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ABSTRACT

The credibility of the final results from stochastic simulation has had limited

discussion in the simulation literature so far. However, it is important that

the final results from any simulations be credible. To achieve this, validation,

which determines whether the conceptual simulation model is an accurate rep-

resentation of the system under study, has to be done carefully. Additionally, a

proper statistical analysis of simulation output data, including a confidence in-

terval or other assessment of statistical errors, has to be conducted before any

valid inferences or conclusions about the performance of simulated dynamic

systems, such as for example telecommunication networks, are made.

There are many other issues, such as choice of a good pseudo-random num-

ber generator, elimination of initialisation bias in steady-state simulations, and

consideration of autocorrelations in collected observations, which have to be

appropriately addressed for the final results to be credible. However, many of

these issues are not trivial, particularly for simulation users who may not be

experts in these areas.

As a consequence, a fully-automated simulation package, which can con-

trol all important aspects of stochastic simulation, is needed. This disserta-

tion focuses on the following contributions to such a package for steady-state

simulation: properties of confidence intervals (CIs) used in coverage analysis,

heuristic rules for improving the coverage of the final CIs in practical applica-

tions, automated sequential analysis of mean values by the method of regener-



ABSTRACT

ative cycles, automatic detection of the initial transient period for steady-state

quantile estimation, and sequential steady-state quantile estimation with the

automated detection of the length of initial transient period.

One difficulty in obtaining precise estimates of a system using stochastic

simulation can be the cost of the computing time needed to collect the large

amount of output data required. Indeed there are situations, such as estimation

of rare events, where, even assuming an appropriate statistical analysis pro-

cedure is available, the cost of collecting the number of observations needed

by the analysis procedure can be prohibitively large. Fortunately, inexpen-

sive computer network resources enable computationally intensive simulations

by allowing us to run parallel and distributed simulations. Therefore, where

possible, we extend the contributions to the distributed stochastic simulation

scenario known as the Multiple Replications In Parallel (MRIP), in which

multiple processors run their own independent replications of the simulated

system but cooperate with central analysers that collect data to estimate the

final results.
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Chapter 1

INTRODUCTION

1.1 Stochastic Discrete-Event Simulation

Discrete-event stochastic dynamical systems, such as those which can be mod-

elled by queueing networks, occur in all areas of industry and business, in-

cluding manufacturing processes, communication networks, and computer sys-

tems. They are often difficult to evaluate analytically, even when they are only

moderately complex, due to their nonlinear behaviour. However, significant

achievements in electronic and computer engineering have led to a prolifera-

tion of powerful computers in almost every office and business, and remark-

able achievements in software technology have allowed very simple and efficient

human-computer interfaces. These two developments have led to computer-

based stochastic simulation becoming the most commonly and widely used

tool for performance evaluation studies when analytical techniques do not suf-

fice. Computer simulation has also been adopted for scientific investigations,

in addition to the traditional theoretical and experimental studies.

Furthermore, the emergence of the world-wide web (WWW) has affected

many areas including computer simulations. This phenomenon has introduced

the (relatively) new concept of web-based simulation which represents a con-

vergence of computer simulation methodologies and applications within the
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WWW [35], [125]. This is now one of hot research topics for both simulation

researchers and simulation practitioners. This will lead to computer-based

stochastic simulation being an even more powerful tool for many disciplines

[124].

It is essential to use a valid simulation model for any performance evaluation

studies based on stochastic simulation. General guidelines on building valid

simulation models can be found, for example, in [87] and [93]. However, the

validity of the model is only the first step towards the credibility of the final

results of any simulation study, since as Law and McComas wrote that “the

modelling phase of a system’s simulation consumes only 30 - 40% of the total

effort in most successful simulation projects” [94]. Nevertheless, a great deal of

time and money in simulation studies is spent mostly on model development

and programming rather than over all the steps, which can be found, for

example in [93] and [94], involved.

Warnings regarding the misuse of stochastic simulation as a performance

evaluation tool of complex dynamic systems can be found, for example, in [44]

and [83]. The misuse of stochastic simulation has led to a deep credibility crisis

in the use of simulation studies for performance evaluation. Although the cred-

ibility of the final simulation results has hardly been discussed in the literature

so far, it is probably as important as the problem of validation, which deter-

mines whether the conceptual simulation model is an accurate representation

of a system under study.

In practice a common mode of application of simulations is to make a single

simulation run of a somewhat arbitrary length and then to treat the result-

ing simulation estimates as the ‘true’ system’s characteristics. Since random

samples from various probability distributions are used to drive a simulation

model, any output estimates are simply particular realizations of random vari-

ables that may have large variances. As a result, the estimates in a particular

simulation run can differ greatly from the corresponding true values. The net

effect of this approach is a significant probability of making erroneous conclu-

sions about the performance of the system under study.

Following the scientific method ([175] and [179]), one should draw con-

4
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clusions only from controlled and repeatable simulation experiments. This

is necessary, for example, to facilitate comparisons between alternative sys-

tems, when many simulation runs of alternative systems with the same pseudo-

random numbers may be required.

As discussed before, any stochastic simulation could be regarded as a sta-

tistical experiment, since the input processes driving a given simulation are

random. Hence, a proper statistical analysis of simulation output data, in-

cluding a confidence interval (CI) or probability statement, has to be under-

taken before any valid inferences or conclusions about the performance of the

investigated computer systems or telecommunication networks are made. Un-

fortunately, there is a reason why simulation output data analyses have often

not been conducted in an appropriate manner.

The reason for inadequate analysis is that the output processes of many

simulations are non-stationary and/or autocorrelated. Thus, classical statisti-

cal analysis techniques developed from independent and identically distributed

observations are then not applicable to the analysis of such simulation output

data. Some problems of simulation output data analysis, such as an initial

transient period detection in steady-state simulation, and handling autocorre-

lations between collected observations, have no completely accepted solutions,

and choosing the appropriate method to apply in simulation practice is often

not easy.

Applying inadequate methods for analysing simulation output data has

led to an alarming situation in all fields of performance evaluation, including

telecommunication networks. The credibility of many research publications

based on simulation studies can be questioned. We have conducted a survey

of 2245 research papers published recently in Proceedings of INFOCOM (an

annual IEEE International Conference on Computer Communications) from

1992 to 1998 (papers per year range between 156 and 177), IEEE Transactions

on Communications from 1996 to 1998 (230, 227 and 221 papers), IEEE/ACM

Transactions on Networking from 1996 to 1998 (83, 80 and 68), and Perfor-

mance Evaluation Volumes 25 - 34 from 1996 to 1998. The survey shows that

stochastic simulation is a preeminent tool of scientists and engineers working

5
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on performance evaluation of telecommunication networks, computer systems,

and other similar systems [132]. Figure 1.1 shows the data obtained from that

survey.

Our results also show that in about 76% of the surveyed papers the authors

were not concerned with the random nature of the experimental results they

obtained from their stochastic simulation studies; see Figure 1.2. This included

papers simply reporting the average results (say, average over an arbitrary

number of replications), with an unspecified statistical error. The majority of

researchers do not mention whether their final simulation results have been

subjected to an appropriate statistical analysis. Certainly, this cannot be an

acceptable practice!

It would appear that one cannot rely on the majority of published results

of performance evaluation studies of dynamic systems based on a stochastic

simulation, since the final results lack credibility if an appropriate statistical

analysis is not done. Other aspects of the credibility crisis are discussed, for

example, in [129], [132], and [171]. Detailed results of the survey can be found

in Appendix E.

There are many other issues, such as verification of the simulation program,
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Figure 1.1: Proportions of all surveyed research papers reporting the results

obtained by a stochastic simulation (average proportion is 51.45%)
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Figure 1.2: Proportions of all papers based on a stochastic simulation, in which

results were analysed statistically (average proportion is 23.55%)

choice of a good pseudo-random number generator, elimination of initialisa-

tion bias in steady-state simulations, and consideration of autocorrelations in

collected observations, which have to be seriously considered to achieve cred-

ibility of the final simulation results. However, many of these issues are not

trivial, particularly for simulation users who are not expert in these areas.

Thus, achieving a successful simulation result is difficult.

Consequently, a fully-automated simulation package, which can control and

validate all aspects of a stochastic steady-state simulation, would be valuable.

This dissertation focuses on the following contributions to such a package: CI

estimations for coverage analysis, heuristic rules for improving the coverage

of the final CIs in practical applications, the automated sequential analysis

of mean values by means of regenerative cycles (RCs), automatic detection

of the initial transient period for steady-state quantile estimation, and auto-

mated sequential steady-state quantile estimation with the automated detec-

tion method of the initial transient period in sequential discrete-event steady-

state simulation. The objective is to determine the best solution for a fully-

automated simulation package which would produce a high level of credibility

of the final simulation results.

7
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One difficulty in obtaining precise estimates of performance measures for

simulated systems can be the cost of computing time needed to collect the

large amount of output data required. Indeed there are situations, such as

estimating rare events, where, even assuming that an appropriate statistical

analysis procedure is available, the cost of collecting the number of observa-

tions needed by the analysis procedure can be prohibitively large. Fortunately,

the availability of inexpensive computer network resources can help computa-

tionally intensive simulations by allowing us to run parallel and distributed

simulations. Therefore, where possible, we extend the previously mentioned

contributions to parallel and distributed discrete-event simulation.

1.2 Sequential Steady-State Simulation

A steady-state simulation is applied for investigating the long-run behaviour

of a system. Measures of performance are then steady-state parameters, char-

acterising the steady-state distributions of output stochastic processes. There

are two general procedures suggested for constructing a point estimate for the

parameter of interest and a CI for that point estimate: fixed sample size and

sequential for a steady-state simulation. In fixed sample size procedures, a

single simulation run is made of a fixed number of pre-specified observations.

Then a point estimate and a CI are constructed from the available data. The

analyst has no control over the statistical error in this approach. Obtaining

an acceptable level of statistical error is simply a matter of luck. Furthermore,

no procedure in which the run-length is fixed before the simulation begins can

be relied upon to produce a CI that covers the steady-state parameter with

the desired probability of 1 − α [91], [92]. Sequential procedures sequentially

determine the length of a simulation run needed to construct an acceptable

CI for the parameter [93]. With this approach, the analyst can automatically

control the statistical error by specifying a stopping criterion.

The theoretical studies of sequential procedures also show that they are

asymptotically consistent (as the coverage probability converges to 1−α) and

also asymptotically efficient (as the prescribed width of the CI tends to zero)

8
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for both regenerative and non-regenerative steady-state simulation [51], [149].

This asymptotic theory provides a theoretical basis for confidence in sequential

procedures, regardless of any simulation output data analysis method used.

Consequently, we will only examine the steady-state behaviour of systems using

sequential procedures, which are very desirable in an automated simulation

package.

Following Law and Kelton [93], let us consider a single run of a steady-

state simulation. Firstly, let X1, X2, · · · be realizations of a simulation output

stochastic time-stationary process X. Secondly, let Pr(Xi ≤ x|I) = Fi(x|I) for

i = 1, 2, · · · , where x is a real number and I represents the initial conditions.

If Fi(x|I) → F (x) as i → ∞ for all x and for any initial conditions I, then

F (x) is called the steady-state distribution of the output process X of interest.

That is,

Pr(Xi ≤ x|I) = Fi(x|I) → F (x) = Pr(X ≤ x) (1.1)

as i → ∞ for any initial conditions I. Therefore, F (x) can be considered as a

characteristic of the output process X in a steady-state when the sample size

i approaches infinity.

One difficulty in estimating the steady-state parameter is that the steady-

state is theoretically reachable only after an infinitely long period, but the

execution of the steady-state simulation has to be completed within a finite

period. This causes the distribution function Fi(x|I), 1 ≤ i ≤ n, of a fixed

number n to be different from F (x), since it will generally not be possible

to choose the initial conditions I to be representative of the steady-state be-

haviour of the system. For example, the sample mean X(n) =
∑n

i=1 xi/n will

be a biased estimator of µ = E(X) for all finite values of n, unless observations

x1, x2, · · · , xn are independent and identically distributed. Various methods of

approaching this problem, in the case of analysis of mean values, are discussed

in [12] and [128]. Most of them (except the method of RCs) require that data

collected from the initial transient period of a simulation are not used to cal-

culate the steady-state estimates, as this can cause a significant bias in the

final results of the simulation; see, for example, [167].

To eliminate the initialisation bias in the steady-state estimates, one can

9
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run the simulation experiments for a sufficiently long period to make any influ-

ence of the initial transient period negligible. However, it is difficult to ensure

that the length of run chosen is long enough. On the other hand, one can collect

observations only after the system has reached steady-state. However, there is

also a problem in recognising whether steady-state has been reached. Determi-

nation of the length of the initial transient period can require quite elaborate

statistical techniques. If a proper detection method is used, reasonable point

estimates of the measures of performance needed can be established. Various

detection methods have been proposed in [57], [162], and [182]. These have

all been developed for the case where the steady-state mean of the system is

estimated. Any method for estimating steady-state quantiles in methods other

than the RCs method has not yet been developed.

When the problem of the initial transient period is solved, one is left with a

stationary time series of (strongly) correlated values, and with the problem of

estimating the CIs for these data. To construct the CI, various statistical tech-

niques for obtaining accurate variances of estimators from autocorrelated sim-

ulation output data have been surveyed in [93], [128] and [135]; see Appendix

B for a discussion of some of these methods. The current state-of-the-art sim-

ulation output data analysis requires extensive runs of simulation models to be

made before estimates of the system’s characteristics can be established. The

search for robust techniques of output data analysis for a steady-state simu-

lation continues; see, for example, [102] and [134]. In this dissertation, three

selected output data analysis methods for the mean estimations and quantile

estimations: non-overlapping batch means (NOBM), spectral analysis (SA),

and RCs, are considered as candidates for a fully automated simulation sce-

nario.

1.2.1 Run-Length Control in Sequential Steady-State

Simulations

It is important that the run-length of the simulation be properly chosen. If

the simulation is too short, the final simulation results may be highly variable.

10
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On the other hand, if the simulation is too long, computing resources may

be wasted. Sequential steady-state simulations should be run until the CI for

the parameter of interest narrows to a desired width. A number of sequential

run-length control methods for steady-state simulations has been proposed.

Among these are sequential procedures involving: NOBM ([8], [90], [91]), SA

([63], [64], [65]), and RCs ([31], [89]). All these methods are developed for

controlling the run-length by running only one simulation.

A heuristic technique, which controls the run-length by running three sim-

ulations to select the run-length of a sequential steady-state simulation is pro-

posed in [154]. In this method, the run-length is selected by finding the point

at which the three results obtained from the three independent replications

are effectively the same. Sequential procedures for controlling the run-length

of a simulation run, especially when several parameters are simultaneously es-

timated, have also been proposed in [142] for quantiles, [144] for means, and

[148] for proportions.

In this section, we only discuss procedures that sequentially determine the

acceptable run-length of a single simulation so that an acceptable CI with a

specified statistical error for the one parameter can be constructed. Let us

consider two ways of measuring the statistical error with a stopping criterion

based on the half-width of the CIs for X(n) of the mean as a steady-state point

estimate in a sequential steady-state simulation1. First, a stopping criterion

can be defined as the ratio

ε(n) =
∆(n)

X(n)
, 0 < ε(n) < 1, (1.2)

where X(n) is an average of collected observations x1, x2, · · · , xn, which are re-

alizations of independent and identically distributed random variables X1, X2,

· · · , Xn, and

∆(n) = tdf,1−α/2σ̂[X(n)], (1.3)

is the current half-width of the CIs for the estimator at the (1−α) confidence

level; 0 < α < 1, where tdf,1−α/2 is the (1 − α/2) quantile of the Student t-
1Measuring the statistical error with a stopping criterion for the quantiles in a sequential

steady-state simulation will be discussed in Chapter 5.
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distribution with degrees of freedom df and σ̂2[X(n)] is the unbiased estimator

of the variance of X(n) [128]. Depending on the output data analysis method

used for estimating the variance of X(n), the degrees of freedom df is different;

see Appendix B.

Equation (1.2) defines the relative statistical error of the CI. In a sequential

simulation: if we find that ε(n) ≤ εmax, where εmax is the worst acceptable

relative statistical error of the final results at the (1 − α) confidence level,

0 < εmax < 1, then the simulation can be stopped at a given checkpoint2.

Otherwise, the relative statistical error of the final results is analysed again

when the next checkpoint is reached, until the final results with acceptably

low statistical errors are obtained [93].

An alternative way of measuring the statistical error of the steady-state

point estimate X(n) with a stopping criterion can be to apply the concept of

the absolute statistical error ∆max = |X(n)−µ| of the CI. In a sequential simu-

lation, if ∆(n) ≤ ∆max (where ∆max > 0), then the simulation can be stopped

at a given checkpoint with the predefined absolute statistical error ∆max. Oth-

erwise, the sequential steady-state simulation continues until the final results

with ∆max are obtained [93]. This stopping criterion is very sensitive to the

sample mean X(n).

Naturally, a question arises as to how well it performs in practice, in terms

of producing a CI with coverage close to the desired probability (1− α), even

though sequential procedures are intuitively appealing. The analysis of cover-

age is naturally limited to analytically tractable systems only, since the the-

oretical value of the parameter of interest has to be known. The quality of

interval estimators of proportions with application to coverage analysis will be

investigated in Chapter 2. In this dissertation, we only consider the stopping

criterion with a relative statistical error for controlling the run-length in se-

quential steady-state simulations, since this is probably the most useful; see,

for example, [91], [128], and [146].

2The point at which any new estimate is calculated is called a checkpoint, and the spacing

between checkpoints is under the control of the analysis method. Some methods will have

natural locations of checkpoints. For instances, in Batch Means a checkpoint can be located

at the end of a batch or a number of batches.
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One problem with such stopping criteria is that the inherently random

nature of output data generated during a stochastic simulation can cause an

accidental, temporal satisfaction of the stopping criterion, with the result that

the final CIs of such a prematurely finished simulation run may not actually

contain the exact theoretical values with the specified frequency. Rules of

thumb to protect against the degradation of quality in terms of coverage of the

final CIs in practical applications of fully automated sequential simulations are

needed. For the coverage analysis, the stopping criterion based on the relative

statistical error can include these additional conditions. Investigations of these

issues will be discussed in Chapter 3.

