the finding that species that had passed through more severe 

bottlenecks exhibited a higher prevalence of avian malaria, although this was primarily 
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driven by the high prevalence found in the most bottlenecked species (i.e., cirl bunting).  

Prevalence estimates of malaria also demonstrated a strong positive correlation with body 

mass, a finding that is supported by previous studies (Ricklefs et al., 2005; Scheuerlein 

and Ricklefs, 2004; Valkiunas, 2005), in which it is suggested that a larger body size 

makes birds more attractive to vectors. 

The haematological response of birds that were infected with avian malaria was 

related to the population bottleneck the species had experienced.  Birds from species that 

had been founded from a reasonably large number (e.g., over 400 birds) exhibited 

leucocytosis (increased WBC) and an elevated lymphocyte count in response to infection 

(when compared to their non-infected conspecifics), whilst this response was not as 

evident in the more severely bottlenecked species (bottlenecks of 11- 400).  Ots and 

Horak (1998) studied the haematological response to malarial infection (Haemaproteus 

spp.) in great tits (Parus major) and found that birds infected with avian malaria had 

significantly elevated WBC and lymphocyte count.  The birds were sampled from large 

(presumably out-bred) continental populations, and hence one would assume their 

haematological responses to infection were those of healthy, genetically robust 

individuals.  Similar findings were reported by Figuerola et al. (1999), who studied cirl 

buntings in Europe (where they are common), and found elevated WBC in birds infected 

by Plasmodium spp.  These findings would suggest that the immunological response of 

out-bred, non-bottlenecked birds to malarial infection is an increase in WBC, due (at least 

in part) to an elevated number of circulating lymphocytes.  

In the context of my study, these findings suggest that less bottlenecked species in 

New Zealand, displaying elevated WBC and lymphocyte counts in response to malarial 
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infection were exhibiting the expected immunological response.  Conversely, the species 

that went though more severe bottlenecks and failed to display leucocytosis (or increased 

circulating lymphocytes), may lack the ability to mount the appropriate immune response 

(i.e., are immunocompromised), and this in turn may explain the increased prevalence of 

avian malaria in these species.  However, Ricklefs and Sheldon (2007) urge caution when 

interpreting the leucocyte response to malarial infection across species and locations.  

They conducted a study comparing leucocyte response to malaria between a temperate 

and a tropical thrush species (Turdus migratorius and Turdus grayi respectively), and 

whilst they found that lymphocytes were elevated in infected birds at both locations 

(although only significantly so in the temperate species), they also collected data from an 

additional 28 species (86 individuals) in the two regions, to see if the results could be 

generalised, and found no consistency in results.  They concluded that leucocyte response 

to infection is highly idiosyncratic; however their results may be confounded, as they 

pooled data from all species without controlling for body mass (a variable shown to have 

influence on white blood cell counts in my study).   

Birds infected with avian malaria experience the most severe fitness consequences 

on initial exposure (Atkinson and Van Riper III, 1991), but are less likely to be caught 

during this acute phase, due to decreased mobility and/or mortality (Valkiunas, 2005).  

Thus, when sampling from a wild population of birds, the majority that test positive for 

malaria will have survived the acute phase, and be in the chronic stage, whilst the 

individuals that have no malarial parasites have either never been exposed to the parasite, 

or have cleared the infection (Westerdahl et al., 2005).  In this study, of 156 blood slides 

examined during the leucocyte counting procedure, blood parasites were only visible in 9 
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slides (S.E Allen unpubl. data) indicating the majority of infections were at the chronic 

stage (Ricklefs and Sheldon, 2007).  Chronic stages are characterised by exhibiting very 

low intensities of infection, that can persist for years or even the lifetime of the host, and 

exhibit relapses during times of additional stress (e.g., during the breeding season) 

(Atkinson and Van Riper III, 1991).  Potentially then, a population exhibiting a high 

prevalence of malaria indicates an ability to survive the acute phase, whilst a population 

with a low prevalence may be indicative of high mortality following exposure to the 

parasite (the non-infected class being naïve to exposure).  In this scenario, where high 

prevalence indicates an improved ability to survive the acute phase of the infection 

(rather than a lack of resistance to the infection), the failure of infected individuals of the 

more bottlenecked species to exhibit elevated lymphocyte counts or leucocytosis may be 

a reflection of the relatively benign nature of the chronic infection in that individual.  

Conversely, the raised lymphocyte count and WBC in the less bottlenecked species may 

be an indication that the infection exerts greater costs on these individuals. 

The key to clarifying these somewhat opposing interpretations is evaluating 

exposure to the avian malaria parasite.  Whilst no solid inferences regarding an 

individual’s exposure to avian malaria can be made from my data, it would seem likely 

the species tested had similar exposure levels, a cross section of species were caught at 

each location, and the inclusion of location as a random effect in the analysis controlled 

for differences in prevalence between locations.  This, taken in conjunction with the 

current indication that more severely bottlenecked species are under more stress (higher 

HL ratio), suggests, that the observed difference in prevalence is due to the less 

bottlenecked species being more efficient at clearing the infection (resulting in more 
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‘non-infected’ individuals), as opposed to the more bottlenecked species resisting the 

acute phase infection better.   

That being said, the correlation between prevalence and bottleneck in this study is 

highly influenced by the most bottlenecked species (cirl buntings) exhibiting a high 

prevalence.  Whilst this may indeed indicate that severely bottlenecked species are less 

competent at clearing the infection, the analysis would benefit from the inclusion of more 

species at the severe end of the bottleneck scale.  

An illuminating extension to this study, to elucidate the difference between 

exposure and prevalence, would be to employ serological techniques (Atkinson et al., 

2001) in conjunction with a PCR assay.  Serological techniques depend on detection of 

malarial antibodies, meaning both current and previous infections are detected, whilst 

PCR assays only detect infections active and present in the peripheral blood (Fallon et al., 

2003).  Birds testing negative in a PCR, but positive for antibodies in a serological assay 

have been previously exposed to malaria, and the infection has either been cleared or 

become latent in tissues other than peripheral blood (Fallon et al., 2003).   

If the higher prevalence of malaria in more bottlenecked species is due to a 

decreased ability to clear the infection, what is the mechanism responsible for this?  The 

lack of haematological response of the more bottlenecked species suggests they may be 

immunocompromised in comparison to the less bottlenecked species.  The immune 

system is known to have a genetic component (Wakelin and Apanius, 1997), and hence 

the reduction in genetic diversity associated with population bottlenecks (England et al., 

2003) may lead to a reduction in immunity. 
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Several human studies have demonstrated that both the resistance and outcome of 

malarial infections are influenced by genetic factors, and in particular by MHC (major 

histocompatibility complex) alleles (reviewed in Hill et al., 1997), a group of genes that 

have long been implicated in immunity (Acevedo-Whitehouse and Cunningham, 2006).  

Recently, links have been made between resistance to avian malaria and a particular 

MHC allele in the great reed warbler (Acrocephalus arundinaceus) and the house 

sparrow, (Bonneaud et al., 2006; Westerdahl et al., 2005, respectively), and resistance 

and the general level of heterozygosity of MHC alleles in the great reed warbler 

(Westerdahl et al., 2005).  Furthermore, a recent study by Foster et al. (2007) of Hawaiian 

honeycreepers suggests that at least one species (Hawaii amakihi, Hemignathus virens) 

have evolved resistance to avian malaria.  Overall, the evidence is mounting that genetic 

resistance to malaria exists in birds, and as population bottlenecks are hypothesised to 

cause a reduction in heterozygosity, and changes in allelic frequency (England et al., 

2003), then this resistance may be severely impaired in bottlenecked populations. 

Furthermore, the genetic consequences of a bottleneck may have more general effects on 

metabolic pathways and cause energetic constraints (Luong et al., 2007); immune 

responses are energetically costly (Bonneaud et al., 2003; Lochmiller and Deerenberg, 

2000) and hence may be adversely affected by such energetic constraint. 

These findings have a number of conservation implications , it would appear that 

susceptibility to avian malaria increases with severity of bottleneck suggesting that 

species targeted for translocation schemes and captive rearing projects (i.e., that 

experience a population bottleneck) may be more susceptible to contracting the infection.  

This is particularly worrying, considering species targeted for such schemes – often 
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vulnerable, endemic species – may be immunologically naïve to many diseases, including 

malaria.  Whilst this finding alone cannot be generalised to suggest that bottlenecks cause 

increased susceptibility to other pathogens, taken with the additional results suggesting 

reduced immunocompetence, this is a possibility.  Furthermore, species that were 

founded from low numbers appear to be under greater stress (either in response to 

immunological or environmental stressors) than their source population conspecifics (as 

measured by HL ratio), and the difference only ceases to be significant above a 

bottleneck of 284 birds.  It would appear then, that to avoid the detrimental effects of 

population bottlenecks when founding new populations, numbers in the hundreds maybe 

recommended.  Whilst that will rarely be achievable in most conservation schemes, 

avoiding extremely low numbers (e.g., 10) should be standard practice. 

This study was conducted in New Zealand, a biodiversity ‘hotspot’, home to one 

of the highest proportions of endemic bird species in the world (Myers et al., 2000)  

Many of these species now only exist on off-shore islands protected from mammalian 

predators by the physical barrier of the sea, however, no such barriers exist to the 

movement of introduced birds and the pathogens they carry between the mainland and 

these islands, and indeed introduced birds are found on the majority of island sanctuaries 

(Diamond and Veitch, 1981).  The Plasmodium spp. identified in this current study 

matches samples taken from the endemic and threatened South Island saddleback 

(Philesturnus carunculatus carunculatus) and a number of other native birds (D. Gleeson 

pers. comm.).  At present, little is known about the pathogenicity or origins of this strain 

of Plasmodium, however it would seem likely from my current results that a considerable 

number of introduced birds are carrying it.  Tompkins & Gleeson (2006) suggested that 
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introduced birds in New Zealand may act as reservoirs of malarial infection for native 

bird species, and the high prevalence I’ve found in some species in this current study (up 

to 95% in some species) would certainly support this.  Furthermore, it seems that 

prevalence of avian malaria in New Zealand may be on the increase; at the beginning of 

2005 Tompkins & Gleeson (2006) reported a prevalence of 9% (6/64) in non-native birds 

in Christchurch, whilst a year later in 2006 I found that 40% (10/25) of birds sampled in 

the same region (Lincoln) tested positive.  Whilst the sample sizes and species 

composition and season (summer 2005 and autumn 2006) differ somewhat in the two 

studies, the PCR assay used in both studies was identical, and these results certainly 

warrant further investigation. 

In light of the potential threat to native birds and the indication that avian malaria 

may indeed represent an emerging infectious disease, a better understanding of the fitness 

implication of chronic malarial infections would greatly benefit and inform research and 

conservation.  The introduced birds of New Zealand seem to offer an ideal study system 

to investigate this in wild populations.  The birds are populous, naturally exhibit 

reasonably high levels of malaria, are geographically isolated, and do not migrate, 

enabling measures of exposure to mosquitoes (the vector) to be estimated year round.  

Furthermore, the avian malaria species identified to date are mainly confined to 

Plasmodium spp., facilitating comparisons between species.  Experimental manipulation 

of infection status using either medication or sub-inoculation of wild caught birds would 

be possible and could yield fascinating and urgently required information on this 

ubiquitous avian pathogen.   
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Table 1.  Single species comparisons of blood parameters between the UK and NZ populations of introduced birds.  P values are derived 

from ANOVAs that included age and sex as covariates.  The estimates (± SE) are linear parameter estimates. NS indicates non-

significance at P<0.05 

Species   

 

 Sample 

size 

Bottleneck 

size
a
 

WBC 

 (log) 

 

HL Ratio 

 (log+1) 

Lymphocyte 

(log)  

Heterophil 

(log+0.5) 

Greenfinch    

Carduelis chloris    

NZ 

UK 

19 

21 

 

66 - 

0.25 ±0.15 

P=0.099 

- 

-0.49 ±0.14 

P=0.001 

- 

0.58 ±0.25 

P=0.026 

- 

-0.30 ± 0.13  

P= 0.031 

House Sparrow    

Passer Domesticus   

NZ 

UK 

23 

10 

111 - 

NS 

- 

-0.44 ±0.17 

P=0.012 

- 

NS 

- 

-0.77 ± 0.29 

P= 0.0115 

Dunnock    

Prunella modularis     

NZ 

UK 

25 

26 

 

284 - 

NS 

- 

-0.22 ±0.11 

P=0.001 

- 

NS 

- 

NS 

Chaffinch    

Fringella coelebs        

NZ 

UK 

18 

16 

377 - 

NS 

- 

NS 

- 

NS 

 

- 

NS 

 

Song Thrush      

Turdus philomelos    

NZ 

UK 

17 

24 

474 - 

-0.62 ± 0.21 

P=0.007 

- 

NS 

- 

-0.69 ±0.23 

P=0.004 

- 

NS 

Blackbird 

Turdus merula             

NZ 

UK 

21 

33 

808 - 

NS 

- 

NS 

- 

NS 

- 

NS 

 

a
 Data from Lever (1987)
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Table 2.  Prevalence of avian malaria in New Zealand birds detected by PCR assay. 

