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Abstract 

To achieve goal-orientated behaviour, selective attention is often needed to filter out 

irrelevant information. Past research has shown that working memory (WM) plays a 

critical role in selective attention, with high WM load leading to more distractor 

interference than low WM load. However, because WM load is usually manipulated by 

requiring participants to hold in memory either one or several digits that were presented 

simultaneously while performing a selective attention task, the extent of attentional focus 

was not controlled. The present study examined the effect of WM load on distractor 

inhibition while keeping attentional focus constant by presenting one digit (low load 

condition) or six digits (high load condition) sequentially. The participants in the high-

load condition demonstrated greater distractor interference than the participants in the 

low-load condition, suggesting that WM load influences distractor inhibition even when 

the extent of attentional focus was controlled. This result provides converging evidence 

to Lavie’s (1995, 2005) load theory of attention and cognitive control.  
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1 Introduction 

The ability to maintain focus on a given task is a fundamental behavioural objective. 

Because we live in a world where task relevant information occurs together with task 

irrelevant information frequently, it is important that the latter be filtered out so that 

behavioural goals can be achieved. One way to accomplish that is through distractor 

inhibition. Among the factors that influence our ability to inhibit distractors are working 

memory (WM) capacity and WM load. Whereas it is generally agreed that a positive 

correlation exists between working memory (WM) capacity and the efficiency of 

distractor inhibition (Conway & Engle, 1994; Kane & Engle, 2003), the effect of WM 

load on selective attention is less clear. While some studies show that an increase in WM 

load leads to a decrease in distractor inhibition (e.g., Lavie, 1995, 2001; Lavie, Hirst, de 

Fockert & Viding, 2004; Lavie & Tsal, 1994), other experiments suggest a more limited 

role that WM load plays in selective attention (e.g., Chen & Chan, in press; Logan, 1978; 

Woodman, Vogel, & Luck, 2001).  

The experiment reported below examined the role of WM load on selective attention 

while controlling for the extent of attentional focus. Participants performed a selective 

attention task that required them to make speeded identification of a target letter while 

ignoring surrounding distractor letters. During this task they were required to hold in 

memory either a single digit or a set of six digits presented sequentially. Of interest was 

whether the magnitude of distractor interference would vary as a function of WM load. 



 

To understand the relationship between WM and selective attention, Section 2 provides 

an overview of WM research and memory processes. Section 3 provides a detailed 

review of Lavie’s (2005) load theory of selective attention and cognitive control. Results 

which are inconsistent with the load theory will then be presented in section 4. Section 5 

reported an experiment that investigated the effect of WM load on visual information 

processing while controlling the extent of attentional focus. 
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2 Overview of working memory research 

Working Memory  

Working memory consists of processing components that are deployed in the control, 

regulation, and active maintenance of task-relevant information used in cognitive tasks 

such as learning and problem solving (Baddeley, & Weiskrantz, 1993, Baddeley & Logie, 

1999). The functions include: storing material for immediate recall as mentioned above 

and providing access to long-term memory (Atkinson & Shiffrin, 1971; Baddeley, 1982). 

According to Baddeley and Hitch (1974), information in WM is actively used and 

manipulated to allow the integration of newer, immediate information. WM therefore 

allows a person to keep a limited amount of information active for a brief period of time.  

In order to understand how WM maintains task relevant information during the 

performance of a cognitive task, it is necessary to examine how the different components 

work collectively. For example selective attention and distractor inhibition, WM 

capacity, executive control processes, and WM load have all been postulated to 

contribute to the performance of a cognitive task. The rest of the section provides a brief 

review on each of these components. 

Selective Attention and Distractor Inhibition 

What people ‘perceive’ is determined by what people attend to (Mack & Rock, 1998). 

Attention is the cognitive process of selectively concentrating on only the task relevant 
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information while ignoring other task irrelevant stimuli. A good example is the cocktail 

party problem, in which a person tries to follow one conversation while ignoring other 

conversations in the room (Cherry, 1953; Conway, Cowan & Bunting, 2001). Inhibitory 

mechanisms play a fundamental role in selective attention by reducing both ambiguity 

and distractor interference. In a visual search paradigm Watson and Humphreys (1997) 

demonstrated that in a visual search paradigm previously viewed objects could be 

visually marked provided that they differed in colour, or another feature, from new 

objects. They theorised that the visual system inhibits the locations of the old objects by 

the activity of an inhibitory memory template. Thus, inhibition prioritises the selection of 

new objects so that observers inhibit the locations of old or previously processed objects 

so that those objects no longer compete as strongly for selection (Watson & Humphreys, 

1997).  

Traditionally, there have been two divergent views of selection processes: early versus 

late selection. According to early-selection theories (e.g., Broadbent, 1958), unattended 

information is not processed beyond its most basic physical attributes. In other words, the 

meaning of an unattended stimulus is not processed. In contrast, researchers that support 

the late-selection view propose that selection occurs only after categorisation and 

meaningful analysis of input have occurred (Deutsch & Deutsch, 1963).  

Both views have received considerable amount of empirical support. For example, in 

early experiments in which the dichotic listening procedure was used (i.e., the 

participants repeated aloud passages that were presented to one ear while ignoring 

passages that were delivered to the other ear), Moray (1959) found that the participants 
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would fail to show any sign of having heard a list of words that had been presented up to 

35 times to their non-attended ears. This finding is consistent with the early-selection 

view, suggesting that the meaning of unattended information is not processed. However, 

other experiments have supported the late-selection view. For example, Eriksen and 

Eriksen (1974) showed participants stimulus displays that consisted of a central target 

with two flanking distractors. They manipulated the relationship between the target and 

the distractors so that the response indicated by the distractors could either be compatible 

with the response of the target (the compatible condition), incompatible with that of the 

target (the incompatible condition), or not related to the response of the target (the neutral 

condition). The results show the compatibility effect, i.e., RTs were faster in the 

compatible condition than in the neutral condition, which in turn were faster than the 

incompatible condition. Consistent with the late-selection view, these findings suggest 

that attentional selection occurred at a semantic level. 