Some commercial simulation packages offering automated control of the

statistical error of the final results in a sequential steady-state simulation are

Arena3 [80], CSIM184, Prophesy5, SIMPROCESS6, Taylor II7, and a whole

family of simulation packages based on SIMSCRIPT II.58. There are also pack-

ages offered as freeware for non-profit research organisations, e.g., Akaroa-29.

These simulation packages are compared in terms of model building, support

items, and system requirements in Table 1.1. All packages have features of

the automated run-length control and on-line simulation output data analy-

sis. However, Akaroa-2 is the only one using the technique of parallel and

distributed simulation to harness the computing power of a network of inex-

pensive workstations. CSIM18 is supported on the widest variety of platforms.

1.3 Parallel and Distributed Simulation

Simulation experiments of, for instance, computer networks, can be computa-

tionally intensive and can require long runs in order to obtain the final results

at a desired level of statistical error. Research on speeding up the execution of

3see http://www.sm.com
4see http://www.mesquite.com
5see http://www.abstraction.com
6see http://www.simprocess.com
7see http://www.taylorii.com
8see http://www.caciasl.com
9see http://www.cosc.canterbury.ac.nz

13
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Table 1.1: Comparisons of some simulation packages

Simulation Automated Graphical Output Parallel & Operating

packages Run-Length Modelling Analysis Distributed Systems

Control Support Simulation

Akaroa-2
√ √ √

SunOS

Solaris

Arena
√ √ √

Win 95/NT

CSIM18
√ √

Solaris

Linux

Windows

95/98/NT

Prophesy
√ √ √

OS/2

Win 95/98

SIMPROCESS
√ √ √

Windows

95/98/NT

SIMSCRIPT
√ √

SunOS

II.5 Solaris

Win 95/NT

Taylor II
√ √ √

Win 95/NT

such simulations is one of the challenging issues which has attracted consider-

able scientific interest and effort so far; see, for example, [41], [111], [137]. The

obvious solution is to speed up a simulation by executing it in a distributed

way, possibly using computers linked by a local area network.

Multiprocessor and distributed systems offer high distributed processing

power, many times that available with a single processor, for example in web-

based simulation. The challenge, then, is to develop a simulation methodology

that can exploit this enormous power and the economic advantage of mul-

tiprocessors and multicomputer networks to speed up simulation runs. In

general, there are two classes of parallel and distributed stochastic simulation

techniques: the single replication in parallel (SRIP) scenario and the multiple

14



1.3 Parallel and Distributed Simulation

replications in parallel (MRIP) scenario. In this section, we discuss these two

scenarios, and also load management in parallel and distributed simulations.

1.3.1 Single Replication in Parallel

Traditionally, a parallel and distributed stochastic simulation has meant run-

ning a single replication in parallel (SRIP) scenario, in which many processors

cooperate in executing a single replication of a simulated process [39], [113],

[153]. Research activities in the SRIP scenario have focused on developing

methods for the concurrent execution of the loosely-coupled parts of large

simulation models on multiprocessor computers, or multiple computers over a

network. Surveys of concurrent simulation can be found, for example, in [7],

[42], and [123]. Managing the execution of large partitioned simulation models

efficiently with the SRIP scenario can offer reasonable speedup of a simulation,

provided that a given simulation model is sufficiently decomposable. Unfortu-

nately, this feature is not frequently observed in practice, thus this kind of a

distributed simulation is strongly model-dependent [172]. Also, this scenario

needs knowledge of parallel programming, which enables users to run a model

simultaneously on a computer that contains two or more processors.

In the SRIP scenario, a simulation model is partitioned into several sub-

models, or logical processes (LPs), which are concurrently simulated by a set of

processors; see Figure 1.3. The parallelism of the SRIP scenario is limited by

two sequential causality constraints. Firstly, if two LPs are scheduled for the

same processor, then the LP with the smaller time-stamp must be executed

before the one with the larger time-stamp. Secondly, if an LP executed at

a processor results in the scheduling of another LP at a different processor,

then the former must be executed before the latter. The partitioning for the

SRIP scenario is an important issue for minimising communication overheads

between the partitions or clusters. Clustering communicating LPs together

and assigning each cluster of LPs to a processor reduces the synchronisation

overhead, since only inter-cluster communication requires synchronisation.

Partitioning the simulation into very fine grained objects is not an appro-
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Figure 1.3: Single Replication In Parallel (P = n processors, M = M1 ∪ M2

∪ · · · ∪ Mn)

priate solution because this may lead to inappropriate computations. Optimal

partitioning is a difficult problem. Many different partitioning methods have

been proposed in [86]. Studies of parallel and distributed stochastic simula-

tions often show poor performance of the system, not simply due to too many

overhead messages, but because the system has an inherently low degree of

concurrency, as indicated in [88].

Another important issue is synchronisation, and over the last several years

research in this area has progressed along two lines: conservative and optimistic

approaches. Numerous algorithms have been proposed, for example, in [42],

[75], [82]. The Chandy-Misra algorithm is a well-known conservative algorithm

that strictly avoids the possibility of any causality error. In this algorithm,

the sequence of time-stamps on the messages sent over a link must be non-

decreasing. The advantages of this method are that it avoids some of the costs

associated with optimistic mechanisms, especially the state-saving overhead,

and offers good potential for certain classes of problems. However, conservative

algorithms appear to be poorly suited for simulating applications with poor

look ahead properties, even if there is some parallelism available. As Fujimoto
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[40] comments, conservative approaches cannot fully exploit the parallelism

available in a given simulation application.

The Time Warp (TW) algorithm, based on the Virtual Time paradigm, is

a typical optimistic algorithm: causality errors are detected, and a rollback

mechanism is invoked to recover the correct state of the system. The major

advantage of this method is that it offers the greatest hope as a general pur-

pose simulation mechanism, assuming state-saving overheads can be kept to a

manageable level. However, the TW algorithm has rollback and storage over-

head problems since states of the processes need to be saved periodically so

that they can revert to previous states when the event processing precedence

is violated. Jefferson and Reiher [75] show that no conservative mechanism

can beat the processing path, but at least four known optimistic mechanisms:

Lazy Cancellation, Lazy Rollback, Phase Decomposition, and the Chandy-

Sherman space-time family of mechanisms, are all capable of speedup. These

four optimistic mechanisms are explained in detail, for example, in [40], [42],

and [75].

Despite the potential speedup in the execution time due to parallel pro-

cessing of subtasks on different processors, a SRIP simulation suffers from

several drawbacks, in addition to the obvious overhead of distributed schedul-

ing. One of them is the extra burden on the programmer, who must detect

by himself/herself an opportunity for parallel execution, decompose the model

into interacting subtasks executable in parallel, and deal with parallel coding

and debugging. Furthermore, relationships between subtasks within a model

may limit the degree of parallelism, especially in simulations applying the

Chandy-Misra method. Hence the number of processors that may be utilised

simultaneously is restricted. The resulting under-utilisation of processors can

significantly reduce the expected speedup.

There are additional costs connected with the synchronisation overhead,

deadlock detection and resolution, and communication between subprocesses.

These phenomena also decrease the speedup by expending processor time

on interprocess communication (IPC) and having idle processors whose sub-

processors are blocked, waiting for input from unfinished subprocesses. Apart
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from consuming processor power, IPC limits the multiprocessor architectures

that can be used for a SRIP simulation. For instance, in a shared memory mul-

tiprocessor, intensive IPC can create a contention in the processors-memory

interconnections, causing further delays and lower speedup. Although fully

connected shared memory architectures, such as crossbar or multi-stage net-

works, could be used to alleviate these problems, their costs grow rapidly as

the number of processors increases, and they are typically limited to medium

or small scale multiprocessor systems. A SRIP simulation is not fault-tolerant.

If a running subtask on a processor (or a workstation in a network) fails, the

simulation fails too, due to the causality between subtasks.

Load Balancing for the SRIP Scenario

Load management in parallel and distributed simulations for the SRIP scenario

is very important for a judicious distribution of simulation models among pro-

cessors in order to maximise the level of parallelism [6], [45], [86]. A poorly

chosen load balancing technique can lead to poor performance. Load balancing

techniques can be classified into static and dynamic methods.

Static load balancing techniques for the SRIP scenario may be used when

processors are restricted to execute only sub-models or logical processors (LPs)

that have been mapped beforehand [3]; see Figure 1.4. The advantage of this

method is that the communication between LPs in a cluster can be done locally

without any excessive overhead. However, the static load balancing technique

cannot change the network load.

Instead of using several partitions and distributed ready queues for the LPs,

dynamic load balancing techniques for the SRIP scenario can use one central

scheduling queue for LPs ready to execute [25], [46]; see Figure 1.5. LPs in

the centralised scheduling queue may be selected by idle processors. This can

reduce the number of roll-backs and increase overall efficiency. It also avoids

the problems inherent in static scheduling techniques that involve partitioning.

When the LPs do not represent the same load, or are not equally utilised,

the dynamic load balancing technique performs better than the static tech-
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nique, because it balances the load across the participating processors. How-

ever, choosing which implementation is best for a particular simulation model

depends on the relative costs of the synchronisation and the beneficial effects

of the load balancing.

LP LP LP

Processor

Ready  
Queue

LP LP LP

Processor

Ready  
Queue

LP LP LP

Processor

Ready  
Queue

Figure 1.4: Static load balancing (taken from [3])

LP LP LPLP LP LP LP LP LP

Processor

LP LP LP

ProcessorProcessor Processor

Central 
Scheduling 
Queue

Figure 1.5: Dynamic load balancing (taken from [3])
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1.3.2 Multiple Replications in Parallel

An alternative scenario is to run multiple replications in parallel (MRIP);

see Figure 1.6, i.e. employing many processors, each running an independent

replication of the simulated system but cooperating with central analysers that

collect data to estimate the final results [136], [143], [181]. In this scenario, the

entire model is replicated for execution on several processors simultaneously

and the results of these replications are then averaged. Therefore, collecting a

sufficient amount of simulation output data for sequential analysis can be sped

up if the output data are produced in parallel by multiple simulation engines

running statistically identical simulation processes.

User-friendly simulation packages for running a parallel and distributed

stochastic simulation based on the MRIP scenario, such as (i) Akaroa-2 ([28],

[181]) at the University of Canterbury, Christchurch, New Zealand, (ii) EcliPse

([151]) at Purdue University, West Lafayette, USA, and (iii) QNSim ([147])

at the University of Helsinki, Finland, have been developed to fully use the

enormous distributed power of modern computer networks.

The MRIP scenario is a conceptually simple scenario and can potentially
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Figure 1.6: Multiple Replications In Parallel (P = n processors)
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be applied to any model. Furthermore, the MRIP scenario is suitable for

execution on multiprocessors as well as multicomputer networks. Heidelberger

[60] shows that the MRIP scenario produces statistically better results than

the SRIP scenario, if the effect of the initialisation bias is sufficiently covered

(or negligible), and when the memory available to each processor (in the case

of parallel execution on a multiprocessor) or each participating computer (in

the case of execution on a network of computers) is not a limiting factor, i.e.

when the physical user memory available to each processor is sufficient to store

the working set of the replication.

P independent replications of a simulation from P independent processors

are launched when the simulation begins; each replication is run in a parallel

time stream to the others. When the number of observations for the estimate

of a parameter reaches a checkpoint for that parameter, a local point and

interval estimate of that parameter is produced, and then the estimates are

sent to the global control process, responsible for estimating that parameter

and for checking out sequentially the stopping criterion to stop the run. No

coordination is required among processors. The MRIP scenario is the most

effective if it is applied in homogeneous networks.

It is possible that when the MRIP scenario is applied in a heterogeneous

network, with one processor much faster than others, slower processors may not

be able to contribute to the parallel production of data, since none of them

would reach its first checkpoint when the fastest processor stops the whole

simulation by generating the required number of observations. In [112], it is

suggested that limitations on the computing resources in the MRIP scenario are

necessary for two reasons. Firstly, executing a replication on a slow computer

may significantly increase the workload, which affects the performance of other

applications on that computer. Secondly, adding an extra slow computer may

increase the time complexity of the MRIP scenario.

When using the MRIP scenario on a large number of processors, one ex-

pects to get highly accurate estimates after only a relatively short time. Po-

tentially it can offer speedup with the number of processors involved, while

the speedup under the SRIP scenario depends very much on the partitioning
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and load balancing techniques. At first glance, the MRIP scenario produces

P -fold speedup, (i.e., a reduction in completion time) over a sequential (one

processor) simulation having the same variance (P is the number of processors

involved). A MRIP simulation requires that all processors have enough mem-

ory to contain the entire simulation program, so it may not be practical in

some cases. One advantage of multiprocessor simulations is to permit, based

on time and memory constraints, much larger and more realistic simulations

than has been possible on a single processor.

However, the MRIP scenario is inappropriate in the following cases. First

is the case of a single replication that cannot be fitted within a memory of

a single processor. This may be due to an exceptionally large model [143].

Secondly, if the variance of the estimated values of interest is very small, the

output is nearly deterministic and a large number of replications is merely a

waste of computing resources.

Load Balancing for the MRIP Scenario

Load balancing techniques, based on static and dynamic methods, for the

MRIP scenario have been proposed in [112]. However, in a steady-state simu-

lation under this scenario, the load balancing techniques are not really required.

1.4 Organisation of the Thesis

In many simulation studies, the analyst is interested not only in the point

and interval estimates of mean values, but also in other characteristics such as

variances, quantiles and proportions (or probabilities) of the simulation out-

put. The quality of all these characteristics has to be investigated. Generally,

this can be done by coverage analysis. This is one of the applications in con-

fidence interval (CI) estimations of proportions. Therefore, we investigate CI

estimators for proportions in a sequential steady-state simulation for a fully au-

tomated simulation package in Chapter 2. Three interval estimators, based on

the normal distribution, the arcsin transformation, and the F distribution, are
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studied in sequential steady-state simulations of the M/M/1/∞, M/D/1/∞,

and M/H2/1/∞ queueing systems. The most reliable interval estimator for

proportions found in Chapter 2 will be used to assess the quality of simulation

output data analysis methods in Chapter 3 - Chapter 5. Of course, it can also

be used for estimating proportions or probabilities in practice.

Chapter 3 discusses a problem associated with the fact that a stochastic

simulation can be stopped accidentally when the stopping criterion is only

temporarily observed in the case of mean value estimations. To eliminate

this problem, we propose solutions that can substantially increase the re-

liability of results in a fully automated simulation package. The results of

the performance evaluation of the proposed heuristic rules obtained using the

M/M/1/∞, M/D/1/∞, and M/H2/1/∞ queueing systems are presented. In

Chapter 4, we investigate the method of RCs for simulation output data anal-

ysis for a fully automated sequential steady-state simulation, along with two

other methods: NOBM and SA, in the case of mean value estimations. In

particular, we study a problem of the sequential method of RCs and propose

a possible solution to eliminate it. The results of the performance evaluation

with and without the proposed solution, in terms of coverage analysis using

the M/M/1/∞, M/D/1/∞, and M/H2/1/∞ queueing systems, are also pre-

sented.

Quantiles are often used to give a more complete description of the dis-

tribution, since the mean value of a random variable is seldom sufficient as

summary of an entire distribution. However, traditional quantile estimation

(QE) has its own limitations: computation time for sorting the entire sequence,

and memory for storing the entire sequence. To overcome these limitations,

several approaches have been proposed, but most approaches for a fixed sample

size simulation. In Chapter 5, QE in sequential steady-state simulation based

on three methods: linear and batching QE for the method of RCs, and spectral

P 2 QE for the method of non-RCs, is investigated to discover the best method

for a fully automated simulation tool. The numerical results of the coverage

analysis of these estimators are presented. Methods of sequentially detecting

the initial transient period for QE are also investigated in Chapter 5.
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A problem of sequential steady-state simulation is that sound simulation

studies require very long runs to obtain the final results with acceptable accu-

racy. The obvious solution is to speed up these simulations by executing them

on a multiprocessor or distributed computer system. Therefore, the speedup

should be achieved when estimating mean values or quantiles on a multipro-

cessor or distributed computer system using any methods of simulation output

data analysis. To have more conviction on the sequential estimation methods of

means and quantiles to be implemented in a fully automated simulation pack-

age like Akaroa-2, which uses techniques of the MRIP scenario for speedup a

simulation, we have investigated them in terms of speedup in Chapter 6. The-

oretical limitations on the speedup of sequential stochastic simulations under

the MRIP scenario, based on [133], are discussed. We also present the em-

pirically obtained speedup for this scenario when estimating mean values and

quantiles for the different methods of simulation output data analysis.

Chapter 7 summarises the main contributions of this thesis, in particular

for a fully automated simulation tool, in both distributed and non-distributed

stochastic simulations, and also recommends further research.
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Chapter 2

COVERAGE AS THE

PERFORMANCE MEASURE

OF SEQUENTIAL

STEADY-STATE

SIMULATION

2.1 Introduction

In many simulation studies of computer systems and telecommunication net-

works, the analyst is interested not only in the point and interval estimates

of mean values of waiting times and delays, but also in other characteristics

such as variances, quantiles and proportions (or probabilities) of the simula-

tion output. Following the most basic principles of scientific experimentation,

the final result from performance evaluation studies of stochastic dynamic sys-

tems, by means of discrete-event simulation, should always be presented with

some estimate of their statistical errors. These errors are usually measured by

the half-width of the final CIs. However, the methods proposed for estimating

the CIs of different performance measures (such as mean values, variances,
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probabilities, quantiles, etc.) are based on different approximations, which

cause the experimental confidence level (or coverage) of the final CIs to differ

significantly from the assumed (theoretical) confidence level.

There are some theoretical studies of a coverage error for CIs arising in

simulation output data analysis (see [47]), a coverage function (which is defined

for all confidence levels between zero and one) to measure the robustness of

CIs (see [159]), and coverage properties of CIs based on the Bayesian posterior

probability (see [155]). However, experimental analysis of coverage is still

required to assess the quality of practical implementations of the methods used

for determining the final CIs, especially in the context of stochastic steady-

state simulation. The aim of experimental coverage analysis is to find the best

method(s) (in the sense of coverage) that could be applied in simulation output

data analysis.

Statistical analysis of the output data of stochastic steady-state simulation

is made difficult by the degree of serial correlation often present. Various meth-

ods such as batch means, SA, RCs, etc are used to overcome this difficulty.

One of the important measurements of the robustness of any simulation out-

put analysis method is the coverage, defined as the proportion of such CIs that

contain the true value of the parameter, obtained from a number of indepen-

dent replications. The estimate obtained using any good method of analysing

simulation output data should have narrow and stable CIs, and at the same

time the probability of such an interval containing the true value of the esti-

mated performance measure should be very close to the assumed confidence

level.