Species  Bottleneck 
a
 

Number 

tested 

Body 

mass
b
 (g) 

Positive 

for malaria 

% 

Prevalence 

Cirl Bunting 

Emberiza cirlus 
11 15 24.4 10 67 

Greenfinch 

Carduelis chloris 66 71 28.6 31 44 

House Sparrow 

Passer Domesticus 111 80 28.3 21 26 

Dunnock 

Prunella modularis 284 40 20.4 8 20 

Chaffinch 

Fringella coelebs 377 70 21.3 12 17 

Yellowhammer 

Emberiza citrinella 461 50 26.5 22 44 

Song Thrush 

Turdus philomelos 474 21 70.9 20 95 

Goldfinch 

Carduelis carduelis 516 64 15 7 11 

Redpoll 

Carduelis flammea 599 44 11.4 4 9 

Starling 

Sturnus vulgaris 653 6 78.7 2 33 

Blackbird 

Turdus merula 808 58 93.4 48 83 

Total 

-- 519 -- 185 36 

 

a
 Data from Lever (1987) 
b 
Mean mass from NZ data set. 
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Table 3.  Sample sizes for haematological comparisons 

Species
 a
 Bottleneck 

b
 Blood slides (n) 

Positive for malaria 

Blood Slides (n) 

Negative for malaria 

Cirl Bunting 11 6 3 

Greenfinch 66 10 13 

House Sparrow 111 16 1 

Dunnock 284 4 19 

Chaffinch 377 1 17 

Yellowhammer 461 12 10 

Song Thrush 474 16 1 

Starling 653 2 2 

Blackbird 808 15 6 

 

a
 Refer to Table 2 for scientific names 
b
 Data from Lever (1987) 
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Table 4.  The minimum adequate model (MAM) for the relationship between a) WBC, b) 

HL ratio, c) differential lymphocyte count, and bottleneck size, from a general linear mixed 

effects model.  The MAM was derived by backward deletion using AIC scores, from a full 

model; non-significant terms were retained if they improved model fit.  Species was 

included as a random effect.  The estimates are linear parameter estimates. 

a) WBC 

Predictor Estima

te 

SE P-value 

(Intercept) 9.40 5.5 0.091 

Log (Bottleneck) -1.32 0.86 0.184 

Malaria –                 No 0 -  

                               Yes -0.75 0.3 0.157 

Log (Mass) -2.23 1.66 0.236 

Log(Bottleneck) x Malaria (Yes) 0.19 0.10 0.055 
Log (Bottleneck) x Log (Mass) 0.40 0.26 0.182 

 

b) HL ratio 

Predictor Estima

te 

SE P-value 

(Intercept) -8.62 6.32 0.175 

Log (Bottleneck) 1.56 0.98 0.173 

Malaria –                 No 0 -  

                               Yes -0.18 0.08 0.031 
Log (Mass) 2.83 1.94 0.203 

Log (Bottleneck) x Log (Mass) -0.48 0.30 0.172 

 

c) Differential Lymphocyte Count 

Predictor Estima

te 

SE P-value 

(Intercept) 21.63 12.05 0.075 

Log (Bottleneck) -3.57 1.88 0.116 

Malaria –                 No 0 -  

                               Yes -1.08 0.74 0.149 

Log (Mass) -6.21 3.67 0.151 

Log(Bottleneck) x Malaria (Yes) 0.29 0.14 0.034 
Log (Bottleneck) x Log (Mass) 1.07 0.57 0.120 
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Figure 1.  Mean (± SE) HL Ratios of introduced species in NZ (black bars) and their source 

populations in the UK (grey bars).  The numbers underneath the species names are the size 

of bottleneck the NZ populations experienced.  Significant differences (at P<0.05)  between 

the countries are marked with ** 
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Figure 2.  Linear regression of the difference in HL ratio between the UK and NZ (log HL 

ratio NZ/log HL ratio UK) against bottleneck size.  In the statistical analysis bottleneck size 

was log transformed.
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Figure 3.  Prevalence of avian malaria in relation to bottleneck size (log transformed).  

Prevalence is corrected for mass (prevalence/mean mass) as mass was shown to have a 

significant and opposing affect on the prevalence in this data set. 
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Figure 4.  The effect of malarial infection on total WBC at different bottleneck sizes. Red 

diamonds (♦) are infected individuals and blue triangles (▲) are non-infected.  The trend 

lines indicated are linear regressions of total WBC (log transformed) against bottleneck. 
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Figure 5.  The effect of malarial infection on differential lymphocyte counts at different 

bottleneck sizes.  Red diamonds (♦) are infected individuals and blue triangles (▲) are non-

infected.  The trend lines indicated are linear regressions of lymphocyte count (log 

transformed) against bottleneck 
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CHAPTER 3 

THE RELATIONSHIP BETWEEN PHA-INDUCED IMMUNE 

RESPONSE AND POPULATION BOTTLENECK SIZE IN 

INTRODUCED BIRDS OF NEW ZEALAND. 

ABSTRACT 

Population bottlenecks may have negative fitness implications as they are 

hypothesised to cause a reduction in genetic diversity and increased inbreeding.  A 

reduction in immunocompetence is one such potential fitness cost, which has significant 

relevance to conservation, as endangered species commonly experience population 

bottlenecks and may be more vulnerable to pathogenic and parasitic attack.  I investigated 

the immune responses of 6 introduced bird species to immunological challenge by the 

mitogen phytohaemagglutinin (PHA).  The 6 species were introduced to New Zealand in 

numbers varying from 66 to 599 individuals, and I predicted that immune responses 

would be lower in the species introduced in more restricted numbers (i.e. a more severe 

bottleneck).  I found the reverse to be true; more severely bottlenecked species exhibited 

stronger immune responses.  The larger immune response in the more bottlenecked 

populations may be an indication of increased investment in immunity, due to increased 

parasite and pathogen pressure or differential investment in varying components of the 

immune system.  Simultaneously investigating several immunological components, 

whilst assessing a population’s current parasite and pathogen challenge is recommended 

to further investigate the complex relationship between immunocompetence and 

population bottlenecks.  
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INTRODUCTION  

POPULATION BOTTLENECKS AND THEIR IMPLICATIONS 

Population bottlenecks (a significant reduction in a populations size) can cause a 

reduction in genetic diversity, both in terms of heterozygosity and allelic diversity 

(England et al., 2003).  This has been demonstrated in a number of wild populations of 

birds such as the Crested Ibis (Nipponia Nippon) (Zhang et al., 2004), Song Sparrow 

(Melospiza melodia) (Keller et al., 2001), North Island Kokako (Callaeas cinerea 

wilsoni) (Hudson et al., 2000), Greater Prairie Chicken (Tympanuchus cupido) (Bouzat et 

al., 1998) and South Island Robin (Petroica australis) (Ardern et al., 1997), and in 

mammals such as the Banteng (Bos javanicus) (Bradshaw et al., 2007), Sea Otter 

(Enhydra lutris) (Bodkin et al., 1999), Lion (Leo Panthera) (Packer et al., 1991), Arctic 

Fox (Alopex lagopus) (Nyström et al., 2006), Northern elephant Seal (Mirounga 

angustirostrus) (Hoelzel, 1999), and Barbary Red Deer (Cervus elaphus barbarus) (Hajji 

et al., 2007).  As genetic diversity can be correlated with fitness (Reed and Frankham, 

2003), populations that have passed through a bottleneck and as a result have reduced 

genetic diversity may experience a reduction in population fitness. 

In addition to bottleneck effects, the resulting small populations are often prone to 

high levels of inbreeding, since mate choice is reduced and individuals are more likely to 

mate with kin (Hedrick and Kalinowski, 2000).  The negative impact of inbreeding on a 

population, termed inbreeding depression, is well known and encompasses a suite of 

interrelated fitness effects, including a reduction in reproductive success, an increase in 
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physical defects and susceptibility to parasites and pathogens (Crnokrak and Roff, 1999; 

Keller and Waller, 2002). 

THE IMPORTANCE OF THE IMMUNE SYSTEM  

The immune system is at the core of an animal’s ability to survive and reproduce, 

as it provides a complex and dynamic protection against a wide array of parasites and 

pathogens.  Under most circumstances, anything that detrimentally impacts on an 

organism’s ability to mount a suitable immune response (i.e., its immunocompetence) 

will likely have significant fitness costs.  

Evidence is mounting that decreased genetic diversity renders individuals more 

prone to disease and parasitic infection (Arkush et al., 2002; Hawley et al., 2005; Hedrick 

et al., 2001; O'Brien and Evermann, 1988; Pearman and Garner, 2005).  Considering the 

role immunity plays in defence against pathogens, and the genetic basis for much of the 

immune system (Wakelin and Apanius, 1997), it is not surprising that a reduction in 

genetic diversity has been linked to decreased immunocompetence (Hawley et al., 2005; 

Sanjayan et al., 1996).  Inbreeding has also been shown to have detrimental effects on 

immune function; for example, work on an insular, pedigreed population of song 

sparrows found that more inbred individuals had lower immune responses (Reid et al., 

2003).  Whilst links have been made between immunocompetence, inbreeding, and 

genetic diversity, few studies have directly investigated the relationship between 

population bottlenecks and immunocompetence in wild populations.  One exception is 

work by Hale and Briskie (2007), comparing a severely bottlenecked population (founded 

by 5 individuals) of the endemic New Zealand robin (Petroica australis) with its source 

population.  The birds in the bottlenecked population displayed significantly weaker 



 

PHA and immunocompetence  102

responses to an immune challenge (in the autumn) than the source population.  However, 

whether this result is typical of other birds, and whether a similar response occurs in 

populations that have been subject to less severe bottleneck sizes, is unknown. 

RELEVANCE TO CONSERVATION 

Understanding the effects of population bottlenecks is fundamental to modern day 

conservation.  Endangered and fragmented populations, by definition, experience a 

population bottleneck.  Although the aim of conservation measures will be to increase the 

population size of such species, even populations that recover to their pre-bottleneck size 

may continue to be affected by the genetic consequences of passing through an earlier 

bottleneck.  In some situations, conservation projects intentionally create population 

bottlenecks through translocation schemes and in the captive breeding of threatened 

species.  The incidence with which bottlenecks are encountered by conservation 

biologists is set to increase, in large part due to the predicted rise in the number of 

threatened and endangered species, but also as habitat restoration schemes come to 

fruition, and the potential for translocations increase.  In New Zealand alone, over 400 

translocations have taken place, and the rate of occurrence is rapidly increasing 

(Armstrong and McLean, 1995).  Each of these translocations creates a new population 

that has passed through a bottleneck. 

Parasites and pathogens have been implicated in the population decline of a 

number of endangered species (Dobson and McCallum, 1997) and emerging infectious 

diseases are an acknowledged conservation issue (Dobson and Foufopoulos, 2001; 

Wikelski et al., 2004).  Any conservation project, therefore, must consider the 

immunological health of populations.  Hence, whether population bottlenecks have a 
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negative impact on immunity, and at what size of bottleneck this impact starts to 

compromise the long-term viability of population, are questions of crucial relevance to 

conservation. 

INTRODUCED BIRDS AS A STUDY SYSTEM 

The introduction of species to ecosystems outside their native range has, on the 

whole, been disastrous for those ecosystems (Blackburn et al., 2004).  Nowhere is this 

more evident than in New Zealand, where the decimation of the endemic flora and fauna 

by introduced mammals is well documented (Craig et al., 2000).  However, in some 

cases, the purposeful introduction of species to areas isolated from their source 

populations offers unique and fortuitous opportunities for study (Briskie, 2006).  In the 

late 1800’s numerous bird species were introduced to New Zealand, mostly from the UK, 

a number of which are successfully established today (Lever, 1987; Thompson, 1922).  

