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ABSTRACT. This paper concerns a generalization of Moulton planes. We consider 
these semi-classical projective planes over half-ordered fields and completely deter­
mine their Lenz-Barlotti classes in the case of finite planes and of ordered planes. We 
also obtain a characterization of the Desarguesian planes among the semi-classical 
planes in terms of linear transitivity. These results are applied to (topological) 2-di­
mensional semi-classical projective planes. 

1. Introduction, notation and examples 

In [4] J. Jak6bowski constructed a family of affine planes that generalize Pierce's 
construction [8] of Moulton planes. The author dualized these planes in [18] and 
solved the isomorphism and collineation problem posed in [4]. Both types of pro­
jective planes are defined over half- ( or pseudo-) ordered fields, that is, fields lF with 
a multiplicative subgroup IP of index two. In particular, IP contains all non-zero 
squares of lF so that a finite half-ordered field cannot have characteristic two. El­
ements of IP and of the other coset N of non-zero elements are called positive and 
negative respectively. We use the familiar notation x > 0 and x < 0 for x E IP and 
x E N respectively. For finite fields lF = GF(q), the Galois field of order q, IP consists 
precisely of the non-zero squares of JF. A half-ordered field is called an ordered field, 
if IP is closed under addition. In particular, such fields have characteristic zero and 
-1 is negative. 

A mapping f from a half-ordered field lF into itself is called order-preserving or 
order-reversing ifandonlyif(f(x)-f(y))(x-y)-1 > Oor (f(x)-f(y))(x-y)-1 < 0, 
respectively, for all distinct x, y E JF. Note that every order-preserving or order­
reversing mapping is injective. Standard examples for order-preserving or order­
reversing mappings on JR with the Euclidean ordering are the strictly increasing 
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and strictly decreasing functions respectively. For finite fields lF L. Garlitz showed 
in [2] that the only order-preserving or order-reversing mappings are permutations 
of the form x H aa(x) + b for a, b E IF, a # 0, where a is an automorphism of 
IF. Such a permutation is order-preserving if and only if a > 0 (i.e., a is a nonzero 
square in IF) and it is order-reversing if and only if a < 0. 

Given two permutations h, g of a half-ordered field IF that are either both order­
preserving or both order-reversing the incidence structure Ph,g(IF) is constructed as 
follows. The point set is 

IF x IF U { ( m) I m E IF} U { ( oo)} 

where ( m) and ( oo) are new symbols not contained in IF; lines are the vertical lines 

Le= {(c, y)I y E IF} U {(oo)} 

for c E IF and the non-vertical lines 

Lm,t ={(x,mx+t)I x E IF,x ~ O} 

U { (x, g- 1(h(m)g(x) + g(t))) I x E IF, x < O} U { (m)} 

for m, t E IF, and the line at infinity 

Loo= {(m) Im E IF} U {(oo)}. 

We denote the collection of all lines through a point p by .Cp, 
Without loss of generality we may assume that g and h both belong to the 

collection rrt 1 (IF) of all order-preserving permutations of IF which fix O and 1; cf. 

[18, §1]. The~ Ph,g(IF), g, h E rrt,1 (IF), is a projective plane if and only if 

(1) each function x H g(ax + b) + ch(-x) from IF to itself is surjective for all 
a, b, c E IF, c < 0 < a; 

cf. [18, Theorem 1.1] or [4, Theorem l]. 
Note that the mapping defined in (1) is a permutation oflF. The injectivity follows 

from the fact that hand g are order-preserving. Furthermore, Ph,9 (1F) = Pah,ag(1F) 
for each order-preserving automorphism a of lF. Let rrt1 (IF) be the collection of all , 
pairs (g, h) of order-preserving permutations g, h of IF that fix O and 1 and that 
satisfy (1). 

In the usual coordinatization of a projective plane with respect to the frame 

v = (oo), u = (0), o = (0, 0), and e = (1, 1) 

(see [7, 1.5]) the ternary operation is given by 

{ 
ax + b, if x ~ 0 

T(a, x, b) = g-1(h(a)g(x) + g(b)), if x < 0 
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Thus non-vertical lines can be described as {(x,T(a,x,b)) Ix E lF} U {(a)} for 
a, b E lF. 

For lF = JR the planes Ph,g (JR) are isomorphic to the planes Ph,g constructed by 
the author in [17]; cf. [17, 2.3]. Condition (1) from above is satisfied for any two 
g, h E rrt 1 (JR); see [ 4, §2 Prop. l]. We call these planes semi-classical projective 
planes be~ause the geometries and topologies on A+ = JR+ x JR and A_ = JR- x JR 
are the same as on the corresponding subsets of the (topological) real Desarguesian 
projective plane. 

We also call the planes Ph,9 (JF) semi-classical projective planes since the geome­
tries induced on A+ = IP x lF and A_ = N x lF, where IP and N denotes the set of 
positive and negative elements of lF respectively, are the same as on the correspond­
ing subsets of the Desarguesian plane over IF. We call A+ and A_ the positive and 
negative half-plane respectively. 

Furthermore, if lF is an ordered field the induced order-topologies on A+ and A_ 
are the same as on the corresponding subsets of the Desarguesian plane. 

The aim of this paper to determine the Lenz-Barlotti classes of the semi-classical 
projective planes. We say that a projective plane is (p, L )-transitive, where p is a 
point and L is a line, if and only if the group of all central collineations with centre 
p and axis L is transitive on each central line minus p and the intersection with 
L. With this notation the Lenz-Barlotti class of a projective plane can be found 
from the configuration of all point-line pairs (p, L) for which the projective plane 
admits a linearly transitive group of central collineations with centre p and axis L. 
A complete list of possible Lenz-Barlotti classes of projective planes can be found 
in [7, Anhang §6], see also [3], [21] and [22]. The Lenz-Barlotti classes of finite 
semi-classical projective planes are determined in 4.8 and Theorem 4.9 although 
this classification may be well-known. Eventually, however, we have to restrict 
ourselves to semi-classical ordered planes. In particular, Lenz-Barlotti classes of 2-
dimensional (compact topological) projective planes are determined. Note that we 
implicitly have also determined the Lenz-Barlotti classes of the planes constructed in 
[4] in the respective cases since these planes are duals of our semi-classical projective 
planes. -

Following we give simple concrete examples for each of the possible Lenz-Barlotti 
classes in the case of finite and of ordererd semi-classical projective planes in order 
to provide the reader with material to work with. However, these examples may be 
skipped at first. In the general case groups of linearly transitive central collineations 
can be described very similar to the groups given in the examples. 