As an example, Figure 2.11 shows typical results of such a coverage anal-

ysis, where the method of non-overlapping batch means (NOBM) has been

used to analyse the mean waiting time of an M/M/1/∞ queueing model in a

sequential steady-state simulation. The actual coverage of the CIs drops away

from the assumed confidence level (95%) as the traffic intensity increases. This

1Each replication for coverage analysis was obtained with the required statistical error of

10% or better, and sequential coverage analysis was undertaken assuming that the required

statistical error of the final result was 5% or better, both at a confidence level of 0.95.

26



2.1 Introduction

0 0.2 0.4 0.6 0.8 1
80

85

90

95

100

Load

Co
ve

rag
e

Required  coverage    
Actual coverage       

Figure 2.1: Coverage analysis of the method of non-overlapping batch means

(simulation of the M/M/1/∞ queueing system)

may be related to the autocorrelations of waiting times2 increasing rapidly as

the full traffic load of ρ = 1.0 is approached as shown by Daley in [23]. As

discussed in Appendix B.1, it may also be affected by the difficulty in choosing

the optimal batch size for reducing or eliminating autocorrelations, especially

in the case where very strong autocorrelations exist between collected ob-

servations. Therefore, in such a case one needs to collect a huge number of

observations in order to have credible final simulation results with the required

statistical error. As discussed in [19], a larger batch size is needed to obtain

approximately uncorrelated batch means if observations are more correlated.

In Figure 2.1, the major reason for poor coverage in heavier traffic intensities

may be that, even with a sophisticated automatic algorithm for batch size

selection, autocorrelations between batch means in heavily loaded traffic may

not be eliminated.

There are a number of factors to consider when analysing coverage experi-

mentally. First, analysis is limited to analytically tractable systems, since the

theoretical value of the parameter of interest has to be known [134]. Because

2In general, if we increase the service times or decrease the interarrival times in concerning

queueing systems, then the system becomes more congested and hence the waiting times of

successive customers become more correlated [9].
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of that, it has been claimed that there is no justification for experimental cov-

erage analysis, since there is no theoretical basis for extrapolating the results

obtained for simple, analytically tractable systems to more complex systems,

which are the subjects of practical simulation studies [37]. On the other hand,

no theory of coverage for finite sample sizes exists, and, in this situation, ex-

perimental coverage analysis of analytically tractable systems remains the only

method available for testing the validity of methods proposed for simulation

output analysis. Certainly nobody should be ready to accept a method of sim-

ulation output data analysis showing very poor quality in experimental studies

of coverage.

Coverage analysis also requires the execution of multiple, independent repli-

cations of simulations. Very large numbers of replications are often needed to

determine the coverage with satisfactory precision. For example, typical exper-

iments on the waiting times in an M/M/1/∞ queueing system, with a traffic

intensity of 0.9 as in Figure 2.1, require about 1,900 independent replications,

where each replication measures the waiting times of about 100,000 customers

to ensure having the required statistical error of the final result. This indicates

that the coverage study should be analysed on the basis of a large number of

replications. However, many coverage studies appear to have used for too few

replications of between 10 to 200: see, for example, [2], [62], [65], [77], [79], [91],

[139], [158], [161], [164], [168], and [178]. We have found one study which used

500 replications [93], and four studies, in [56], [68], [78], and [148], which used

1000 replications. In these cases, the estimates of coverage can be questioned,

since they may be obtained from CIs which do not cover the true value of the

parameter of interest.

As argued in Chapter 1, in general, sequential analysis of simulation output

data is accepted as the most efficient way of securing a certain level of accuracy

in the final results. For this reason, as also argued in [134], coverage analysis

should be performed sequentially to ensure that results are statistically ac-

ceptable. As in the case of ordinary sequential simulation, sequential coverage

analysis is continued until the final result is obtained with sufficient precision.
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Sequential analysis, however, raises additional problems. A major problem3 is

that some of the simulation experiments may stop after an abnormally short

run, when the stopping criterion for the sequential simulation is temporarily

satisfied.

The quality of any method used in sequential simulations can be measured

by coverage analysis. Abnormally short runs produced in sequential simula-

tions can obviously affect the quality measured by coverage analysis. There-

fore, interval estimators of the proportions used for determining the precision

of coverage play a crucial role in its sequential analysis, since abnormally short

runs can be excluded from the final result by the sequential coverage analysis.

The conventional interval estimator based on the normal approximation has

been widely used in coverage analysis (see for example [77], [93], [116], [120],

[134]). Alternative interval estimators of proportions are discussed in [10] and

[59]. Recently, one of these estimators (based on the arcsin transformation)

has been used for the analysis of proportions in sequential steady-state simu-

lations [139], [145], [148]. However, as yet a comparative study of these three

estimators has not been undertaken.

In this chapter we document our search for the best interval estimator of

proportions, which could be applied to coverage analysis in a fully automated

sequential steady-state simulation. Three interval estimators, based on the

normal distribution, the arcsin transformation, and the F distribution, as de-

scribed in Section 2.2, are compared. The results of the performance evaluation

of these estimators are presented in Section 2.3. Comparisons of the three in-

terval estimators with exact values, calculated using the binomial distribution,

are also presented in Section 2.4. Taking account of these results, some rules

for the sequential analysis of coverage have been summarised in Section 2.5.

Experimental results of coverage analysis in the sequential steady-state sim-

ulations of the M/M/1/∞, M/D/1/∞, and M/H2/1/∞ queueing systems,

applying these proposed rules, are also presented in Section 2.5. Conclusions

can be found in Section 2.6.

3This problem will be investigated in detail in Chapter 3.
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2.2 Interval Estimators for Coverage Analysis

To estimate coverage, we need point and interval estimates of the proportion

of sample CIs which contain the true value of the parameter of interest. If each

of the experiments executed for coverage analysis is statistically independent

from others, then an exact CI for the estimated proportion is obtained using

the binomial distribution [101].

A binomial experiment consists of repeated trials, each with two possible

outcomes, which may be labelled success or failure. The point estimator of the

proportion p in a binomial experiment is simply given by the statistic

p̂ =
count of successes in sample

size of sample
=

X

n
. (2.1)

If a binomial experiment can result in a success with probability p and a failure

with probability (1 − p), then the probability distribution of the binomial

random variable X, the number of successes in n independent experiments, is

b(x; n, p) =

(
n

x

)
px(1 − p)n−x, x = 0, 1, . . . , n. (2.2)

The accuracy with which p̂ estimates an unknown proportion p can be

assessed by the width of its CI at a given confidence level, i.e, by the probability

Pr(p̂ − ∆1 ≤ p ≤ p̂ + ∆2) = 1 − α, (2.3)

where p̂ is the estimate of the proportion p, ∆1 and ∆2 are the offset for the

lower and upper limit of the CIs of p, and (1 − α) is the confidence level,

0 < α < 1. Ideally, this would mean that if the simulation experiment is

repeated sufficiently many times, the resulting CI would contain the parameter

p in 100(1 − α)% of cases [134].

As discussed in Section 2.1, the robustness of any methods of data collec-

tion and analysis is usually measured in the context of the coverage of CIs.

Sauer [156] proposed that the method used for determining the CI of the point

estimate at a given confidence level (1−α0) is considered as valid if the upper

limit of the CIs of p equals at least (1 − α0). The coverage is defined as the
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2.2 Interval Estimators for Coverage Analysis

frequency with which CIs (p̂ − ∆1, p̂ + ∆2) contain the true parameter (i.e.,

the theoretical value) at a given confidence level (1−α); see Figure 2.2. In the

example of Figure 2.2, the coverage is 80% since 8 out of 10 CIs contain the

theoretical value.
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XXXXX

XXXXX
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Figure 2.2: Valid and invalid CIs in coverage analysis

To determine ∆1 and ∆2 in the CIs (p̂ − ∆1, p̂ + ∆2), we need the exact

distribution of p̂, or at least to know V ar(p̂). Calculating exact confidence

limit values of p is possible only using Equation (2.2). However, expanding

and inverting the polynomials of the order n becomes impractical, even using

a computer algebra system, as n increases. The time complexity of the poly-

nomials of the order n is O(pn) [67]. Therefore, some approximation methods

for a binomial distribution have been suggested. Three interval estimators of

the proportion p, based on the normal distribution, the arcsin transformation,

and the F distribution are described in the following subsections. Detailed

procedures for these are discussed in [99].

2.2.1 Interval Estimator Based on the Normal Distri-

bution

The interval estimator based on the normal distribution for finding a CI for

the binomial parameter p, 0≤ p ≤1, approximates the binomial distribution of
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2.2 Interval Estimators for Coverage Analysis

P̂ by the normal distribution, with mean p̂ and variance p̂(1 − p̂)/n [59].

For large n, the random variable

Z =
P̂ − p̂√

p̂(1 − p̂)/n
(2.4)

is approximately standard normal; see, for example, [173]. Thus, an approxi-

mate CI for the proportion p is

Pr(p̂ − z1−α/2

√
p̂(1 − p̂)

n
< p < p̂ + z1−α/2

√
p̂(1 − p̂)

n
) u 1 − α. (2.5)

Note that this is a symmetric CI.

The accuracy of the normal approximation improves as the sample size n

increases. However, it is most accurate when p is close to 1/2, and becomes

quite inaccurate when p is near 0 or 1, mostly due to the skewed nature of the

binomial distribution. Unfortunately, this is exactly the situation in simulation

coverage analysis, where typically p is between 0.9 and 0.99. Thus, we need

an interval estimator for coverage analysis which can produce an asymmetric

CI in this region.

2.2.2 Interval Estimator Based on the Arcsin Transfor-

mation

An asymmetric CI for proportions based on the arcsin transformation was

originally proposed by R. A. Fisher (see [59] for detailed discussion). On the

basis of the relationship between the mean p and variance p(1 − p)/n for the

proportion p̂ = X/n, one can determine a function Ŷ = g(p̂) in such a manner

that the variance of the transformed variable Ŷ is independent of p. This leads

to the transformation function Ŷ = 2 arcsin
√

p̂ with variance σ2(Ŷ ) = 1/n

[59].

An approximate 100(1 - α)% CI for a proportion using this transformation

is constructed by (p̂l, p̂u), where

p̂l = sin(l/2)2
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2.2 Interval Estimators for Coverage Analysis

and

p̂u = sin(u/2)2. (2.6)

Here

l = arcsin
√

p̂ − 1/(2n) − z1−α/2/
√

n

and

u = arcsin
√

p̂ + 1/(2n) + z1−α/2/
√

n. (2.7)

In these formulae, p̂ is the sample proportion, z1−α/2 is the (1 − α/2) quantile

of the standard normal distribution, and n is the sample size [59], [145], [148].

2.2.3 Interval Estimator Based on the F Distribution

CIs for proportions can also be formulated from the relationship of the F

and binomial distributions. The ratio of two successive terms in a binomial

distribution (x; n, p) is

n − x

x + 1

p

1 − p
, x = 0, 1, . . . , n − 1, (2.8)

where x is the observed number of successes in the sample; see Equation (2.1).

Using the transformations shown, for example, in [1] and [59], the quantiles of

the binomial distribution can be obtained from those of the F distribution, as

Pr{F (df1, df2) <
n − np̂

np̂ + 1

p

1 − p
} =

Pr{ (np̂ + 1)F (df1, df2)

(n − np̂) + (np̂ + 1)F (df1, df2)
< p}, (2.9)

where F (df1, df2) is a random variable with the F distribution of df1 = 2 ∗
(np̂ + 1) and df2 = 2 ∗ (n − np̂) degrees of freedom.

Thus, a 100(1 - α)% CI for a proportion is given by (p̂l, p̂u), where

p̂u =
(np̂ + 1)f1−α/2(df1, df2)

(n − np̂) + (np̂ + 1)f1−α/2(df1, df2)
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2.3 Performance Evaluation of Three Interval Estimators

and

p̂l =
np̂

np̂ + (n − np̂ + 1)f1−α/2(df3, df4)
. (2.10)

Here, n is the sample size, and f1−α/2(df1, df2) is the (1− α/2) quantile of the

F distribution with (df1, df2) degrees of freedom, where df1 = 2 ∗ (np̂ + 1) and

df2 = 2 ∗ (n − np̂), while f1−α/2(df3, df4) is the (1 − α/2) quantile of the F

distribution with (df3, df4) degrees of freedom, where df3 = 2 ∗ (n − np̂ + 1)

and df4 = 2 ∗ np̂ [59].

2.3 Performance Evaluation of Three Interval

Estimators

To find the most reliable interval estimator for coverage analysis, we investi-

gated the properties of three interval estimators of proportions, based on the

normal distribution, the arcsin transformation, and the F distribution. The

quality of these three interval estimators was evaluated by applying them in

sequential coverage analysis of the sequential estimation of steady-state means.

To show the performance of the three interval estimators, the SA/HW

method (spectral analysis in its version proposed by Heidelberger and Welch

[63], see Appendix B.2 for a detailed discussion) was considered as it has proved

to be quite a satisfactory method for the estimation of CIs in sequential paral-

lel simulation of steady-state means [134]. The results reported in this section

were obtained during the performance evaluation of the SA/HW method for

the coverage analysis of the M/M/1/∞, M/D/1/∞, and M/H2/1/∞4 queue-

ing systems when estimating the mean response times and stopping the sim-

4H2 means the hyperexponential distribution of degree 2 that can be represented as the

two exponential distribution in parallel. The parameters that need to be specified for the

M/H2/1/∞ queueing system are the mean customer arrival rate, the mean service time per

customer, and the squared coefficient of variation for service time (C2). Then, the probability

of selecting each exponential being α1 and α2, and the mean values of the exponential being

µ1 and µ2 are calculated with C2. A convenient method of doing this is suggested in [4].

As assuming C2 = 5, we have obtained α1 = 0.09175, α2 = 1 - α1, µ1 = 0.18350, and µ2 =

1.81650 by applying the algorithm in [4].
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2.3 Performance Evaluation of Three Interval Estimators

ulation experiments when the final steady-state results reached the required

relative statistical error of 5% or less, at the 0.95 confidence level.

All coverage results were filtered for unusually short simulation runs, (since

they produce unrepresentative results), by discarding runs shorter than a

threshold (one standard deviation below the mean of the run-lengths) [134].

These steps should ensure that the results come from a well-managed simu-

lation experiment. Furthermore, at least 200 CIs not covering the theoretical

value were collected. This number of observed ‘invalid’ CIs was recommended

in [134], to ensure that the coverage estimates are obtained from representative

samples.

The simulations were executed using the Akaroa-2 simulation package [28],

a controller of sequential stochastic discrete-event simulation. Properties of the

SA/HW method were investigated in sequential stochastic simulations. The re-

sults for each interval estimator in simulations of the M/M/1/∞, M/D/1/∞,

and M/H2/1/∞ queueing systems in terms of CIs of the coverage are pre-

sented in Figure 2.3 and Table 2.1. It can be seen that the CIs at different

traffic intensities using the normal distribution, the arcsin transformation, and

the F distribution5 are quite similar.

However, one can see that the CIs obtained using the interval estimator

based on the normal distribution are always symmetric. This means that such a

symmetric CI can be invalid, since it can have its lower limit less than zero or its

upper limit greater than one. This cannot happen with the other estimators,

producing the asymmetric CIs, including their applications in estimation of

very lower or very higher proportions.

5The numerical values for the F distribution were obtained from a carefully validated

implementation of the method proposed in [1] and [138].
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(a) M/M/1/∞ queueing system
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(b) M/D/1/∞ queueing system
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(c) M/H2/1/∞ queueing system

Figure 2.3: CIs of coverage of SA/HW using the normal distribution, the arcsin

transformation, and the F distribution
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2.3 Performance Evaluation of Three Interval Estimators

Table 2.1: Coverage and its CIs of SA/HW using the normal

distribution, the Arcsin transformation, and the F distribution

(when estimating the mean response time at a confidence level

= 0.95 with a statistical error ≤ 5%)

(a) M/M/1/∞ queueing system

ρ Normal Arcsin F

Coverage CIs Coverage CIs Coverage CIs

0.1 92.7 91.7, 93.7 92.7 91.6, 93.6 92.7 91.6, 93.6

0.2 93.2 92.3, 94.1 93.2 92.2, 94.1 93.2 92.2, 94.1

0.3 93.3 92.4, 94.2 93.3 92.3, 94.2 93.3 92.3, 94.2

0.4 90.7 89.5, 91.9 90.7 89.4, 91.9 90.7 89.4, 91.9

0.5 91.5 90.4, 92.6 91.5 90.3, 92.6 91.5 90.3, 92.6

0.6 90.5 89.2, 91.8 90.5 89.2, 91.7 90.5 89.2, 91.7

0.7 90.1 88.8, 91.4 90.1 88.8, 91.4 90.1 88.8, 91.4

0.8 89.5 88.1, 90.9 89.5 88.1, 90.9 89.5 88.1, 90.9

0.9 89.5 88.1, 90.9 89.5 88.1, 90.9 89.5 88.0, 90.8

(b) M/D/1/∞ queueing system

ρ Normal Arcsin F

Coverage CIs Coverage CIs Coverage CIs

0.1 94.0 93.2, 94.8 94.0 93.2, 94.8 94.0 93.2, 94.8

0.2 94.6 93.9, 95.3 94.6 93.8, 95.3 94.6 93.8, 95.3

0.3 94.2 93.4, 95.0 94.2 93.4, 95.0 94.2 93.4, 95.0

0.4 92.9 91.9, 93.9 92.9 91.9, 93.8 92.9 91.9, 93.8

0.5 93.0 92.1, 93.9 93.0 92.0, 93.9 93.0 91.9, 93.9

0.6 92.5 91.5, 93.5 92.5 91.5, 93.5 92.5 91.4, 93.5

0.7 90.5 89.3, 91.7 90.5 89.2, 91.8 90.5 89.2, 91.8

0.8 90.0 88.7, 91.3 90.0 88.6, 91.3 90.0 88.6, 91.2

0.9 88.1 86.5, 89.7 88.1 86.5, 89.6 88.1 86.4, 89.6

(c) M/H2/1/∞ queueing system

ρ Normal Arcsin F

Coverage CIs Coverage CIs Coverage CIs

0.1 92.0 90.9, 93.1 92.0 90.9, 93.1 92.0 90.9, 93.1

0.2 91.0 89.9, 92.2 91.0 89.7, 92.2 91.0 89.7, 92.1

0.3 90.8 89.6, 92.0 90.8 89.6, 92.0 90.8 89.5, 92.0

0.4 90.6 89.4, 91.8 90.6 89.2, 91.8 90.6 89.2, 91.8

0.5 90.3 89.0, 91.6 90.3 89.0, 91.6 90.3 89.0, 91.6

0.6 90.0 88.7, 91.3 90.0 88.6, 91.3 90.0 88.6, 91.3

0.7 90.2 88.9, 91.5 90.2 88.8, 91.4 90.2 88.8, 91.4

0.8 88.7 87.2, 90.2 88.7 87.2, 90.2 88.7 87.2, 90.2

0.9 87.4 85.8, 89.0 87.4 85.7, 89.0 87.4 85.7, 89.0
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2.4 Comparisons of Three Interval Estimators

with Exact Values

Taking a closer look at the three interval estimators, the CIs of proportions

using the normal distribution, the arcsin transformation, and the F distribu-

tion at a given confidence level (1 - α = 0.99) and a sample size6 n = 20 are

depicted in Figure 2.4. The upper limits of the CIs of proportions using each

interval estimator and the ‘exact’ upper limits of the CIs of proportions which

are calculated by the binomial probability function are in Table 2.2. The rela-

6We have chosen a small sample size of twenty for visibility in the figure and to obtain

the exact values of proportions from the binomial distribution (as discussed in Section 2.2,

it is impossible to calculate them at a large sample size). The similar results obtained from

larger sample sizes will be presented later.
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Figure 2.4: The CIs of proportions using the normal distribution, the arcsin

transformation, and the F distribution (α = 0.01 & n = 20)
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Table 2.2: Upper limits of CIs of proportions (α = 0.01 & n = 20)