The Acclimatisation Societies responsible for their introduction kept careful records of 

the numbers introduced, which varied considerably from species to species (Thompson, 

1922).  Therefore, introduced birds in New Zealand are today represented by a series of 

wild populations that have each experienced bottlenecks.  Moreover, different species of 

introduced bird experienced different sizes of bottlenecks, thereby allowing a comparison 

across species of the effects of bottleneck size on fitness.  Briskie & Mackintosh (2004) 

exploited this system to examine reproductive success in pre- and post- bottlenecked 

populations, and found that hatching success was significantly lower in populations that 

had been founded by less than 150 individuals; hatching success was only equal to pre-

bottleneck populations in species founded by more than 600 individuals.  Whether other 
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fitness traits, such as the functioning of the immune system, might be similarly 

compromised are unknown. 

STUDY AIMS 

In this study, I investigate the relationship between bottleneck size and immune 

function in introduced New Zealand birds.  My objective is to investigate whether 

populations of species that experienced more severe bottlenecks during their introduction 

exhibit reduced immunity as a result.  Six species of bird, all introduced to New Zealand 

in the late 1880’s, and each founded by a different number of individuals (meaning they 

experienced a range of population bottlenecks) are included in the study.  To assess 

immune response, individuals were challenged with the immunostimulant 

phytohaemagglutinin (PHA), which is a well established test of immune function in birds 

(Goto et al., 1978; McCorkle et al., 1980; Smits et al., 1999).  My prediction is that if 

population bottlenecks lead to a reduction in immunocompetence, then species that were 

founded by less individuals will exhibit lower responsiveness to challenge with PHA than 

species that have experienced larger bottlenecks.  This study should help inform 

conservation practitioners, both when dealing with populations that have already 

experienced a bottleneck, and when making decisions regarding the numbers of 

individuals used to found new populations. 
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METHODS 

STUDY POPULATIONS 

I studied immunocompetence in the following species: greenfinch, house sparrow, 

dunnock, chaffinch, goldfinch and redpoll (scientific names in Table 1).  All six species 

are small (10-30 g) passerines that were introduced to New Zealand in the late 1880’s by 

Acclimatisation Societies.  The number of individuals released by the societies was 

carefully recorded for each species (Thompson, 1922), and varied from 66 for the 

greenfinch to 599 for the redpoll.  For the purpose of this study, the total number released 

and recorded as successfully established is used to indicate the bottleneck each species 

experienced (see Table 1 for details).  All species are now common, and form contiguous 

populations across mainland New Zealand (Briskie and Mackintosh, 2004; Robertson et 

al., 2007).  Birds were sampled from agricultural and viticultural field sites in the regions 

around Kaikoura and Blenheim, South Island, New Zealand (42°23’ S, 173°37’ E; 41°28’ 

S, 173° 57’ E, respectively) in the austral autumns (March-May) of 2006 and 2007. 

GENERAL METHODOLOGY 

The PHA assay requires two measurements of patagial thickness to be taken at a 

standardised interval (12 h in this study): once before the injection and once after the 

injection.  Due to the difficulty in re-capturing wild, free-flying birds the test necessitates 

holding the bird for the duration of the standardised interval.  Birds were caught in mist-

nets and potter traps (baited with wild bird seed) after 12 noon, to minimise stress by 

allowing time for birds to feed in the morning.  All birds were fitted with a metal ring, 

aged, sexed, and had basic biometrics taken (wing chord, mass, moult score), and then 
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held until the evening of the day of capture, when the immune assay was performed.  If 

individuals were caught within 2 hours of sunset, they were kept in a cloth bird-bag in a 

quiet room, but if caught earlier in the afternoon, birds were caged and supplied ad 

libidum with water and wild bird seed.  Avian immunity appears to exhibit seasonal 

fluctuations in response to challenge by PHA (Møller et al., 2003; Owen and Moore, 

2006), therefore all work was carried out in the autumn, when adult birds could be held in 

captivity over night without disrupting breeding activities.  

IMMUNE ASSAY 

PHA is a lectin found in plants, and present in particularly high concentrations in 

the red kidney bean (Phaseolus vulgaris), where it is thought to act as a defence against 

herbivory (Martin et al., 2006b).  It is mitogenic to many vertebrate cell types, 

particularly T lymphocytes, and hence acts as an immunostimulant.  The subcutaneous 

injection of PHA activates T cells and stimulates the local infiltration and proliferation of 

a number of cell types involved in immunity (Martin et al., 2004).  The localised swelling 

caused by injection of PHA is seen as a measure of immune function – a larger swelling 

indicates a stronger response.  Thus by measuring the size of a swelling in response to 

PHA injection, an aspect of immunity can be assessed. 

The PHA assay methodology herein follows the simplified protocol, which 

eliminates the use of a control wing, as recommended by Smits et al (1999).  In their 

technical report, Smits et al (1999) used data from 7 different studies (608 individuals) of 

5 different species, to compare determination of the ‘PHA response’ in two different 

ways.  Firstly, calculating the response as the increase in thickness of the PHA injected 

wing, minus the change in thickness of a control wing (injected with phosphate buffered 
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saline, PBS), and secondly eliminating the control wing and calculating the change in 

thickness of the PHA-injected wing only (called PHA-PBS and PHA only, respectively).  

They found the two methods resulted in very closely correlated measures in all 7 studies, 

and concluded that the PHA response was so much greater than the (non) response to 

PBS, that the control wing was unnecessary, and instead the pre-injection thickness of the 

PHA injected wing should be used as the control.  Smits et al (1999) note several 

advantages to eliminating the control wing, including a reduction in handling time (and 

hence potentially increased sample sizes), decreased handling-related stress on the birds, 

and a decrease in the coefficient of variation due to measurement inaccuracies.  They also 

propose that the use of the term ‘control’ for the PBS injected wing only applies to the 

experimental assessment of whether PHA is the active ingredient within the injected 

solution (and not PBS), and does not function as a more general experimental control 

(Smits et al., 2001).  Since the publication of this report the simplified protocol has been 

adopted by a large number of immunoecologists (in a recent Web of Science search the 

technical report was cited by almost 200 studies).   

In contradiction to these arguments (for eliminating the PBS control wing), in 

studies such as this, where several species are being compared, there would appear to be a 

benefit to measuring the other wing to control for species specific changes such as 

dehydration.  However, the other wing may not represent an independent control, as a 

recent study in poultry found that PHA induced a systemic response to the inflammation 

(Adler et al., 2001).  This may mean that both wings may be affected by the injection of 

PHA.  Furthermore, as functio laesa (loss of function) is one of the 5 cardinal signs of 

inflammation (Punchard et al., 2004), certain individuals of a species or certain species 
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may favour the other, ‘control’ wing, thereby negating the use of this as a true control.  

On balance, it would seem that the inclusion of a ‘control’ wing introduces as many 

variables as it controls for, and hence, in this study the simplified protocol was followed. 

Preceding injection with PHA, the underside of the left wing web (patagium) of 

each bird was swabbed with alcohol, to clear the area of feathers and to sterilise the 

injection site, and a mark was made with permanent ink.  Thickness of the patagium was 

measured using a digital micrometer precise to 0.001 mm (Mitutoyo, 395-371, Tokyo, 

Japan), that was steadied in a clamp attached to a table-top.  The bird was held immobile, 

with the left wing outstretched and the bare patch of the patagium exposed and positioned 

over the lower contact point of the micrometer.  An assistant gradually closed the 

micrometer until contact caused the skin of the patagium to twist slightly, the micrometer 

reading was made at this point of contact (See Figure 9 in Chapter 4).  All measurements 

were taken by the same individual (S.E. Allen).  

At the beginning of each field season 50 mg of PHA (L8754, Sigma) was 

combined with 50 ml of liquid Phosphate Buffered Saline (PBS) (P4244, Sigma) in a 

sterile container, aliquoted into 1.5 ml vials and immediately frozen.  Each vial was 

subsequently defrosted as required (for 20 min at room temperature).  Immediately 

following measurement of the patagium, the PHA solution was administered 

subcutaneously using a 27g needle, at the marked injection site, in a dose appropriate for 

the species, based on body size (J.E. Smits pers. comm.; see Table 1).  Following 

administration the bird was placed in a cotton bird bag, and held over night in a quiet, 

safe room.  The patagium was re-measured the following morning, 12 hours after the 

PHA was administered.  Traditionally the PHA response is measured 24 hours after 
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injection.  However, a study of the temporal dynamics of this immune response 

(measured from 6 to 72 hours) found no significant change in mean patagium thickness 

following the initial increase at 6 hours (Navarro et al., 2003).  Thus, a 12 hour period 

was chosen for this study to minimise disturbance to the birds.  

The patagium on a small passerine is extremely thin (in the order of 0.1 mm) and 

it is acknowledged that obtaining this measurement is the most error-prone aspect of the 

PHA assay (Smits et al., 1999).  To increase the accuracy of my measurements, I took 

either 3 or 5 repeat measurements of each patagium and a mean of three measurements 

was calculated.  For those individuals in where 5 readings were taken, the two outlying 

measurements were subsequently excluded so that all estimates of patagium thickness 

were based on 3 measurements.  Patagium thickness was highly repeatable (Lessells and 

Boag, 1987) across each set of measurements on each individual (see Table 1). 

Immune response (IR) was quantified as the relative increase in thickness of the 

patagium: 

IR = (PT post – PT pre)/PT pre 

where PT post and PT pre are the mean patagium measurements post- and pre-

injection respectively.  A positive IR score indicates the patagium has swollen in 

response to the PHA injection, with higher IR scores corresponding to a greater relative 

increase, interpreted as a stronger immune response.  Birds that exhibited a negative IR 

were excluded as this can mean that either the administration of the injection was 

unsuccessful (S. Allen unpubl. data) and/or the birds became dehydrated whilst held 

overnight (JE Smits pers. comm.). 



 

PHA and immunocompetence  110

IMMUNOSENESCENCE 

In adult birds, immune function may decrease with age (Haussmann et al., 2005; 

Lavoie et al., 2007; Lozano and Lank, 2003; Palacios et al., 2007).  Individuals included 

in this study were aged as either ‘Hatch Year’ (HY), which are birds less than 1 year old, 

‘After Hatch Year’ (AHY), which are birds over 1 year old (adult), or as ‘Unknown Age’ 

(UNK), based on plumage characteristics (Svensson, 1992).  As the exact ages of adults 

were unknown, and bottleneck effects could lead to differential longevity, a data set was 

also created of HY only birds.  This allowed interspecific comparison of immune 

response, without the potentially confounding effects of immunosenescence in the adult 

age group.   

STATISTICAL ANALYSIS. 

Full data set 

I used general linear mixed-effects models to examine the relationship between 

population bottleneck and immune response, with IR as the response variable.  Mixed-

effects models allow the analysis of observations structured in groups, when within-group 

errors are correlated and have unequal variances, via the specification of fixed and 

random effects (Crawley, 2007).  

Although my primary interest was to examine if severity of bottleneck had an 

influence on immune response, a number of other variables required inclusion in the 

model.  Sex, age, and moult stage (Martin, 2005; Martin et al., 2006a; Moreno et al., 

2001) have previously been found to influence immunological responses in birds.  Birds 

that were caged prior to injection, as opposed to being held in a bird bag, could also have 
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differed in levels of activity and stress, which has been shown to affect PHA response 

(Ewenson et al., 2003).  PHA dose was administered at levels appropriate to each species 

(see above), however, the two species that experienced the most severe bottlenecks 

(greenfinch and house sparrow) were in higher dose classes, so I included dose per gram 

(calculated as dose (µl)/ pre-injection mass (g)) to control for this in the analysis.  Body 

size did not need to be included in the model, as the response variable is calculated as a 

relative, not absolute, size increase.  The maximal model thus included bottleneck size, 

sex, age, moult (fitted as two levels: Yes or No), caging regime (fitted as two levels: Yes 

or No) and dose/gram.  IR and bottleneck were log-transformed to correct for 

heteroscedasticity and deviation from normality (Crawley, 2007).  The random effects 

within a mixed model specify the underlying structure of the data.  Species and year were 

included as random effects (nesting species within year), thereby accounting for any 

consistent inter-year or inter-species differences. 

A maximal model was fitted (with main effects, no interactions), and explanatory 

variables were removed one at a time, using a stepwise deletion method, based on the 

Akaike information criteria (AIC) (Crawley, 2007).  The backwards elimination of 

variables continued until a minimum adequate model was obtained. 

HY Only Data set 

The model fitting process was repeated as above with the restricted data set of HY 

only birds, using a general linear mixed effects model with year and species as random 

effects.  IR was the response variable, and bottleneck, sex, caging, and dose per gram 

were main effects in the maximal model.  The house sparrow was excluded from this data 

set, as it is the only species in this study to experience a post-juvenal moult (Svensson, 
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1992) and thus were the only HYs in moult (accordingly moult was not included as a 

variable in the maximal model).  Model simplification was conducted as above. 