We begin with finite semi-classical projective planes. These can be of Lenz­
Barlotti class VII.2, IV.b.3, IV.b.2 or IV.b.l, see Theorem 4.9. In order to realise 
these classes let GF(9), GF(27) and GF(81) be the Galois fields of order 9, 27 and 
81, respectively, and let a(x) = x3 be the generator of the automorphism group of 
these fields. Then we obtain the following Lenz-Barlotti classes. 

(1) The plane Pid,id(GF(9)) is Desarguesian and thus of Lenz-Barlotti class 
VII.2. It is well known that Desarguesian planes are linearly transitive for 
every point-line pair. 

(2) The plane Pa,id(GF(27)) is of Lenz-Barlotti class IV.b.1. This plane is 
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(oo, L)-transitive for every line L through the point (oo). The collection of 
all collineations 

(x, y) 1-r (x, y + t), (m) 1-r (m) 

for t E G F ( 27) is a linearly transitive group of elations with centre ( oo) and 
axis L 00 • For c > 0 the collection of all collineations 

( ) {
(x,y+a(x-c)), ifx~O () ( .) 

x, y 1-r , m 1-r m + a 
(x, y + a(a)x - ac), if x ::; 0 

for a E GF(27) is a linearly transitive group of elations with centre (oo) and 
axis Le and for c < 0 the collection of all collineations 

( ) { 
( x, y + ax - ca (a)), if x ~ 0 ( ) ( ) 

x,y 1-r , m 1-r m+a 
(x, y + a(a)(x - c)), if x::; 0 

for a E G F ( 27) is a linearly transitive group of elations with centre ( oo) 
and axis Le, There is no other point-line pair (p, L) for which this plane is 
(p, L )-transitive. 

(3) The plane Pa2,id(GF(8l)) is of Lenz-Barlotti class IV.b.2. This plane is 
( oo, L )-transitive for every line L through the point ( oo) and (p, L00 )- and 
(q, L0)-transitive for allp E Lo, q E L 00 • Linearly transitive group of elations 
with centre (oo) and axis Le, c E GF(81) U {(oo)}, are described in exactly 
the same way as in the preceding example. Furthermore, the collection of 
all collineations 

( ) { 
(rx, r(y - c) + c), if r > 0 

x, y 1-r (ra 2 (x), ra2 (y - c) + c), if r < 0' (m) 1-r (m) 

for r E GF(81), r f= 0, is a linearly transitive group of homolgies with centre 
(0, c) and axis L 00 • Likewise the collection of all collineations 

( ) { (rx,y+ a(r - l)x), 
x, y 1-r (a2 (r)x, y + a 2 (a)(a2 (r) - l)x), 

(m) 1-t (a+ m - a) 
r 

for r E GF(81), r > 0, and 

( ) { 
(a2 (r)x, y + (a2 (a)a2 (r) - a)x), 

x, y 1-r (rx, y + (ar - a2 (a))x), 

(m) 1-t (a+ a2(m - a)) 
r 

if x ~ 0 

if x :S O 

if x ~ 0 

if x :S O ' 

for r E GF(81), r < 0, is a linearly transitive group of homolgies with centre 
(a) and axis L0 . There is no other point-line pair (p, L) for which this plane 
is (p, L )-transitive. 
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(4) The plane P = Pcx,id(GF(9)) is of Lenz-Barlotti class IV.b.3. (In fact, this 
is the only projective plane of Lenz-Barlotti class IV.b.3; cf. (3] or (5].) As 
seen in (9] and (10] the non-Desarguesian semi-classical projective plane of 
order nine plays a special role. In this plane the distinguished point ( oo) 
is still fixed but the line L00 can be moved. One finds that P is ( oo, L )­
transitive for every line L through the point ( oo) and (p, Lc)-transitive for 
every point p on the vertical line L</>(c) where cf> is the involutory permutation 
of GF(9) U {oo} given by ef>(oo) = 0, ef>(O) = oo, ef>(m) = -m form i= O,oo. 
There is no other point-line pair (p, L) for which P is (p, L )-transitive. 
Since L 00 may be moved under these central collineations, it is difficult to 
write down these collineations explicitly. However, if we dualise this plane 
we obtain a projective plane P*, which is coordinatised by a near-field, all 
of whose collineations fix the infinite line L~ ( = the dual of the point ( oo)); 
for collineations of P*, see (13, §4.3]. Note that P is of Lenz-Barlotti class 
IV.b.3 if and only if P* is of Lenz-Barlotti class IV.a.3. Non-vertical lines 
of P* are of the form 

L:n t = {(x, mx + t) Ix E GF(9)} U {(m)} 
' 

form, t E GF(9), m ~ 0 and of the form 

L:n t = {(x, mx3 + t) Ix E GF(9)} U {(m)} 
' 

form, t E GF(9), m < 0. The translations 

(x,y)H(x+a,y+b), (m)H(m) 

for a, b E GF(9) form a group of elations with axis L00 such that the sta­
bilizer of any line in [,(c) for c E GF(9) U { oo} is linearly transitive (with 
centre ( c)). Furthermore the collection of all collineations 

( ) { 
( r ( x - c) + c, y), 

x,y H 
3 (r(x - c) + c, y), 

(m) H { (~), 

( r3)' 

if r > 0 

if r < 0 

if rm> 0 

if rm< 0 

for r E GF(9), r i= 0 and the collection of all collineations 

(x, y) H (x, s(y - d) + d), (m) H (sm) 

for s E GF(9), s > 0, and 

(x, y) H (x, s(y - d) 3 + d), (m) H (sm3) 

for s E GF(9), s < 0, are linearly transitive groups of homologies with 
respective axes L~ and L~ d and respective centres (0) and (oo). Conjugation 
by ' 

(x, y) H (x + y, s(x - y)) 

(m) H (-sm) form E GF(9), mi= 0, ±1 
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for s > 0 and 

(x, y) H (x + y, s(x - y) 3
) 

(m) H (-sm3) form E GF(9), m-/= 0, ±1 

for s < 0 where in both cases 

(0) H (s), (1) H (0), (-1) H (oo), (oo) H (-s) 

finally yields linearly transitive groups of homologies with centres (s) and 
axes through (-s) for s E GF(9), s-/= 0. 

As for ordered semi-classical planes it is shown in Theorem 5.3 that only Lenz­
Barlotti classes VII.2, IV.b.1, III.2, II.1, I.2 and I.1 can occur. All but class IV.b.l 
can be realized over the field of reals with the Euclidean ordering. For this purpose 
let µ 2 and m3 be the mappings defined by µ 2 ( x) = x for x ~ 0 and µ 2 ( x) = 2x for 
x :::; 0, cf. Definition 2.1 below, and m3(x) = x 3 for x E R These mappings are 
order-preserving permutations of JR. 