As Kahneman and Treisman (1984) pointed out, these seemingly contradictory findings 

may very well be the result of a paradigmatic shift in the field of attention research. 

Whereas evidence in support of early selection is typically associated with the “filtering 

paradigm” characterised by heavy information load, evidence consistent with late 

selection is usually obtained with the use of the “selective set paradigm” that employs 

simple stimulus displays. The notion that the level of information load may be the key to 

the locus of selection was further developed by Lavie and her colleagues in the load 

theory of attentional selection (Lavie, 1995, 2000; Lavie & Tsal, 1994).  A more detailed 

account of the theory will be provided later in section 3.  
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It is important in attention research to understand the factors that facilitate target selection 

and reduce distractor interference. A principal factor that influences the degree of 

distractor interference is the spatial separation between a target and distractors in a given 

task. For example, Eriksen and Eriksen (1974) manipulated the spatial separation 

between the target and the distractors in addition to the response competition between the 

two. The response compatibility effect was greater when the target was closer to the 

distractors than when it was farther away from them.  

Eriksen and St James (1986) further showed that the extent of attentional focus 

influenced the degree of distractor interference. They proposed a “zoom-lens” model of 

selective attention. According to the model, as the size of the attentional field increases, 

the amount of processing resources within the field deceases. In their study, Eriksen and 

St. James presented participants with stimulus displays consisting of a target letter and 

either seven neutral letters (the neutral condition) or six neutral letters plus one 

incompatible letter (the incompatible condition). The letters were presented in a circular 

arrangement around a central fixation point and a precue to one, two, four, or all eight 

stimulus positions preceded the display onset. The results show that RT’s increased with 

Moreover, distractor interference decreased with increased distance from the target. They 

found that distractors produced more interference when they were within rather than 

outside the cued area. Consequently, allocating attention to or away from distractors 

influenced the extent of their processing. The findings they argue illustrate that when 

more positions are cued, attention must be spread out over a larger area, with fewer 

resources being allocated to each location. Thus, the effectiveness of visual filtering is 

related to the spatial range of attentional focus that can be expanded or contracted in a 
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manner that is analogous to a zoom-lens. Visual search for a target in an array of 

distractors relies on flexible shifts between global and local approaches of attentional 

processing. The spotlight or zoom-lens models of attentional focus suggest that attention 

can be directed to a specific location aided by a precue that directs attention to a valid 

location. However, the finding was that attentional focus was unable to completely inhibit 

the processing of interference resulting in large RTs (Eriksen & St James, 1986; Yantis & 

Johnston, 1990). 

The spatial extent of attentional focus has also been found to influence the degree of 

distractor processing The spotlight and zoom-lens models of attentional focus are 

reported to show that as attentional focus increases, participants’ RT’s became longer. 

Consequently, Eriksen & St James (1986) report the extent of the attentional focus 

changes with task demands, with processing efficiency having the opposite effect on the 

spatial extent of attentional focus. Such that when a task requires processing of stimuli in 

a narrow area, the attentional focus becomes relatively small. As the extent of the 

attentional focus decreases, the density of processing resources within the attended area 

increases, leading to more efficient processing. Conversely, when relevant stimuli occupy 

a broad area, the attentional focus expands.  

However, research by LaBerge, Brown, Carter, Bash, & Hartley, (1991) showed that 

when the attentional focus was narrowed the effect of interference was reduced. 

Participants were required to respond to a display consisting of a target (7, H or Z) which 

was flanked by distractor letters ( T or Z) this display was presented at varying durations. 

Participants then respond to a second a target letter (C, H, S or K) which was flanked by 
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neutral, compatible, or incompatible letters again the presentation duration was varied. 

All displays were presented sequentially with a total of 17 characters per display. 

Participants were required to identify first the digit target then the letter target appearing 

in the same location. Results suggested that the main factor contributing to the 

elimination of distractor interference was the brief presentation time of the first target 

thus encouraging participants to narrow their focus of attention for the second task. La 

Berge et al. explain these findings by two mechanisms: a filter that quickly opens and 

closes at the location of the target and flanker, and by the high probability that the 

channel will open at the location previously focused. LaBerge et al. findings of more 

efficient distractor inhibition due to narrowing of attentional focus adds support to 

Eriksen & James (1986) findings that increasing the area of attentional focus reduces the 

ability to inhibit interference. Taken together these results indicate that the size of the 

spotlight can vary according to the demands of the task resulting in increases in distractor 

interference as the area of attentional focus increases.   

Distractor inhibition is essential in selective attention. Very often, goal-directed 

behaviour depends on maintaining relevant information in WM while excluding 

irrelevant information from WM. The capacity to inhibit inappropriate responses 

decreases with an increase in WM load (Conway et al., 1999; Engle et al., 1995).The 

negative priming (NP) effect has been used by a number of researchers to examine the 

processes involved in selective attention tasks (e.g. Dalrymple-Alford & Budayr, 1966; 

Fox, 1995; May, Kane, & Hasher, 1995). Conway et al, and Engle et al. (1995) suggest 

that individual differences in NP that were observed between high WM capacity 

participants showed reliable NP while low WM capacity participants did not. The results 
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indicate that NP effects result from distribution of controlled attention and that individual 

difference in WM capacity corresponds to the ability to efficiently handle irrelevant 

information. 