Phylogenetic control  

Comparing immune responses across several species can potentially create 

problems of phylogenetic non-independence (Bennett and Owens, 2002; Harvey and 

Pagel, 1991)in that closely related species may be more similar to one another than by 

chance alone, due to sharing a common ancestor.  To control for this, independent 

contrasts were used on the mean IR values (mean IR per year, averaged) using 

Comparative Analysis of Independent Contrasts (CAIC) (Purvis and Rambaut, 1995) .  A 

phylogeny was constructed from Sibley and Ahlquist (1990) and a regression conducted 

of mean IR contrasts on bottleneck size contrasts.  The correlation was forced through the 

origin, as recommended (Harvey and Pagel, 1991) 

Comparison with source populations in Europe 

Whilst conducting a corresponding test of immune response in non-bottlenecked 

European birds of the same species was beyond the scope of this study, it was possible to 

compare my results to published data.  Møller et al. (2006) conducted a study 

investigating immune response to PHA in a number of bird species in Northern Jutland, 

Denmark.  Four of the species tested in Denmark (greenfinch, house sparrow, chaffinch 

and dunnock) are those used in my current study, enabling some comparisons to be made.  

The methods and protocols differ between the two studies in a number of ways (e.g., 

dose, measurement protocol, season), excluding the possibility of a direct intraspecific 

comparison.  However, an alternative is to merely consider whether the mean immune 
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response to PHA differs between species in Denmark, as it does in New Zealand (see 

Results).  As there are only four species, it would be ambitious to draw any strong 

conclusions.  However, examining if there are differences between the species 

(irrespective of magnitude or direction) is still instructive in determining whether there is 

a pattern worth further investigation.  If there are differences in IR between the species in 

Europe, then this would indicate that species effects could be confounding bottleneck 

effects in my New Zealand data.  On the other hand, if there are no differences between 

the European species, then this would strengthen any observed effect of bottleneck on IR 

in the New Zealand data set.  

The data provided in Møller et al. (2006) consists of the mean immune response 

(x), standard error (y) and sample size (n) per species, where x is calculated as the mean 

change in wing web thickness of the inoculated wing, minus the change in thickness of 

the other, control wing.  Thus a vector of n random numbers from a normal distribution, 

with mean x and standard error y was generated for each species, and combined to form a 

simulated data set, on which an ANOVA was run, with immune response as the response 

variable and species as the explanatory factor.  This process was reiterated 1000 times, 

and the percentage of significant (p<0.05) outcomes calculated (significance would 

indicate there was a difference in immune response between species).  For consistency, a 

corresponding data set was simulated for the New Zealand species (rather than using the 

actual New Zealand data) and an ANOVA run.  The mean immune response (x) for the 

New Zealand data set was calculated as mean change in wing web thickness of the 

inoculated wing (this differs from the above calculation of IR, as it is not a relative 
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increase of wing web thickness) .  Again, this was reiterated 1000 times and the 

percentage of significant (p<0.05) outcomes calculated. 

All statistics were carried out using R v2.6.2 (R Development Core Team, 2008), 

except for the CAIC analysis.   

RESULTS 

Complete data set 

Immune Response (IR) varied in relation to bottleneck size, but in the opposite 

direction predicted (P<0.05); the response was lower in species that had experienced 

larger (less severe) bottlenecks (Figure 1).  The minimal adequate model included 

bottleneck size, cage regime, dose/gram, and moult as main effects (Table 2).  Birds that 

were caged prior to the immune assay exhibited a dampened immune response compared 

to individuals kept in bags (P<0.05).  A positive relationship was found between 

dose/gram and IR, and birds that were moulting had a decreased IR.  Whilst none of these 

trends were significant, inclusion in the model improved overall fit (based on AIC 

scores).  IR did not vary with sex or age, and inclusion of these variables did not improve 

model fit. 

Hatch year (HY) only data set 

Bottleneck size was the only explanatory variable retained in the minimal model 

for the HY-only data set (estimate ± SE = -0.36 ± 0.15, P < 0.05), and again was 

negatively correlated with IR.  None of the other variables - caging, dose per gram and 

sex - included in the maximal model improved model fit, and were accordingly removed 

from the final model.   
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Phylogenetic control  

The negative relationship between immune response and bottleneck size was 

significant after controlling for phylogeny.  An ANOVA for the regression line (forced 

through the origin) was significant (F = 63.5, df = 1, 4, P = 0.0013), and the slope 

negative (-0.002), indicating an inverse relationship between the two variables. 

Comparison to European data set. 

ANOVAs were run on the two simulated data sets (Denmark and New Zealand, 

using the figures in Table 3) to see if there were significant differences between species 

in either country (irrespective of the trend or direction of those differences).  This process 

was repeated 1000 times for both data sets.  In the simulated data set for New Zealand, 

species differences were significant in 58.5% of 1000 iterations, whilst in the Danish data 

set, species differences were only significant in 9.9% of the 1000 iterations.  This means 

that species differences were rarely (9.9%) detected in the Danish data set, and suggests 

that the differences found in my current study are not due to species affects alone. 
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DISCUSSION 

 

The purpose of this study was to elucidate how immune function is affected by 

population bottlenecks of differing sizes, with the prediction being that response to PHA 

challenge would be lower in more severely bottlenecked populations.  Contrary to 

predictions, the reverse relationship was found, with the response elicited by PHA higher 

in species that had experienced a more severe (smaller) bottleneck.  For example, the 

greenfinch in New Zealand is descended from a population founded by just 66 

individuals, and it exhibited a larger immune response than the redpoll which was 

founded by nearly ten times the number of birds (599 individuals).  This negative 

relationship remained significant after controlling for other biologically relevant 

variables, and when the potentially confounding effects of immunosenescence and 

phylogeny were controlled for.  The existence of a relationship, albeit negative, between 

bottleneck size and IR in this study implies that immune function is affected by the size 

of a population bottleneck.  Whilst the inference that more bottlenecked populations are 

more immunocompetent cannot be discounted, in light of past findings this seems an 

unlikely interpretation of the results, and instead may reflect the complex mechanisms 

under-lying immune function.  

Previous work on immunocompetence and bottlenecks has looked at levels of 

inbreeding within a population (Hale and Briskie, 2007; Reid et al., 2003; Reid et al., 

2007), or compared bottlenecked with source populations within the same species e.g., 

(Hale and Briskie, 2007).  In my study however, I used an inter-specific approach where 

different species are represented by differing sizes of bottlenecks, and thus it is necessary 
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to disentangle the difference between species from the effect due to bottlenecks.  The use 

of statistical techniques have been employed to achieve this (i.e., mixed-effects models, 

and phylogenetic contrast), however the ideal scenario would have been to directly 

compare immune responses of the species under study in New Zealand to their non-

bottlenecked conspecifics in Europe.  Whilst this was beyond the scope of this study, 

comparisons can be made to previously collected data on European birds.  Møller et al. 

(2006) studied the PHA response of a number of passerine species in Denmark, including 

four of our study species.  Using the summary data provided in that study, and the 

corresponding summary data for New Zealand, two data sets (Europe and NZ) were 

simulated.  In a thousand simulations, the European populations were only found to differ 

in their immune response 9.9% of the time, whilst in New Zealand, in the same number 

of simulations, species differences in immune response were detected in 58.5% of the 

iterations.  This lends some support to the observed differences in immune response in 

New Zealand populations being due to bottleneck effects, rather than species effects per 

se.  Clearly, this would be greatly strengthened by a direct comparison of the source 

population (i.e. birds from the UK) using the same methodology and protocols as the 

current study. 

IMMUNE RESPONSE AS AN INDICATOR OF CURRENT INVESTMENT 

The immune system is locked in a constant battle with the pathogens and parasites 

with which an individual comes into contact.  The two sides of this combat have 

reciprocal co-evolutionary effects and the specific immunological challenges a population 

faces will, to some extent, mould immune response.  A population that is prone to higher 

rates of parasitism or disease might be expected to invest more in immune function, than 
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less parasitised populations (e.g. Lindström et al., 2004; Tschirren and Richner, 2006) 

Thus the immunological response to PHA may be an indication of current investment in 

immunity, rather than capability (or ‘immunocompetence’) per se.  That being the case, it 

may be that more severely bottlenecked species experience higher parasite and pathogen 

pressure, and are therefore preferentially investing in immune functions.  To investigate 

this further would require the quantification of current parasite and pathogen burdens 

these populations are experiencing (See Chapters 1 & 2).  However, even this may not be 

fully informative if increased immune investment is an adaptive shift to counter increased 

immunological challenge; this could be in response to past challenges (e.g., at some point 

since the introduction event) as opposed to present day levels of parasitism and disease.  

Nonetheless, examining immune responses in the context of parasite and disease load in 

bottlenecked populations would be highly informative. 

If immune responses are energetically costly then increased investment in 

immune function may be to the detriment of other life history traits (Sheldon and 

Verhulst, 1996), and indeed this has been demonstrated in a number of studies (Ardia, 

2005; Moreno et al., 1999; Sanz et al., 2004).  Species that have experienced severe 

bottlenecks might therefore preferentially invest in immune response, and one would 

expect to see trade-offs with other traits.  In the case of reproductive success this might be 

true, as hatching success was found to be markedly lower in introduced birds in New 

Zealand that had experienced bottlenecks of less than 150 birds (Briskie and Mackintosh, 

2004).  It would be illuminating to investigate the dynamic between other measures of 

life history traits and immunological investment in populations that have experienced 

bottlenecks. 
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DIFFERENTIAL INVESTMENT IN IMMUNE COMPONENTS 

The avian immune system, as in any vertebrate, is comprised of two integrated 

arms – the innate (non-specifc) and the acquired (pathogen-specific), which are triggered 

by infection or tissue trauma (Wakelin and Apanius, 1997).  Innate responses exhibit no 

memory and are produced at the same intensity at re-exposure to the trigger.  Acquired 

immune responses, of which there are two main types (antibody and T-cell mediated), do 

exhibit memory and thus mount a more efficient response on subsequent exposure 

(Kennedy and Nager, 2006; Wakelin and Apanius, 1997).  Ecologists using the PHA 

assay have traditionally interpreted the induced swelling as a measure of acquired, T-cell 

mediated, immune function, based on past work on poultry (Goto et al., 1978; McCorkle 

et al., 1980).  However, a recent study (Martin et al., 2006b) investigating the underlying 

cellular response to PHA in wild birds (Passer domesticus), suggests that the swelling is a 

more complex and dynamic process, involving both innate and acquired arms of the 

immune system.  Kennedy and Nager (2006) suggest that a significant proportion of the 

swelling induced by PHA is produced by the non-specific, innate response, and that the 

contribution by the cell-mediated, acquired arm of the immune system is minor, at least 

on first exposure to the mitogen.  This is of some significance, as there is evidence that 

differing components of the immune system are differentially activated, and in fact trade-

offs may exist between different components (Hõrak et al., 2006; Kennedy and Nager, 

2006; Norris and Evans, 2000).  It may be that populations exhibiting an increased PHA 

response (such as the more severely bottlenecked species in my study) are compensating 

for a reduction in other aspects of immunity. 
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There is much evidence that there is a genetic component to immunity (Wakelin 

and Apanius, 1997) and furthermore, different aspects of the immune system appear to be 

controlled by different groups of genes (Acevedo-Whitehouse and Cunningham, 2006).  

For example, the genes of the major histocompatibility complex (MHC) have long been 

implicated in immune responses; genes of the MHC class III subgroups appear to regulate 

aspects of innate immunity, whilst acquired immunity is regulated by MHC class I & II 

genes (Acevedo-Whitehouse and Cunningham, 2006).  The reduction in genetic diversity 

associated with population bottlenecks may therefore have differing effects on immunity.  

Components of the immune system may differ in their sensitivity to genetic 

impoverishment, and thus components more robust to genetic changes may up-regulate to 

compensate for reduced function in other arms.   