(5) The plane Pid,id(IR) is of Lenz-Barlotti class VII.2. It is linearly transitive 
for every point-line pair. 

(6) The plane Pµ 2 ,id(IR) is of Lenz-Barlotti class III.2. This plane has many 
interesting features; here the point ( oo) can be moved and it admits the 
simply connected covering group of the real Lie group 812 (IR) of all 2 x 
2 matrices of determinant 1 with real entries as a group of collineations 
(see [14, §34]). Since L 00 may be moved and given the complicated nature 
of the covering group of 812 (IR), it again is difficult to write down these 
collineations explicitly. We therefore give only the two basic types of linearly 
transitive groups of central collineations. The collection of all collineations 

m 
(x,y) H (rx,y), (m) H (-) 

r 

for r > 0 and 

for r < 0 is a linearly transitive group of homologies with centre (0) and 
axis Lo. The collection of all collineations 

(x, y) H (x, y + t), (m) H (m) 

for t E IR is a linearly transitive group of elations with centre ( oo) and 
axis L00 • Conjugation by suitable collineations shows that P µ 2 ,id (IR) is also 
((O),L)-transitive for every line L through (0), cf. [1] and [14, §34]. There 
is no other point-line pair (p, L) for which this plane is (p, L )-transitive. 
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(7) The plane Pms,id(JR) is of Lenz-Barlotti class II.1. The collection of all 
collineations 

(x, y) H (x, y + t), (m) H (m) 

for t E JR is a linearly transitive group of elations with centre ( oo) and 
axis L00 • There is no other point-line pair (p, L) for which this plane is 
(p, L )-transitive. 
Note that for each r > 0 the collineation 

( ) { 
(rx, y), 

x, y H ( 3 ) r x,y, 

ifx~O m 
if x ~ 0 ' (m) H (-:;:--) 

is a homology with centre (0) and axis L0 • However, the plane is not 
((0), Lo)-transitive. 

(8) The plane Pm3 ,m3 (JR) is of Lenz-Barlotti class I.2. The collection of all 
collineations 

(x, y) H (x, sy), (m) H (sm) 

for s E IR \ { 0} is a linearly transitive group of homologies with centre ( oo) 
and axis Lo,o, There is no other point-line pair (p, L) for which this plane 
is (p, L )-transitive. 

( 9) The plane P µ 2 ,µ2 (JR) is of Lenz-Bar lot ti class I.1. In this plane there is no 
point-line pair (p, L) for which this plane is (p, L)-transitive. 

Realising semi-classical ordered projective planes of Lenz-Barlotti class IV.b.1 is 
more complicated. In order to give an example in this class let lF be the field 
of all formal power series :E:n aiXi over the rationals Q in one indeterminate 
X where n is an integer and an # 0. lF becomes an ordered field by defining 
f (X) = I::::n aiXi > 0 if and only if an > 0, cf. [12, Chapter II, §5]. It readily 
follows that a defined by a(f (X)) = f(2X) (i.e., substitution of X by 2X in every 
formal power series in X which results in multiplying each coefficient ai of Xi by 
2i) is an order-preserving automorphism of JF. Furthermore, the pair ( id, a) satisfies 
(1) so that Pa,id(JF) is a semi-classical projective plane. 

(10) The plane Pa,id(JF) as defined above is of Lenz-Barlotti class IV.b.1. The 
collection of all collineations 

( ) { 
( x, y + ax + b), if x ~ 0 

x, y H (x, y + a(a)x + b), if x ~ O' (m) H (m + a) 

for a, b E JR is a group of elations with centre ( oo). For a = 0 the resulting 
subgroup is a linearly transitive group of elations with axis L00 • For b = ca 
with fixed c < 0 and b = ca( a) with fixed c > 0 the resulting subgroup 
is a linearly transitive group of elations with axis L-c· There is no other 
point-line pair (p, L) for which this plane is (p, L )-transitive. 
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2. Generalized Moulton planes 

The generalized Moulton planes constructed by W. A. Pierce [8] can be found 
among the planes Ph,9 (1F) with g being the identity, or more generally, g being an 
order-preserving automorphism of JF. Such a plane with g = id is Desarguesian if 
and only if h = id; see [8, Theorem 4]. In order to distinguish between different 
generalizations of Moulton planes we use the term Pierce-Moulton plane for the 
planes constructed by W.A. Pierce in [8]. What is usually refered to as a Moulton 
plane and all isomorphic models will be called a Pickert-Moulton plane following 
W.A. Pierce [10]; see Definition 2.3 below. In order to define these planes we need 
the following 

2.1. Definition. Let 1F be a half-ordered field and let q E JF, q > 0, such that 
(1 - x)(q - x) > 0 for all x < 0. Define µq: 1F--+ 1F by 

( ) 
_ { x, if x ~ 0 

µq x -
qx, if x < 0 

Then µq is an order-preserving permutation of JF. Moreover, condition (1) is sat­
isfied for h = µq and g = id, that is, we obtain a semi-classical projective plane 
p Jl,q ,id (JF). 

It readily follows that µq defined as above for arbitrary q > 0 is an order­
preserving permutation of 1F if and only if (1 - x)(q - x) > 0 for all x < 0. In 
particular, µ 1 = id is always order-preserving. Furthermore, 1F =I- GF(3) is or­
dered with respect to the given half-ordering if and only if every µq, q > O, is 
order-preserving, see [18, Proposition 1.3]. 

2.2. Definition. We call two permutations f E rrt, 1 (JF) and f' E rrt,i(:E) affinely 
equivalent to each other if and only if there are order-preserving isomorphisms ¢, 
'i/J from 1F onto lE (that is, ¢ and 'i/J map positive elements of 1F to positive elements 
of IE and negative elements to negative ones) and a, b, c, d E JF, a, c =I- 0, such that 

J' (cp(x)) = 'i/J(cf (ax+ b) + d) 

for all x E JF. This defines an equivalence relation on rrt 1 (JF). 
Let A(JF) denote the collection of all permutations / E rrt 1 (JF) such that f is 

' affinely equivalent to an order-preserving permutation µq (see Definition 2.1) for 
some q E JF, q > 0. 

Note that the definition of A(JF) uses only those permutations µq that are order­
preservmg. 