Working Memory Capacity, Executive Control and Distractor Interference 

Working memory capacity is “the capacity for controlled, sustained attention in the face 

of interference or distraction” (Engle, Kane & Tuholski, 1999, p.104). Cowan (1995) and 

Engle et al. (1999) view this capacity as a general resource, which contributes to 

cognitive performance in any area that demands controlled processing. Thus, the authors 

argue that WM capacity reflects the ability to keep a representation active, particularly in 

the face of interference and distraction.  

The original WM capacity model proposed by Daneman and Carpenter (1980) 

emphasised a trade-off between processing and storage demands. Performance on a task 

could be impaired by a dual task if there were a need for the tasks to share resources such 

as attention, verbal or spatial processing, or both of them. To test individual differences 

in WM capacity researchers have traditionally used memory span tasks, in which words 

are presented to participants who are required to recall them at the end of the sequence. 

Daneman & Carpenter (1980) used a reading task in which participants read sentences 

and were required to remember the last word of each sentence for later recall. WM span 

was defined as the maximum number of sentences for which this task could be performed 

perfectly. Daneman and Carpenter found a high correlation between WM span and 

reading comprehension. Similar results occur when sentence processing is replaced by 

other tasks, such as arithmetic calculation or colour–word association. It was argued that 
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individual differences in reading comprehension were due to reader’s differing abilities 

of their processing skills. Therefore, good readers have more functional WM capacity 

simply because they have more efficient reading skills. 

The central executive operates as the control processor of WM (Baddley, 1996). It is an 

attentional mechanism used to maintain current task objectives, process incoming 

information, block other task irrelevant information and internal interference (Unsworth, 

Schrock & Engle, 2004). Essentially, executive control is a mechanism of decision. It is 

the process by which the mind plans and exercises control allowing engagement in goal-

directed activities (Logan, 2004). A recent review by Baddeley (2003) on the progress of 

WM research highlighted that the concept of a central executive remains a poorly 

understood component of the WM system with a paucity of research of the mechanisms 

that drive the system. However, a significant number of studies in this area (Conway, 

Cowan, Bunting, Therriault & Minkoff, 2002; Daneman & Carpenter, 1980; Engle, 

Carullo & Collins 1991; Engle, Tuholski, Laughlin & Conway, 1999; Kane, Bleckley, 

Conway & Engle, 2001) have established the existence of individual differences in WM 

span and that WM capacity is an important function for cognitive tasks. 

Conway et al. (1999) carried out two experiments. In the first experiment, participants 

performed a letter naming task while memorizing words. Each trial consisted of a prime 

display (a red and a green letter) followed by a probe display. The participant’s task was 

to name the red letter as quickly and as accurately as possible. After each trial, a word 

was presented for later recognition. After the 5th trial, a test word was presented and the 

participant had to indicate whether the test word matched one of the four previously 
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presented words. In the second experiment, participants performed the same letter 

naming task but this time holding in memory a polygon for later recall. Both experiments 

varied load (zero to four) and trial type (control, filler, distractor-target and no selection). 

The results showed that on both verbal and nonverbal secondary tasks NP was 

consistently observed across the participants only under conditions of zero memory loads.  

Engle and colleagues proposed that cognitive measures of WM capacity reflect an 

individual’s capacity to maintain information in spite of distracting information which 

suggests that executive control is compatible with the idea of controlled attention and, 

consequently, cognitive control. Consistent with this claim, they have shown that people 

who are low in WM capacity are more susceptible to interference from irrelevant 

information. According to researchers (e.g. Daneman & Carpenter, 1980; Engle, Cantor, 

& Carullo, 1992; Cantor & Engle 1993), there is a direct relationship between an 

individual’s WM capacity and his or her ability to inhibit irrelevant information. For 

example, Hasher and Zacks (1988) proposed that individuals with large WM capacity 

have more effective inhibitory mechanisms. As a result, they are able to process only 

information that is specifically relevant to the current goal. Engle and his colleagues 

(Engle, et al., 1995) also suggested that inhibition is an effortful and resource-demanding 

process. Therefore, relative to low-span individuals, high-span individuals would 

theoretically have more resources left over to allow them to inhibit irrelevant information 

more efficiently.  

Empirical evidence from prior research is generally consistent with the above views. For 

instance, Kane and Engle (2003) used the Stroop task to examine the interaction of WM 
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capacity, active goal maintenance, and inhibition of competing stimuli. In a typical 

Stroop task, individuals report the colours in which colour words are presented. When the 

colour and word are incongruent (e.g., RED written in green ink), colour naming is 

slower and less accurate than when the colour and word are congruent (e.g. RED written 

in red ink). The slower response time is known as the Stroop interference effect. In all 

five experiments, high-WM-span individuals demonstrated less interference than did low-

span individuals. That is, low WM capacity individuals responded more slowly than high 

WM capacity individuals on incongruent trials. These findings support the suggestion 

that WM capacity is a valid predictor of attentional control. Furthermore, in three 

experiments, Unsworth, et al., (2004) tested high and low-WM span individuals in an 

antisaccade task. The participants were required to make a saccade (rapid eye movement) 

either towards a flashing cue (prosaccade) or away from it (antisaccade). The results 

show that high- and low-capacity individuals varied in their ability to efficiently suppress 

reflexive saccades in the antisaccade condition, with low-span individuals making more 

reflexive saccade errors on the antisaccade trials. These results suggest that WM capacity 

is positively related to one’s ability to suppress irrelevant eye movements.  