Proportions Exact Values Normal Dist. Arcsin Transf. F Distribution

0.0 0.206 0.0 0.187 0.233

0.05 0.289 0.176 0.287 0.317

0.1 0.358 0.273 0.366 0.387

0.15 0.421 0.356 0.434 0.449

0.2 0.478 0.430 0.497 0.507

0.25 0.532 0.499 0.555 0.560

0.3 0.583 0.564 0.608 0.610

0.35 0.631 0.625 0.659 0.657

0.4 0.677 0.682 0.706 0.701

0.45 0.720 0.737 0.751 0.743

0.5 0.761 0.788 0.793 0.782

0.55 0.800 0.837 0.832 0.819

0.6 0.837 0.882 0.869 0.854

0.65 0.871 0.925 0.902 0.886

0.7 0.902 0.964 0.932 0.915

0.75 0.931 0.999 0.958 0.942

0.8 0.956 1.03 0.980 0.964

0.85 0.977 1.06 0.995 0.982

0.9 0.992 1.07 1.0 0.995

0.95 0.999 1.08 0.983 1.0

1.0 1.0 1.0 0.940 1.0

tive inaccuracy of the upper confidence limits of the three interval estimators

when compared to the ‘exact’ values of the upper confidence limit are in Table

2.3. For higher proportions, the interval estimator based on the F distribution

produces the closest values to the exact values, while the interval estimator

based on the normal distribution produces values exceeding the upper limit of

1.0.
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Table 2.3: Relative inaccuracy of upper confidence limits of proportions (α =

0.01 & n = 20)

Proportions Normal Distribution Arcsin Transformation F Distribution

0.0 - 100 % - 9.2 % + 13.1 %

0.05 - 39.1 % - 0.7 % + 9.7 %

0.1 - 23.7 % + 2.2 % + 8.1 %

0.15 - 15.4 % + 3.1 % + 6.7 %

0.2 - 10.0 % + 4.0 % + 6.1 %

0.25 - 6.2 % + 4.3 % + 5.3 %

0.3 - 3.3 % + 4.3 % + 4.6 %

0.35 - 1.0 % + 4.4 % + 4.1 %

0.4 + 0.7 % + 4.3 % + 3.5 %

0.45 + 2.4 % + 4.3 % + 3.2 %

0.5 + 3.5 % + 4.2 % + 2.8 %

0.55 + 4.6 % + 4.0 % + 2.4 %

0.6 + 5.4 % + 3.8 % + 2.0 %

0.65 + 6.2 % + 3.6 % + 1.7 %

0.7 + 6.9 % + 3.3 % + 1.4 %

0.75 + 7.3 % + 2.9 % + 1.2 %

0.8 + 7.7 % + 2.5 % + 0.8 %

0.85 + 8.5 % + 1.8 % + 0.5 %

0.9 + 7.9 % + 0.8 % + 0.3 %

0.95 + 8.1 % - 1.6 % + 0.1 %

1 0 % - 6.0 % 0 %

To see whether the interval estimator based on the normal distribution

produces invalid CIs when the number of sample size is increased, we tested it

for larger sample sizes n (ranging between 10,000 and 1,000,000) and the α of

0.05 - 0.001. The results are presented in Table 2.4. The invalid CI regions (CI

< 0 or CI > 1) have shrunk as the sample sizes n increased, but even taking

the very large sample size of one million, the invalid CI regions of proportions
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Table 2.4: Invalid CIs of proportions using the normal distribution

α = 0.05

Sample Size = 10000 Sample Size = 100000 Sample Size = 1000000

Proportions Upper CIs Proportions Upper CIs Proportions Upper CIs

0.99997 1.000004 0.99997 1.000004 0.999997 1.0000004

0.99998 1.0000077 0.99998 1.0000077 0.999998 1.0000008

0.99999 1.0000096 0.99999 1.0000096 0.999999 1.000001

α = 0.01

Sample Size = 10000 Sample Size = 100000 Sample Size = 1000000

Proportions Upper CIs Proportions Upper CIs Proportions Upper CIs

0.9994 1.0000309 0.99994 1.0000031 0.999994 1.0000003

0.9995 1.0000759 0.99995 1.0000076 0.999995 1.0000008

0.9996 1.0001151 0.99996 1.0000115 0.999996 1.0000012

0.9997 1.0001461 0.99997 1.0000146 0.999997 1.0000015

0.9998 1.0001643 0.99998 1.0000164 0.999998 1.0000016

0.9999 1.0001576 0.99999 1.0000158 0.999999 1.0000016

α = 0.001

Sample Size = 10000 Sample Size = 100000 Sample Size = 1000000

Proportions Upper CIs Proportions Upper CIs Proportions Upper CIs

0.999 1.0000401 0.9999 1.0000041 0.99999 1.0000004

0.9991 1.0000868 0.99991 1.0000087 0.999991 1.0000009

0.9992 1.0001304 0.99992 1.0000131 0.999992 1.0000013

0.9993 1.0001703 0.99993 1.0000171 0.999993 1.0000017

0.9994 1.0002058 0.99994 1.0000206 0.999994 1.0000021

0.9995 1.0002357 0.99995 1.0000236 0.999995 1.0000024

0.9996 1.000258 0.99996 1.0000258 0.999996 1.0000026

0.9997 1.0002699 0.99997 1.000027 0.999997 1.0000027

0.9998 1.0002653 0.99998 1.0000265 0.999998 1.0000027

0.9999 1.0002291 0.99999 1.0000229 0.999999 1.0000023
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still exist.

Figure 2.4 and Table 2.4 confirm that interval estimators of proportions

based on the arcsin transformation and the F distribution never exceed the

practical lower and upper limits of the CIs. However, it can be seen that the

lower and upper limits of the interval estimator of proportions based on the

normal distribution can exceed the lower limit of 0.0 and the upper limit of

1.0, making it inappropriate for simulation coverage analysis.

2.5 Rules for Experimental Coverage Analysis

of Sequential Simulation

As recently argued in [134], only sequential coverage analysis can lead to cred-

ible final conclusions regarding the quality of any method of simulation output

analysis. In the past, as discussed in Section 2.1, coverage analysis has been

performed with a fixed number of replications, for example, between 10 - 200.

Experimental results, such as those in Figure 2.5, clearly reveal the high initial

instability of coverage for the three different methods of mean value analysis:

NOBM, SA/HW, and RCs, respectively. To avoid taking the final result from

this region, coverage analysis has to be conducted over a sufficiently large

sample of data (in this case, after sequential simulation is repeated sufficiently

many times).

The final results in Figure 2.5 are far from the assumed confidence level

of 0.95 since they include very short simulation runs, which produce heavily

biased results. To improve the final coverage to the assumed level of confidence,

some rules for experimental coverage analysis including the sequential approach

have been proposed in [134]. In this section, we improve those stopping rules

by adding one more rule. This is an enhanced version of sequential coverage

analysis, based on the F distribution, which leads to more accurate interval

estimators of proportions as shown in Section 2.4; see also [102].

Any sequential simulation experiment may stop after too few simulation

observations have been collected, if, by chance, the stopping criteria has been
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(c) Sequential analysis using RCs

Figure 2.5: Convergence of coverage (M/M/1/∞ at ρ = 0.9, confidence level

of 0.95)
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temporarily satisfied. This happens in real simulation experiments from time

to time and can make estimates of coverage unreliable. Therefore, we defi-

nitely have to make sure a simulation runs long enough and is not accidentally

stopped to avoid taking results from abnormally short simulation runs. This

will be investigated in Chapter 3.

Another practical observation is that when studying coverage of a given

method of simulation output data analysis with a range of different conditions

(for example, at different traffic levels, in the case of queueing processes) spe-

cial effort has to be made to ensure that the resulting absolute widths of CIs

of coverage are comparable. With high traffic intensities it is necessary to de-

crease the maximum permitted relative statistical error in sequential coverage

analysis, otherwise the final results of simulation are inconclusive since the

widths of CIs of coverage are not the same; see Figure 2.1 and [152].

As reported in [134], significant improvements in the final value of the cover-

age for the three methods of simulation output data analysis (NOBM, SA/HW,

and RCs) in the M/M/1/∞ queueing system have been clearly observed after

discarding all unreliable simulation results coming from the ‘too short’ simu-

lation runs; see Figure 2.6. (Simulation runs shorter than a threshold of mean

run-length minus one standard deviation of run-lengths were classified as ‘too

short’.) Comparing Figures 2.5 and 2.6, it is clear that we can draw better con-

clusions regarding the quality of a given method of simulation output analysis

by discarding non-representative simulation runs. In all these cases, however,

the final coverage is still far away from the required confidence level of 0.95.

2.5.1 Rules for Experimental Coverage Analysis

On the basis of exhaustive experimental analysis, the rules for the proper exper-

imental analysis of the coverage of sequential steady-state interval estimators,

originally formulated in [134], are improved with the addition of an interval

estimator based on the F distribution [106], [108]. These are as follows:

• Rule 1: Coverage should be analysed sequentially, i.e. analysis of cov-

erage should be stopped when the absolute precision of the estimated
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0 500 1000 1500 2000 2500 3000
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Replications

Co
ver

age

(c) Sequential analysis using RCs

Figure 2.6: Coverage convergence after discarding ‘too short’ simulation runs.

Filtering started when at least 200 runs having invalid CIs were collected

(M/M/1/∞, load = 0.9, confidence level of 0.95)
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coverage satisfies a specified level which is sufficiently small.

• Rule 2: An estimate of coverage has to be calculated from a represen-

tative sample of data, so the coverage analysis can start only after a

minimum number of ‘bad’ CIs7 have been recorded.

• Rule 3: Results from simulation runs that are clearly too short should

not be taken into account.

• An interval estimator which is based on the F distribution of coverage

should be used to ensure that the sequential analysis of coverage produces

realistic estimates.

Experimental results of these rules applied to the three sequential methods:

NOBM, SA/HW, and RCs, for studying the quality of the final steady-state

interval estimators of mean values are presented in Section 2.5.2.

2.5.2 Experimental Results

All experimental results of our sequential coverage analysis of the three sequen-

tial methods8: NOBM, SA/HW, and RCs, applied to estimate the steady-state

means, were obtained assuming that the required statistical error of the final

result was 1% or better, at a confidence level of 0.95. Each replication was

stopped at the required statistical error of 10% or better.

As justified in [134], one can clearly see that the sequential coverage anal-

ysis, with filtering of ‘too short’ simulation runs and with a requirement of a

minimum number of bad CIs, produces more reliable results. Therefore, in a

practical implementation of Rules 1 - 3, we assume that for data to be repre-

sentative for coverage analysis, a minimum of 200 bad CIs have to be recorded

before sequential analysis can commence, and the results from all simulation

7A bad CI means a CI that does not cover the theoretical value of the estimated param-

eter.
8The theoretical bases of these three methods of simulation output data analysis, and

sequential implementations of the first two methods, follow exactly the procedures specified

in [128]. The last method follows the procedures described in Chapter 4.
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runs shorter than a threshold (one standard deviation below the mean of the

simulation run-lengths) should be discarded. Removing the statistical noise

introduced by ‘too short’ and unrepresentative simulation runs improves the

conclusions we can make about the quality of a given method of simulation

output data analysis.

Experimental results for each method when estimating the mean response

time, obtained by applying some principles of the sequential coverage analysis

discussed in the previous section, are depicted in Figure 2.7 (M/M/1/∞),

Figure 2.8 (M/D/1/∞) and Figure 2.9 (M/H2/1/∞), respectively. The results

of the M/M/1/∞ queueing system alone show that all three methods produce

a similar (acceptable) coverage, particularly in lightly loaded traffic. However,

as the traffic intensities increase, coverage for all methods drops quite far away

from the required confidence level of 0.95.

The numerical results of the three methods for the three queueing systems,

except the RCs method in the M/D/1/∞ queueing system, show a similar

trend to the results reported in [116] and [134], even though the estimated

parameters and the assumed statistical errors are different9. The difference is

that the final half-widths of the CIs at all traffic levels are exactly the same,

thus better conclusions can be drawn from these results.

In the case of the RCs method in the M/D/1/∞ queueing system (see Fig-

ure 2.8 (c)), the final coverage results in heavily loaded traffic are much better

than in lightly loaded traffic, unlike other methods in other queueing systems.

In lightly loaded traffic the response times are almost deterministic, since the

waiting time in the queue is almost zero and the service time is deterministic.

This means that the lengths of collected RCs are often ‘too short’ (each RC

frequently collected only one or two observations). The sequential simulation

can stop after only two RCs are observed, since the variance of the response

times is very small. In such a case, one can hardly produce valid CIs, since

each RC has so few observations. Therefore, the final poor coverage in lightly

9The estimated parameters in [116] and [134] are the mean waiting time in the queue.

The assumed statistical errors for each replication and coverage analysis are both 5% or

better.
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(a) Sequential analysis using NOBM
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(b) Sequential analysis using SA/HW
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(c) Sequential analysis using RCs

Figure 2.7: Sequential coverage analysis using F distribution (M/M/1/∞)
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(a) Sequential analysis using NOBM
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(b) Sequential analysis using SA/HW
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(c) Sequential analysis using RCs

Figure 2.8: Sequential coverage analysis using F distribution (M/D/1/∞)
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(a) Sequential analysis using NOBM
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(b) Sequential analysis using SA/HW
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(c) Sequential analysis using RCs

Figure 2.9: Sequential coverage analysis using F distribution (M/H2/1/∞)
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loaded traffic is inevitable, since it is caused by the theoretical properties of

the RCs method and the M/D/1/∞ queueing system.

There is also little sense in discarding ‘too short’ simulation runs. Not

many observations are required even theoretically when estimating the mean

response time10, and simulation runs after filtering ‘too short’ simulation runs

with the threshold (of mean run-length minus one standard deviation of run-

lengths) are still not very long. Therefore, the coverage analysed using the

RCs method in lightly loaded traffic of the M/D/1/∞ queueing system is

much worse than the other methods. A possible solution for this phenomenon

will be discussed in Chapter 4.

Ideally, the CIs of coverage should contain the confidence level assumed for

the final results [156]. However, the final coverage of each method is still far

from the required level, especially in highly correlated systems. The reason

for the poor coverage, especially in the sequential RCs method, will be fully

investigated in Chapter 4.

2.6 Conclusions

In a simulation, experimental studies of coverage analysis are still required

to assess the quality of the practical implementations of the methods of sim-

ulation output data analysis used to determine CIs in sequential stochastic

simulations. In this chapter, we have studied three interval estimators of pro-

portions, in the context of their applications in sequential coverage analysis.

These estimators (based on the normal distribution approximation, the arcsin

transformation and the F distribution) were applied to the sequential cover-

age analysis of the SA/HW method of analysis of steady-state mean response

times, in simulations of the M/M/1/∞, M/D/1/∞, and M/H2/1/∞ queue-

ing systems. Although the numerical results of coverage analysis show that

they are basically equivalent, there are some concerns about their validity. Es-

timators based on the F distribution have been found to be more accurate and

10See Appendix F for a discussion of the theoretically required run-length for stationary

queueing systems.
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appropriate for use in coverage studies, especially if a higher value of confidence

level is assumed.

CI estimators for proportions using the (symmetric) normal approximation

have been commonly used for coverage analysis of simulation output data even

though alternative estimators of (asymmetric) CIs for proportions have been

proposed in the past. This is probably because the normal approximation is

easier to calculate than other interval estimators. However, current computing

technology can now deal with alternative estimators. Even CIs for coverage

analysis based on the F distribution can be calculated easily by a standard

computer.

On the basis of our experimental studies, we enhanced some basic rules

for the proper experimental coverage analysis of sequential steady-state sim-

ulations. The numerical results of the sequential coverage analysis for the

three methods: NOBM, SA/HW, and RCs, in simulations of the M/M/1/∞,

M/D/1/∞, and M/H2/1/∞ queueing systems, by applying these proposed

rules were also presented. In general, the final coverage of each method is still

far from the required level, especially in highly correlated systems.
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Chapter 3

A PROBLEM OF TOO SHORT

RUNS IN SEQUENTIAL

STEADY-STATE

SIMULATION

3.1 Introduction

Sequential simulation is recognised as the only practical approach allowing

control of the statistical error of the final results of a stochastic simulation. The

accuracy of estimates is assessed along a sequence of consecutive checkpoints.

Among the possible stopping criteria, probably the most commonly used is the

relative statistical error, defined as the ratio of the half-width of the CIs and

the point estimate of an analysed performance measure (see Equation (1.2) in

Section 1.2). The advantage of using a relative measure of statistical error is

that the simulator does not need to know the magnitude of the point estimates

of the performance measures. Without any prior knowledge of the run-length

of the simulation, the sequential approach is able to guarantee that the final

results of the simulation always have the desired level of confidence.