The equivalence class of the identity is the set Aut+(JF) of all order-preserving 
automorphisms of JF. Furthermore, it readily follows that if a permutation f' E 

rrt 1 (JE) is affinely equivalent to an order-preserving automorphism of lF then f' is 
an' order-preserving automorphism of IE. 

Since µ 1 = id is the only additive permutation among the mappings µq, q > 0, 
the additive permutations in A(JF) are precisely the order-preserving automorphisms 
of JF. 

After these preliminaries we can define Pickert-Moulton and Pierce-Moulton 
planes. 
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2.3. Definition. We call a semi-classical plane Ph,g(lF) with (g, h) E nt,i(lF) a 
Pickert-Moulton plane if and only if g E Aut+(JF), h E A(JF) or h E Aut+(JF), 
g E A(JF). 

We call a semi-classical plane Ph,9 (1F) with (g, h) E nt,i(lF) a Pierce-Moulton 
plane if and only if g E Aut+ (JF) or h E Aut+ (JF). 

Pickert-Moulton planes are direct generalizations of Moulton's original plane over 
JR. (the plane Pµ 2 ,id(JR.)), see [6). Each such plane is isomorphic to a plane Pµq,id(JF) 
by means of isomorphisms of the form 3.1, 3.2, 3.3, 3.4; see section 3. The planes 
described in [10, §4, Theorem 2) are the Pickert-Moulton planes with g = id over 
an ordered field. 

3. Some basic facts about semi-classical projective planes 

There are four fundamental types of isomorphisms between semi-classical projec­
tive planes all of which map the point ( oo) in one plane to the corresponding point 
( ex/) in the other plane; cf. [18, §2). 

3.1. Isomorphisms induced by linear maps: 

{ 

(a1x,a2y+asx+a4), 

(x,y) H (( ')-l(h(~)-h(~) ( )) ( ')-l(g(y)-h(~)g(x)-g(~))) 
g (~)- (~) g X , g (.l-a4 )- (~) ' g a2 g a2 g a2 g a2 

(m) H (a2m + a3) 
a1 

(oo) H (oo) 

where ai E lF, a1 > 0, a2 # 0, and 

h( a1 x-a3) _ h( -a3) 
h'(x) _ a2 a2 

- h( a1 ~a3 ) _ h( :~3 ) ' 

g(x-a4) _ g(-a4) 
'(x) _ a2 a2 

g - ( l-a4) _ (-a4) 
g a2 g a2 

This mapping yields an isomorphism from Ph,g (JF) to Ph, ,g' (JF). 

x~O 

x<O 

3.2. Isomorphisms induced by isomorphisms from a half-ordered field lF to a half­
ordered field lE: 

(x, y) H (a(x), a(y)) 

(m) H (a(m)) 

(oo) H (oo) 

where a is an order-preserving isomorphism from lF to JE. This mapping yields an 
isomorphism from Ph,g (JF) to P ahcci ,aga-1 (JE). 
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3.3. Isomorphisms that interchange the roles of the two half-planes: Let n E JF, 
n < 0. Then 

( ) { 
(g(h- 1 (n)x), g(y)), 

x, y f-t 
(ng(x),g(y)), 

(m) f-t ( h(m)) 
n 

(oo) f-t (oo) 

if x 2 0 

if x < 0 

is an isomorphism from Ph,g(1F) to P;;,,g-1 (JF) where the permutation his defined by 
- 1 -1 h(x) = h-l(n)h (nx). 

3.4. Isomorphisms that interchange the roles of the two lines Lo and L=: 

{ 

( 
1 'l!..) if x > 0 ;, x ' 

(x,y) M (h-1 (g(x)),h-1 (~f;~)), if x < 0 

(y), if x = 0 · 
(m) M (O,m) 

(oo) M (oo) 

This mapping yields an isomorphism from Ph,g(1F) to Pg,h(JF). 

Note that all four types of isomorphisms yield planes whose describing permu­
tations again are in rrtl(JF) or rrtl(IE). Furthermore, corresponding describing 
permutations under iso~orphisms of type 3.1 and 3.2 are affinely equivalent to each 
other. 

We summarize some of the results obtained in [18] as far as they are needed 
for the determination of Lenz-Barlotti classes. We begin with a characterization of 
Desarguesian planes. 

3.5 Theorem ([18, Theorem 3.9]). The projective plane Ph,g(1F) with (g, h) E 

IIcii (JF) is Desarguesian if and only if h = g is an order-preserving automorphism 
) 

of JF. 

The following proposition characterizes those planes which possibly admit colli­
neations that do not map half-planes to half-planes but fix the distinguished point 
( oo) and the line L =. 

3.6 Proposition ([18, Proposition 4.1]). If an isomorphism 'Y from Ph,g(1F) to 
Ph' ,g' (IE) with (g, h) E rrt,l (JF) and (g', h') E IIci,i (IE) maps the point ( oo) onto ( oo') 
and maps L= onto L'oc, but fails to map Lo onto LS then g, h, g' and h' must be 
additive. 

Recall that a projective plane is (p, L )-transitive, where p is a point and L is a 
line, if and only if the group of all central collineations with centre p and axis L 
is transitive on each central line minus p and the intersection with L. With this 
notation we have the following. 
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3.7 Proposition. The projective plane Ph,9 (1F) with (g, h) E rrt,l(JF) is 

(1) ((oo), L00 )-transitive if and only if g is additive; cf. [18, Corollary 3.2]. 
(2) ((0, 0), L00 )-transitive if and only if 

- h E A ut+ (JF), 
- (g-1h) 2 = µq for some q > 0 where µq is as in Definition 2.1, and 

{ 
g(x)g(y), if x ~ 0 or y ~ 0 

- g(xy) = g(q)g(x)g(y), if x, y < 0 ' 

cf. [18, Corollary 3.5]. In this case, Ph,g (JF) is a Pierce-Moulton plane. 

Finally, for semi-classical ordered projective planes and their collineations we 
found in [18] Theorem 5.3 and Corollary 5.6 the following. 

3.8. Theorem. If 'Y is an order-preserving isomorphism between semi-classical 
ordered projective planes that are not Pickert-Moulton planes, then 'Y maps the point 
( oo) onto ( oo') and {Lo, L 00 } onto {Lb, L~}. Furthermore, such an isomorphism 
is a composition of isomorphisms of types 3.1 to 3.4. 