Individual differences in performance on complex span tasks such as reading span, 

operation span, and counting span were argued by Engle et al., (1999) to be principally 

due to differences in the central executive component of WM. Engle, Kane and 

colleagues (Engle, et al., 1999; Kane & Engle, 2003) have proposed that individual 

differences on measures of WM capacity reflect differences in a person’s capability for 

controlled processing that are reflected in situations that either encourage or necessitate 

controlled attention. On an antisaccade task involving minimal memory demand, and no 
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complex cognitive skill, high-WM-span individuals consistently performed better than 

low-WM span individuals. Kane, et al. (2001) hypothesised that individual differences in 

performance on tasks such as the Stroop task and antisaccade task, which are reported to 

be sensitive to interference were correlated with an individual’s WM capacity. Results 

from Engle, Kane and colleagues supported this assumption, showing that low-span 

participants had significantly longer mean target identification times for the antisaccade 

task and higher interference scores for the Stroop task than their high-span counterparts. 

Both of these results have been taken as support for the hypothesis that WM performance 

reflects the capacity to control attention. Therefore, individuals with a high WM span 

may not necessarily have a greater store of information; rather, they are better able to 

retain information through the suppression of irrelevant stimuli or responses. Consistent 

with this claim, they have shown that people low in WM capacity are more susceptible to 

interference from extraneous information on classic tasks involving cognitive control, 

such as verbal fluency (Conway & Engle, 1994; Rosen & Engle, 1997), dichotic listening 

(Conway, Cowan & Bunting, 2001), negative priming (responses that are slower when 

the target stimulus on the present (probe) trial served as a distractor on the previous 

(prime) trial) (Conway, Tuholski, Shisler & Engle, 1999; Engle et al., 1995), antisaccade 

(Kane et al., 2001), and Stroop (Kane & Engle, 2003).  

The results of the above research suggest that keeping relevant information highly active 

and easily accessible is an indication of an individual’s ability to control attention. Thus, 

reflecting an individual’s ability to maintain information while blocking irrelevant 

information (Engle, Tuholski, Laughlin & Conway, 1999; Kane, Bleckley, Conway & 

Engle, 2001; Kane & Engle, 2003). Coherent goal-oriented behaviour under interference 
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conditions requires both active maintenance of relevant information and inhibition of 

irrelevant information. Tasks including cognitive control; Stroop; negative priming and 

antisaccade are sensitive to interference and suggest that increasing WM load reduces 

participant’s ability to control attention. These results are measured through both the 

switching of attention and inhibitory control which are suggested to reflect an 

individual’s WM capacity (Hester & Garavan, 2005; Kane, Bleckley, Conway & Engle, 

2001). However, researchers have also noted that executive control is not compulsory for 

all cognitive processing; it comes into effect in situations necessitating inhibition of 

prepotent reactions (reactions that are typically seen in conditions where there is 

distraction or conflict in a task), error monitoring and correction, and decision making 

and planning (Engle, Conway, Tuholski & Shisler, 1995; Miyake, 2001; Unsworth et al., 

2004).  
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3 The Load Theory of Selective Attention and Cognitive Control 

Building on Kahneman and Treisman’s (1984) notion of paradigm shift, Lavie and her 

colleagues (Lavie, 1995, 2000, 2005; Lavie & Tsal, 1994; Lavie, et al., 2004) recently 

proposed a load theory of selective attention and cognitive control. According to this 

theory, perception is an automatic process with a limited resource available to the 

perceiver at any given moment. Furthermore, perception proceeds from relevant to 

irrelevant information until all the available resources are used up. As a result, when the 

perceptual load of the relevant task is high, distractor interference is low because 

distractors are not perceived due to the unavailability of resources. In contrast, when the 

perceptual load of the relevant task is low, distractor interference is high because 

distractors are perceived due to the extra resources that are present and are not consumed 

by the task. To inhibit distractors, efficient cognitive control is needed. WM is part of the 

executive cognitive control mechanism. When WM is heavily loaded, efficient inhibition 

is not possible due to the lack of available resources. Thus, when distractors have been 

perceived because of low perceptual load, relative to low WM load, high WM load leads 

to greater distractor interference.  

In a series of experiments (e.g., Lavie, 1995; Lavie & Cox, 1997; Lavie et al., 2004) 

Lavie and her colleagues demonstrated that while high perceptual load reduces distractor 

interference, high WM load increases distractor interference. For example, in one 

experiment (Lavie, 1995, Experiment 1), Lavie manipulated the level of perceptual load. 

She showed participants stimulus displays which consisted of a target, a critical 
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distractor, and either zero or several other neutral irrelevant items. Relative to the target 

response, the critical distractor could be compatible, neutral, or incompatible, and the 

magnitude of response compatibility effect was taken to indicate the degree of distractor 

processing. The manipulation of perceptual load was achieved through different display 

sizes, with a low load display containing a target and only a single critical distractor 

while a high load display containing a target, a critical distractor and several other neutral 

distractors. Consistent with the prediction of the perceptual load hypothesis, participants 

showed response compatibility effect in the low load condition, but not in the high load 

condition. 

Lavie and her colleagues have also examined the effect of WM load on selective attention 

(e.g., Lavie et al., 2004). In one experiment (Experiment 1), participants performed a 

selective attention task while holding in memory either one digit (the low memory load 

condition) or six simultaneously presented digits (the high memory load condition). As 

before, the response compatibility between the target and the distractor was manipulated. 

The results show that the compatibility effect was greater in the high memory load 

condition than in the low memory load condition, suggesting that an incompatible 

distractor interfered more in the high than the low WM condition. The researchers 

interpreted their results in terms of the load theory. Because the perceptual load of the 

selective attention task was low (the target was accompanied by only a single distractor), 

the distractor was perceived. To inhibit it, cognitive resources were assumed to be 

required. When WM was loaded in the high memory load condition, efficient inhibition 

was not possible due to the lack of available resources. Hence, there was greater 
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distractor interference in the high memory load condition than in the low memory load 

condition.  