Maintaining and activating an immune system is energetically costly (Lochmiller 

and Deerenberg, 2000; Lochmiller et al., 1993), and different components of the immune 

system may have differing energetic requirements (Lochmiller and Deerenberg, 2000).  If 

populations that have experienced a bottleneck are resource constrained, then certain 

arms of the immune system may be favoured, either due to them being less energetically 

costly or more essential.  The immune response elicited by PHA may be energetically 

‘cheap’, when an individual can’t ‘afford’ to fully activate all immunological components 

or it may be a preferential response in an energetically constrained environment.  Indeed, 

Lochmiller and Deerenberg (2000) argue that the initial, non-specific acute response to 

infection is the most important in terms of fitness and life history of an individual, and the 

PHA response may reflect this aspect of immunity (as suggested by Kennedy and Nager 

(2006)). 
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In this study, population bottlenecks may affect the energy budgets available to 

populations.  Hence, if the more severely bottlenecked populations are on a lower budget 

they may invest more in either ‘cheaper’ immunity or in essential components, which 

could translate as a higher PHA response relative to less bottlenecked populations (that 

are less dependent on the aspects of immunity that PHA measures).  Clearly, to elucidate 

differential investment in immunological components in bottlenecked populations 

necessitates the simultaneous assessment of multiple immune parameters.  The range of 

immunological assays is increasing, and it is now possible to evaluate differing immune 

components using a single blood sample (Matson et al., 2006), enabling just such an 

assessment to be made. 

CONSERVATION IMPLICATIONS & CONCLUSION 

The good news, from a conservation perspective, is that avian populations 

experiencing moderately small bottlenecks in the range I studied here are still capable of 

mounting an immune response.  The most severe bottleneck examined in this study was a 

population founded by just 66 birds, which is comparable to many current translocation 

schemes (Wolf et al., 1996), and they displayed the largest immune response.  In a global 

survey of translocation schemes (Griffith et al., 1989; Wolf et al., 1996) it was found that 

in 1993, the median number of individuals released was 50.5 (an increase from 31.5 in 

1987).  However, of the 336 surveys returned, it was found the 32% of the programs 

released 30 or fewer animals.  A previous study by Hale and Briskie (2007) found a 

severely bottlenecked population (5 individuals) of New Zealand robins appeared to be 

considerably immunocompromised and so, at present, caution should be urged for 

conducting translocations with such low numbers.   
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The fact that there was a relationship between immune response and severity of 

bottleneck (albeit a negative one) suggests that population bottlenecks do impact on 

immunity, but that the interaction is a complex one.  The larger immune response in the 

more bottlenecked populations may be an indication of increased investment in 

immunity, due to increased parasite and pathogen pressure.  An alternative, but not 

mutually exclusive explanation is that components of the immune system may be 

differentially affected by population bottlenecks.  The immune system is a complex and 

dynamic system, and this study clearly points the way to further work that is required to 

assess the impact of population bottlenecks.  Simultaneously investigating several 

immunological components, whilst assessing a population’s current parasite and 

pathogen challenge should prove extremely illuminating, as will comparing the 

introduced population directly to their source populations.  The need for further research 

in this area is urgent, as emerging infectious disease, habitat loss and environmental stress 

increase the pressures on threatened and endangered species. 
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TABLES 

Table 1  Species investigated: bottleneck size, sample size, dose and repeatability statistics for patagium measurement (the intraclass 

correlation coefficient). 

 

 

a
 bottleneck calculated  as total number of birds introduced into NZ per species, excluding introductions that were recorded as unsuccessful (Lever, 1987) 

Species Common name Bottleneck
a
 n 

Dose 

PHA-PBS 

1mg ml
-1
 

Repeatability 

Pre-injection 

Repeatability 

Post-injection 

Carduelis chloris Greenfinch 66 36 40 r=0.92, p<0.0001 r=0.97, p<0.0001 

Passer domesticus House Sparrow 111 38 40 r=0.99, p<0.0001 r=0.99, p<0.0001 

Prunella modularis Dunnock 284 6 25 r=0.92, p<0.0001 r=0.87, p<0.0001 

Fringella coelebs Chaffinch 377 22 25 r=0.88, p<0.0001 r=0.94, p<0.0001 

Carduelis carduelis Goldfinch 517 27 25 r=0.91, p<0.0001 r=0.94, p<0.0001 

Carduelis flammea Redpoll 599 7 25 r=0.87, p<0.0001 r=0.96, p<0.0001 
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Table 2. The minimum adequate model (MAM) for the relationship between PHA response 

and bottleneck size, from a general linear mixed-effects model, for the full data set.  The 

MAM was derived by backward deletion based on AIC scores, from a full model that also 

included Sex and Age.  Year and Species were included as random effects.  The estimates 

are linear parameter estimates (SE is the standard error), P-values in bold are significant.  

Dose per gram and moult, whilst not significant improved the fit of the model, and thus 

were retained.   

 

 

Predictor Estimate SE P-value 

(Intercept) 1.14 0.76 0.14 

Log (Bottleneck) -0.41 0.12 0.0083 

Caged–                  No 0 -  

                             Yes -0.61 0.19 0.0018 

Dose per gram 0.76 0.44 0.0867 

Moult                    No 0 -  

-                           Yes -0.31 0.21 0.1460 
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Table 3 Parameters used to simulate the two data sets for comparison between Europe and 

New Zealand.  Sample size (n), mean immune response and standard error (se), refer to 

methods for calculation of mean immune response. 

Species  Denmark
b
 New Zealand

c
 

 n
a
 

Mean 

immune 

response  

(mm) 

se  

Mean 

immune 

response 

(mm) 

se 

 

Carduelis chloris 

Greenfinch 

 

12 0.21 0.02 0.19 0.04 

Passer domesticus 

House sparrow 

 

13 0.23 0.04 0.33 0.03 

Prunella modularis 

Dunnock 

 

9 0.21 0.03 0.06 0.10 

Fringella coelebs 

Chaffinch 

 

8 0.25 0.06 0.10 0.02 

 
a
 Sample sizes used for both data sets taken from Møller et al. (2006) 
b
 Data from Møller et al. (2006) 
c
 Data from current study 
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Figure 1.  Mean Immune Response against Bottleneck Size.  IR (mean ± SE) is averaged 

across both years.  In the statistical analysis both variables were log transformed.  
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CHAPTER 4 

A COMPARISON OF NESTLING IMMUNOCOMPETENCE 

BETWEEN TWO INTRODUCED BIRDS THAT EXPERIENCED 

DIFFERENT POPULATION BOTTLENECK SIZES 

ABSTRACT 

Population bottlenecks are hypothesised to cause a reduction in genetic diversity 

and increased inbreeding, and thus have negative fitness implications, including a 

reduction in immunocompetence.  Bottlenecks are frequently experienced by species 

under conservation management, and thus determining fitness consequences is of crucial 

relevance.  This study compared the immunological responses of nestlings (to the 

immunostimulant phytohaemagglutinin, PHA), in two related bird species (the myna, 

Acridotheres tristis, and the starling, Sturnus vulgaris) that were introduced into New 

Zealand in differing numbers (myna 70 birds, starling 653 birds), and hence experienced 

bottlenecks of differing severity.  The prediction that myna nestlings would exhibit a 

lower immune response than starlings (as they originated from the more bottlenecked 

population) was not supported.  No significant difference in immune response was found, 

and this was true after controlling for levels of ectoparasitic infestation.  In addition, I 

found no evidence that growth rates were differentially affected in the two species 

following immune challenge.  This suggests that relatively severe bottlenecks do not lead 

to a decrease in the component of immunity measured by the PHA assay.  However, 

sample sizes of the current study were relatively small and interspecific competition may 

have confounded the results.  This study highlights the need to consider interspecific 

interactions when conducting cross species comparisons. 
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INTRODUCTION 

Population bottlenecks – the decline and subsequent increase of a population’s 

size – are a common occurrence in conservation, yet the fitness implications of these 

events are far from understood.  Whenever an endangered population is brought ‘back 

from the brink’, or when individuals of a threatened species are translocated to found a 

new population, a bottleneck occurs.  The reduction of a population to a small number is 

hypothesized to cause a reduction in genetic diversity, both in terms of decreased allelic 

diversity, and decreased heterozygosity as a result of inbreeding (England et al., 2003; 

Keller and Waller, 2002).  These predicted genetic effects have now been demonstrated 

in a number of wild populations (Ardern et al., 1997; Bodkin et al., 1999; Bouzat et al., 

1998; Bradshaw et al., 2007; Hajji et al., 2007; Hoelzel, 1999; Hudson et al., 2000; Keller 

et al., 2001; Nyström et al., 2006; Packer et al., 1991; Zhang et al., 2004).  Furthermore, a 

decrease in genetic diversity has been correlated with a reduction in fitness (Reed and 

Frankham, 2003), and increased extinction risk (Frankham, 2005).  For example, in a 

recent study comparing heterozygosity of threatened and non-threatened related taxa, 

Speilman et al. (2004) confirmed that the heterozygosity of threatened species was on 

average 35% lower than in the non-threatened counterparts. 

Whilst it is clear that population bottlenecks, via inbreeding and genetic 

impoverishment, may have severe consequences to a population’s fitness, and ultimately 

to its survival, the question of relevance for conservation managers is how are these 

fitness costs manifested, and at what severity or size of bottleneck?  Knowing how fitness 

costs may vary with bottleneck size could thus help with the design of management 

strategies for endangered species.  
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One fitness trait that may be negatively affected by population bottlenecks is the 

capability of an individual to mount an immune response (i.e., its immunocompetence).  

The immunological system provides complex and dynamic protection against a wide 

array of parasites and pathogens, and is at the core of an animal’s ability to survive and 

reproduce.  Reduced genetic diversity and/or inbreeding has previously been linked to 

reduced immunocompetence and increased susceptibility to pathogens (Coltman et al., 

1999; Hawley et al., 2005; Pearman and Garner, 2005; Reid et al., 2003; Reid et al., 

2007; Sanjayan et al., 1996).  However, the effects of population bottlenecks on 

immunity have rarely been explicitly investigated.  An exception to this is work done by 

Hale and Briskie (2007), who found that a bottlenecked population of the endemic New 

Zealand robin (Petroica australis), displayed significantly weaker responses to an 

immune challenge (in the autumn) than their source population.  However, the bottleneck 

the robins experienced was extremely severe (the population was founded by 5 

individuals), and whether a similar response occurs in populations that have been subject 

to less severe bottleneck sizes, or of another species, is unknown.  

This study aims to compare the immunological responses of nestlings, in two wild 

bird species, introduced into New Zealand in the late 1800’s (Lever, 1987; Thompson, 

1922), that have experienced differing sizes of bottlenecks during their establishment.  

The myna (Acridotheres tristis), a species that passed through a severe bottleneck (< 70 

birds), is compared with the starling (Sturnus vulgaris), a species that passed through a 

moderate bottleneck (650 birds) (Lever, 1987).  These two species provide an ideal model 

system as both are cavity nesters (allowing a large sample of nests to be followed 

simultaneously), both have similar ecologies and life history strategies (Feare and Craig, 
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1999), and both are in the same family (thus minimising any phylogenetic effects).  The 

genetic differentiation of both mynas and starling populations in New Zealand from their 

source populations (in India and United Kingdom (UK), respectively) has previously 

been assessed (Baker and Moeed, 1987; Ross, 1983), and suggests that whilst starlings 

exhibit similar genetic variation as their UK counterparts (measured via proportion of 

polymorphic loci and expected heterozygosity), mynas exhibited a reduction when 

compared to Indian populations (Merilä et al., 1996).  This suggests that of the two 

species, only the myna (that experienced a severe bottleneck of 70 individuals) suffered a 

reduction in genetic variation.  However, these studies employed allozymes to estimate 

levels of genetic diversity between native and introduced populations and given the low 

resolving power of allozymes (particularly in birds, Crochet, 2000), further studies 

employing higher resolution molecular markers (e.g., microsatellites) are warranted. 

To assess immune response, nestlings were challenged with the immunostimulant, 

phytohaemagglutinin (PHA), which is a well established test of immune function in birds 

(Goto et al., 1978; McCorkle et al., 1980; Smits et al., 1999).  The immune stressors a 

nestling faces may impact on the immune response exhibited (e.g. Gwinner et al., 2000), 

accordingly ectoparasitic infestation was also assessed.  Finally, as mounting an immune 

response may be costly for chicks (Lochmiller et al., 1993; Zuk and Stoehr, 2002), and 

may be traded-off against important functions such as growth (Fair et al., 1999), the mass 

change (during immune challenge) in chicks of the two species was measured.   

My prediction was that nestlings of the less severely bottlenecked species 

(starlings), would mount stronger immune responses than the more severely bottlenecked 

species (myna), after controlling for the effects of ectoparasitic infection.  Furthermore, I 
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predicted that starling chicks would be better able to cope with the increased energetic 

requirements of mounting an immune response than mynas, and hence their growth (as 

measured by mass change) would be less affected by the immune challenge. 

