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Abstract

A simplified method for accounting for the effects of fluid structure interaction (FSI)
in sandwich structures subjected to dynamic underwater loads is developed. The
method provides quite accurate predictions of the impulse on submerged structures
for a large range of loads and core yield strengths. It is a simple model with two
lumped masses, one of which is subjected to an incident wave and a rheological
model to represent the core. It enables phenomena such as buckling of the compo-
nents of the core to be taken into account and is simple enough to be used as a
design tool. Comparisons with calculations of complete fluid-structure models show
very good agreement.
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interaction

1 INTRODUCTION

Sandwich structures have substantial potential for many applications requiring
light weight and high strength. Deshpande and Fleck [2, 3, 4], Deshpande et al.
[5], Maekinen [9], Qiu et al. [10] and Xue and Hutchinson [13, 16, 17, 18] have
studied the behavior and properties of sandwich shells. In References [14, 16],
the dynamic response of sandwich shells to impulsive loads was considered. It
was shown that substantial benefits accrue to sandwich shells in underwater
response to impulsive loads. However, the fluid-structure interaction models in
the studies were substantially simplified models. For example, in [16, 17], fluid-
structure interaction effects were accounted for by a so-called Taylor model
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which is based on the one-dimensional model of a wave interacting with a
mass equal to that of the outside plate at one end [12]. The impulse on the
mass, which is substantially lower than the impulse of the initial wave, was
then applied to a complex model of the sandwich structure.

However, the single mass model substantially underestimates the impulse to
which the sandwich is subjected as shown in section 3. Furthermore, the anal-
ysis of sandwich plates under large dynamic loads in underwater environments
by complete finite element models that account fully for fluid-structure inter-
action effects is quite time consuming because the sandwich structure model
requires high resolution to capture buckling modes and the fluid model re-
quires high resolution to capture impulsive waves. Thus, complete models for
fluid-structure interaction are very large and not suitable for design studies.

In a previous work [11], the authors presented a homogenized model for the
core of sandwich beams for the purpose of simplifying coupled fluid-structure
analysis of sandwich shells. It was shown that the agreement between the ho-
mogenized model and the fully detailed one was quite good. Significant com-
putational savings were achieved by this model with respect to a complete
analysis. The present contribution can be seen as an alternative for reducing
computational complexity. Here, the fluid part of the model is simplified to
provide loads on the structure that reflect the effects of fluid-structure inter-
action. It is intended as a computational tool for the design process.

In this method, the impulse imparted to the face sheet of the sandwich struc-
ture facing the fluid is predicted by a two degree of freedom model with a core
representation. The methodology employs a simple model of the core similar
to that in Rabczuk et al. [11]. As in Xue and Hutchinson [14, 15], the load on
the outside plate obtained by this simplified method is considered the ”fluid-
structure” corrected load. This load is then applied to an uncoupled model of
the structure to obtain estimates of its deformation in water. By enabling an
uncoupled analysis of the structure, it provides significant savings in design
and analysis.

2 Formulation

To determine the load imparted by the fluid, the sandwich structure is mod-
elled as a system of two masses, m1 and m2, connected by a rheological model.
The mass of the core is lumped at the upper and lower sandwich plate. This
simplification seemed to be reasonable since wave propagation effects through
the core play a minor role as shown later. A plot of a typical law governing
the constitutive behavior of the rheological model can be seen in Fig (1). This
law is obtained by a separate finite element buckling analysis of the core and
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Fig. 1. 1D rheological model for core

depends on the material and structural characteristics of the core as suggested
in Rabczuk et al. [11]. In the figure, [[u]] denotes the difference between the
displacement of the face sheet in contact with the water, u1, and the displace-
ment of the other face sheet, u2. The softening branch of the curve is intended
to capture the structural behavior of the core after buckling of its elements
occurs. One difficulty is that the buckling curves depend on the load rate. Fast
loads, which we are interested in, lead to a substantial increase in the peak
strength. Typical buckling curves for different load velocities are illustrated in
figure 1. In Rabczuk et al. [11], buckling curves depending on the strain rate
were introduced. We will adopt this concept for our model.