Several studies have indicated that WM load and contents have important roles in 

controlling selective attention (Downing, 2000; de Fockert, Rees, Frith, & Lavie, 2001). 

De Fockert et al. combined two tasks, one requiring selective attention and the other a 

WM task. The selective attention task required the participants to classify written names 

of pop stars or politicians while ignoring the face over which the word was written. Half 

the faces and names were congruent (e.g. the name of pop star written over the face of a 

pop star); the other half were incongruent (e.g. the name of a pop star written over the 

face of a politician). The task was to ignore the face and respond to the name. 

Concurrently they performed a WM task requiring the participant to remember five digits 

and then indicate if a single digit presented had been in the memory list. The WM task 

was manipulated either by using the same digits on every trial (low-load) or digits in a 

different order on every trial (high-load). The results showed that when the naming task 

was combined with the high-load WM task the RT was slower in the incongruent 

condition than the congruent condition indicating that when WM was loaded, selective 

visual attention was less effective. The authors then repeated the experiment using fMRI 

measuring activity in face processing areas of the brain. The areas of the brain measured 

included areas that have been associated with WM i.e. the inferior frontal gyrus, the 

middle frontal gyrus and the precentral gyrus. The results found activity was greater in 

the high- than the low-load memory condition. The results of these two experimental 

approaches according to De Fockert et al., suggests that WM control visual selective 

attention.  
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In a series of four experiments Han & Kim, (2004) studied visual search using a dual-task 

paradigm. Participants performed a visual search while manipulating or maintaining 

information held in WM. In Experiments 1a and 2a, participants needed to actively 

manipulate a memory stimulus in WM.  Experiment 1a required counting backward from 

a target digit, and Experiment 2a required sorting a string of letters alphabetically. While 

performing these tasks, participants were required to search for a target among a set of 

distractors. The search slopes in these two conditions were significantly steeper than 

those in a search-alone condition, indicating that performing the WM manipulation tasks 

impaired the efficiency of visual search. In contrast, when information was simply 

maintained (e.g. when participants were not required to perform any manipulations and 

were assumed to rehearse the memory items) in WM search slopes did not differ between 

the single- and dual-task conditions. These results are reported to suggest that executive 

functions may interfere with visual search, not the preservation of information in WM.  
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4 Results Contrary to the Load Theory 

In contrast to Lavie et al., (2004), studies by Logan (1978) and Woodman, Vogel and 

Luck (2001) have provided results which are inconsistent with the load theory. For 

example, Woodman, Vogel and Luck (2001) examined the effect of visual WM in a 

search paradigm. Participants performed a search task either with or without a concurrent 

WM load task. The results indicated that although the addition of a WM load contributed 

to an increase in the overall search time, there was no change in the search slope. On the 

basis of this and similar results, the authors concluded that visual search requires only 

minimal visual WM resources. 

Other results have been reported by Chen and Chan (in press) who manipulated WM load 

and the extent of attentional focus while requiring participants to perform a letter 

discrimination task. Participants were assigned to one of three groups: high-load/narrow-

focus, low-load/narrow focus, and low-load/wide-focus. First, participants saw stimulus 

displays consisting of a fixation point, and a memory array consisting of either one digit 

or six different digits. This was followed by a fixation point followed by a cue that could 

be either large (four squares) or small (one square). The target display consisted of a 

target letter with four identical distractor letters. The distractors were either not 

associated with the target response or indicated a different response from that of the 

target. A memory probe that consisted of one digit and a question mark was then 

presented immediately after participants performed the letter discrimination task. In 

particular, Chen and Chan (2006) found larger interference effect in the low-load/wide-

focus condition than the low-load/narrow-focus condition, but no difference between the 
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low-load/narrow-focus and high-load/narrow-focus conditions. In other words, when the 

attentional focus was held constant, the effect of WM load was negligible. The authors 

suggested that because attentional focus is typically not controlled in previous 

experiments (e.g., de Fockert et al., 2001; Lavie et al., 2004), the effect of working 

memory load on distractor interference could be caused by differential extent of 

attentional focus instead of different levels of WM load or both. These results are 

inconsistent with the load theory, and they underscore the importance of controlling the 

extent of attentional focus while assessing the role of WM in selective attention. 

WM load is traditionally manipulated by varying the number of items a participant holds 

in memory while performing a selective attention task. Lavie and colleagues (e.g., Lavie 

et al., 2004; Lavie & de Fockert, 2005) presented the items that were to be remembered 

simultaneously, in the low-load one digit was presented at the center of the display while 

the six digits in the high-load were presented equally spaced across the display. Thus, 

low-load was associated with a narrow attentional focus whereas high WM load was 

associated with a wide attentional focus.   

Lavie’s (1995, 2005) load theory suggests that distractor inhibition depends on the level 

and type of WM load involved. Her experiments demonstrate that the type of load i.e. 

high perceptual load reduces distractor interference, while cognitive control processes 

increase distractor interference. Other researcher (e.g. Logan 1978, 2004; Woodman, 

Vogel & Luck, 2001; Chen & Chan, 2006) have found that visual search require minimal 

visual WM resources. The goal of the present experiment was to provide converging 

evidence to Chen and Chan’s proposal that WM load would have little effect on the 
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magnitude of distractor interference when the extent of attentional focus is controlled. 