METHODS  

STUDY POPULATION 

Starlings (Sturnus vulgaris) and the mynas (Acridotheres tristis) were both 

released in New Zealand (NZ) in the 19
th
 century and are now common.  Both belong to 

the family Sturnidae (Feare and Craig, 1999) and share similar life histories.  A total of 

approximately 650 starlings were brought to NZ from the UK (Lever, 1987; Thompson, 

1922) and they are now abundant across NZ (Robertson et al., 2007).  The myna is native 

to India, but the mynas introduced to NZ were originally sourced from an established 

introduced population in Australia (Baker and Mooed 1987).  Approximately 70 

individuals were successfully released (Lever, 1987; Thompson, 1922) and are now 

common on the North Island (Robertson et al., 2007). 

I studied a nest box population of the common myna and the starling, located on 

farmland at Limestone Downs, North Island, New Zealand (37°29’ S, 174°46’ E).  Fifty 

nest boxes were erected in June 2005 and a further 130 in January 2006, making a total of 

180 boxes.  The nest boxes for both species were identical apart from the size of the 

entrance hole (65 mm for mynas and 55 mm for starlings), and had hinged lids to enable 

access to the chicks.  My study took place from November 2006- March 2007, and 

constituted the first season the boxes were in use for the majority of nest boxes.  Starlings 

commence breeding earlier than mynas in New Zealand (Heather and Robertson, 1996), 
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and our study population had completed (or were completing) their first brood at 

commencement of the study, whilst mynas were beginning their first broods.  Hence, data 

was collected from second broods only for starlings, but both broods for mynas.  

Immunological and parasitic indices can differ between first and second broods (Christe 

et al., 2001; Sorci et al., 1997)  and so comparisons between species were only conducted 

on second broods.  However, climatic conditions may also influence these same indices 

(Christe et al., 2001), and as second brood starlings were raised at the same time as first 

brood mynas, the same analyses were conducted on second brood starlings vs. first brood 

mynas.  See table 1 for sample sizes and other summary statistics. 

Nest boxes were visited regularly during the pre-laying period to ascertain lay 

date, and hatch date.  Once hatched, nests were visited every three days, from day 2 (day 

1= hatch day), and chicks were measured as part of a separate study.  I refrained from 

visiting the nests close to fledging, to prevent forced fledging of the young, and as mynas 

have a longer nestling period than starlings, myna nest visits ended on day 20 - 23 whilst 

visits to starling nests ended on day 17 - 20.   

MEASUREMENTS OF MITE LOAD 

Chicks 

Nestlings were examined every 3 days (starting on day 2) for the presence of 

blood feedings mites (Order: Acarina), until they became too feathered to allow reliable 

assessment (until day 11 for starlings and day 14 for mynas).  As chicks were extracted 

from the nest they were comprehensively examined and assigned a ‘chick mite score’ 

(where 1 < 5 mites, 2 < 10 mites, 3 < 20 mites, 4 < 30 mites, 5 < 50 mites, and 6 = 50+ 
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mites).  Nestlings were also examined for the presence of other ectoparasites; ticks 

(Order: Ixodida) and chewing lice (Order: Phthirpatera) were found, but in very low 

numbers (lice ~ 6 nests, ticks ~ 1 nest), and were subsequently not included in the study.   

Nests 

Total mite infestation per nest box was estimated every three days, from day 8 

(both species) until day 20 (starlings) or day 23 (mynas).  Nestlings were removed from 

the nest box (to be measured for a separate study), and a sheet of white A5 paper was 

placed within the nest box, and the lid closed.  The paper was left in the box for 20 min 

(mean ± SD, 22 ± 8), and on removal from the box the number of mites on the paper were 

either counted by eye, or, if numbers were too high, pictures were taken and subsequently 

counted.  The number of mites was then divided by brood size, to give the final ‘nest mite 

score’. 

IMMUNOLOGICAL ASSAY 

Immune response was assessed by challenging nestlings with 

Phytohaemagluttinin (PHA) – an immunostimulant that when injected causes a localised 

inflammatory response, the swelling response being commensurate with a stronger 

immune response (Goto et al., 1978; McCorkle et al., 1980; Smits et al., 1999).  The 

procedure involves the subcutaneous injection of PHA into the bird’s wing web 

(patagium), and measuring the resultant swelling response 24 hours later. 

As immune response may vary in accordance with developmental age, I wished to 

compare immune response in nestlings of the two species at a similar developmental 

stage.  Mynas have a longer nestling period than starlings (mynas 25 - 30, starlings 21 - 
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23) (Counsilman, 1974; Feare and Craig, 1999; Heather and Robertson, 1996), and to 

account for this difference, I conducted the immune response tests on day 16 for starlings 

and day 19 for mynas.  At these ages, the nestlings are at a similar developmental stage. 

Prior to injection of PHA, the left and right wing webs of the nestlings were 

swabbed with ethanol to clear the area of feathers and to sterilise the injection site and a 

mark made with permanent ink (see Figure 1).  Thickness of the left and right patagium 

was measured using a digital micrometer precise to 0.001 mm (Mitutoyo, 395-371, 

Tokyo, Japan).  All measurements were taken by the same individual (S. Allen), and 

repeated three times (measurements were highly repeatable r
2 
= 0.79 – 0.98, P < 0.001).  

Following measurement, the left wing web was injected with 100 µl of PHA dissolved in 

phosphate buffered saline (PBS) at a solution of 1mg ml
-1
, whilst the right wing was not 

injected and thus acted as a control for differential growth rates between individuals.  

Nestlings were returned to the nest box, and 24 hours later both wings were re-measured.   

Immune response (IR) was quantified as the mean difference of the increase in 

thickness of the left and right patagium, relative to the initial thickness of the left 

patagium: 

IR = left (PT post – PT pre) - right (PT post – PT pre)/PT pre 

Where PT pre and PT post is the mean patagium measurement pre-and post-

injection, respectively.  A positive IR score indicates the patagium has swollen in 

response to the PHA injection, with higher IR scores corresponding to a greater relative 

increase, and hence a stronger immune response 
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At every nest, only half the brood were challenged with PHA; this was to 

accommodate a concurrent study that required some nestlings remain free from 

immunological challenge.  These nestlings underwent the same wing web measurement 

process, and thus acted as an additional control.  Starlings and mynas had brood sizes of 2 

– 5 chicks  (mynas 3 - 5, starlings 2 - 4).  When brood sizes were even, exactly half of the 

chicks were tested (1 out of 2, 2 out of 4), while for odd-numbered brood sizes, more than 

half were challenged (i.e., 2 out of 3, 3 out of 5).  Because selecting chicks from the nest 

was non-random, with larger chicks being preferentially selected (S. Allen pers. obs.), the 

allocation of treatment (PHA or non-PHA) was based on nestling mass at 2 days prior 

(day 14 for starlings and day 17 for mynas).  PHA treatment was allocated to the heaviest 

chick, then the third heaviest and so on.  Chicks were weighed just prior to injection and 

again, when re-measured 24 hours later. 

 

STATISTICAL ANALYSES 

I used general linear mixed effects models (GLMM) to examine if there were 

species differences in mite loads.  Mixed effects models allow the analysis of 

observations structured in groups, when within-group errors are correlated and have 

unequal variances, via the specification of fixed and random effects (Crawley, 2007).  

The use of mixed effects models in my study enabled the use of individual chick data, 

whilst specifying the non-independence of chicks from the same nest, thereby avoiding 

pseudoreplication. 

As explained above, for completeness I conducted species comparisons on two 

data sets - second broods of both species, and on first brood mynas vs. second brood 
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starlings, however, unless differences between the two data sets were found, all results 

presented are for second broods only. 

 

Mite Load 

The number of mites infesting a nest box may change over the course of the 

nestling period; this temporal change was accordingly investigated in this study.  As the 

two species differed somewhat in their nestling periods (21 days for starlings and 25 days 

for mynas), but were measured at the same time intervals (every 3 days), a new variable, 

‘period’ was created, of measurement day relative to total nestling period (i.e., 

measurement day/ total nestling period).  Chick mite scores were averaged per nest box, 

and thus are a representation of the average mite load per chick, at each period.  Nest mite 

scores (log +1 transformed) and chick mite scores (log+1 transformed) were both 

analysed using a GLMM, with period (and period
2
 the quadratic term), species, and first 

order interactions as fixed effects, and nest box specified as the random effect.  Only 

second broods for both species were analysed.  The model was simplified using a 

backwards stepwise deletion method (at significance P <0.05).   

Differences in mite infestation, (quantified by both chick mite scores and nest 

mite scores) between the two species was analysed using GLMMs.  The difference in 

mite infestation (chick or nest score) between species was re-analysed using a GLMM 

with species as a fixed effect, and a specifying a random effect structure of nest within 

period, to account for the temporal and spatial pseudoreplication. 
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Immune Response 

Initially, immune response (IR), measured as the relative increase in patagium 

thickness (see above) of nestlings that had been challenged with PHA was compared with 

the ‘immune response’ on the non-challenged nestlings (calculated in the same way).  

Immune challenge (categorised as either yes or no) was specified as the fixed effect, with 

nest box as a random effect, and IR as the response variable.  IR was significantly higher 

(P < 0.05) in the immune challenged nestlings of both species, indicating that the PHA 

challenge elicited an immune response in both species under study.   

Species differences in IR were investigated using a GLMM with chick IR (log+10 

transformed) as the response variable, species (starling or myna) as the fixed effect, and 

nest box as the random effect.  One starling chick was excluded from the final analyses, 

as it exhibited an abnormally large response to the immunological assay (however 

preliminary analyses with the chick included did not change the significance of the 

results).  Hypersensitivity reactions are known to occur rarely in individuals challenged 

by PHA (Smits et al., 1999), and the chick subsequently fledged successfully. 

The effect of mite infestation on immune response in the two species was then 

analysed.  Due to the temporal influence on mite scores, mean values were calculated for 

both nest and chick infestation measurements and these new variables (mean nest score & 

mean chick score) were used in subsequent analyses.  For chicks, the average of the last 

two measurement days (days 8 & 11 for starlings, days 11 & 14 for mynas) were used, 

and for nest box scores, averages of the two measurements before and after the PHA 

challenge were used (days 14 & 17 for starlings, and days 17 & 20 for mynas).  GLMMs 

were used to test mite infection, with IR (log +10 transformed) as the response variable, 



 

Nestling immunocompetence   143

species and mean nest score (or mean chick score), and the interaction term were fitted as 

main effects, and nest as a random effect. 

Mass Change 

The effect of PHA challenge on mass gain in nestlings was also investigated.  

Mass gain was calculated as the percentage change in mass of individual chicks from the 

time of PHA administration, to when the chicks were re-measured 24 hours later.  

Initially single species analyses were conducted, comparing mass change in immune 

challenged chicks to non-challenged chicks (GLMM, mass change as response variable, 

immune challenge as explanatory and nest ID as random effect).  An interspecific 

comparison was then conducted, where mass change was fitted in a GLMM as a response 

variable, and ‘challenge’ (yes or no), species, and interaction between the two fitted as 

fixed effects, with nest as the random factor.   

RESULTS 

Mite Loads  

The mean mite load per chick increased significantly (P < 0.001) over the period 

measured (mynas – days 2 - 14, starlings days 2 - 11; Table 2, Figure 2).  Starling chicks 

had significantly higher mite loads throughout the nestling period measured (P = 0.001). 

The infestation level in nest boxes, corrected for brood size, changed significantly 

over the period measured (mynas days 8-23, starlings days 8-20), and was best described 

with a quadratic term (Table 3, Figure 3).  Mite infestation was not significantly different 

between the two species (P = 0.2) for this period of the nestling period. 
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Immunological assay  

No significant differences were found between the two species in response to 

PHA (P = 0.77) when a GLMM was fitted, with immune response (IRlog) as the response 

variable, and species as the fixed effect, and nest ID as the random (Figure 4, Table 1).   

The effect of individual chick mite load (mean of days 8 & 11 for starlings, days 

11 & 14 for mynas) on immune response was investigated, by fitting chick load, species 

and the interaction between the two in a GLMM (with nest ID as the random effect).  

None of the terms were significant, indicating that a nestling’s mite load prior to immune 

challenge had no effect on immune response, for either species (Figure 5). 

The effect of nest box infestation (mean of days 14 & 17 for starlings and days 17 

& 20 for mynas), corrected for brood size, on immune response (log+10 transformed) 

was also investigated.  A GLMM with IR as the response variable, nest mite load, species 

and the interaction between the two was fitted as fixed effects, with nest ID as the random 

effect.  None of the terms were significant, indicating the level of mite infestation had no 

effect on immune response in either species (Figure 6). 

Mass change 

The effect of immune challenge on percentage mass gain was first examined in 

the two species separately.  Immune challenge had no significant effect on mass change 

in either species (starling: P = 0.3, myna: P = 0.9; Figures 7 a & b). 