We use a one-dimensional description of the fluid. Its action over the structure
(see Fig. (2)) is modelled as an impedance element which models the fluid-
structure interaction (a dashpot) plus the pressure produced by the incoming
wave. We will be concerned with loads of the form

p(t) = p0e
−t/t0 , (1)

where p is the current pressure, p0 is the applied pressure at time t = 0, acting
in m1, the mass modelling the face sheet that is in contact with the fluid.
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The model shown in Fig (2) is developed as follows. Consider the momentum
balance for m1:

−m1ü1 − f(u1, u2) = ρwc
2
w∂xuw(·, 0) (2)

where ρw and cw are, respectively, the density and the wave speed of the
fluid, and uw(t, x) is the displacement field in the fluid. We assume that the
one-dimensional wave equation governs the behavior of the fluid, so:

∂2
xuw = c2

wüw (3)

where

c2
w =

K

%
(4)

where K is the bulk modulus.

The d’Alembert solution of Eq. (3) has the form

uw(x, t) = g(ct− x) + h(ct + x) (5)

Adding the term 2ρwc
2
wg
′ to both sides of Eq. (2), we obtain

−m1ü1 − f(u1, u2) + 2ρwc
2
wg
′ = ρwc

2
w∂xuw(·, 0) + 2ρwc

2
wg
′ (6)

Substituting Eq.(5) into Eq. (6), we have that

ρwc
2
w∂xuw + 2ρwc

2
wg
′ = ρwc

2(g′ + h′) = ρwcwu̇w (7)

Bearing in mind that

u̇w(t, 0) = u̇1(t) (8)

and that

2p(t) = 2ρwc
2
wg
′ (9)

if Eq. (7) is substituted into Eq. (6), it yields

m1ü1 + ρwcwu̇1 + f(u1, u2)− 2p0e
−t/t0 = 0 (10)
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Fig. 2. The complete fluid-structure system and its two-degree-of-freedom represen-
tation

We also have that

m2ü2 − f(u1, u2) = 0 (11)

Eqs. (10) and (11) state the momentum balance in each of the masses of the
proposed rheological model.

Let us now define

M := diag(m1, m2)

C := diag(ρwcw, 0)

P (t) := [2p0e
−t/t0 , 0]T

U := [u1, u2]T

F (U) := [f(u1, u2),−f(u1, u2)]
T

Then equations (10) and (11) can be written in compact form as

MÜ +CU̇ + F (U)− P (t) = 0 (12)

It is important to mention that Eq. (12) is only valid as long as no cavitation
takes place at any point of the fluid. The above is a system of two ordinary
differential equations in two unknowns and it can easily be handled by a
standard package such as MATLAB. For the impulsive loads considered here,
it can be solved in less than a second on any PC. The central difference
method as explained e.g. in Belytschko et al. [1] can also be used. The effect
of cavitation on the impulse is obtained by the correction of Deshpande and
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Fleck [4].

3 Numerical results

3.1 Core with hardening

As mentioned in the Introduction, in the design of sandwich beams, it is
crucial to know the total impulse that has been imparted to the structure.
This impulse does not depend only on the wave in the fluid but also on the
interaction of the fluid with the structure. In the examples presented in this
section we will show how the proposed model can provide a good estimate of
this impulse. Comparisons with more detailed models and with the reduced
model of Deshpande and Fleck [4] will be also presented. In the following, we
will call our simplified model a rheological model.

We consider a sandwich structure subjected to a far field impulse

I0 =

∞∫

0

p0e
−t/t0 dt = p0 t0 (13)

with the relaxation time t0 = 0.1ms and the peak pressure p0 = 100MPa
and hence I0 = 10MPas. The height of the sandwich structure is 100mm
and the thickness of the lower and upper plate is 10mm. The core of the
sandwich structure is a foam with density %0 = 800kg/m3, Young’s modulus
E = 210GPa, Poisson’s ratio ν = 0.0 and yield strength fy which varies as
shown in Figure 3. The face sheets are assumed to be elastic with density of
8000 kg/m3, Young’s modulus E = 210GPa and Poisson’s ratio ν = 0.0. The
normalized mass m̄ (mass per area) of the sandwich structure is 0.24kg/m
which is lumped to the lower and upper masses of our spring-mass-damper
model. This data was adopted from Deshpande and Fleck [4] who developed an
analytical model to approximate impulses of sandwich structures subjected to
underwater loads based on cores with elastic, ideal-plastic material behavior.
Note that in this example, we have no softening in the rheological model in
accordance with Deshpande and Fleck [4].