Instead of using spatial cues to equate the extent of attentional focus across different 

conditions, I employed sequentially presented digits to ensure that the manipulation of 

WM load was not contaminated by changes in attentional focus. The hypothesis of this 

experiment is that by controlling the extent of attentional focus variations in WM load 

will have negligible effects across high- and low-load conditions. 
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5  Experiment 

The experiment reported here examined the effect of WM on distractor processing when 

the extent of attentional focus was controlled. Participants performed a letter 

discrimination task while holding either 1 digit (low-load condition) or 6 digits (high-load 

condition) in memory. The letter discrimination task consisted of a target letter 

surrounded by four identical distractor letters which could be neutral or incongruent with 

the target letter. Unlike previous research in this area, the digits were presented 

sequentially rather than simultaneously in the present experiment. In other words, the 

extent of attentional focus was held constant across the different experimental conditions. 

Of special interest was whether participants would show a larger response compatibility 

effect in the high load condition than in the low load condition as predicted by Lavie’s 

load theory (Lavie, 2000, 2005).   

Method 

Participants  

Approval to conduct this research was obtained from the Human Ethics Committee, 

Canterbury University. A verbal description of the task requirements was given to all 

participants prior to commencement of the experimental trials. Participants gave their 

informed consent before they started the experiment (Appendix 1).  Thirty two 

undergraduate students from University of Canterbury ranging in age from 18 to 35 years 

old were recruited to take part in this experiment. Each participant was paid a petrol 

voucher of $10, and all of them had normal or corrected-to-normal vision.  
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Materials  

The experiment was conducted via MacProbe 1.6.9 programming on a MacIntosh 

computer using a 13 inch RGB monitor and a standard keyboard. The experiment 

consisted of two tasks. The first task was a selective attention task in which participants 

were asked to make a speeded response to a target among four distractors while keeping 

in memory either one (in the low load condition) or six digits (in the high load condition). 

Both speed and accuracy were emphasised. After that, they were required to respond Yes 

or No to a memory probe. Only accuracy was stressed in the second task.  

The stimuli were presented in black colour on a homogenous grey background. Each trial 

consisted of the following sequence presented at the centre on the horizontal meridian of 

the screen, with the exception of the target display which was presented on either the left 

or right side of the screen with equal probability: (1) a fixation consisting of a small black 

cross in the centre of the screen; (2) a memory set that consisted of six sequentially 

presented random digits (the high load condition) or a single digit (the low load 

condition), font size 72; (3) the target display consisted of a black target letter (H or S) in 

font size 48 surrounded by four identical distractor letters (H, S, or X). The target letter 

subtended 1.43° in length, 0.95° in width, with its center 4.95° from the fixation. The 

distractor letters were written in font size 72. Each subtended 1.94° in length and 1.43° in 

width. The four letters formed an imaginary rectangle that subtended 7.16 in length and 

7.55 in width; and (4) a memory probe which consisted of a single digit and a question 

mark in font size 72 (see Figure 1).  
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Figure 1. Examples of an incongruent trial in the low load condition (A) and a neutral 

trial in the high low condition (B). SOA refers to stimulus-onset-asynchrony.  

Participants performed two tasks one each trial. Task 1 was to respond to the target letter 

H or S and to react quickly and accurately after the target display was presented. Task 2 

was to determine if the memory probe had been one of the digits in the memory set. This 

was an accuracy only task with the answer Yes or No. 

The items in the memory set were chosen at random from digits 1 to 9. Each digit was 

equally likely to be present in the memory set for either the high load or low load 

condition. The order of the six digits in the memory set of the high WM load was 

randomly assigned, with the constraint that all digits were unique on a given trial.   
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Design and Procedure 

The experiment was a mixed-subjects design with WM load as a between-subjects factor 

and target-distractor response compatibility as a within-subjects variable. Half of the 

participants performed the high-load condition, and the other half of the participants 

performed the low-load condition. For each participant, there were as many neutral trials 

as incongruent ones. In addition, the probe digit was equally likely to be present or absent 

in the memory set.  

Participants were tested individually in a light-dimmed room. They were seated at a desk 

viewing the computer screen at a distance of approximately 60cm. The importance of 

keeping their eyes fixed at the center of the screen was stressed. The participants were 

required to remember all the digits presented. The experiment began when the participant 

pressed the spacebar on the computer keyboard. On each trial the fixation was displayed 

for 1005ms, this was followed by a stimulus-onset-asynchrony (SOA) of 495ms then the 

memory set which was presented for a period of 495ms in the low-load condition. In the 

high-load condition the six digits in the memory set were presented consecutively for a 

total of 1980ms with each digit being presented for 330ms. Another SOA of 510ms then 

preceded the target display. 

The target display consisting of the target letter and 4 distractor letters was presented 

immediately after the memory set for 120ms on either the left or right side of the screen. 

All participants were required to respond as fast and as accurately as possible for the 

selective attention task by using their right hand to press the “.” key (marked H) on the 
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keyboard if the target letter on that trial was an H, and to press the “?” key (marked S) if 

the target was an S.  

As soon as participants responded, the memory probe appeared.  Participants were asked 

to use their left hand to press the “z” key (marked Y for yes) on the keyboard if the digit 

probe appeared in the memory set on that trial. Otherwise, they pressed the “x” (marked 

N for no) to indicate that the probe digit was absent from the trial’s memory set. 

Subjects were instructed to ignore the distractors, and to keep their eyes fixated at the 

center of the screen. Two blocks of sixteen practice trials preceded the test trials. The test 

trials consisted of 2 blocks of 144 trials for each participant, with a total of 288 trials for 

both the high-load and low-load conditions. The experiment took approximately 45 

minutes to complete. 
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6 Results 

Data Treatment 

Table 1 presents RT’s and error rates for the selective attention task .Only trials on which 

the participants were correct on the memory task were included in the analysis of the 

results for the selective attention task, and only trials on which the participants were 

correct on both the memory task and the attention task were included in the analyses of 

RT data for the selective attention task. In addition, a 2000ms cut-off was adopted for the 

selective attention task which resulted in less than 1% of participants’ data being 

excluded. Two two-way mixed analyses of variance (ANOVAs), one on RT and the other 

on the accuracy data, were carried out, with load as the between-subject variable and 

congruency as the within-subject variable.  