In any correctly implemented simulation, the width of a CI of the simulation



3.1 Introduction

result will tend to be reduced as the number of observations increases, i.e.

with the duration of a simulation. For example, to obtain the estimate of the

mean, with a relative statistical error of 5% or better, at 0.95 confidence level

and assuming the central limit theorem, the stopping rule, with the relative

statistical error of the CI shown in Equation (1.2), halts the simulation after

n observations are collected, i.e.

1.96

0.05
≤ X̄(n)

σ̂[X̄(n)]
, (3.1)

where σ̂2[X̄(n)] is the unbiased estimator of the variance of X̄(n). Finding this

unbiased estimator is a major analytical problem in stochastic simulation.

Typically, in long simulation runs, the convergence of the relative statisti-

cal error to its threshold value is very slow, but persistent, as shown in Figure

3.1. However, we can also see the sudden increase or decrease of the relative

statistical error in Figure 3.1. This is caused by the fact that the variance esti-

mated from observations collected during the last two checkpoints sometimes

unexpectedly increases or decreases. Consequently, a problem of sequential

simulation with such a stopping rule is that the inherently random nature of

simulation output data generated during any stochastic simulation can cause

an accidental, temporary satisfaction of the stopping rule because of a very
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Figure 3.1: Convergence on a relative statistical error of 5% for the sequential

method of NOBM (when estimating the mean response time in the M/M/1/∞
queueing system at load = 0.9, checkpoints spaced linearly: 1,250 observations

between two checkpoints)
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small variance estimate [105], [107]. Such prematurely finished simulations

can produce very inaccurate estimates. Experimental evidence of this phe-

nomenon, and the resulting significant degradation of the coverage of the final

results of the simulation, are documented in Section 3.2.

We propose and compare some simple heuristic rules that can offer a pos-

sible solution to this problem. Their effectiveness is quantitatively assessed on

the basis of the final results of coverage analysis of three sequential estima-

tors of mean values in the context of a steady-state simulation. A few ‘rules

of thumb’ to improve the coverage of the final CIs in practical applications

of fully automated sequential steady-state simulations are discussed in Sec-

tion 3.3. The performance evaluations of the rules, in terms of coverage, are

presented in Section 3.4. The theoretical and empirical run-lengths required

for some queueing models are compared in Section 3.5. In Section 3.6, the

relationship between the coverage and the run-length is discussed. Finally,

conclusions are presented in Section 3.7.

3.2 A Problem of Early Stopping: Experimen-

tal Evidence

A problem faced in practical applications of sequential steady-state simulation

is that an assumed stopping criterion, for example, one based on the relative

statistical error, can be accidently satisfied too early, giving very inaccurate es-

timates of the analysed parameters. This happens due to the random nature of

the fluctuations in the estimated relative statistical error during the stochastic

simulation; also see, for example [130]. Therefore, whatever relative statistical

errors and simulation output data analysis methods are applied, abnormally

short simulation runs can always occur in sequential simulation practice.

At least a dozen methods have been proposed for estimating the CIs of

the autocorrelated time-series of observations collected to study the steady-

state means. A survey of such methods used until 1990 can be found in [128].

Newer methods have appeared in [52] and [68]. In Chapter 3, we restrict

55



3.2 A Problem of Early Stopping: Experimental Evidence

our discussion to three methods of sequential mean value analysis: NOBM,

SA/HW, and RCs. A detailed discussion of these three methods of simulation

output data analysis is given in Appendix B.

Since experimental investigation of the consequences of prematurely fin-

ished simulation runs requires that the exact values of the analysed parameters

are known, we use the results obtained from the sequential steady-state mean

value simulation of three analytically tractable queueing systems: M/M/1/∞,

M/D/1/∞, and M/H2/1/∞. These queueing systems are widely used as ref-

erence models in research on methods of simulation output data analysis, since

they have different degrees of autocorrelation of data in output sequences and

require relatively long simulation runs to achieve a satisfactorily low level of

error when estimating the mean response time or mean waiting time in the

queue at high traffic level [158].

Figure 3.2 (M/M/1/∞), Figure 3.3 (M/D/1/∞), and Figure 3.4 (M/H2/1/∞)

give histograms of the run-lengths of 10,000 independent simulation replica-

tions, when estimating the mean response time in the corresponding queueing

system at load of 0.9 with a relative statistical error of 10% at the confidence

level of 0.95. Note that the simulation run-lengths for the three methods:

NOBM, SA/HW, and RCs, were measured by the number of collected obser-

vations to facilitate comparisons. The empirical mean run-lengths of 10,000

sequential steady-state simulations obtained using each method for the three

queueing systems are presented in Table 3.1.

Table 3.1: Mean run-lengths of 10,000 sequential steady-

state simulations (when estimating the mean response time

at load = 0.9 with a relative statistical error of 10% at a

confidence level = 0.95)

M/M/1/∞ M/D/1/∞ M/H2/1/∞
Using NOBM 80,967 39,129 281,427

Using SA/HW 106,037 44,845 403,492

Using RCs 92,959 26,105 373,401
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(a) Sequential analysis using NOBM (mean run-length = 80,967)
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(b) Sequential analysis using SA/HW (mean run-length = 106,037)
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(c) Sequential analysis using RCs (mean run-length = 92,959)

Figure 3.2: Histogram of simulation run-lengths (M/M/1/∞, load = 0.9,

10,000 replications)
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(a) Sequential analysis using NOBM (mean run-length = 39,129)
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(b) Sequential analysis using SA/HW (mean run-length = 44,845)
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(c) Sequential analysis using RCs (mean run-length = 26,105)

Figure 3.3: Histogram of simulation run-lengths (M/D/1/∞, load = 0.9,

10,000 replications)

58



3.2 A Problem of Early Stopping: Experimental Evidence

0 0.5 1 1.5 2

x 10
6

0

500

1000

1500

2000

Run Length

Fre
que

nci
es

(a) Sequential analysis using NOBM (mean run-length = 281,427)
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(b) Sequential analysis using SA/HW (mean run-length = 403,492)
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(c) Sequential analysis using RCs (mean run-length = 373,401)

Figure 3.4: Histogram of simulation run-lengths (M/H2/1/∞, load = 0.9,

10,000 replications)

59



3.2 A Problem of Early Stopping: Experimental Evidence

The theoretically required simulation run-lengths when estimating the mean

response time, at a load of 0.9 with εmax ·100% = 10% as the upper level of the

acceptable relative statistical error of the final results, at a confidence level of

0.95, are 145,596 observations (M/M/1/∞), 60,557 observations (M/D/1/∞),

and 546,971 observations (M/H2/1/∞); see Appendix F for a detailed discus-

sion of how to calculate the theoretical run-lengths of sequential steady-state

simulations. Comparing recorded run-lengths of the simulation in Figure 3.2

(M/M/ 1/∞), Figure 3.3 (M/D/1/∞), and Figure 3.4 (M/H2/1/∞) with the

theoretical simulation run-lengths, we can see that many runs do not collect

enough observations.

We can also see the spikes only in the method of sequential RCs; see Figures

3.2 (c), 3.3 (c), and 3.4 (c). The ranges of those spikes are 2 - 336 observations

(for M/M/1/∞), 2 - 160 observations (for M/D/1/∞), and 2 - 4,037 observa-

tions (for M/H2/1/∞). Many runs are much shorter or even collecting as few

as two observations. This phenomenon will be fully explored in Chapter 4.

Analyses of the random run-lengths of the sequential steady-state simula-

tion for NOBM, SA/HW, and RCs are presented in Tables 3.2 - 3.4 (M/M/1/∞),

Tables 3.5 - 3.7 (M/D/1/∞), and Tables 3.8 - 3.10 (M/H2/1/∞). Each of

the results was obtained from 10,000 independent replications of the sequential

steady-state simulation. Following the proposal in [134], we have classified a

simulation as ‘too short’ if its run-length was shorter than a threshold, which is

the mean simulation run-length minus one standard deviation of run-lengths.

The threshold values of the minimum acceptable run-lengths of simulations

and the overall experimental mean simulation run-lengths are given in the last

two columns. The second and fourth columns also give, respectively, the ab-

solute and the relative number of ‘too short’ simulation runs over the total

number (10,000 replications) of simulations executed at each load level of each

queueing system.

It can be seen that the NOBM method (Tables 3.2, 3.5, and 3.8) produces

mean run-lengths and threshold values much higher than the SA/HW and RC

methods, especially when the queueing systems are lightly loaded, since the

final acceptable batch size for NOBM was determined after 10,000 observations
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3.2 A Problem of Early Stopping: Experimental Evidence

Table 3.2: Sequential method of NOBM from 10,000 replications (when es-

timating the mean response time from the M/M/1/∞ queueing system at a

confidence level = 0.95 with a statistical error ≤ 10%)

ρ Number of Coverage of Probability of Threshold Mean of

too short runs too short runs being too short for filtering run-lengths

0.1 0 N/A 0.0% 8471 11823

0.2 0 N/A 0.0% 8567 11888

0.3 0 N/A 0.0% 8424 11967

0.4 0 N/A 0.0% 8451 12221

0.5 0 N/A 0.0% 8356 12538

0.6 0 N/A 0.0% 8175 13242

0.7 0 N/A 0.0% 8893 15586

0.8 593 50.6% 5.9% 13318 24826

0.9 1017 35.1% 10.2% 41596 80967

Table 3.3: Sequential method of SA/HW from 10,000 replications (when es-

timating the mean response time from the M/M/1/∞ queueing system at a

confidence level = 0.95 with a statistical error ≤ 10%)

ρ Number of Coverage of Probability of Threshold Mean of

too short runs too short runs being too short for filtering run-lengths

0.1 0 N/A 0.0% 1345 1725

0.2 1 100.0% 0.01% 1392 2006

0.3 571 86.0% 5.7% 1549 2493

0.4 1749 77.9% 17.5% 1839 3302

0.5 1069 69.5% 10.7% 2374 4665

0.6 1138 64.1% 11.4% 3356 7277

0.7 1101 53.8% 11.0% 5383 12701

0.8 1000 47.9% 10.0% 10461 27809

0.9 928 38.8% 9.3% 34933 106037
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3.2 A Problem of Early Stopping: Experimental Evidence

Table 3.4: Sequential method of RCs from 10,000 replications (when estimating

the mean response time from the M/M/1/∞ queueing system at a confidence

level = 0.95 with a statistical error ≤ 10%)

ρ Number of Coverage of Probability of Threshold Mean of

too short runs too short runs being too short for filtering run-lengths

0.1 648 14.7% 6.5% 343 511

0.2 776 17.3% 7.8% 456 738

0.3 893 18.9% 8.9% 641 1101

0.4 941 19.3% 9.4% 927 1685

0.5 1022 17.5% 10.2% 1448 2743

0.6 1064 11.8% 10.6% 2388 4738

0.7 1151 10.2% 11.5% 4482 9378

0.8 1302 6.1% 13.0% 9804 22552

0.9 1850 5.1% 18.5% 31333 92959

Table 3.5: Sequential method of NOBM from 10,000 replications (when es-

timating the mean response time from the M/D/1/∞ queueing system at a

confidence level = 0.95 with a statistical error ≤ 10%)

ρ Number of Coverage of Probability of Threshold Mean of

too short runs too short runs being too short for filtering run-lengths

0.1 0 N/A 0.0% 8526 12043

0.2 0 N/A 0.0% 8520 11967

0.3 0 N/A 0.0% 8473 11986

0.4 0 N/A 0.0% 8438 12099

0.5 0 N/A 0.0% 8389 12313

0.6 0 N/A 0.0% 8307 12685

0.7 0 N/A 0.0% 8466 13517

0.8 0 N/A 0.0% 9470 17024

0.9 532 42.1% 5.3% 19070 39129
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Table 3.6: Sequential method of SA/HW from 10,000 replications (when es-

timating the mean response time from the M/D/1/∞ queueing system at a

confidence level = 0.95 with a statistical error ≤ 10%)

ρ Number of Coverage of Probability of Threshold Mean of

too short runs too short runs being too short for filtering run-lengths

0.1 1300 94.6% 13.0% 1923 2199

0.2 1110 93.9% 11.1% 1653 1811

0.3 888 92.8% 8.9% 1575 1708

0.4 222 91.4% 2.2% 1512 1701

0.5 0 N/A 0.0% 1423 1851

0.6 39 89.7% 0.4% 1483 2458

0.7 1076 63.3% 10.8% 1975 4218

0.8 928 46.1% 9.3% 3920 10225

0.9 873 34.2% 8.7% 14557 44845

Table 3.7: Sequential method of RCs from 10,000 replications (when estimating

the mean response time from the M/D/1/∞ queueing system at a confidence

level = 0.95 with a statistical error ≤ 10%)

ρ Number of Coverage of Probability of Threshold Mean of

too short runs too short runs being too short for filtering run-lengths

0.1 4323 0.0% 43.2% 2 7

0.2 7322 13.2% 73.2% 9 11

0.3 7323 11.5% 73.2% 20 23

0.4 6861 9.8% 68.6% 43 55

0.5 6299 6.2% 63.0% 87 138

0.6 5323 2.6% 53.2% 163 381

0.7 4325 1.6% 43.3% 263 1187

0.8 3635 2.1% 36.4% 215 4412

0.9 3830 2.9% 38.3% 198 26105
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Table 3.8: Sequential method of NOBM from 10,000 replications (when esti-

mating the mean response time from the M/H2/1/∞ queueing system at a

confidence level = 0.95 with a statistical error ≤ 10%)

ρ Number of Coverage of Probability of Threshold Mean of

too short runs too short runs being too short for filtering run-lengths

0.1 0 N/A 0.0% 8371 12308

0.2 0 N/A 0.0% 8703 13007

0.3 1240 79.6% 12.4% 10607 15131

0.4 1171 73.3% 11.7% 13595 19200

0.5 1084 67.3% 10.8% 17943 25334

0.6 1346 64.2% 13.5% 24530 34924

0.7 1212 59.8% 12.1% 35658 52293

0.8 1207 52.8% 12.1% 59399 93866

0.9 1084 38.6% 10.8% 153571 281427

Table 3.9: Sequential method of SA/HW from 10,000 replications (when es-

timating the mean response time from the M/H2/1/∞ queueing system at a

confidence level = 0.95 with a statistical error ≤ 10%)

ρ Number of Coverage of Probability of Threshold Mean of

too short runs too short runs being too short for filtering run-lengths

0.1 1306 69.4% 13.1% 3546 6863

0.2 1228 67.7% 12.3% 5432 10955

0.3 1160 66.2% 11.6% 7586 15768

0.4 1201 64.3% 12.0% 10180 21750

0.5 1151 61.4% 11.5% 13785 30438

0.6 1176 61.3% 11.8% 18865 42893

0.7 1109 56.3% 11.1% 27939 67654

0.8 1141 52.9% 11.4% 49613 126815

0.9 972 43.7% 9.7% 136367 403492

64



3.2 A Problem of Early Stopping: Experimental Evidence

Table 3.10: Sequential method of RCs from 10,000 replications (when esti-

mating the mean response time from the M/H2/1/∞ queueing system at a

confidence level = 0.95 with a statistical error ≤ 10%)

ρ Number of Coverage of Probability of Threshold Mean of

too short runs too short runs being too short for filtering run-lengths

0.1 760 20.7% 7.6% 3341 4919

0.2 744 14.8% 7.4% 5766 8678

0.3 720 17.9% 7.2% 8858 13183

0.4 719 15.6% 7.2% 12423 18865

0.5 792 19.3% 7.9% 17464 26918

0.6 843 10.7% 8.4% 24088 39184

0.7 946 8.1% 9.5% 35642 62530

0.8 1201 5.5% 12.0% 59181 119924

0.9 1883 4.6% 18.8% 136592 373401

collected. Because the threshold value is high for NOBM, there are often no

‘too short’ simulation runs; see Tables 3.2, 3.5, and 3.8.

As discussed in Chapter 2, the quality of the final results produced by

the ‘too short’ simulation runs can be assessed by their coverage, i.e. by

the experimental frequency with which the final CIs of the results contain

the theoretical value of the estimated parameter. In an ideal situation, the

coverage should be close to the assumed confidence level. However, a closer

look at the statistical analysis of the ‘too short’ simulation runs reveals that

the coverage of the CIs of the simulation results obtained during such a run

can be very poor indeed; see the third column in Tables 3.2 - 3.10.

Additionally, we note that the probability of a simulation run-length being

‘too short’ cannot be ignored; see the fourth column in Tables 3.2 - 3.10. The

probability of a run being too short is quite high and the resulting coverage

is not at an acceptable level. While this should be of concern in the case

of any method considered, the coverage of the CIs in the method of RCs is

particularly very low.
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Experimental results show how wrong final simulation results obtained from

‘too short’ simulation runs can be in practice. Such a problem needs to be

recognised in practical applications of fully automated sequential steady-state

simulations. Therefore, a rule for preventing those ‘too short’ runs from de-

termining the final results is needed.

3.3 Heuristic Rules for Preventing the Final

Results Coming from ‘Too Short’ Runs

Most methods’ implementations of simulation output data analysis run simu-

lations only once until the acceptable statistical error is reached. However, as

shown in the experimental results in Section 3.2, a single sequential simula-

tion run can be ‘too short’, leading to erroneous results whichever output data

analysis method (NOBM, SA/HW or RCs) is used [105], [107]. All results

presented in Section 3.2 were obtained when estimating the mean response

time from the sequential steady-state simulation of three analytically tractable

queueing systems: M/M/1/∞, M/D/1/∞, and M/H2/1/∞. One can also

see that over the set of reference models, the problem becomes more critical

with heavily loaded queueing systems, or, equivalently, with processes with

stronger autocorrelations.

Our results show that it is important, in practical applications, to eliminate

‘too short’ simulation runs. Fortunately, significant achievements in computing

technologies have made CPU time very much cheaper, which makes it possible

to obtain reliable results within a reasonable time for very long sequential

steady-state simulations, and should also allow a simulation to be repeated

several times, producing more credible final results. This is not a new idea. As

D. Knuth wrote in 1969 “... the most prudent policy for a person to follow is

to run each Monte Carlo program at least twice, using quite different sources of

pseudo-random numbers, before taking the answers of the program seriously”

[85].