Figure 3 shows the non-dimensional impulse I/I0 versus the normalized yield
strength fy/p0, where I is the impulse subjected to the entire sandwich struc-
ture. The impulse includes cavitation corrections as described in Deshpande
and Fleck [4]. The results of the simplified model are compared to a one-
dimensional finite element model of the fluid-structure system. The results of
our model, the finite element analysis and the simplified model of Deshpande
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Fig. 3. Non-dimensional impulse for different yield strengths for a foam with elastic,
ideal-plastic material behavior; RM = our rheological model; TaylorFS = impulse
according to the Taylor analysis if the face sheet is assumed to be free standing;
TaylorS = impulse according to the Taylor analysis if the entire sandwich strcuture
is assumed to be free standing; Deshpande and Fleck (FE): coupled calculation by
finite elements with FSI in [4]; Deshpande and Fleck (analytical): an analytical
model with wave propagation in core, see [4]

and Fleck [4] are shown in figure 3.

We were able to reproduce the impulses of the finite element analysis well.
For non-dimensional yield strengths smaller than 0.01, no increase in the non-
dimensional impulse can be observed. Beyond this point, the non-dimensional
impulse increases until a normalized yield strength of approximately 1. After
this, the non-dimensional impulse stays approximately constant at a level of
0.94 which is predicted well by our simplified model. The impulse from the
Taylor analysis (see also Xue and Hutchinson [14]) is given in the figure too.
The lower value of 0.54 is the impulse if the front face sheet of the sandwich
structure is assumed to be the free-standing mass while the higher value of
0.94 is the non-dimensional impulse if the entire sandwich structure is assumed
to be free-standing. Note, that the original results of Deshpande and Fleck [4]
are shown for an impulse I0 = 20GPas. In their illustration I0 is not the far
field impulse subjected at the surface of the water but the impulse subjected
to a rigid support.

3.2 Core with Softening

An important advantage of our model is that it can account for the effects
of cores which exhibit strain softening. Strain softening is observed in the
overall response of many truss-like or honeycomb structures when they buckle.
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Fig. 4. Finite element model for sandwich plate; the model is a cross-section of the
plate with a column of water through which the wave is propagated

Buckling results in a decrease of the force carried by the sandwich, which is
manifested as overall strain softening in the core.

Consider a cross section of a sandwich plate as shown in figure 4. The peak
pressure, relaxation time, the far field impulse and the structural material
(elastic, ideal-plastic) are the same as in the previous section. The material
parameters for the sandwich structures are density %0 = 8000kg/m3, Young’s
Modulus E = 210GPa and Poisson’s ratio ν = 0.0. The normalized mass (m̄ =
%0Lt with density %0, plate length and plate thickness L and t, respectively)
of the sandwich structure is 0.2kg/m.

We use FEM analysis to obtain the response of the core. In the cases we
considered, the basic unit of the core can be described by a beam. This beam
is modelled by 50 beam elements. The response is then obtained for various
prescribed velocities. B21 ABAQUS element model was used [7]. A small
lateral force, ∼0.1% of the reaction force, was used to facilitate buckling.
An example of load compression curves we obtained for vertical core elements
with a length of 100 mm and a thickness of 1 mm is shown in Fig. 5 (this is
a counterpart of Figure 1 for a specific core element).

The results of our simplified model will be compared with finite element so-
lutions of the complete model in figure 4 obtained with the commercial finite
element code ABAQUS [7]. The water is modelled via a linear equation of
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Fig. 5. Characterization of a vertical core for a beam of length 100 mm and thickness
1 mm

state (EOS):

p = %0c
2
0

(
1− %0

%

)
(14)

with initial sound speed c0 = 1445m/s and inital density %0 = 1000kg/m3.
Cavitation is modelled by setting the pressure in the water to zero when it
goes into tension. The fluid is assumed to be compressible and inviscid. The
sandwich is discretized with beam elements. Reduced integration continuum
elements (CPE4R) with consistent stabilization, Flanagan and Belytschko [6],
are used for the water, see figure 4. To obtain buckling of the core, a small
perturbation is added to the system to break symmetry, i.e. lateral force is
applied in the middle of the core.