A semi-classical ordered projective plane Ph,9 (1F) with (g, h) E rrt,l(JF) that is not 
a Pickert-Moulton plane admits a non-trivial collineation if and only if there are 
order-preserving automorphisms q>, 'I/; of 1F and a, b, c, d, a, b, c, d E JF, a, c, ii, c -::/=- O, 
such that one of the following holds: 

(i) h(cp(x)) = '1/;(ch(ax + b) + d) and g(cp(x)) = '1/;(cg(iix + b) + d) for all x E 1F 
with aa > O; 

(ii) h(cp(x)) = '1/;(cg(ax + b) + d) and g(cp(x)) = '1/;(ch(ax + b) + d) for all x E 1F 
with aa > O; 

(iii) h(cp(x)) = 'l/;(ch- 1(ax + b) + d) and g(cp(x)) = 'l/;(cg- 1 (ax + b) + d) for all 
x E 1F with aa < 0; . 

(iv) h(cp(x)) = 'l/;(cg- 1(ax + b) + d) and g(cp(x)) = 'l/;(ch- 1 (ax + b) + d) for all 
x E 1F with aa < 0. 

4. Some linearly transitive groups of central 
collineations in semi-classical projective planes 

In this section we investigate some transitivity properties of semi-classical planes 
over half-ordered fields. This leads to the characterizaton of (p, L )-transitivity of 
semi-classical planes in terms of the describing permutations g and h for all centres 
p on L00 U Lo and all axes L such that the distinguished point ( oo) is fixed. Under 
these restrictions p = ( oo) or, up to isomorphism ( use isomorphisms of type 3.1 and 
3.4), p = (0). In the latter case L must pass through (oo) in order that (oo) remains 
fixed under all respective central collineations. 

4.1. Proposition. Ph,9 (1F), (g,h) E rrt,l(JF), is ((oo),L 1)-transitive if and only 
if g and h are both additive. In this case Ph,g (JF) is a dual translation plane with 
translation centre ( oo). 
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Proof. Suppose that Ph,9 (JF) is ((oo),L1)-transitive. An ((oo),L1)-elation which 
maps (0) to (c) must have the form 

( ) { 
(x, y + ex - c), 

x,y H 
(x, g- 1(h(c)g(x) + g(y - c))), 

(m) H (m + c) 

Since the line Lm,t is mapped to Lm+c,t-c, one obtains 

if x 2:: 0 

if x < 0. 

h(c)g(x) + g(g- 1(h(m)g(x) + g(t)) - c) = h(m + c)g(x) + g(t - c) 

or 

(2) (h(m + c) - h(c))g(x) = g(g- 1(h(m)g(x) + g(t)) - c) - g(t - c) 

for all c, m, t, x E JF, x < 0. Let 

fc(z) = g(g-1(z + g(c)) - c) 

for z E JF. Since the left-hand side in (2) is independent oft, we obtain for t = c 
that 

fc(h(m)g(x)) = (h(m + c) - h(c))g(x). 

Substituting m = 1 yields 
fc(z) = q;(c)z 

for all z, c E JF where 
ef;(c) = h(l + c) - h(c). 

Therefore 
h(m + c) = h(c) + q;(c)h(m). 

Here the left-hand side is symmetrical in m and c so that 

h(c) + q;(c)h(m) = h(m) + q;(m)h(c). 

Substituting m = 1 yields ef;(c) = (¢(1) - l)h(c) + 1. Thus 

(3) h(m + c) = h(m) + h(c) + (¢(1) - l)h(c)h(m). 

Suppose that ¢(1) =I- 1. Let c = h-1( 1_}(1)); then h(m + c) = h(c) for all m E JF 
- a contradiction to the injectivity of h. Thus ¢(1) = 1. Now (3) shows that h is 
additive and that fc(z) = z for all c, z E JF. Then 

g (g-1 ( Z + g ( C)) - C) = Z 

which implies that g-1 and thus g is additive too. 
Conversely, assume that g and h are both additive. By Proposition 3. 7 the plane 

Ph,g(lF) is ((oo), L00 )-transitive. Using an isomorphism of the form 3.4 we see that 
Ph,g (JF) is also ( ( oo), Lo)-transitive; cf. [18, Corollary 3.3]. Hence, the plane is 
((oo), (oo))-transitive and thus a dual translation plane. In particular, Ph,g(lF) is 
( ( oo), L1)-transitive. 0 
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4.2. Proposition. Ph,9 (IF), (g, h) E Ilci,i(IF), is ((oo), Lo,o)-transitive if and only 
if g = h is multiplicative. 

Proof. Suppose that Ph,g (IF) is ( ( oo), Lo,o)-transitive and let "( be a ( ( oo), Lo,o)­
homology which maps the infinite point (1) to (c), c =/=- 0. ry must have the form 

(x, y) H (x, a(y)) 

on the affine part of Ph,9 (IF) for some permutation a. Thus 1 ((1, m)) = (1, a(m)) 
and therefore ,(Lm,t) = Lcx(m),cx(t) for all m, t E IF. This gives us 

a(mx + t) = a(m)x + a(t) 

for x 2:: 0. One readily infers that a(y) = cy for all y E IF. For x < 0 and m = 1 we 
now have 

(4) cg- 1(g(x) + g(t)) = g- 1(h(c)g(x) + g(ct)). 

Substituting x = g- 1 (-g(t)) fort 2:: 0 gives us g(ct) = h(c)g(t). Thus g = h and 
g(ct) = g(c)g(t) for all t 2:: 0. Substituting t = 0 in (4) yields g(cx) = g(c)g(x) for 
all x < 0. This proves that g = h is multiplicative. 

Conversely, if g = h is multiplicative, it readily follows that each mapping 
( x, y) H ( x, cy) for c =/=- 0 extends to a central collineation of Ph,g (IF) with cen­
tre (oo) and axus Lo,o· Hence Ph,9 (IF) is ((oo), Lo,o)-transitive. 0 

4.3. Lemma. Let IF=/=- GF(3) be a half-ordered field. 

(1) For each p E IF, p > 0 there exists an x < 0 such that p + x < 0. 
(2) For each x E IF, x < 0 there exists a p > 0 such that p + x < 0. 

2 

Proof. Given p > 0 there always exists an x < 0, x =/=- -p. Then i, Px < 0 and 
2 2 

(p+x)(p+ ?) = i(p+x) 2 < 0. Therefore, p+x < 0 or p+ Px < 0. 
A similar argument proves the second statement. 0 

Since every Desarguesian projective plane is (p, L )-transitive for every point-line 
pair (p, L), one direction in the following propositions is trivially true. Furthermore, 
a projective plane of order 3 is Desarguesian. 

4.4. Proposition. Ph,g(IF), (g, h) E IIci,i(IF), is ((0), L 00 )-transitive if and only if 
g = h E Aut+ (IF). In this case Ph,g (IF) is Desarguesian. 