In this section, we propose five simple ‘rules of thumb’ which could help
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to eliminate the effect of ‘too short’ simulation runs in sequential steady-state

simulations. Those rules are based on two ideas: (i) using only one run of

several executed runs (Rules I to III), or (ii) using all runs without discarding

any results (Rules IV and V).

Heuristic Rules: I

A simple rule of thumb, which can help to avoid taking ‘too short’ runs of

sequential steady-state simulation into account, can be formulated as follows.

1. Execute R independent replications of a given simulation and record the

run-lengths (measured by the size of the sample of simulation output

data).

2. Accept the result produced by the longest simulation run only.

Using the results presented in Tables 3.2 - 3.10, one can assess the probabil-

ity that, having applied Rule I, one would still deal with the final results from a

‘too short’ simulation run. That is, if one executes R independent replications,

R ≥ 1, and Pshort is the probability that a simulation run is ‘too short’, then

(Pshort)
R is the probability of all R independent replications belonging to the

class of ‘too short’ simulation runs.

Using the worst examples from the sequential steady-state simulations of

Section 3.2, the probabilities of ‘too short’ runs can be seen in Table 3.11.

The probability quickly becomes negligible with an increased number of runs,

except for the case of sequential RCs in the M/D/1/∞ queueing system1.

Heuristic Rules: II

The relative statistical error randomly changes with the number of collected

simulation observations, although it tends to reduce until the minimum level

1The reason for the high probability of being a ‘too short’ simulation run in the case of

sequential RCs for the M/D/1/∞ queueing system will be discussed in Chapter 4.
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3.3 Heuristic Rules for Preventing the Final Results Coming from ‘Too Short’ Runs

Table 3.11: The probability of R independent replications belonging to the

class of ‘too short’ simulation runs (theoretical confidence level = 0.95)

(a) M/M/1/∞ queueing system

Num. of runs NOBM (ρ = 0.9) SA/HW (ρ = 0.4) RCs (ρ = 0.9)

R = 1 0.1021 = 0.102 0.1751 = 0.175 0.1851 = 0.185

R = 2 0.1022 = 0.0104 0.1752 = 0.0306 0.1852 = 0.0342

R = 3 0.1023 = 0.0011 0.1753 = 0.0054 0.1853 = 0.0063

R = 5 0.1025 = 0.00001 0.1755 = 0.00016 0.1855 = 0.00022

(b) M/D/1/∞ queueing system

Num. of runs NOBM (ρ = 0.9) SA/HW (ρ = 0.1) RCs (ρ = 0.2/0.3)

R = 1 0.0531 = 0.053 0.1301 = 0.130 0.7321 = 0.732

R = 2 0.0532 = 0.0028 0.1302 = 0.0169 0.7322 = 0.5358

R = 3 0.0533 = 0.0001 0.1303 = 0.0022 0.7323 = 0.3922

R = 5 0.0535 = 4e-7 0.1305 = 0.00004 0.7325 = 0.21016

(c) M/H2/1/∞ queueing system

Num. of runs NOBM (ρ = 0.6) SA/HW (ρ = 0.1) RCs (ρ = 0.9)

R = 1 0.1351 = 0.135 0.1311 = 0.131 0.1881 = 0.188

R = 2 0.1352 = 0.0182 0.1312 = 0.0172 0.1882 = 0.0353

R = 3 0.1353 = 0.0025 0.1313 = 0.0022 0.1883 = 0.0066

R = 5 0.1355 = 0.00004 0.1315 = 0.00004 0.1885 = 0.00023

(or better) of required statistical error is reached. The smaller the reported

relative statistical error, the better the accuracy of the final results. Thus, one

way of producing the most accurate final result could be to take results from

simulation runs with the smallest relative statistical errors. This gives us the

following rule:

1. Execute R independent replications of a given simulation and record the

final relative statistical error of the results.
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3.3 Heuristic Rules for Preventing the Final Results Coming from ‘Too Short’ Runs

2. Accept the result with the smallest relative statistical error only.

Heuristic Rules: III

Wide CIs can produce good coverage, and, conversely, narrow CIs can produce

poor coverage. This means that an easy way to guarantee a satisfactory level of

coverage with acceptable statistical errors of the final results in the sequential

steady-state simulation is to take the results from simulation runs with the

widest CIs. Thus, let us consider the following rule:

1. Execute R independent replications of a given simulation and record the

final CIs of the results.

2. Accept the result with the widest CI only.

Heuristic Rules: IV

To ensure that the run-length of a sequential steady-state simulation is ac-

ceptably close to the required theoretical run-length, one can easily combine a

number of results obtained from independent sequential steady-state simula-

tions. This can prevent to take the final results coming from a ‘too short’ run.

We propose the following rule:

1. Execute R independent replications of a given simulation, and record

the run-lengths (measured by the size of the sample of simulation output

data) and the estimated values.

2. Accept the result produced by combining R results obtained from R

independent replications.

Rule IV needs a mean µ and a variance σ2 of a combined simulation run to

construct the combined CI. The mean value of a combined simulation should

be calculated by weighting the R simulation runs, which have different mean

values calculated from different sample sizes. The variance of the combined
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3.3 Heuristic Rules for Preventing the Final Results Coming from ‘Too Short’ Runs

mean can be calculated by using an unbiased estimator of σ2 for pooled sam-

ples. The best way of combining several variance estimates calculated from

different sample sizes is to average them with their weightings, which equal

to their degrees of freedom (ni − 1), where ni is the sample size of the i-th

independent replication [120].

Suppose one has variance estimates s2
1, s

2
2, · · · , s2

I , from I independent sam-

ples of size n1, n2, · · · , nI , from populations with a common variance σ2. The

pooled sample variance is calculated by

s2
p =

(n1 − 1)s2
1 + (n2 − 1)s2

2 + · · ·+ (nI − 1)s2
I

(n1 − 1) + (n2 − 1) + · · ·+ (nI − 1)
, (3.2)

which is an unbiased estimator of the variance σ2. This is called the pooled

estimator of σ2 because it combines the information from all samples [120].

This formula gives more weight to groups with larger sample sizes.

Heuristic Rules: V

To guarantee a satisfactory level of coverage with acceptable statistical errors

of the final results from the sufficiently long sequential simulation, one can

simply combine Rules III and IV to obtain a half-width of a CI and mean,

respectively. Thus, we propose the following rule:

1. Execute R independent replications of a given simulation.

2. Record the run-lengths (measured by the size of the sample of simulation

output data), the estimated values, and the final CIs of the results.

3. Accept the mean value produced by combining R estimated values ob-

tained from R independent replications (Rule IV).

4. Accept a half-width of a CI from a simulation run with the widest CI

among R independent replications (Rule III).

5. Construct a CI with the results obtained in 3 and 4.
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Comparisons of Heuristic Rules

Our study shows that all final results of coverage obtained by using the three

methods: NOBM, SA/HW, and RCs, are far from the required level of confi-

dence, especially for heavily loaded queueing systems; see Figures 2.7 - 2.9 in

Chapter 2. This problem has been identified in various methods of simulation

output data analysis whose coverage has been so far analysed sequentially, i.e.

it characterises various versions of the method of batch means, the method

of SA/HW, the method of RCs, and the method based on the standardised

time series; see, for example, [102], [121], [122], and [134]. Therefore, one of

the ongoing research problems in the area of sequential steady-state simula-

tion is to find a valid method of simulation output data analysis for highly

dynamic stochastic processes, for example, heavily loaded queueing systems

and telecommunication networks.

The proposed rules are a significant diversion from running an automated

sequential simulation only once, even without a pilot run [65]. Note that Rules

I to III discard (R - 1) replications and use only one replication to calculate

the final results, while Rules IV and V suggest using all R independent replica-

tions. Of course, no heuristic rule of thumb can ensure that the final CIs from

a stochastic simulation will contain the theoretical value, with a probability

equal to the assumed confidence level. However, these heuristic rules may help

preventing ‘too short’ simulations, which are not representative, from being

included in the final results.

3.4 Performance Evaluation of the Proposed

Heuristic Rules

In this section, we study the effect of Rules I to V on the quality of the

final results, in terms of the accuracy and coverage of CIs from the exper-

imental results of sequential steady-state simulations produced by the three

methods: NOBM, SA/HW, and RCs, using the M/M/1/∞, M/D/1/∞, and

M/H2/1/∞ queueing systems as the reference simulation models. The mean
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3.4 Performance Evaluation of the Proposed Heuristic Rules

response time was estimated with εmax · 100% = 10% as the upper level of the

acceptable relative statistical error of the final results, at a confidence level of

0.95. In each case the final results are averaged 2,000 independent replications.

For example, in the case of R = 5 replications, we have used a total of 10,000

replications.

Performance Evaluation: Heuristic Rule I

Figure 3.5 (M/M/1/∞), Figure 3.6 (M/D/1/∞), and Figure 3.7 (M/H2/1/∞)

show the application of Rule I, which uses the longest run of the executed R

replications; R = 1, 2, 3 and 5, for each analysis method. The coverage of the

final results clearly shows that Rule I is viable, and the larger R is, the better

the quality of the final results.

In fact, in the cases considered, if one always wants to have the final results

within a required level of confidence, there is no need to assume that R is larger

than 3, since the resulting coverage reaches a satisfactory level at this point

(except the sequential analysis using RCs in the M/D/1/∞ queueing system2:

see Figure 3.6 (c)). This is because as the statistical data of Table 3.11 (a) and

(c) show, the probability that the remaining replication is still ‘too short’, after

discarding two shorter replications out of three, drops to 0.007 or less for the

RCs method, which is the worst case, in both the M/M/1/∞ and M/H2/1/∞
queueing systems.

Performance Evaluation: Heuristic Rule II

The results of the coverage obtained by applying Rule II, which takes the most

‘accurate’ result, i.e., taking the result from the simulation run with the (rela-

tively) smallest relative statistical errors, out of R executed replications; R =

1, 2, 3 and 5, are depicted in Figure 3.8 (M/M/1/∞), Figure 3.9 (M/D/1/∞),

2The unacceptable coverage obtained in the sequential analysis using RCs in the

M/D/1/∞ queueing system, even assuming that R is larger than 3, is caused by the fact

that the probability that the remaining replication, after discarding two shorter replications

out of three, is ‘too short’ is still very high (0.4 or less): see Table 3.11 (b).
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(a) Sequential analysis using NOBM
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(b) Sequential analysis using SA/HW
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(c) Sequential analysis using RCs

Figure 3.5: Coverage of the CIs with Rule I (take the longest of R replications;

R = 1, 2, 3 and 5). Estimation of the mean response time in the M/M/1/∞
queueing system
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(a) Sequential analysis using NOBM
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(b) Sequential analysis using SA/HW
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(c) Sequential analysis using RCs

Figure 3.6: Coverage of the CIs with Rule I (take the longest of R replications;

R = 1, 2, 3 and 5). Estimation of the mean response time in the M/D/1/∞
queueing system

74



3.4 Performance Evaluation of the Proposed Heuristic Rules

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
70

75

80

85

90

95

100

Load

Co
ver

age

Required  coverage    
Single Run    
Longer Run of 2    
Longest Run of 3    
Longest Run of 5    

(a) Sequential analysis using NOBM
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(b) Sequential analysis using SA/HW
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(c) Sequential analysis using RCs

Figure 3.7: Coverage of the CIs with Rule I (take the longest of R replications;

R = 1, 2, 3 and 5). Estimation of the mean response time in the M/H2/1/∞
queueing system
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and Figure 3.10 (M/H2/1/∞). From these, one can see that discarding the

results with larger (but still acceptable) levels of the final (reported) relative

statistical error worsens the coverage, regardless of the number of executed

replications, R > 1. In fact, a larger R will make the resulting coverage even

worse. This is because the simulation producing the most accurate results, in

terms of the relative statistical error, has the narrowest CIs. These narrow

CIs may sometimes be caused by the sudden (temporary) drop of the required

level of relative statistical error, causing accidental stopping with an insuffi-

cient number of observations. Consequently, Rule II should not be applied in

a practical simulation.

Performance Evaluation: Heuristic Rule III

The application of Rule III, which takes the widest CIs of R replications; R =

1, 2, 3 and 5, is shown in Figure 3.11 (M/M/1/∞), Figure 3.12 (M/D/1/∞),

and Figure 3.13 (M/H2/1/∞). As we can see, taking the simulation results

with wider CIs improves the coverage of the final results, regardless of the

number of executed replications, where R > 1. However, the results of the

coverage for each method have not reached the required confidence level of

95%, especially when they are applied in the simulation of heavier loaded

queueing systems. Thus, generally speaking, Rule III appears to be unsuitable

in a practical simulation.

Performance Evaluation: Heuristic Rule IV

Figure 3.14 (M/M/1/∞), Figure 3.15 (M/D/1/∞), and Figure 3.16 (M/H2/1/∞),

show the effect of applying Rule IV (combining R replications; R = 1, 2, 3

and 5) for each method of simulation output data analysis: NOBM, SA/HW,

RCs. The larger the number of replications executed, the better the coverage

and also the better (i.e. narrower) the CIs obtained simultaneously.

Generally speaking, there is no need to assume that R is larger than 3

in the case of Rule IV. The reason is that the resulting coverage, obtained by

combining R = 3 replications, is always between the required level of confidence
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(a) Sequential analysis using NOBM
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(b) Sequential analysis using SA/HW
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(c) Sequential analysis using RCs

Figure 3.8: Coverage of the CIs with Rule II (take the most accurate result

out of R results obtained; R = 1, 2, 3 and 5). Estimation of the mean response

time in the M/M/1/∞ queueing system
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(a) Sequential analysis using NOBM
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(b) Sequential analysis using SA/HW
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(c) Sequential analysis using RCs

Figure 3.9: Coverage of the CIs with Rule II (take the most accurate result

out of R results obtained; R = 1, 2, 3 and 5). Estimation of the mean response

time in the M/D/1/∞ queueing system
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(a) Sequential analysis using NOBM
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(b) Sequential analysis using SA/HW
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(c) Sequential analysis using RCs

Figure 3.10: Coverage of the CIs with Rule II (take the most accurate result

out of R results obtained; R = 1, 2, 3 and 5). Estimation of the mean response

time in the M/H2/1/∞ queueing system
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(c) Sequential analysis using RCs

Figure 3.11: Coverage of the CIs with Rule III (take the widest CIs of R

replications; R = 1, 2, 3 and 5). Estimation of the mean response time in the

M/M/1/∞ queueing system
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(c) Sequential analysis using RCs

Figure 3.12: Coverage of the CIs with Rule III (take the widest CIs of R

replications; R = 1, 2, 3 and 5). Estimation of the mean response time in the

M/D/1/∞ queueing system
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(c) Sequential analysis using RCs

Figure 3.13: Coverage of the CIs with Rule III (take the widest CIs of R

replications; R = 1, 2, 3 and 5). Estimation of the mean response time in the

M/H2/1/∞ queueing system
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3.4 Performance Evaluation of the Proposed Heuristic Rules

(0.95) and the maximum level (1.0) for lightly or heavily loaded queueing

systems (except the sequential analysis using RCs in the M/D/1/∞ queueing

system3: see Figure 3.15 (c)). Combining R independent replications together

guarantees that final results are produced with a (very) high level of confidence,

since the final results are always obtained from a sufficiently large number of

observations. Therefore, if one always wants to guarantee the final results

having the confidence over the required confidence level in practice, this rule

of thumb could be recommended.

Performance Evaluation: Heuristic Rule V

The results of the coverage when applying Rule V (a combination of Rules III

and IV), are depicted in Figure 3.17 (M/M/1/∞), Figure 3.18 (M/D/1/∞),

and Figure 3.19 (M/H2/1/∞). The results are similar to those obtained by

applying Rule IV. In general, however, Rule V produces a slightly higher cov-

erage. Therefore, if one always wants to guarantee the final results having the

confidence over the required confidence level in practice, this rule of thumb is

more desirable than Rule IV.

Comparative Evaluation of Heuristic Rules

In this section, proposed heuristic rules to ensure that the final results of

a sequential simulation are not from ‘too short’ simulation runs have been

analysed experimentally by applying them to the three different methods of

simulation output data analysis: NOBM, SA/HW, RCs, in the M/M/1/∞,

M/D/1/∞, and M/H2/1/∞ queueing systems. The results clearly show that

Rules I, IV and V are viable in practice, since they ensure that credible final

results are obtained with the required level of confidence or better as the

number of replications R increase. The results also show that there is no need

to assume R larger than 3.

3The unacceptable coverage obtained in the sequential analysis using RCs in the

M/D/1/∞ queueing system, even if the combined R is larger than 3, is caused by the

very high probability of runs being ‘too short’ (0.732 or less): see Table 3.7.
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(c) Sequential analysis using RCs

Figure 3.14: Coverage of the CIs with Rule IV (combining R replications; R

= 1, 2, 3 and 5). Estimation of the mean response time in the M/M/1/∞
queueing system
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(c) Sequential analysis using RCs

Figure 3.15: Coverage of the CIs with Rule IV (combining R replications; R

= 1, 2, 3 and 5). Estimation of the mean response time in the M/D/1/∞
queueing system
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(c) Sequential analysis using RCs

Figure 3.16: Coverage of the CIs with Rule IV (combining R replications; R

= 1, 2, 3 and 5). Estimation of the mean response time in the M/H2/1/∞
queueing system
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(c) Sequential analysis using RCs

Figure 3.17: Coverage of the CIs with Rule V (combination of Rules III and

IV). Estimation of the mean response time in the M/M/1/∞ queueing system
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(c) Sequential analysis using RCs

Figure 3.18: Coverage of the CIs with Rule V (combination of Rules III and

IV). Estimation of the mean response time in the M/D/1/∞ queueing system
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(c) Sequential analysis using RCs

Figure 3.19: Coverage of the CIs with Rule V (combination of Rules III and

IV). Estimation of the mean response time in the M/H2/1/∞ queueing system
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3.5 Theoretical and Experimental Run-Length

We have only experimented the proposed heuristic rules with the three

different squared coefficient of variation, C2, for the service times: C2 = 0

(for M/D/1/∞), C2 = 1 (for M/M/1/∞), and C2 = 5 (for M/H2/1/∞).

Therefore, the proposed heuristic rules can only be applicable for simulated

processes having the squared coefficient of variation for the service times in

similar range. However, one can expect that they could be also used for sim-

ulated processes which do not exceed very much the experimented range of

the squared coefficients of variation. If one always wants to have the final

results within a required level of confidence, Rule I should be the best option.