In addition to the effective yield strength fFEy (FE denotes the yield strength
of the beam material in the finite element analysis), we also vary the volume
fractions Vcore/Vsw of the structure, where Vcore is the volume of the steel in
the core and Vsw is the volume of the sandwich structure. We have varied the
yield strength of the finite element model fFEy from 2MPa to 100GPa. This
is an extremely large range, but we wanted to encompass a large range of
materials from foams to dense metallic sandwiches as in Deshpande and Fleck
[4]. The volume fraction Vcore/Vsw was varied from 2% to 8%. The mass of
the sandwich structure for different volume fractions is constant. Therefore,
thicker beams in the core require thinner face sheets. Table 1 gives the data
for the specimens we studied.

Before discussing the results, we would like to clarify some aspects of Table 1.
The strength fRMy of our rheological model for different volume fractions, see
for example the 8.5mm thick face sheet with fFEy = 1GPa and the 10.5mm
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Table 1
Parameters of the spring-mass-damper model and the finite element model

thickness- core Vcore/Vsw fFEy fRMy fy/p0

face sheets thickness

11.5 mm 2 mm 0.02 2 MPa 0.04 MPa 0.0004

11.5 mm 2 mm 0.02 10 MPa 0.2 MPa 0.002

11.5 mm 2 mm 0.02 100 MPa 2.0 MPa 0.02

11.5 mm 2 mm 0.02 200 MPa 4.0 MPa 0.04

11.5 mm 2 mm 0.02 1000 MPa 20.0 MPa 0.2

11.5 mm 2 mm 0.02 2000 MPa 40.0 MPa 0.4

11.5 mm 2 mm 0.02 10000 MPa 200.0 MPa 2.0

11.5 mm 2 mm 0.02 20000 MPa 400.0 MPa 4.0

11.5 mm 2 mm 0.02 100000 MPa 2000.0 MPa 20.0

10.5 mm 4 mm 0.04 2 MPa 0.08 MPa 0.0008

10.5 mm 4 mm 0.04 10 MPa 0.4 MPa 0.004

10.5 mm 4 mm 0.04 100 MPa 4.0 MPa 0.04

10.5 mm 4 mm 0.04 200 MPa 8.0 MPa 0.08

10.5 mm 4 mm 0.04 1000 MPa 40.0 MPa 0.4

10.5 mm 4 mm 0.04 2000 MPa 80.0 MPa 0.8

10.5 mm 4 mm 0.04 10000 MPa 400.0 MPa 4.0

10.5 mm 4 mm 0.04 20000 MPa 800.0 MPa 8.0

10.5 mm 4 mm 0.04 100000 MPa 4000.0 MPa 40.0

8.5 mm 8 mm 0.08 2 MPa 0.16 MPa 0.0016

8.5 mm 8 mm 0.08 10 MPa 0.8 MPa 0.008

8.5 mm 8 mm 0.08 100 MPa 8.0 MPa 0.08

8.5 mm 8 mm 0.08 200 MPa 16.0 MPa 0.16

8.5 mm 8 mm 0.08 1000 MPa 80.0 MPa 0.8

8.5 mm 8 mm 0.08 2000 MPa 160.0 MPa 1.6

8.5 mm 8 mm 0.08 10000 MPa 800.0 MPa 8.0

8.5 mm 8 mm 0.08 20000 MPa 1600.0 MPa 16.0

8.5 mm 8 mm 0.08 100000 MPa 8000.0 MPa 80.0
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a) 2% volume fraction

b) 4% volume fraction

c) 8% volume fraction

Fig. 6. Non-dimensional impulse for different yield strengths for a truss core includ-
ing buckling effects; FE = complete fluid-structure finite element model results,
RM = our rheological model, TaylorFS = impulse according to the Taylor analy-
sis if the face sheet is assumed to be free standing, TaylorS = impulse according to
the Taylor analysis if the entire sandwich strcuture is assumed to be free standing11



FE

Fig. 7. Non-dimensional impulse for different yield strengths of the finite element
analysis

thick face sheet with fFEy = 2GPa, are the same. We distinguish between the
continuum yield stress fFEy and the strength of our rheological model fRMy as
follows. The continuum yield stress is the yield stress of the elastic ideal-plastic
constitutive model. The strength of our one dimensional rheological model is
the strength obtained from a finite element analysis and includes buckling.
fRMy is obtained by dividing the maximum reaction force by the area of the
face sheet (in our case it is only the thickness, since the depth of the model is
unity).