Proof. Suppose that Ph,g(IF), IF=/=- GF(3), is ((0), L00)-transitive. Then there is an 
((O),L00 )-elation that fixes (oo) and L 00 but moves L0 • Hence g and h must be 
additive by Proposition 3.6. An ((0), L00)-elation which maps (0, 0) to (p, 0), p > 0, 
must have the form 

(x,y) H (x+p,y) 

on the affine part of Ph,9 (IF) because L1,0 is mapped to Li,-p· Moreover, a line 
Lm,o is mapped to Lm,-mp· For x < 0 and x + p < 0 one therefore obtains 

h(m)g(x) = h(m)g(x + p) + g(-mp); 
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thus 

(5) g(mp) = h(m)g(p) 

for all m E IF and all p > 0 such that there is an x < 0 with x + p < 0. However, 
such an x always exists by Lemma 4.3. For p = 1 in (5) one obtains g = h. But 
then 

g(mp) = g(m)g(p) 

for all m,p E JF, p::::: 0. It follows from [18, Lemma 2.5] that g = h E Aut+(IF). 
Hence Ph,g(IF) ,....., Pid,id(IF) is Desarguesian. D 

4.5. Proposition. Ph,g(IF), (g, h) E Ild,i(IF), is ((0), L1)-transitive if and only if 
g = h E Aut+ (JF). In this case Ph,g (IF) is Desarguesian. 

Proof. Suppose that Ph,g(IF), 1F =I- GF(3), is ((0), L1)-transitive. Then there is an 
((O),L1)-homology that fixes (oo) and L00 but moves L0 . Hence g and h must 
be additive by Proposition 3.6. An ((0), L1)-homology which maps (0, 0) to (p, 0), 
1 =f. p > O, takes L1,o to L_1 __ -12_. Hence, on the affine part, one finds 

1-p' 1-p 

{ 

( ( 1 - p) x + p, y), if ( 1 - p) x + p ::::: 0 

(x, y) H (g-1 ( 9~(~)), y), if (1 - p)x + p < 0 · 

A line Lm O is mapped to L_m_ _.!!!:E..., For x < 0 and (1 - p)x + p::::: 0 one therefore 
' 1-p' 1-p 

obtains g- 1(h(m)g(x)) = 17-:'P ((1 - p)x + p) - ~~ = mx. Thus 

(6) g(mx) = h(m)g(x) 

for all m E IF and all x < 0 such that there is a p > 0 with (1 - p)x + p::::: 0. 
We now show that such a p > 0 exists for each x < 0. We note that (1-p )x+p ::::: 0 

if and only if 1 + 1;x p ::; 0. If 1;x < 0 then, by Lemma 4.3, there exists a p > 0 such 
that 1 + l-xp < 0. On the other hand, if l-x > 0 and we assume that 1 + l-xp > 0 x - x x 
for all p > 0, then 1F is ordered and 1;x < 0 - a contradiction. Therefore (6) is valid 
for all m E IF and all x < 0. 

Let q > 0. Substituting mq for min (6) yields 

h(mq)g(x) = g(mqx) = h(m)g(qx) = h(m)h(q)g(x). 

Therefore 

(7) h(mq) = h(m)h(q) for all m, q E IF, q > 0. 

From (6) we find 1 = g(ix) = h(i)g(x). Thus h(i) = g(~) for all x < 0. For 

p > 0 > x we now obtain g(p) = g(1;x) = h(1;)g(x) = h(i)h(p)g(x) = h(p). This 
shows that g(p) = h(p) for all p ~ 0. It follows from (7) that h E Aut+(IF) by [18, 
Lemma 2.5]. Hence g = h E Aut+(IF) and Ph,g(IF) is Desarguesian. D 

We now have to make the first additional assumption and eventually have to 
consider semi-classical ordered projective planes. 



LENZ-BARLOTTI CLASSES OF SEMI-CLASSICAL ORDERED PLANES 15 

4.6. Proposition. Suppose that -l is negative. 'Ph,9 (1F), (g, h) E rrt,i(lF), is 
( (0), L 0 )-transitive if and only if g is an order-preserving automorphism of lF and 
g-1h = µr, that is, 'Ph,g(lF) is a Pickert-Moulton plane 'Pµr,id(lF). 

Note that 'Ph,9 (1F) is still a Pierce-Moulton plane if'Ph,9 (1F), (g,h) E rrt,i(lF), is 
( (0), L 0 )-transitive even if -1 is positive. 

Proof. Suppose that 'Ph,9 (1F) is ((0), L 0)-transitive. Using an isomorphism of type 
3.4, it follows from Proposition 3.7.(2) that g is an automorphism of lF, that 

{ 
h(x)h(y) if x 2: 0 or y 2: 0 

(h-1g) 2 = µq for some q > 0, and that h(xy) = ( ) ( ) ( ) . . 
h q h x h y 1f x' y < 0 

Since g is an automorphism, we have 'Ph,9 (1F) = 'Pg-1h,id(JF). In particular, we obtain 
a Pierce-Moulton plane. 

If -1 < 0, then [18, Remark 3.6] shows that g- 1h = µr where r = -g-1h(-1) > 
0. Hence we have a Pickert-Moulton plane 'Pµr,id(JF). D 

Propositions 4.4, 4.5 and 4.6 can be summarized in the following. 

4. 7. Theorem. The Pierce-Moulton planes are the only semi-classical projective 
planes that are (p,L)-transitivefor somep E (L00 UL0 ) \ {(oo)} and (oo) EL. 

The Desarguesian planes are the only semi-classical projective planes that are 
(p, L )-transitive for some p E (L00 U Lo)\ { ( oo)} and L E £coo) such that { L, Le} =/= 
{Lo, L 00 } where Le, c E lF U { oo }, is the vertical line containing p. 

Proof. Suppose that 'P = 'Ph,g(lF), (g, h) E rrt,i(lF), is (p, L)-transitive where p E 
L 00 \ { ( oo)} and ( oo) E L. Using an isomorphism of type 3.4, if necessary, we can 
assume that p E L 00 • Then, using an isomorphism of type 3.1, if necessary, we can 
further assume that p = (0). If L = L 00 , then 'P is Desarguesian by Proposition 
4.4. If L = Lo, then 'P is a Pierce-Moulton plane by Proposition 4.6 after using an 
isomorphism of type 3.4. If L = Le, c =/= oo, 0, we can use an isomorphism of type 
3.1 and 3.3 to obtain c = 1. But then 'P is Desarguesian by Proposition 4.5. 