Selective Attention Task 

Table 1: Mean RT’s (in Milliseconds) and Error Rates (Percent Incorrect), With Standard Errors. 

_______________________________________________________________________ 

    High Load    Low Load 

                     Neutral            Incongruent           Neutral            Incongruent  

Measure       M        SE        M        SE           M        SE         M         SE 

RT          617      32        630       33                    578      24         597       21 

% Error        1.98    0.74     4.1      0.76                  3.26      0.93     4.58      0.70 

_______________________________________________________________________ 
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Table 1 presents RTs and error rates for the selective attention task. Participants’ RT’s 

were F (1, 30) = 10.07, p< 0.01. No significant difference was found in the main effect of 

load, F(1,30) = 0.86, p > .05, or the load X congruency interaction, F(1,30) = 0.30, p > 

.05.   

ANOVA on the error rates show that the error rates of the participants in the high-load 

condition did not differ from those in the low-load condition, F(1,30) = 0.25, p > .05.  

Similarly, the main effect of congruency was not significant, F(1,30) = 0.30, p > .05. The 

load X congruency interaction was significant, F(1,30) = 5.00, p < .05, with greater 

distractor interference in the high WM load condition than in the low WM load condition.  

Memory Task 

A t-test (high-load vs. low-load) was performed on the memory task data. There was a 

significant difference in WM error rates between the high-load (M = 11.8, SD = 6.6) and 

the low-load conditions (M = 4.4, SD = 3.15), t(-4.0) = 4.4, p< 0.01. This result indicates 

that the memory load manipulation was effective. 
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7 Discussion 

Participants performed a dual-task consisting of a selective attention task and a memory 

task. They were required to make speeded identification of a target letter among 

surrounding distractor letters while simultaneously holding in WM either a sequence of 

six digits (high-load) or a single digit (low-load). The control of attentional focus was 

achieved by presenting the digits for the memory task sequentially rather than 

simultaneously as in prior studies (Chen & Chan, 2006; LaBerge et al. 1991). The results 

of this study found that for the selective attention task, participants were faster on the neutral 

trials than on incongruent trials. This result is consistent with prior research (e.g., Eriksen & 

Eriksen, 1974) revealing that participants were unable to inhibit task irrelevant 

information, resulting in longer RT’s on the incongruent trials. However, there was no 

main effect of load or a load by compatibility interaction results. Although the lack of a 

significant interaction in RT is inconsistent with Lavie et al’s (2004) finding, the 

participants in the high WM load condition made more errors than those in the low WM 

load condition. Taken together, the overall pattern of data supports Lavie’s load theory. It 

provides converging evidence to the proposal that high WM load prevents participants 

from inhibiting task irrelevant information. 

The aim of the current research was to study the impact of WM load on distractor 

inhibition when the extent of attentional focus was controlled. The hypothesis that WM 

load would have negligible effect on distractor interference when the extent of attentional 

focus is controlled was not supported by the results of this experiment. The data show 
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that WM load influenced distractor interference even though attentional focus was 

controlled via sequential presentation of the digits in the memory set. These results are 

supportive of prior research by Lavie and her colleagues (e.g. Lavie 1995; 2004; Lavie & 

Cox, 1997; Lavie et al. 2004).  

It has been proposed that visual WM has a central role in visual search. Woodman et al., 

(2001) examined visual WM search finding results that suggest only a small amount of 

WM resources were needed for the maintenance of information and that objects can be 

attended to at a perceptual level without automatically being entered into WM. They 

suggest their study shows minimal interference of information stored in visual WM and 

that the efficiency of visual search is not weakened when visual WM is filled to capacity.  

It was further suggested that the most meaningful interaction observed was that WM and 

search functions reflected a delay in the onset of the search process or a delay in response 

selection after the search but not as a result of WM being filled to capacity. While 

Woodman et al. found that holding items in visual WM did not impair search efficiency; 

further studies (e.g., Woodman and Luck, 2004) suggest that the effect of WM may 

depend on the content of the memory load and the specific selective attention task. 

Woodman and Luck (2004) extended these findings proposing that visual search and 

maintaining spatial representations in WM would interfere with visual search while 

visual search and colour and form change would not. They found that maintaining a few 

spatial locations interfered with the efficiency of visual search. This resulted in memory 

rates being less efficient as the number of items in the array increased. This was taken to 

demonstrate that memory tasks interfered with search performance, and the search task 

interfered with memory performance; with both types of interference increasing as the 

 30



 

size of the array increased. Take together these results suggest that there are separate 

spatial and object memory subsystems. This would suggest that for this experiment the 

high WM load condition would not necessarily show greater distractor interference which 

was not supported in this case.  

In conclusion this study aimed to examine the role of WM load on selective attention 

while holding constant the attentional focus. This research found that distractor inhibition 

was influenced by WM load even when attentional focus was held constant. The results 

of this research are consistent with Lavie and her associates (e.g., Lavie, 1995, 2001; 

Lavie, Hirst, de Fockert & Viding, 2004; Lavie & Tsal, 1994) who suggested that the 

level of WM load plays an important role in determining the efficiency of distractor 

rejection in selective attention tasks. The research therefore adds support to Lavie’s load 

theory.  