A GLMM, with IR (log+10 transformed) as the response variable, species, mass 

change and the first order interaction as fixed effects and nest ID as the random effect 

was run to determine if mass change had any effect on the immune responses of the two 

species.  None of the terms were significant, indicating that an individual’s change in 
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mass had no affect on its immune response, and that this did not differ between species 

(Figure 8). 

 DISCUSSION. 

In this study I compared the immune response in two bird species that had 

previously experienced population bottlenecks of considerably different severity and 

found that nestling immune response did not differ between the two species.  On average 

myna nestlings (the more severely bottlenecked species) mounted a similar response as 

starling chicks.  Starlings experienced higher levels of infestation by haematophagus 

mites (Order: Acarina) than mynas, but immune response was not correlated with mite 

burden, and the two species’ responses remained the same after controlling for mite 

infestation.  Furthermore, the immune challenge did not have any effect on nestling mass 

gain during the immune assay period (24 hours) for either species, and mass gain did not 

differ between species. 

The immune response was measured as the amount of localized swelling induced 

by administration of PHA, an immunostimulant, that may activate both innate and 

acquired (T-cell mediated) aspects of the immune system (Kennedy and Nager, 2006; 

Martin et al., 2006).  Overall, it would appear that nestlings from a population that had 

experienced a relatively severe bottleneck (70 individuals) were equally as able to mount 

an immune response of this nature as nestlings from a less bottlenecked population.  A 

previous study found that ndividuals from a population of New Zealand robins that had 

passed through a severe bottleneck (of 5 individuals) were immunocompromised 

compared to their source population (Hale and Briskie, 2007).  It may be that a bottleneck 

of 5 birds causes a decrease in immunocompetence, whilst less severe bottlenecks (e.g., 
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in this study 70 birds) do not have the same negative consequences.  Under this 

interpretation, my results would suggest there is little negative effect of bottleneck sizes 

on immunocompetence at least above founding populations of 70 or more individuals. 

On the other hand, the disparity in results between our two studies could arise for 

a number of other reasons, any of which might mask underlying differences in 

immunocompetence between starlings and mynas.  For example, the study of robins was 

conducted on adult birds in the autumn season.  In the autumn, adult birds, after 

experiencing a breeding season and moult, may be under greater immunological, 

energetic, and environmental stress than nestlings being provisioned by their parents in a 

nest box, and hence differences in immunocompetence may be more emphasized.  

Furthermore, the robin study compared two conspecifics populations, whilst this study 

compared two different species.  Mynas and starlings are closely related species (Feare 

and Craig, 1999) which should minimise phylogenetic differences but there may still be 

species-specific differences in immune function that mask any subtle immunological 

effects of population bottlenecks.  The sample sizes of my study were also quite small 

(number of nestlings tested; mynas n = 13, starlings n = 8), and there was considerable 

individual variation in immune response within a species (see Figure 4) Larger samples 

sizes may be required to detect interspecific differences.  Finally, the comparison of 

immune responses of myna and starling populations in New Zealand with their non-

bottlenecked source populations (India and UK, respectively) would overcome the 

difficulties in interspecific comparison, although such a study might be confounded by 

habitat and climate differences. 
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Avian immunity is a complex and dynamic system, and the PHA test only 

measures one small part of an animal’s immunocompetence.  There is evidence that 

differing components of the immune system are differentially activated (Hõrak et al., 

2006; Kennedy and Nager, 2006; Norris and Evans, 2000), hence whilst two populations 

can exhibit similar PHA responses they could differ in other aspects of their immunity.  

The simultaneous assessment of several components of the immune system (e.g., innate, 

and cell-mediated and humoural immunity) would be informative in this instance.  The 

use of multiple tests would be especially important from a conservation perspective to 

ensure that small population bottlenecks, such as the 70 birds experienced by the myna, 

really do not have any serious consequences on immunocompetence across the full 

spectrum of possible immune responses. 

An individual’s immune system is locked in a constant battle with the pathogens 

and parasites it encounters, and individuals from a population prone to higher rates of 

parasitism or disease might be expected to invest more in immune function than less 

parasitised populations (e.g. Lindstrom et al., 2004; Tschirren and Richner, 2006).  The 

immunological response of an individual to PHA may thus be an indication of that 

individual’s current investment in immunity, and should be assessed in the context of the 

current immunological stressors an individual is experiencing.  In other words, 

understanding the immune response of an individual requires knowing its past and 

current exposure to potential parasites and pathogens. 

In this study I assessed the ectoparasite burden the nestlings experienced as an 

index of their exposure to potential stressors.  The only ectoparasites found regularly on 

the nestlings and in the nest boxes were blood-feeding mites.  Lice (Order: Phthiraptera) 
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and ticks (Order:Acarina) were rarely found on nestlings, and hence ectoparasite burden 

was quantified entirely by mite infestation.  A previous study of nestling starlings in 

Europe found that chicks from nests with high mite loads had stronger immune responses 

(Gwinner et al., 2000), and these authors hypothesized that the chicks may be sensitized 

by the blood feeding activities of the mites.  In my study, nestling starlings from second 

broods had significantly higher levels of mite infestation than mynas during the early 

stage of the nestling period, but this difference was non-significant for nest box 

infestation later in the nestling period.  I found no relationship between mite load and 

immune response, neither when considering mite infestation at the time of PHA 

administration, nor when comparing the mite load individual chicks experienced earlier 

in the nestling period.  Again, the small sample size of the current study (number of nests, 

myna n = 6, starling n = 5) limits my power to detect such an effect.  However, no 

relationship was found between immune response and mite load when the analysis was 

repeated solely on mynas, but including both broods and boosting the sample size (22 

nests, 44 chicks).  Differences in the quantification of the level of infestation, or indeed 

the actual mite load experienced by the chicks in the two studies may well explain the 

discrepancy. 

Ectoparasites are far from the only factor that may challenge a bird’s immune 

system; whilst in the nest they may be exposed to a plethora of pathogens, including 

endoparasites, bacteria, fungi, viruses, and haematozoa (Slomczynski et al., 2006).  

However to conduct a full audit of nestling immunostressors is challenging in the 

extreme, and rarely achievable in wild populations.  It seems likely that the starling and 

myna nestlings in this study were exposed to similar parasites and pathogens, as they 
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inhabited the same area, used the same nest boxes, and have similar diets (Higgins et al., 

2006).  Indeed, whilst mite infestation was on average somewhat higher in starlings 

compared to mynas early in the nestling period, the infestation patterns were almost 

identical (see Figures 2 & 3), and when infestation of nest boxes later in the nestling 

period was investigated the difference between the two species disappeared, suggesting 

similar parasitic infection profiles.  Nonetheless, it would be worth conducting further 

surveys of other potential pathogens as far as feasible. 

Mounting an immune response is energetically costly (Lochmiller and 

Deerenberg, 2000; Lochmiller et al., 1993) and a number of other factors may influence a 

nestling’s ability to respond to an immunostimulant.  During the course of the field work 

it was noted that a high level of interspecific competition existed between mynas and 

starlings, and that mynas were dominant (SE Allen and CA Debruyne, pers. obs.).  This 

observation has also been made in a previous study of mynas in New Zealand 

(Counsilman, 1974).  In Australia, Pell and Tideman (1997) quantified the ‘winners’ and 

‘losers’ in a series of aggressive interspecific interactions between the myna and starling 

(and other species), during the period of nest site selection and reproduction, and they 

found mynas won all interactions with starlings (18 out of 18).  In the case of my study, 

such interspecific competition may confound the potential fitness effects of population 

bottlenecks.  If mynas out-compete starlings, then starling nestlings may experience 

greater environmental stress than myna chicks (e.g., they may be less well provisioned, 

have ‘poorer’ nest sites).  Hence the starling’s ability to mount an equal immune response 

to the myna, whilst experiencing a less favourable rearing environment may indicate 

superior fitness.  It would be illuminating to investigate this further, and would require 
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the comparison of mynas and starlings, that cohabit (as in this study) with populations 

that are isolated from one another.  This issue highlights the need to consider interspecific 

interactions, when conducting cross species comparisons. 

It is hypothesised that during the nestling period, trade-offs exist between the 

growth and immunity (Saino et al., 2002).  Indeed several studies have demonstrated 

reduced nestling growth in response to antigenic challenge (Fair et al., 1999; Soler et al., 

2003; Whitaker and Fair, 2002).  This study compared mass gain in immune challenged 

chicks and their non-challenged brood mates, in the two species, during the challenge 

period of 24 hours.  I predicted that immune-challenged myna chicks (i.e., the more 

severely bottlenecked species) may be more energetically constrained than starlings, and 

thus gain less weight than immune-challenged starlings.  However, no difference was 

detected in weight gain between chicks that had been immune challenged, and ones that 

had not in either species.  This may indicate that the swelling response elicited by PHA 

was not energetically costly, or that mass gain was not measured over an adequate period, 

or that another function of growth (e.g., feather growth) was affected instead. 

My study detected no difference in nestling immune response between the starling 

and myna, despite the two populations experiencing considerably different sized 

bottlenecks during their introduction to New Zealand.  This would suggest that 

populations that experience a relatively severe bottleneck (70 individuals) are equally as 

immunocompetent as less bottlenecked populations.  However, this finding should be 

interpreted with some caution, as the sample sizes of the current study were relatively 

small, and interspecific competition may have confounded the results.  This study 
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highlights the need to consider interspecific interactions when conducting cross species 

comparisons. 
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TABLES 

Table 1.  Summary statistics of the bottleneck size, sample size (of nests and chicks that 

were immune challenged) and immune response (IR) of nestling mynas and starlings.  See 

text for calculation of IR (note that mean IR is overall mean per species, per brood). 

Species Brood Bottleneck
a
 Nests (n) Chicks (n) Mean IR (± SE) 

Myna  1 70 16 31 0.98 ± 0.18 

 2 70 6 13 1.04 ± 0.18 

Starling 2 653 5 9 0.90 ± 0.24 

 

a 
Data from Lever (1987) 

 

Table 2.  Results of a GLMM investigating the effects of nestling period and species on the 

mite load per chick in bottlenecked populations of the myna and starling (Nest ID is fitted 

as a random effect). 

Predictor Estimate SE p-value 

(Intercept)      -0.224 0.162  

Species -  Myna 0 -- -- 

             -  Starling 0.797 0.185 0.0012 

Period 2.351 0.318 <0.0001 
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Table 3.  Results of a GLMM investigating the effects of nestling period (including a 

quadratic term - ‘period
2
’) and species on the nest box mite load in bottlenecked 

populations of mynas and starlings (Nest ID is fitted as a random effect). 

 

Predictor Estimate SE p-value 

(Intercept)      4.34 1.98  

Species     -   Myna 0 ---  

                  -  Starling 0.95 0.69 0.20 

Period 20.01 6.62 0.0048 

Period 
2
 -13.92 5.31 0.0131 
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FIGURES 

                                                      

  

Figure 1.  Conducting the PHA assay on a myna nestling:  

a) swabbing the patagium to prepare the area;  

b) measuring the thickness of the patagium using a stand-

mounted micrometer; 

c) administering the sub-cutaneous injection of PHA 

a) b) 

c) 
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Figure 2.  Mean chick mite load against nestling period (standardised as chick age/21 for 

starlings and chick age/25 for mynas).  Starlings open circles (○) and mynas filled diamonds 

(♦).  See text for definitions of chick infestations scores. 
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Figure 3.  Mean nest box load of mites against nestling period (standardised as chick age/21 

for starlings and chick age/25 for mynas).  Starlings open circles (○) and mynas filled 

diamonds (♦). 
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Figure 4.  Box and whisker plot of the relative immune response (see text for details of 

calculation of immune response) in second brood nestling starlings and mynas. Horizontal 

line indicates median immune response (per species), bottom and top of box represents 25
th
 

and 75
th
 percentiles respectively, dashed vertical lines show either the maximum, or 1.5 

times the interquartile range (whichever is smaller), and data points beyond this value are 

marked as individual points 
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Figure 5.  Chick infestation score (mean per chick of scores from days 8 & 11 in starlings 

and days 11 & 14 in mynas) against immune response.  Starlings open circles (○) and mynas 

filled diamonds (♦). 
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Figure 6.  Nest box infestation score (mean nest score from days 14 & 17 in starlings and 

days 17 & 20 in mynas) against immune response.  Starlings open circles (○) and mynas 

filled diamonds (♦). 
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Figure 7.  Change in mass (expressed as %) in starling (a) and myna (b) chicks over a 24-

hour period following immune challenge.  Dose 100 = chicks that were administered with 

PHA, Dose 0 = control chicks.  Note that data are not nest box means, but include all chicks.  