Figure 6 shows the non-dimensional impulse versus the normalized strength
fRMy /p0. For low strengths, the non-dimensional impulse is nearly constant
for all volume fractions we studied with our rheological model. The finite el-
ement model shows that I/I0 decreases with increasing volume fraction for
low strengths. This is due to the fact that the face sheet is thinner for higher
volume fractions and therefore the applied impulse is smaller. The largest dis-
crepancies between our rheological model and the finite element analysis occur
for small stengths. However, strengths of about fFEy = 10MPa (this corre-
sponds to a normalized strength fRMy /p0 between 0.002 and 0.008, see Table
1) are rather unrealistic, so we are not too concerned about this discrepancy.

At a normalized strength of about fRMy /p0 = 1, no further increase in the ap-
plied impulse can be observed for the volume fractions we tested. The sandwich
structure reacts rigidly, no buckling of the core is observed. We have included
the impulses predicted by the Taylor analyses in figure 6. As in the previous
section, a lower impulse is obtained if the front face sheet is considered as
free-standing than when the entire structure is considered to be free-standing.
Our computations lie within these two bounds. We slightly overestimate the
impulse for high strengths.
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In the most important part of the impulse range, the transition region be-
tween the lower and upper plateau, the rheological model is able to reproduce
the applied impulses obtained by the finite element analysis. The error never
exceeds 10%. The errors are smallest for small volume fractions.

For cores with moderate strength, 0.1 < fRMy /p0 < 1, and for the sandwich
structures with small volume fraction, the impulse reduction due to fluid-
structure interaction is greatest. This is not very clear in figure 6 since we
used the strength of the rheological model as the abscissa. In figure 7, I/I0

is shown versus fFEy /p0 to make clear the reduction in the impulse for lower
volume fractions.

3.3 Evaluation of the impulse estimates

In this section, we will test the ability of our method to predict impulses
applied to underwater sandwich structures in 2D. Consider the system as il-
lustrated in figure 8. The pressure time history of eq. (1) with an impulse
of 10KPas is applied on the top of the water model. This is the same im-
pulse as we used in the previous section. The sandwich structure consists of
two face sheets connected with vertical trusses. We have studied volume frac-
tions of 2%, 4% and 8%. Figure 8 also gives the impulse imparted to a solid
plate. The material is elastic, ideal-plastic with a yield strength of 200MPa,
which corresponds to the yield strength for a stainless steel. We did not in-
clude hardening behavior in the constitutive model, first to be consistent with
the previous section, and second to compare the results with other reduced
models from the literature (Deshpande and Fleck [4] or Xue and Hutchinson
[14, 15]) which are designed for elastic, ideal-plastic constitutive models. The
parameters for the structure are Young’s modulus E = 210GPa, Poisson’s
ratio ν = 0.0 and density %0 = 7800kg/m3. The parameters for the fluid are
density %0 = 1000kg/m3 and sound speed c0 = 1445m/s. A linear equation of
state (EOS) is used in the fluid.

The deformed sandwich structure at 15ms for the different volume fractions
is shown in figure 9. While the core of the sandwich structure with a volume
fraction of 8% behaves nearly rigidly, almost total collapse of the core can be
observed for the 2% volume fraction sandwich structure.