Otherwise, if one wishes to guarantee a high level of confidence, Rules IV and

V could be applied. In fact, in the latter case, Rule V is more desirable than

Rule IV, since Rule V produces slightly higher coverage.

3.5 Theoretical and Experimental Run-Length

The final coverage of the sequential methods of NOBM, SA/HW, and RCs is

far from the required level of confidence, especially in highly correlated sys-

tems such as the M/M/1/∞, M/D/1/∞, and M/H2/1/∞ queueing systems;

see Figures 2.7 - 2.9 in Chapter 2. This may be because insufficient observa-

tions are collected in each simulation run. The average number of observations

collected in experiments4, and the numbers required theoretically5, when esti-

mating the mean response time for each queueing system, are shown in Figure

3.20. These are obtained from 10,000 independent replications of steady-state

simulations, with at least εmax · 100% = 10% as the upper level of the ac-

ceptable relative statistical error of the final results, at a confidence level of

0.95.

For light traffic intensities, the experimental and theoretical numbers of ob-

servations are very close when using RCs and SA/HW for both the M/M/1/∞
and M/H2/1/∞ queueing systems. However, the finally accepted batch size

4Here, in the sequential method of RCs, we present the collected numbers of observations

instead of the collected numbers of RCs to facilitate comparisons with NOBM and SA/HW.
5Formulae for obtaining the theoretically required run-length of a simulation for station-

ary queueing systems can be found in Appendix F.

90



3.5 Theoretical and Experimental Run-Length

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6
x 10

5

Load

Ob
ser

vat
ion

s

Theoretical run Length    
Mean Run Length of SA/HW    
Mean Run Length of NOBM   
Mean Run Length of RCs   

Theory  − (145,596 : 95.0%)
SA/HW − (106,037 : 90.5%)
RCs     −  ( 92,959 : 88.2%)
NOBM −  ( 80,967 : 85.6%)

(a) M/M/1/∞ queueing system

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6
x 10

5

Load

Ob
ser

vat
ion

s

Theoretical run Length    
Mean Run Length of SA/HW    
Mean Run Length of NOBM   
Mean Run Length of RCs   

Theory  − (60,557 : 95.0%) 
SA/HW − (44,845 : 90.9%)
NOBM − (39,129 : 88.5%)
RCs     − (26,105 : 80.1%) 

(b) M/D/1/∞ queueing system

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6
x 10

5

Load

Ob
ser

vat
ion

s

Theoretical run Length    
Mean Run Length of SA/HW    
Mean Run Length of NOBM   
Mean Run Length of RCs   

Theory − (546,971 : 95.0%) 

SA/HW − (403,492 : 90.8%)
RCs      − (373,401 : 89.4%)
NOBM  − (281,427 : 84.0%) 

(c) M/H2/1/∞ queueing system

Figure 3.20: Mean run-length of 10,000 independent simulation runs of esti-

mating the mean response time
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in the NOBM method is large, resulting in some difference between experi-

mental and theoretical numbers. The RCs method seems to produce coverage

close to theoretical values at light traffic intensities for both the M/M/1/∞
and M/H2/1/∞ queueing systems, since it collects the approximate number

of observations required in theory. However, at heavier traffic intensities, no

method can reach the required CI level of 0.95 because the theoretically re-

quired number of observations was not collected.

This definitely indicates that coverage is closely related to the run-lengths

of sequential steady-state simulations. That is, one of the reasons causing poor

coverage in practical simulations of highly correlated processes, regardless of

any simulation output data analysis method used, is that the theoretically

required minimum number of observations is not collected.

3.6 Relationship Between Coverage and Run-

Length

The relationship between coverage and run-length, when applying Rule I for

the sequential NOBM, SA/HW, and RCs (at load 0.9) can be seen in Figure

3.21 (M/M/1/∞), Figure 3.22 (M/D/1/∞), and Figure 3.23 (M/H2/1/∞).

Generally speaking, to ensure that we obtain coverage with an assumed level

of confidence, one needs to collect the number of observations closed to that

required theoretically, or more, although the relationship between coverage

and run-length does depend on the method used in the simulation output

data analysis.

Increasing the total number of observations to the number required theo-

retically seems to be a suitable way of obtaining credible final results. We can

never guarantee the assumed exact level of coverage for all simulation models,

but we can at least improve the coverage by increasing the number of observa-

tions to that required theoretically (if known) or to a sufficiently large number

of observations (if the theoretically required number is unknown) by applying

Rules I, IV and V.
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(a) Sequential analysis using NOBM
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(b) Sequential analysis using SA/HW

75 80 85 90 95 100

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Ru
n L

eng
th

Coverage

S 

T 

L2 

L3 

L5 

(c) Sequential analysis using RCs

Figure 3.21: Coverage over run-lengths with Rule I (at load 0.9, M/M/1/∞).

T: theoretical requirement, S: experimental results of a single run, L2: experi-

mental results of a longer run of 2, L3: experimental results of the longest run

of 3, and L5: experimental results of the longest run of 5
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(a) Sequential analysis using NOBM
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(b) Sequential analysis using SA/HW
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(c) Sequential analysis using RCs

Figure 3.22: Coverage over run-lengths with Rule I (at load 0.9, M/D/1/∞).

T: theoretical requirement, S: experimental results of a single run, L2: experi-

mental results of a longer run of 2, L3: experimental results of the longest run

of 3, and L5: experimental results of the longest run of 5
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(a) Sequential analysis using NOBM
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(b) Sequential analysis using SA/HW
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(c) Sequential analysis using RCs

Figure 3.23: Coverage over run-lengths with Rule I (at load 0.9, M/H2/1/∞).

T: theoretical requirement, S: experimental results of a single run, L2: experi-

mental results of a longer run of 2, L3: experimental results of the longest run

of 3, and L5: experimental results of the longest run of 5
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3.7 Conclusions

We have addressed the problem of the statistical correctness of the final simu-

lation results in the context of sequential steady-state simulations, conducted

to study long run mean values of performance measures of stable dynamic

systems. Typically, in long simulation runs, the convergence of the relative

statistical error to its threshold value is very slow but persistent. However,

the inherently random nature of output data collected during the stochas-

tic simulation, due to the pseudo-random nature of input data, can cause an

accidental, temporary satisfaction of the stopping rule of such a sequential

estimation. This is quite frequently associated with producing a ‘too short’

simulation run having poor coverage. Experimental evidence shows that this

phenomenon occurs frequently, with a resulting significant degradation of the

coverage of the final results.

We have also proposed five simple heuristic rules of thumb, which are based

on two main ideas: (i) using the results from only one run of several executed

runs (Rules I to III) or (ii) using the results of all runs without discarding any

executed runs (Rules IV and V), that, if applied in practice, can reduce the

probability that results come from a prematurely finished simulation run. The

effectiveness of these rules is quantitatively assessed using the results of cover-

age analysis of the three different methods of simulation output data analysis:

NOBM, SA/HW, and RCs, in sequential steady-state simulations. Such rules

can be easily implemented in simulation packages, offering automated control

of the relative statistical error of the final results in a sequential steady-state

simulation.

However, no rules can ensure that the final CIs from the sequential stochas-

tic simulation will exactly contain the theoretical value with a probability equal

to the assumed confidence level. One of the ongoing problems of research in

this area is to find a valid method of analysis (in the sense of coverage) when

it is applied to the simulation of highly dynamic stochastic processes, such as

heavily loaded queueing systems and telecommunication networks; see for ex-

ample [106], [134]. At least lowering the probability of using results from ‘too

short’ simulation runs is one of the very few possible practical ways available
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for simulation practitioners to improve the quality of the final results from

their simulation experiments.

Our results show that, to ensure that we obtain the coverage with an as-

sumed level of confidence, one needs to collect the number of observations that

is theoretically required, depending on the reference model used in simulations.

However, none of the three methods of simulation output data analysis we used

collects the theoretically required number of observations in the case of heavily

loaded queueing systems. Furthermore, in practice, the theoretically required

number of observations is usually unknown. Therefore, we can never guar-

antee the assumed exact level of coverage with the current state-of-the-art of

simulation output data analysis methods in practice, but we can at least im-

prove the coverage by increasing the number of observations to that required

theoretically (if known) or to a sufficiently large number of observations (if the

theoretically required number of observations is unknown) by applying Rules

I, IV and V.

The selection of the appropriate rule depends on the confidence level re-

quired. Rule I, which selects the longest run from a few repeated simulation

runs, appears to be the most effective in the case where one always wishes to

have the final results within an assumed level of confidence, because the cover-

age from the selected run can be improved to the assumed level of confidence

by adjusting the number of replications R. Otherwise, in the case where one

always wants to guarantee the final results having a high confidence level, the

alternatives are Rules IV and V, as the resulting coverage is always between

the assumed level of confidence and the maximum level for lightly or heavily

loaded queueing systems. In fact, in the latter case, Rule V is more desirable,

since it produces a slightly higher coverage.
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Chapter 4

A PROBLEM OF TOO SHORT

SEQUENTIAL

STEADY-STATE

REGENERATIVE

SIMULATIONS OF MEAN

VALUES

4.1 Introduction

In non-regenerative methods of steady-state simulation output data analy-

sis, such as spectral analysis, batch means, and standardised time series, one

should not include data collected during the initial transient period because of

the initial non-stationarity. Determination of the end point of the initial tran-

sient period is often non-trivial and likely to require sophisticated statistical

techniques [16], [57], [180]. Therefore, the method of RCs (regenerative cycles)

for simulation output data analysis is a very attractive alternative, because it

naturally avoids the problem of the initial transient period. In regenerative

stochastic processes, the method of RCs produces batches of random length,



4.1 Introduction

which are independent and identically distributed. The final statistical error

of the results depends on the number of RCs observed during the entire sim-

ulation period. Detailed theoretical discussion and references are documented

in Appendix B.3. In this chapter, we investigate the method of RCs to find

out how best to tune it for an automated sequential steady-state simulation.

Any stopping criterion for a sequential simulation, for example, the relative

statistical error (see Equation (1.2) in Section 1.2), can be used in conjunction

with the RC method for estimating steady-state parameters. However, as

shown in Chapter 3, sequential steady-state simulation using the three methods

of mean value analysis: NOBM, SA/HW, and RCs, can lead to inaccurate

results if the experiment stops too early, i.e. when the sequential stopping

criterion is accidentally temporarily satisfied. The results presented in Chapter

3 also show that the sequential method of RCs has the most serious problem

of early stopping among the three methods.

Lavenberg and Sauer [89] proposed that the simulation should be stopped

when a minimum number of RCs are observed (they assumed an arbitrary

number of ten RCs as the first checkpoint1) and the estimated statistical error

reaches the required level. Sauer [156] argued that the simulation run-lengths

should be associated with some minimum simulation time. With these ap-

proaches, one can run the sequential method of RCs to the minimum run-

length of the simulation or for a minimum simulation time. However, the

sequential stopping rule even with a minimum number of ten RCs used in [89]

as the first checkpoint can not always ensure that a sufficient number of RCs

are collected for simulation models having different degrees of autocorrelation.

The simulation finished after only collecting the minimum number of RCs can

still be ‘(extremely) too short’ if the number of RCs needed to obtain the fi-

nal results with the assumed level of confidence is very large. As discussed in

Chapter 3, this can happen due to the random nature of the fluctuations in

the estimated relative statistical error during the stochastic simulation; see,

1The first checkpoint at which the relative statistical error ε(n) is computed, can be

located after, say, at least two RCs are recorded [89], [165]. Then, the relative statistical

error ε(n) can be calculated every k RCs, where k ≥ 1. The efficiency of computation for

checking the stopping rules can be improved by taking larger k.
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4.2 Ratio Estimators for Use in the Sequential Method of RCs

for example, [130]. Therefore, the sequential stopping rules for the method of

RCs should be investigated to find out how ‘(extremely) too short’ simulation

runs could be eliminated.

One of the main criteria used to assess the quality of methods of simulation

output data analysis in a stochastic simulation is the coverage of the final CIs,

defined in Chapter 2. Any good method should produce narrow and stable

CIs, and the relative frequency with which such CIs contain the true value

of the estimated performance measure should not differ substantially from

the assumed theoretical confidence level. In the past, coverage analyses of

various sequential stopping rules for the RC method, including those in [89]

and [156], were conducted using fixed numbers of replications (for example,

100 and 50 replications, as [89] and [156], respectively). However, as shown

in Chapter 2 (see for example Figure 2.5), such a fixed number of replications

for coverage analysis is difficult to predict. Therefore, to secure statistically

accurate final results, coverage analysis for the sequential methods of RCs

should be conducted following the sequential rules discussed in Chapter 2.

In Section 4.2, we summarise the four selected ratio estimators of the mean

used in sequential version of the RCs method: the classical estimator, the

Beale estimator, the jackknife estimator, and the Tin estimator. We document

a problem of early stopping in the sequential method of RCs and a solution,

based on experimental results, in Section 4.3 and Section 4.4, respectively. The

numerical results of the coverage analysis of the sequential method of RCs with

a proposed solution applied for estimating steady-state means are reported in

Section 4.5.

4.2 Ratio Estimators for Use in the Sequential

Method of RCs

The RC method2 usually uses the ratio of two means to estimate steady-

state parameters. Choice of the regenerative state used for making batches

2Detailed discussion of the RC method for simulation output data analysis can be found

in Appendix B.3. Notations and definitions used in this section follow Appendix B.3.
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of random length from the collected observations is an important parameter.

With this method, the initialisation bias is eliminated, but new sources of

systematic errors caused by the use of estimators in the form of ratios are

introduced [12]. Several estimators have been proposed to reduce these errors

[15], [110], [117]. We have selected and summarised only four estimators: the

classical estimator, the Beale estimator, the jackknife estimator, and the Tin

estimator, since these can be easily implemented in sequential steady-state

simulations.

Classical Estimator

The simplest ratio estimator, known as the classical estimator; see Appendix

B.3, of the steady-state mean for the RC method based on n RCs is given by

r̂(n) =
y(n)

a(n)
, (4.1)

where y(n) is the mean of yi (where 1 ≤ i ≤ n) which is the sum of observations

in the i-th RC, for example, the sum of the waiting times in the i-th RC, and

a(n) is the mean of ai (where 1 ≤ i ≤ n) which is the number of observations

in the i-th RC.

Following the central limit theorem:

√
n{r̂(n) − µ}
s(n)/a(n)

→ N(0, 1), (4.2)

where µ is the steady-state mean, s(n) is the point estimate for σ based on

n RCs, and N(0, 1) is the normal distribution with mean 0 and standard

deviation 1, obtained with a probability of one as n → ∞ [22], [165]. A

100(1−α)% CI for the steady-state mean obtained with the classical estimator

is given by

r̂(n) ± s(n)tn−1,1−α/2

a(n)
√

n
, (4.3)

where tn−1,1−α/2, for 0 < α < 1, is the upper (1 − α/2) critical point from the

Student t-distribution with n − 1 degrees of freedom [21], [71], [165].
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Beale Estimator

A point estimator, known as the Beale estimator, has been shown to reduce

the bias3 of the classical estimator of Equation (4.1) [71]. Using the Beale

estimator, the point estimate for the steady-state mean for the RC method

based on n RCs is given by

r̂b(n) =
y(n)

a(n)
·
(1 +

s2
12(n)

ny(n)a(n)
)

(1 +
s2
22(n)

na(n)a(n)
)
, (4.4)

where y(n) is the mean of yi (where 1 ≤ i ≤ n) which is the sum of observations

in the i-th RC, for example, the sum of the waiting times in the i-th RC, and

a(n) is the mean of ai (where 1 ≤ i ≤ n) which is the number of observations

in the i-th RC. s2
12(n) is the estimate of covariance for y(n) and a(n), and

s2
22(n) is the estimate of variance for a(n). The Beale estimator reduces the

bias of the classical estimator from O(1/n) to O(1/n2) [71], [165].

Since
√

n{r̂(n) − r̂b(n)} → 0 as n → ∞ with a probability of one, one can

replace r̂(n) in Equation (4.2) by r̂b(n) [22]. Then, a 100(1 − α)% CI for the

steady-state mean obtained with the Beale estimator is given by

r̂b(n) ± s(n)tn−1,1−α/2

a(n)
√

n
, (4.5)

where s(n) is the point estimate for σ based on n RCs, and tn−1,1−α/2, for 0

< α < 1, is the upper (1 − α/2) critical point from the Student t-distribution

with n − 1 degrees of freedom [22], [71], [165].

3In general, the expectation of a ratio is not equal to the ratio of the expectations for

any finite n RCs [12]. As a consequence of the strong law of large numbers; i.e., n → ∞,

E

[
(
1
n

n∑
i=1

yi)/(
1
n

n∑
i=1

ai)

]
= E[yi]/E[ai]

with a probability of one, where yi is the sum of the parameter of interest in the i-th RC

and ai is the length of the i-th RC. However, for any finite n,

E

[
(
1
n

n∑
i=1

yi)/(
1
n

n∑
i=1

ai)

]
6= E[yi]/E[ai],

except in trivial cases [12], [165].
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Jackknife Estimator

A version of the jackknife estimator was constructed by Miller; see [71]. Using

the jackknife estimator, the point estimate for the steady-state mean for the

RC method based on n RCs is given by

r̂j(n) =
1

n

n∑
i=1

θi, (4.6)

where θi = n(y/a) − (n − 1)
(∑n

k=1,k 6=i yk/
∑n

k=1,k 6=i ak

)
for i = 1, 2, ..., n.

Here, yk is the sum of observations in the k-th RC and ak is the number of

observations in the k-th RC. The jackknife estimator also reduces the bias of

the classical estimator from O(1/n) to O(1/n2) [71], [93], [165].

Let

s2
j(n) =

∑n
i=1{θi − r̂j(n)}2

n − 1
(4.7)

be the estimator of variance σ2(n) for the jackknife estimator. Then the fol-

lowing limit result provides a basis for a CI of the jackknife estimator:
√

n{r̂j(n) − µ}
sj(n)

→ N(0, 1), (4.8)

as n → ∞ with a probability of one [22], [93]. Therefore, a 100(1 − α)% CI

for the steady-state mean µ obtained with the jackknife estimator is given by

r̂j(n) ± sj(n)tn−1,1−α/2√
n

, (4.9)

where tn−1,1−α/2, for 0 < α < 1, is the upper (1 − α/2) critical point from the

Student t-distribution with n − 1 degrees of freedom [22], [93], [165].