In particular, one obtains Desarguesian planes if the line through p and ( oo) is 
not the one distinguished line L00 or Lo that does not contain p. D 

4.8 Finite semi-classical planes. 

The results obtained so far suffice to determine the Lenz-Barlotti classes of finite 
semi-classical projective planes. As mentioned in the introduction in a finite half­
ordered field lF the set of positive elements consists precisely of the non-zero squares 
of JF. Furthermore, lF has odd characteristic. By [2] the only order-preserving 
permutations that fix O and 1 are automorphisms of JF. If lF has characteristic p 
and q = pn, then every automorphism of lF = GF(q) is of the form x f-+ xPm where 
0 :s; m < n. 

Every finite semi-classical projective plane is isomorphic to a plane 'P o:,id(JF) for 
some automorphism a of JF. Moreover, in this case, each isomorphism of type 
3.1 actually is a collineation of the plane. In particular, the collineation group of 
'P o:,id(JF) is transitive on the set of lines Le with c > 0 and on the set of lines Le with 
c < 0. Furthermore, any such plane is a dual translation plane and thus of Lenz­
Barlotti class at least IV.b.l. According to [7, Figure 63], 'Po:,id(JF) is of class IV.b.l, 
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IV.b.2, IV.b.3, V, VII.1 or VII.2. Class VII.2 consists precisely of the Desarguesian 
planes; thus Po:,id(JF) is of class VII.2 if and only if a = id. No finite plane is of 
class VII.l, see [3]. Class IV.b.3 consists precisely of the non-Desarguesian dual 
translation plane of order 9, i.e., the plane Pa,id(GF(9)) where a is the Frobenius 
automorphism a ( x) = x3, see Example ( 4) in section 1. 

In planes of Lenz-Barlotti class IV.b.2 there is a point p and two lines L1 and L2 
through p such that the plane is (p, L )-transitive for each line L through p and such 
that it is (q, Li)-transitive for each point q on L 3 _i, i = 1, 2. Given this configuration 
it follows in our situation that p = (oo). If {L1, L2} # {Lo, L00 }, then Po:,id(IF) is 
(q, Le)-transitive for some point q (j. Le and some c # O, oo. Using the collineation 
group of Po:,id(JF) we then obtain that the plane is also (q(r), Lre)-transitive for 
each r > 0 and some point q(r). Since this cannot occur in class IV.b.2, we must 
have that without loss of generality L1 = Lo and L2 = L 00 • In particular, Po:,id(JF) 
is ((0, 0), L00 )-transitive and thus a 2 = id by Proposition 3.7.2. Conversely, one 
obtains Lenz-Barlotti class IV.b.2 unless a= id or lF has order nine. 

In planes of Lenz-Barlotti class V there is a flag (p, L) such that the plane is 
(q, L)- and (p, K)-transitive for each point q on L and each line K through p, i.e., 
we have a translation plane (with translation axis L) which also is a dual translation 
plane ( with translation centre p). These planes are coordinatised by semifields. For 
our semi-classical planes we must have p = ( oo). By Proposition 4.4 the line L 
cannot be equal to L00 unless the plane is Desarguesian and thus of class VII.2. 
The dualization of Proposition 4.4 similarly excludes that L = L0 . Hence L = Le 
for some c # O,oo. As before this implies that Po:,id(JF) is (oo),Lre)-transitive for 
each r > 0. Hence, in this case, Po:,id(JF) must again be of class VII.2. 

In summary we obtain the following classification of Lenz-Barlotti classes of semi­
classical finite planes. 

4.9. Theorem. A semi-classical plane Pa,id(JF) with a E Aut(IF) over a finite 
half-ordered field lF = GF(pn), p an odd prime, is of Lenz-Barlotti class 

- VII.2 if and only if a = id; P o:,id(JF) is the Desarguesian plane over JF. 
- IV.b.3 if and only if JF = GF(9) is the field with nine elements and a is the 

unique automorphism of GF(9) of order 2. 
- IV.b.2 if and only if a has order 2 and lF has order greater than 9. This 

case only occurs if n is even. 
- IV. b.1 if and only if a has order greater than 2. 

Note that all the classes in the above theorem actually occur as Lenz-Barlotti 
classes for some finite semi-classical planes by choosing suitable finite fields lF and 
automorphisms a of JF, see examples (1) to (4). 

5. Lenz-Barlotti classes of semi-classical ordered planes 

Although many transitivity properties of semi-classical planes can be character­
ized in terms of the describing functions g and h, as we have seen in the preceding 
section, it is difficult to do so in general, since the distinguished point ( oo) may 
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be moved under a collineation. Only under the stronger assumption of an ordered 
plane comprehensive results were obtained in [18), see in particular §4. 

In order to obtain a semi-classical ordered projective plane let IF be an ordered 
field. Then the corresponding projective plane Ph,9 (IF) with (g, h) E rrt,}(IF) is an 
ordered plane in the sense of [12]; see also [7, §9), [16] or [19]. The relation of sepa­
ration between pairs of points on a projective line is invariant under projectivities. 
It is naturally inherited from the ordering of the coordinatizing field with which 
affine lines can be identified. A collineation 'Y of Ph,9 (IF) is order-preserving if it 
preserves the relation of separation between pairs of points on a line. This extends 
to isomorphisms between semi-classical ordered projective planes. In particular, the 
isomorphisms of types 3.1 to 3.4 are order-preserving. 

We now restrict our attention to semi-classical ordered planes and apply the 
results of sections 3 and 4 to such planes. Using isomorphisms of types 3.1 and 3.4 
we obtain an immediate corollary of Proposition 4.6. 

5.1. Proposition. A semi-classical plane Ph,9 (IF), (g, h) E rrt,}(IF), over a half­
ordered field IF with -1 < 0 is ((m), Lo)- or ((0, t), L 00 )-transitive for some m, t E IF 
if and only if Ph,9 (IF) is a Pickert-Moulton plane. 

We now assume that IF is an ordered field and apply the results of the previous 
sections in order to determine the possible Lenz-Barlotti classes for those semi­
classical planes; see [7, Anhang §6] for the Lenz-Barlotti classification. 

Collineations of ordered Pickert-Moulton planes were determined in [8], [11], see 
[20] for their Lenz-Barlotti classes. 

5.2. Proposition. A Pickert-Moulton plane Pµq,id(IF) over an ordered field IF is 
Desarguesian if and only if q = 1. The Desarguesian plane is of Lenz-Barlotti class 
VII.2. The proper Pickert-Moulton planes, that is, q =f=. 1, are of Lenz-Barlotti class 
III.2. 