While the results of this experiment were supportive of Lavie’s load theory the 

experimental paradigm was similar to that of Chen & Chan (2006). The differing results 

from those of Chan & Chen are discussed below.  This experiment unlike that of Chen & 

Chan presented the high-load stimulus sequentially rather than simultaneously. However, 

the differing results may have been due to the extent of attentional control being more 

strictly controlled in Chen and Chan than in this experiment. Chen & Chan used 

exogenous cues to indicate the spatial location of the target thus controlling the extent of 

attentional focus. Exogenous cues attract attention automatically (Hasher & Zacks, 1979; 

Jonides, 1981), and would ensure that the extent of attentional focus was more or less 

constant between the two WM conditions. This experiment controlled attentional focus 
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by sequential presentation of the digits in the memory set. Because there was only one 

digit in the low load condition, and the duration of the digit was quite long participants 

may not have been compelled to focus attention narrowly in order to recognise the digit. 

Furthermore, while they may have initially had a narrow focus of attention during the 

digit recognition process, it possibly became more relaxed over time as in the high load 

condition participants had to focus their attention constantly for the appearance of new 

digits. These differences probably lead to a narrower attentional focus in the high load 

condition than in the low load condition.  

Further Research 

Previous research has shown that different types of WM load have different effects on 

attentional selection depending on whether WM load overlaps with target or distractor 

processing. Accordingly, loading WM does not always disrupt the efficiency of selective 

attention if the type of WM load does not interfere with processes required for the 

selective attention task. For example, a colour WM load does not disrupt visual search for 

shapes (Woodman et al. 2001) and a WM load of face targets does not disrupt 

background scene processing. Additional research might explore whether loading WM 

differently i.e. the important factor may be the specific tasks required in memory and 

attention task (e.g., both verbal or both spatial in nature), and to further clarify the role of 

attentional focus in distractor inhibition.  

It may be necessary to differentiate specific cognitive processes involved in interference 

control. Working memory capacity and executive control have been shown to be a factor 
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that influences distractor inhibition and impact on multiple everyday cognitive abilities 

(Kane & Engle, 2003).  The extent of attentional focus has been investigated with results 

demonstrating reduced interference effects when the attentional area was narrowed 

(Chen, 2000; 2003; Chen & Chan, 2006; Eriksen & St James, 1986; LaBerge et al. 1991). 

Replication and extension of this experiment should be carried out to investigate if 

controlling the extent of attentional focus with exogenous cues would still see results 

similar to Lavie et al. (2004). While Chen and Chan have manipulated the extent of 

attentional focus the manipulation of the number and type of distractors would add clarity 

to this research area. Lavie et al. presented one target and one distractor while the target 

and distractor configuration in Chen & Chan was displayed as a target letter smaller than 

the four surrounding distractor letters.  

Future research could utilize different participant populations, for example testing 

younger and older participants. In the past the majority of research into WM has utilised 

university graduate students. Very little work appears to have been directed at the issue of 

WM tasks in children and the elderly. Riggs et al. (2006) used the Luck and Vogel 

change detection paradigm (Luck & Vogel, 1997) to investigate the capacity of visual 

working memory in 5-, 7-, and 10-year-olds. They found that performance on the task 

improved significantly with age and also obtained evidence that the capacity of visual 

working memory approximately doubles between 5 and 10 years of age, to the point 

where it reaches adult levels of approximately three to four items. Functional magnetic 

resonance imaging (fMRI) studies have shown that children 8 – to 11- years old have 

functional brain activity similar to adults when tested with nonspatial WM tasks (Casey 

et al., 1995). This indicates that distinct functions of the prefrontal regions are already 
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evident in children before the onset of puberty. Ongoing research into distractor 

inhibition is important to explain various aspects of behaviour for a number of different 

populations. While proposing to extending research to younger and older populations this 

is not to say that these populations will show the same results as adult participants it may 

reveal aspects that enhance the knowledge in this field. 
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9 Appendix 1. 

 
University of Canterbury Department of Psychology 
 

Visual Perception and Selective Attention Study. 
 
Project Description 
You are invited to participate in the research project of visual perception and selective attention. The aim of 
this project is to understand cognitive mechanisms underlying the perception of simple displays. Your 
involvement in this project will involve looking at a series of displays containing one or several objects. 
Your task is to respond to the target stimulus by pressing an appropriate key on the keyboard as quickly and 
as accurately as possible. The test will take about 40-50 minutes to finish. 
 
Risks and Benefits 
In the performance of the task and application of the procedures there are no risks of any sort. I will talk 
with you about the hypothesis of this study at the end of the experiment. 
 
Costs and Payments 
There are not costs for participating ain this study. You will be paid a $10-00 petrol voucher for 
participating in this project. 
 
Confidentiality 
The results of the project may be published, but you may be assured of the complete confidentiality of the 
data gathered in this investigation: the identity of participants will not be made public. Only group data will 
be reported in my master’s thesis, professional conferences and journals. To ensure anonymity and 
confidentiality, you are not required to enter your real name during the testing session. 
 
Right to Withdraw 
You do not have to take part in this study. If you start the study and decide that you do not want to finish, 
all you have to do is to tell the experimenter.  
 
Principal Researcher 
The project is being carried out as a requirement of a master’s thesis from Marion Davis; I can be contacted 
on 3642987 ext. 3635, or mdd33@student.canterbury.ac.nz. 
 
Human Ethic Committee Approval 
This project has been reviewed by the University of Canterbury Human Ethics Committee. The committee 
has determined that the project meets the ethical obligations required by law and University policies.  
 
Consent Form 
I certify that I have read the preceding information, and that I understand the content. I have been given the 
opportunity to ask questions regarding the study, including questions about hazards, discomforts, and 
benefits that were not clear to me. My questions were fully answered. My signature below means that I 
freely agree to participate in this experimental study. 
 
 
 
 
____________________                    ____________________                    ________ 
Name (print)                  Signature                     Date 

mailto:mdd33@student.canterbury.ac.nz
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