Considering the imparted impulse to the sandwich, figure 10, it can be seen
that the structures with lower volume fractions are subjected to less impulse.
In other words, due to fluid-structure interaction, for lower volume fraction
cores, a smaller part of the load is applied to the structure. We have illus-
trated the impulse in the middle of the sandwich structure since it is most
comparable to our 1D model. Note, that the impulses vary over the length of
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P(t)

Water

h=0.5 m

outside plate

inside plate

h=5m

Fig. 8. Fluid structure interaction model for sandwich structure under pressure wave
loading

a) 2% volume fraction b) 4% volume fraction

c) 8% volume fraction

Fig. 9. Deformed sandwich structure at 15 ms for different volume fractions

14



the structure. The impulse increases with decreasing distance to the support.
For the 8% structure, an impulse of 10.14KPas is imparted at the support,
an impulse of 7.83KPas is imparted in the quarter points while the impulse
in the middle is 7.19KPas. The differences in the impulse over the length of
the structure decrease with decreasing volume fraction. So, for the 2% volume
fraction structure, the impulse above the support is 9.53KPas, the impulse
in the quarter point is 6.58KPas and the impulse in the middle is 6.43KPas.

The impulse predicted by our model is also shown in figure 10. It can predict
the imparted impulse of the FSI finite element analysis well; the best agree-
ment is obtained for low volume fractions. The results of the Taylor analysis
and the extended Taylor analysis proposed by Hutchinson and Xue [8] are
shown in figure 10 as well. The Taylor analysis underestimates the imparted
impulse. The extended Taylor analysis can capture the impulse for the low
volume fractions pretty well. However, for large volume fractions, quite large
discrepancies occur. Note, Hutchinson and Xue [8] introduce a ’core compres-
sion strength factor’ λc in their reduced model. They give values for different
core types; the tetragonal truss core has a value of λc = 2/3. The imparted
impulses can differ significantly with the choice of λc. We have chosen λc = 1.0
since the trusses of our core are straight. This is the value, Hutchinson and
Xue [8] specifies for a square honeycomb which is one of the most resistant core
types. The shear resistance factor which is also addressed in [8] is zero since
our truss core does not have any shear resistance. Notice that in the Taylor and
the extended Taylor analysis, the imparted impulse decreases with decreasing
volume fraction, which is the opposite of the FSI finite element analysis. On
the other hand, our rheological model reproduces this trend correctly.

To show the improvements in the imparted impulse for sandwich structures,
the impulse of the solid plate is shown in figure 10 as well. As can be seen, a
high volume fraction gives only slight improvement.

3.4 Comparison of Displacements for Uncoupled and Coupled Models

In the optimization of sandwich designs, the maximum displacements of a
given sandwich structure and not the imparted impulse are of interest. There-
fore, we performed full fluid-structure computations and computations where
the impulse obtained from our rheological model is directly applied to the
face sheet of the sandwich structure and compared the maximum midpoint
displacement of the inside face sheet. We studied impulses between 7.5KPas
and 15KPAs with the time history of eq. (1). In addition, we also varied the
core geometry. In addition to the vertical cross core, cores where the trusses
are sloped with a 45 degree angle as shown in figure 11 are considered. The
latter truss cores are of interest since they have shear resistance. As in the
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a) 2% volume fraction b) 4% volume fraction

c) 8% volume fraction d) solid plate

Fig. 10. Time history of the impulse for the 2D analysis for a) to c) sandwich
structures of different volume fractions, d) solid plate

45 degrees

Fig. 11. Schematic of sandwich structure with diagonal truss core

previous section, we study three different volume fractions, 2%, 4% and 8%.

The results are shown in figure 13a for the vertical core and figure 13b for
the diagonal core. In this figure, u is the maximum displacement and L is the
half-length of the structure, 1m. The non-dimensional impulse is given by

Ī =
I0

M̄
√
σY /%0

(15)

where M̄ = %0 L t is the mass per unit area, also called normalized area, with
plate thickness t, I0 is the far field impulse, σY the material yield strength and
%0 is the density of the core.