Let P = Ph,g (IF) be a semi-classical plane over an ordered field IF with g, h E 

rrt}(IF). We first note that each central collineation of P is order-preserving; cf. 
[12', V, Satz 10]. 

If Pis not a Pickert-Moulton plane, then each order-preserving collineation of P 
must fix (oo) and {Lo,L00 } according to Theorem 3.8. Consequently, if Pis (p,L)­
transitive, then Lo and L 00 must be fixed under every central collineation with 
centre p and axis L. This can only occur when both lines Lo and L00 are central 
lines or one of them is a central line and the other is the axis. Hence p = ( oo) or 
p E L 00 \ {(oo)}, L = Lo or p E Lo\ {(oo)}, L = L 00 • The last two cases lead to 
Pickert-Moulton planes by Proposition 5.1. 

This leaves the classes I.1, I.2, II.l, and IV.b.l as possible Lenz-Barlotti classes 
of semi-classical ordered planes that are not Pickert-Moulton planes. Furthermore 
p = (oo) except in class I.1. Class IV.b.1 comprises precisely the dual translation 
planes; thus P is of Lenz-Barlotti class IV.b.1 if and only if g and h are both 
additive by [18, Corollary 3.3]. Planes of Lenz-Barlotti class II.1 have precisely one 
flag (p, L), p E L, such that the projective plane is (p, L )-transitive. By Proposition 
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4.1 the axis L must be one of the lines Lo or L 00 in such planes, otherwise we would 
have Lenz-Barlotti class IV.b.l. 

Planes of Lenz-Barlotti class I.2 have precisely one anti-flag (p, L), p tj. L, such 
that the projective plane is (p, L )-transitive. This leads to p = ( oo) and L = Lo,o 
which has been dealt with in Proposition 4.2. This situation can only occur if g 

and h are affinely equivalent to the same multiplicative permutation of IF. 
In summary we obtain the following classification of Lenz-Bar lot ti classes of semi­

classical ordered planes. 

5.3. Theorem. A semi-classical plane Ph,g(IF) with (g, h) E rrt,i(IF) over an or­
dered field IF is of Lenz-Barlotti class 

- VJI.2 if and only if g = h is an order-preserving automorphism of IF; Ph,g(IF) 
is the Desarguesian plane over IF. 

- IV.b.1 if and only if g and h are both additive but not as in class VII.2; 
Ph,9 (IF) is a non-Desarguesian dual translation plane with translation centre 
(oo). 

- III.2 if and only if g E Aut+(IF), h E A(JF) \ Aut+(IF) or h E Aut+(IF), 
g E A(JF) \ Aut+(IF); Ph,g(IF) is a proper Pickert-Moulton plane. 
II.1 if and only if g or h is additive but not both and g, h are not as in class 
III. 2; in this case Ph,g (IF) is ( ( oo), Lo)- or ( ( oo), L 00 )-transitive according to 
h or g being additive. 

- I. 2 if and only if ( h, g) is affinely equivalent to (v, v) where v ~ Aut+ (IF) is a 
multiplicative permutation of IF; in this case the plane Ph,g(IF) is ((oo), Lm,t)­
transitive for some line Lm,t. 

In all other cases Ph,9 (IF) is of Lenz-Barlotti class I.1. 

All the classes in the above theorem actually occur as Lenz-Barlotti classes for 
some semi-classical prdered projective planes, see examples (5) to (10). However, 
note that for a given ordered field lF the possible Lenz-Barlotti classes IV.b.l and 
I.2 may be empty. For example, for IF= JR with the Euclidean ordering class IV.b.1 
is empty, see 5.4 and 5.5 below, and for lF = (Q with the Euclidean ordering both 
these Lenz-Barlotti classes are empty. Since there always are the Desarguesian 
plane and proper Picker-Moulton planes, classes VII.2 and III.2 are never empty. 
Furthermore, classes II.1 and I.1 are not empty either. For q > 0, the map µ~ 

defined by µ~(x) = µi(µq(x) + 1) -1 is in rrt, 1 (JF) and (id,µ~) E rrt,i(IF) so that 

'Pµq,r,id(IF) is a semi-classical projective plane of class II.1 if qi= 1. Finally, the plane 
Pµq,µq (IF), q > 0, q i= l, is a semi-classical projective plane of class Lenz-Barlotti 
I.l. 

5.4. Semiclassical 2-dimensional planes. 

We apply the results obtained for semi-classical ordered planes to topological 
2-dimensional planes. A topological projective plane is a projective plane in which 
the point set and the set of lines carry Hausdorff topologies such that the geometric 
operations of joining two distinct points by a line and intersecting two distinct 
lines in a point are continuous; cf. [14] or [15, §3]. In topological compact 2-
dimensional planes both the point space and the line space are homeomorphic' to 
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the point space of the topological real Desarguesian projective plane. (This is a 
2-dimensional manifold.) When the point set is constructed from the Euclidean 
2-sphere by identifying antipodal points the topology is just the quotient topology 
under this identification map. Compact 2-dimensional semi-classical topological 
projective planes have been classified in [17]. The planes Ph,g constructed there are 
isomorphic to the planes considered here over JR, i.e. Ph,g '.:::::'. Ph,g (JR). 

Since each order-preserving additive mapping of JR that fixes 1 is the identity -
in particular, the identity is the only automorphism of JR - one readily obtains from 
Theorem 5.3 the following. 

5.5. Theorem. A semi-classical 2-dimensional plane Ph,g(JR) with g, h E rrt, 1 (JR) 
is of Lenz-Barlotti class 

- VII.2 if and only if g = h = id; Ph,9 (JR) is the Desarguesian plane. 
- III.2 if and only if g = id, h E A(JR) \ { id} or h = id, g E A(JR) \ { id},-

Ph,g (JR) is a proper Pickert-Moulton plane. 
- II.1 if and only if g = id, h E IIci 1 (JR)\ A(JR) or h = id, g E IIci 1 (JR)\ A(JR); 

in this case Ph,g (JR) is ( ( oo), Lo)~ or ( ( oo), L 00 )-transitive acco~ding to h or 
g being the identity. 

- I.2 if and only if g and h are both affinely equivalent to the same multiplica­
tive permutation i=- id of JR; in this case Ph,g (JR) is ( ( oo), Lm,t)-transitive 
for some line Lm,t. 

In all other cases Ph,9 (JR) is of Lenz-Barlotti class I.1. 

Note that all the classes in the above theorem actually occur as Lenz-Barlotti 
classes for some semi-classical 2-dimensional planes by choosing suitable homeomor­
phisms g and h of JR, see examples (5) to (9). 
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