See Figure 4 for explanation of Box and Whisker plots. 
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Figure 8.  Change in mass (expressed as %) of immune challenged chicks over a 24-hour 

period following administration of PHA.  NB: Data are not nest box means, but include all 

chicks.  See Figure 4 for explanation of Box and Whisker plots 
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DISCUSSION 

 

In this thesis I investigated levels of parasitic infection and immunocompetence in 

wild populations of introduced bird species in New Zealand that had experienced a range 

of population bottleneck sizes.  My aims were two-fold; firstly to assess if population 

bottlenecks are linked to increased parasite loads and/or decreased immunocompetence, 

and secondly, to assess at what severity of bottleneck size these effects become evident.  

The ultimate goal of this work was to further our understanding of the problems faced by 

populations founded by low numbers of individuals or that experience a period of severe 

population decline (i.e., endangered and translocated species), and to thereby optimise the 

success of conservation projects dealing with such populations.   

In terms of pathogenic and parasitic infection, I found evidence that both 

ectoparasitic load, and the prevalence of avian malaria were related to the severity of 

bottleneck a population experienced.  The ectoparasite burden of chewing lice (Order: 

Phthirpatera, Suborders: Amblycera and Ischnocera) on introduced bird species in New 

Zealand was significantly affected by the severity of the bottleneck that each species had 

experienced, when compared to their source populations in the UK (Chapter 1).  This 

relationship was found to be driven primarily by Amblycera, which may be the more 

virulent suborder of chewing lice, meaning they probably exert higher fitness costs than 

Ischnocera.  Species in NZ that were introduced in low numbers, and therefore had 

experienced more severe bottlenecks, had significantly higher prevalence (i.e., number of 

birds carrying lice) of Amblycera when compared to their non-bottlenecked counterparts 
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in the UK, while loads were similar between the two countries at more moderate 

bottlenecks.  Intensity of infestation (i.e., the number of parasites per infected individual), 

whilst not related to the severity of the bottleneck in amblyceran lice, was in the majority 

of cases higher in NZ than the UK.  Furthermore, when differences in genera richness 

were investigated, I found that species that had experienced severe bottlenecks had higher 

genera richness in New Zealand, whilst the less bottlenecked species had greater diversity 

of genera in the UK. The prevalence of avian malaria (Plasmodium spp.) was also related 

to bottleneck size; within New Zealand I found that the number of individuals infected 

with Plasmodium parasites was higher in species that had experienced the more severe 

bottlenecks (Chapter 2). 

Overall my results would suggest that the more severely bottlenecked species had 

higher levels of ectoparasitic and haematazoan infection.  These parasites differ hugely in 

their life histories and mode of transmission (Clayton and Moore, 1997; Loye and Zuk, 

1991), which lends support to the theory that bottleneck size is the common denominator.  

Birds experience a plethora of parasitic attack; indeed, it is estimated that birds (as a 

taxon) may support more than 58,000 species of parasites (Cromptom, 1997), and in this 

study I investigated a fraction of this potential parasite load.  Whether population 

bottlenecks influence infection rates by other types of parasite (e.g. fungal, viral, 

bacterial), is at present unknown, but the evidence presented here, from two diverse 

parasite taxa, suggests a similar effect might be expected. 

The relationship I found between population bottlenecks and immunocompetence 

was more complex.  In chapter 2, I compared leucocyte profiles between NZ and UK 

populations of introduced species, and discovered that species in NZ that had experienced 
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more severe bottlenecks had significantly higher HL (Heterophil/Lymphocyte) ratios than 

their UK counterparts, and that this difference was correlated with severity of bottleneck 

(i.e., the most severely bottlenecked species exhibited the biggest difference).  HL ratio is 

known to increase in response to a number of stressors, including infectious diseases and 

environmental disturbance (Ots and Hõrak, 1998).  Whilst this can’t be used as a direct 

assessment of immunocompetence (Norris and Evans, 2000), it suggests populations with 

a higher HL ratio, are under some form of increased stress (be that immunological, 

psychological or environmental).  I also examined the haematological responses of 

species within New Zealand to malarial infection, comparing differences between 

infected and non-infected groups.  Bottleneck size was correlated with changes in two 

haematological responses (total white blood cell, and differential lymphocyte count).  As 

bottleneck size increased (became less severe) these responses increased in infected 

individuals, suggesting that less bottlenecked species were more able to mount an 

immune response to malarial infection (i.e., were more immunocompetent).  The 

converse interpretation of these findings is that the more bottlenecked species were less 

impaired by malarial infection, and thus did not invest in an immunological response to 

the infection. This inference cannot be discounted but it seems the less likely of the two 

interpretations. Taken together, the raised HL ratio in species experiencing severe 

bottlenecks, and the lack of haematological response in malaria infected individuals of 

these same species, suggests that these populations may be immunocompromised as a 

result of the population bottleneck they experienced.   

The experimental challenge of individuals with a novel immunostimulant can 

provide a more standardized approach to assessing immunocompetence (Norris and 
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Evans, 2000), than the observation of haematological parameters.  In chapter 3, I 

examined the differences in immune response between six introduced bird species to the 

mitogen phytohaemagglutinin (PHA).  Again I found a relationship existed between 

bottleneck and immunity, but in the opposite direction to that predicted; the more 

bottlenecked species exhibited the larger (i.e., stronger) responses.  This finding 

highlights the complexity of making interpretations about the ‘immunocompetence’ of an 

individual, based on tests assessing one component of immunity in isolation (Salvante, 

2006).  Considering the findings of Chapter 1 (increased ectoparasite load), the larger 

immune response in the more bottlenecked populations may be an indication of increased 

investment in immunity, due to increased parasite and pathogen pressure.  An alternative, 

but not mutually exclusive explanation is that components of the immune system may be 

differentially affected by population bottlenecks, for either genetic or energetic reasons. 

In my final data chapter (Chapter 4), I examined the immune response to PHA in 

nestlings of two closely related species that differed in the bottleneck size they 

experienced, and placed this immune response in the context of ectoparasitic infestation.  

I found no differences in immune response between the two species (myna and starling), 

despite them experiencing considerably different bottlenecks (70 vs 653 birds, 

respectively).  However, this result may have been confounded by interspecific 

competition, highlighting a potential problem of conducting cross species comparisons.  

Taken together my findings have important implications for the two questions I 

set out to answer with this thesis and that bear directly on the conservation relevance of 

population bottlenecks.  Firstly, do population bottlenecks have negative impacts on 

parasite load and immunocompetence?  The evidence presented here strongly suggests 
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that populations that experience a significant reduction in size are more prone to infection 

by avian malaria and infestation by ectoparasites, at least in the introduced bird species of 

New Zealand.  The relationship between immunity and bottleneck size was more 

ambiguous, which no doubt reflects the complex and dynamic nature of the vertebrate 

immune system.  Nevertheless, I conclude that population bottlenecks do appear to 

impact on immunity, but that this impact may differ depending on the component of 

immunity under study, and the current pathogenic pressures on the population under 

question.   

The second, and more practical question to conservation managers is – when is a 

bottleneck, really a bottleneck? In other words, at what severity of bottleneck do the 

negative consequences become evident, and hence, what is the minimum number of 

individuals required to found a new population to avoid these problems.  It is to be 

expected that different aspects of a population’s fitness (and indeed different 

populations/species) will be differentially affected by bottlenecks – there is unlikely to be 

a ‘magic number’ below which populations will falter and fail, above which they will be 

gloriously healthy and sustainable.  However, in two differing aspects of this study that 

allowed direct comparison between the source (non-bottlenecked) population and the 

bottlenecked population (i.e. ectoparasite load and HL ratio), the three most bottlenecked 

species (greenfinches, house sparrows and dunnocks, bottlenecks of 66, 111 and 284 

respectively) experienced raised parasitism and HL ratio.  HL ratio in birds can be used 

as an indication of a general stress response (including immunological stress) (Maxwell, 

1993; Ots et al., 1998), and it may be that increased ectoparasite load is driving the raised 

stress levels, or conversely that birds under environmental or immunological stress are 
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more prone to ectoparasitic infection.  Regardless of the mechanisms underlying this 

relationship, the conclusion that can be drawn is that a population founded by low 

numbers may be prone to higher ectoparasite loads, and higher general stress levels, than 

a healthy, less bottlenecked population.  Conclusions are harder to make from my 

findings on immunocompetence and avian malaria, as no direct comparison between the 

source populations in the UK was possible.  However, the populations experiencing the 

more severe bottlenecks had a higher prevalence of malaria and lower immune response.  

Conversely, these same species had the highest response to the PHA assay, although this 

may be reflection of the increased parasite/pathogen load. 

  Briskie and MacKintosh (2004) investigated this same question of 

minimum bottleneck size in terms of levels of hatching failure in introduced and native 

species in New Zealand, and concluded that hatching failure was significantly increased 

in species that had passed through bottlenecks of less than 150 individuals, and did not 

reach pre-bottleneck levels until a population was founded by 600 individuals.  Thus my 

findings of bottlenecks falls within the range suggested by this earlier study.  

In a global survey of translocation schemes (Griffith et al., 1989; Wolf et al., 

1996) it was found that in 1993, the median number of individuals released was 50.5 (an 

increase from 31.5 individuals in a similar survey done in 1987).  In this study, only 

greenfinches, with a bottleneck of 66 birds, fell in the range used in translocation 

schemes (Lever, 1987).  This species consistently exhibited significant differences when 

compared to their con-specifics in the UK, in both parasite load and haematological 

parameters, and had a higher prevalence of avian malaria and lowered leucocyte response 

to infection than less bottlenecked species.  If the greenfinch is representative of other 
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species that have passed through similar sized bottlenecks used in translocation schemes, 

then it is possible similar problems might be widespread.  That being said, greenfinches 

are extremely successful in New Zealand today despite their small bottleneck (MacLeod 

et al., 2008; Robertson et al., 2007).  It may be that whilst I found statistically 

‘significant’ differences in various measures of parasite load and immunocompetence, 

these differences don’t translate to being biologically significant; they may not cause a 

decrease in fitness.  Alternatively, greenfinches would be even more successful if the 

were not limited by their past bottleneck, or New Zealand may present such a benign 

environment (MacLeod et al., 2008) that they are successful despite their fitness 

handicap.  If anything, the fitness effects of population bottlenecks are likely to be more 

pronounced in endangered species, as they are likely to experience greater environmental 

stress than the introduced species under study here.  A rule of thumb then, for 

conservation practitioners considering how many individuals to translocate, might be the 

‘bigger the better’, and over a couple of hundred would be best.  Obviously, in the case of 

many vulnerable species, this will not be possible, however, an understanding of the 

added problems populations founded by small sizes face will surely aid in the 

management of these species. 

As in most studies, the number of questions created by the findings far exceeds 

the numbers answered.  The relationship between immunity and population bottleneck 

was particularly complex (as would be expected in such a diverse system), and future 

studies simultaneously investigating several components of immunity (e.g. Matson et al., 

2006) in introduced birds would be extremely illuminating.  Whilst this study established 

a link between both ectoparasitic load and avian malaria and the size of the population 
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bottleneck, no inference could be made of the actual fitness costs to the individual or 

population experiencing these increased pathogenic pressures.  Studies examining the 

fitness consequences of these parasites in introduced birds should be achievable and 

informative.   

Whilst the evidence is mounting that introduced bird species in New Zealand do 

experience fitness costs in relation to their past bottleneck ((Briskie and Mackintosh, 

2004; Debruyne, 2008), whether the population bottlenecks experienced by these species 

is reflected in their genetic diversity is yet to be answered.  Past genetic studies are 

ambiguous (Baker, 1992; Baker and Moeed, 1987; Baker et al., 1990; Merilä et al., 1996; 

Parkin and Cole, 1985; Ross, 1983), and all employed allozymes which may have a low 

resolving power (Crochet, 2000).  Further studies employing higher resolution molecular 

markers (e.g., microsatellites) are warranted.   

Finally, there are a multitude of questions still to be answered in regards to the 

long-term effects of population bottlenecks.   Introduced bird species could also prove to 

be an excellent study system to address these questions (Briskie, 2006), as many 

populations of introduced birds have persisted for upwards of several hundred years, 

which may translate into a similar number of generations.  Understanding how such 

populations have survived, despite some showing negative fitness consequence as a result 

of a bottleneck, may help guide the development of management strategies to ensure the 

long-term survival of the 1200 species of endangered native birds around the world that 

are each now facing a population bottleneck crisis through continued human activities.   
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