We first note the superiority of the diagonal truss core over the vertical truss
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core which is due to its contribution to shear stiffness and strength. The agree-
ment in the maximum midpoint displacement between the fluid-structure in-
teraction computation and the uncoupled calculations is generally very good.
In some cases, an increasing volume fraction and increasing impulse leads to
a larger error, but not always. This might have several causes. First, we apply
a uniform impulse over the entire length of the sandwich structure. However,
the impulse is larger near the support due to the increased stiffness provided
by the supports. This is shown in Fig. 12 which shows the impulse histories
at three points for the fully coupled calculation. However, its effect appears to
be moderate since the impulse near the supports do not contribute as much to
the deflection. For example, for the straight core, the impulses (between the
FSI and RM computations) for the 2% volume fraction agree better than for
the 4% volume fraction, but the opposite is observed for the displacements,
see figure 13a. Therefore, we conclude, that the variation of the impulse over
the length has some influence.

a) b)

Fig. 12. a) Impulse and b) displacement time history at different positions for the
2% sandwich structure

Second, we recall from the previous section that the error in impulse (between
the FSI simulation and our rheological model) for the vertical truss core in-
creases with increasing volume fraction. This tendency is also observed when
the impulse is increased. The absolute value of the error increases though the
percentage error is almost constant. However, for the diagonal truss core, the
relative discrepancies in impulse between the FSI simulation and the rheo-
logical model are similar for all volume fractions. As can be seen, the largest
discrepancies for the diagonal truss core are obtained with the 4% volume
fraction. The discrepancies in the impulse are probably due to errors in the
load-deflection curve of the rheological model which arise from the dynamic
analysis on the core elements which are used to obtain them, because it is
sometimes difficult to filter noise out of the load-deflection curves.

Some other comments on the issue of nonuniform impulses that are applied to
the face sheet in the complete FSI analysis are in order. While for the vertical
core, the impulses applied to the face sheet increase with decreasing distance

17



a) straight truss core

b) diagonal truss core

Fig. 13. Normalized maximum mid-displacement versus the non-dimensional im-
pulse for different cores with different volume fractions; FE-RM is the finite element
model of structures with loads from the rheological model; FE-FSI is the complete
coupled fluid-structure computation; percentage gives volume fraction

to the support, the impulses for the diagonal truss core vary more over the
length of the sandwich structure than for the vertical truss core. Especially
for higher volume fractions, large deformations in the face sheets (since the
face sheets are thinner) were also observed which causes two dimensional (wave
reflection) effects which cannot be captured by our model. However, the results
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are remarkably good considering the simplicity of our model.

4 Concluding Remarks

We have presented a simplified model for estimating the impulsive load on
a sandwich plate submerged in water due to a dynamic wave loading that
accounts for fluid-structure interaction. The model consists of two masses
joined by a core model that is based on the buckling strength and plastic
yield strength of the core. The fluid-structure interaction effect is accounted
for by the d’Alembert solution to the one-dimensional wave equation. As a
result, the model only involves two ordinary differential equations in time,
which can easily be treated by any standard package.

One drawback of the procedure is that it is necessary to develop a force-
deflection curve for the core. This force-deflection law must account for the
buckling strength, its dependence on the rate of loading, and the yield strength
of the material. The interesting feature of this study is that once a rheological
model for the force-deflection behavior has been found for the core, then a two
degree-of-freedom model as described here suffices for incorporating the fluid-
structure interaction effects with reasonable accuracy. This model then enables
one to probe the behavior of various designs over a large range of impulses and
other variables by a detailed finite element model without explicitly accounting
for fluid-structure interaction. Since the modelling of the fluid that surrounds
a structure usually entails substantial computational expense, this approach
can be quite beneficial in design studies.

The excellent agreement between the simplified model and the complete cou-
pled finite-element model also offers some interesting insight into the mechan-
ics of sandwich structures when subjected to impulsive underwater loads. It
is clear that wave propagation through the core has little effect on the fluid-
structure interaction effects, since the results for the simple model agree well
with the fully coupled model. In other words, for a highly impulsive load, if
the distance between the sandwich plates is sufficiently small (10% or less of
the span) so that the traversal time is much less than the response time of the
structure, the load on the top plate depends primarily on the load-deflection
behavior of the core. As can be seen from figure 12b, it takes more than 8ms
for the structure to reach its maximum displacement, whereas the travel time
through the core is approximately 0.02ms which is a ratio of 0.0025. Although
dynamic effects may change the force-deflection behavior due to strain-rate
effects and the acceleration of buckling, the wave propagation effects through
the core appear to be secondary.
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