Tin Estimator

A point estimator, known as the Tin estimator, has been proposed by Tin; see

[71]. The point estimate using the Tin estimator for the steady-state mean for

the RC method based on n RCs is given by

r̂t(n) =
y(n)

a(n)
·
[
1 +

1

n

(
s2
12(n)

y(n)a(n)
− s2

22(n)

a(n)a(n)

)]
, (4.10)
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where y(n) is the mean of yi (where 1 ≤ i ≤ n) which is the sum of observations

in the i-th RC, for example, the sum of the waiting times in the i-th RC, and

a(n) is the mean of ai (where 1 ≤ i ≤ n) which is the number of observations

in the i-th RC. s2
12(n) is the estimate of covariance for y(n) and a(n), and

s2
22(n) is the estimate of variance for a(n). The Tin estimator also reduces the

bias of the classical estimator from O(1/n) to O(1/n2) [71], [165].

Since
√

n{r̂(n) − r̂t(n)} → 0 as n → ∞ with a probability of one as with

the Beale estimator, one can also replace r̂(n) in Equation (4.2) by r̂t(n) [22].

Then, a 100(1 − α)% CI for the steady-state mean is given by

r̂t(n) ± s(n)tn−1,1−α/2

a(n)
√

n
, (4.11)

where s(n) is the point estimate for σ based on n RCs, and tn−1,1−α/2, for 0

< α < 1, is the upper (1 − α/2) critical point from the Student t-distribution

with n − 1 degrees of freedom [22], [71], [165].

Comments

Several further alternative ratio estimators for reducing the bias of the classical

estimator for the RC method have been proposed in [15], [61], [117]. Compar-

ative studies of some ratio estimators were conducted by D. L. Iglehart [71].

The results presented in [71] show that the jackknife estimator is better than

the classical estimator, particularly, for short simulation runs; also see [93].

As the length of the simulation increases, however, the jackknife estimator

produces similar results. In particular, it requires twice as much memory (for

saving the entire sequence of yi and ai) and longer time, and slightly more

complex programming than the classical estimator [71]. This means that for

long simulation runs such as sequential steady-state simulations, the jackknife

estimator has no benefit, since it requires double the memory requirement of

the classical estimator without any significant improvement.

The Beale and Tin estimators produce less biased estimates than the clas-

sical estimator [71]. Nevertheless, the classical estimator is the most recom-

mended one for interval estimates [71]. It is also the easiest to program and

105
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produces quite good results, in terms of coverage, for long simulation runs with-

out any extra cost in memory [71]. Therefore, the classical estimator remains

an attractive candidate for long simulation runs, especially when estimating

CIs in sequential steady-state simulations.

4.3 Sequential Method of RCs: A Problem of

Early Stopping

The stopping rule based on the relative statistical error of Equation (1.2) in

Section 1.2 should be modified for a sequential method of RCs4, based on n

RCs, as follows:

ε(n) =
∆(n)

r̂(n)
, (4.12)

where r̂(n) is the classical point estimator given in Equation (4.1), ∆(n) is the

half-width of the CI obtained on the basis of n RCs; see Equation (4.3), and

ε(n), 0 < ε(n) < 1, is the relative statistical error of the CI obtained on the

basis of n RCs. As discussed in Section 1.2.1, any sequential experiment using

the RC method, with the stopping rule of Equation (4.12), is also stopped at

the first checkpoint at which ε(n) ≤ εmax, where εmax is the required limit of

the relative statistical error of the simulation results.

From Equation (4.12), we can derive the following formulae for a sequential

simulation stopping rule:

∆(n)

r̂(n)
≤ εmax (4.13)

or

tn−1,1−α/2

εmax
≤ ȳ(n)

√
n

s(n)
. (4.14)

Assuming that we wish to obtain the estimate with a relative statistical error

of 5%, at the 95% confidence level, Equation (4.14) reduces, for large samples

4A flowchart and pseudocode of the sequential procedure for the RC method are given

in Appendix B.3.
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(n → ∞), to

1.96

0.05
= 39.2 ≤ ȳ(n)

√
n

s(n)
, (4.15)

giving a simpler version of the stopping criterion, which can help us to under-

stand the problem of the sequential method of RCs. This stopping condition

can be easily satisfied when an estimated mean (of, for example, waiting times

or response times) has a very large value, or its estimated variance s2(n) has a

very small value. Our experiments have shown that after two RCs have been

collected (when applying n1 = 2, where n1 is the run-length measured by the

number of RCs, as the location of the first checkpoint), one can sometimes

have a very large value of the mean or a very small value of the variance.

These situations cause simulation experiments to stop accidentally after too

few RCs are collected.

Figures 4.1 (a), (b), and (c) are enlargements of those spikes, which can

represent ‘extremely short’ runs, in Figures 3.2 (c), 3.3 (c), and 3.4 (c) for

the M/M/1/∞, M/D/1/∞, and M/H2/1/∞ queueing systems, respectively.

These results clearly show that many sequential simulations are accidentally

stopped after as few as two RCs collected, when applying n1 = 2 as the location

of the first checkpoint.

These abnormal situations in the sequential method of RCs can happen in

practice quite often. We have classified a simulation as ‘extremely short’ if its

recorded RCs is shorter than a threshold, which is 1% of the mean number of

collected RCs. Tables 4.1 - 4.3, which are obtained from the same data sets as

Figures 3.2 (c), 3.3 (c), and 3.4 (c), show the range of ‘extremely short’ runs

(measured by the number of RCs), the number of ‘extremely short’ runs, and

the probability of dealing with an ‘extremely short’ run, as well as the mean

number of recorded RCs over all 10,000 independent simulation replications

and the threshold value for filtering ‘extremely short’ runs when estimating the

mean response time in the M/M/1/∞, M/D/1/∞, and M/H2/1/∞ queueing

systems, respectively. The n/a in Table 4.2 means not applicable, since none

of simulations has less than two RCs.

As reported in the third column of Tables 3.4, 3.7, and 3.10 in Chapter 3,
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(a) M/M/1/∞ queueing system at ρ = 0.9
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(b) M/D/1/∞ queueing system at ρ = 0.9
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(c) M/H2/1/∞ queueing system at ρ = 0.9

Figure 4.1: Ranges and numbers of ‘extremely short’ simulation runs observed

in the sequential method of RCs when estimating the mean response time at

a confidence level of 0.95 with a statistical error ≤ 10%
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Table 4.1: Statistics from 10,000 replications using the sequential method of

RCs with n1 = 2 as the location of the first checkpoint (when estimating the

mean response time from the M/M/1/∞ queueing system at a confidence level

= 0.95 with a statistical error ≤ 10%)

ρ Range of Number of Probability of Mean number Threshold

extremely extremely being extremely of collected RCs for

short runs short runs short runs per replication filtering

0.1 2 - 4 RCs 567 5.67% 459 4.5

0.2 2 - 5 RCs 601 6.01% 590 5.9

0.3 2 - 5 RCs 593 5.93% 770 7.7

0.4 2 - 5 RCs 598 5.98% 1011 10.1

0.5 2 - 6 RCs 621 6.21% 1371 13.7

0.6 2 - 7 RCs 688 6.88% 1894 18.9

0.7 2 - 7 RCs 797 7.97% 2812 28.1

0.8 2 - 10 RCs 1117 11.17% 4510 45.1

0.9 2 - 28 RCs 1819 18.19% 9296 92.9

short simulation runs collected when applying the sequential method of RCs

seriously accelerate the degradation of the quality in terms of coverage, un-

like the other analysis methods: NOBM and SA/HW. Most runs among short

simulation runs are ‘extremely short’ in the sequential method of RCs (see

Tables 3.4, 3.7, and 3.10 in Chapter 3, and Tables 4.1 - 4.3). This definitely

causes very poor coverage, since ‘extremely short’ simulation runs do not pro-

duce valid CIs, which will contain the true value of the parameter, with the

specified probability. This also makes the threshold5 for filtering ‘too short’

simulation runs much lower than those of the other analysis methods such as

NOBM and SA/HW.

All the results so far have used the classical estimator. It is interesting to in-

vestigate whether this still occurs with alternative ratio estimators. Therefore,

5We assumed the threshold for filtering ‘too short’ simulation runs calculated from the

mean simulation run-length minus one standard deviation of run-lengths, suggested in [134].
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Table 4.2: Statistics from 10,000 replications using the sequential method of

RCs with n1 = 2 as the location of the first checkpoint (when estimating the

mean response time from the M/D/1/∞ queueing system at a confidence level

= 0.95 with a statistical error ≤ 10%)

ρ Range of Number of Probability of Mean number Threshold

extremely extremely being extremely of collected RCs for

short runs short runs short runs per replication filtering

0.1 n/a n/a n/a 4 0.04

0.2 n/a n/a n/a 8 0.08

0.3 n/a n/a n/a 15 0.15

0.4 n/a n/a n/a 32 0.32

0.5 n/a n/a n/a 68 0.68

0.6 n/a n/a n/a 152 1.52

0.7 2 - 3 RCs 3226 32.26% 356 3.56

0.8 2 - 8 RCs 3432 34.32% 882 8.82

0.9 2 - 26 RCs 3814 38.14% 2610 26.1

the three selected alternative estimators: the Beale estimator, the jackknife es-

timator, and the Tin estimator, discussed in Section 4.2, were investigated with

including the classical estimator. The distributions of simulation run-lengths,

measured by the number of RCs, obtained using all four estimators are depicted

in Figure 4.2 using 3,000 independent simulation replications of estimating the

mean response time at a traffic intensity ρ = 0.9 in the M/M/1/∞ queue-

ing system. We have applied n1 = 2 as the location of the first checkpoint.

The distributions obtained are quite similar except for the initial height of

the isolated spikes which represent the ‘extremely short’ simulation runs. The

jackknife estimator appears to be the best one, since the height of the spike is

the lowest. This may be caused by the theoretical properties of the jackknife

estimator. However, even then, ‘extremely short’ simulation runs still appear.

Statistics obtained from the same data sets of Figure 4.2 are also presented

in Table 4.4. The threshold for filtering ‘too short’ runs is the mean number
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Table 4.3: Statistics from 10,000 replications using the sequential method of

RCs with n1 = 2 as the location of the first checkpoint (when estimating the

mean response time from the M/H2/1/∞ queueing system at a confidence

level = 0.95 with a statistical error ≤ 10%)

ρ Range of Number of Probability of Mean number Threshold

extremely extremely being extremely of collected RCs for

short runs short runs short runs per replication filtering

0.1 2 - 4 RCs 443 4.43% 4426 44.2

0.2 2 - 4 RCs 507 5.07% 6941 69.4

0.3 2 - 5 RCs 468 4.68% 9228 92.2

0.4 2 - 4 RCs 503 5.03% 11318 113.1

0.5 2 - 4 RCs 508 5.08% 13461 134.6

0.6 2 - 8 RCs 616 6.16% 15675 156.7

0.7 2 - 18 RCs 806 8.06% 18761 187.6

0.8 2 - 20 RCs 1138 11.38% 23976 239.7

0.9 2 - 64 RCs 1872 18.72% 37334 373.3

of collected RCs minus its standard deviation and the threshold for filtering

‘extremely short’ is defined as runs shorter than 1% of the mean number of

collected RCs. The numbers of ‘too short’ runs include the numbers of ‘ex-

tremely short’ runs. The results show that the numbers of ‘extremely short’

simulation runs in the sequential method of RCs are very much affected to

the mean number of collected RCs per replication and the thresholds used for

filtering ‘too short’ runs, since greater numbers of ‘extremely short’ runs cause

the mean number of collected RCs per replication and the threshold for ‘too

short’ runs to be smaller. This is because all the statistics are obtained from

all the executed simulation runs including those that are ‘extremely short’ and

‘too short’.

Of course, filtering simulation runs by discarding those of length shorter

than the threshold for ‘too short’ runs does completely remove ‘extremely

short’ runs, but it does not remove ‘too short’ runs sufficiently well in most
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(a) The classical estimator
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(b) The Beale estimator
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(c) The jackknife estimator
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(d) The Tin estimator

Figure 4.2: Distributions of simulation run-lengths, measured by the number

of RCs, for the sequential method of RCs using different estimators (when

estimating the mean response time at ρ = 0.9 from the M/M/1/∞ queueing

system at a confidence level = 0.95 with a statistical error ≤ 10%)

cases. It would seem that the original role of filtering simulation runs with

the supposed threshold for ‘too short’ runs is ineffective in such a case, since

many ‘extremely short’ runs still appear in the sequential method of RCs. As

increasing the threshold for filtering ‘too short’ runs, one can make the role of

filtering active. However, it has to be paid the cost of collecting more replica-
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Table 4.4: Statistics obtained from 3,000 replications for the sequential method

of RCs with different estimators (when estimating the mean response time at

ρ = 0.9 from the M/M/1/∞ queueing system at a confidence level = 0.95 with

a statistical error ≤ 10%)

Mean Threshold Number of runs

Estimators number of for filtering filtered

RCs per extremely too extremely too

replication short runs short runs short runs short runs

Classical 9,377 93.7 3,231 530 540

Beale 7,848 78.4 1,272 937 938

Jackknife 10,999 109.9 5,771 147 309

Tin 9,279 92.7 3,187 554 564

tions for a sequential coverage analysis or has to use not sufficient number of

runs in coverage analysis.

Statistics presented in Table 4.4 also show that the jackknife estimator

seems slightly better than the other estimators, since the phenomenon of ‘ex-

tremely short’ runs occurs less often. This makes the threshold for filtering

‘too short’ runs and the mean number of collected RCs per replication high.

Therefore, all observed ‘extremely short’ runs and many ‘too short’ runs have

been removed in this case. However, no matter which ratio estimator is used,

‘extremely short’ simulation runs still appear in the sequential method of RCs

and affect the final results. Because of this reason and the requirement of extra

memory, we do not select the jackknife estimator for the sequential method of

RCs. We do select the classical estimator for the sequential method of RCs

since it is simple and is recommended for interval estimates in [71].

Another solution must be sought to completely remove the ‘extremely

short’ simulation runs. Then, the original role of filtering simulation runs

with the threshold for ‘too short’ runs can be activated to improve the qual-

ity of the final results. Therefore, we will investigate the importance of the

location of the first checkpoint to find out a solution in Section 4.4.
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4.4 Location of the First Checkpoint for the

Sequential Method of RCs

The location of the first checkpoint, at which one computes the relative sta-

tistical error ε(n) and checks the stopping criterion, can be assumed after

collecting at least two RCs (i.e., n1 ≥ 2, where n1 is the run-length measured

by the number of RCs) [89], [165]. As shown by the experimental results in

Section 4.3, this definitely causes simulation runs are often ‘extremely short’,

since the stopping rules for the sequential method of RCs can be satisfied after

collecting only two RCs that are too short. Only, if the location of the first

checkpoint is carefully selected, it is possible to avoid collecting ‘extremely

short’ runs.

The distributions of random simulation run-lengths, measured by the num-

ber of RCs, for 3,000 independent simulation replications of the M/M/1/∞,

M/D/1/∞, and M/H2/1/∞ queueing systems with a traffic intensity ρ = 0.9

are shown in Figures 4.3 - 4.5. A number of different locations (locating it

between n1 = 2 to n1 = 150 RCs) of the first checkpoint were assumed. As we

would expect, the number of ‘extremely short’ simulation runs diminishes by

delaying the first checkpoint by a larger number of RCs n1. When a minimum

number of 30 RCs or more (n1 ≥ 30) for the M/M/1/∞ and M/D/1/∞ queue-

ing systems and 100 RCs or more (n1 ≥ 100) for the M/H2/1/∞ queueing

system are assumed, ‘extremely short’ simulation runs (especially the spike)

completely disappear; see Figures 4.3 (c) - (f), 4.4 (c) -(f), and 4.5 (e) and (f).

However, ‘extremely short’ runs can still be seen if a minimum number of ten

RCs (n1 = 10), as suggested in [89], are used; see Figures 4.3 (b), 4.4 (b), and

4.5 (b).

The results of coverage analysis with different locations of the first check-

point (n1 = 2, 10, 30, 50, 100, and 150 RCs) for the M/M/1/∞, M/D/1/∞,

and M/H2/1/∞ queueing systems at a traffic intensity of 0.9, are depicted in

Figure 4.6. Each point is obtained from 3,000 independent sequential simula-

tion runs, and the mean response time was estimated at a confidence level of

0.95 with a statistical error less than or equal to 10%. This result shows that
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(c) n1 = 30
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(d) n1 = 50
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(f) n1 = 150

Figure 4.3: Simulation run-lengths, measured by the number of RCs, with

different locations of the first checkpoint (M/M/1/∞, ρ=0.9, n1 is the location

of the first checkpoint)
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(c) n1 = 30
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(d) n1 = 50
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(e) n1 = 100
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(f) n1 = 150

Figure 4.4: Simulation run-lengths, measured by the number of RCs, with

different locations of the first checkpoint (M/D/1/∞, ρ=0.9, n1 is the location

of the first checkpoint)
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(c) n1 = 30
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(d) n1 = 50
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(e) n1 = 100
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(f) n1 = 150

Figure 4.5: Simulation run-lengths, measured by the number of RCs, with dif-

ferent locations of the first checkpoint (M/H2/1/∞, ρ=0.9, n1 is the location

of the first checkpoint)
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(a) M/M/1/∞ queueing system at ρ = 0.9
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(b) M/D/1/∞ queueing system at ρ = 0.9
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(c) M/H2/1/∞ queueing system at ρ = 0.9

Figure 4.6: Coverage analysis vs different locations of the first checkpoint n1

= 2, 10, 30, 50, 100, and 150 RCs (the confidence level = 0.95)
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as the location of the first checkpoint is delayed until the predefined minimum

number of RCs is collected, the final coverage improves and also converges

to a certain level of coverage. This is caused by increasing the simulation

run-lengths and decreasing its standard deviations by avoiding the ‘extremely

short’ runs. However, the final coverage is still far from the required level of

0.95.

From these results, we can confirm that more credible final results in the

sequential method of RCs can be obtained by choosing a prudent location of

the first checkpoint after a suitable number of RCs has been observed. Our

results also point to at least 100 RCs6 or more (n1 ≥ 100) as an acceptable

location of the first checkpoint in the sequential method of RCs.

As presented in Tables 3.4, 3.7, and 3.10 in Chapter 3, ‘too short’ simulation

runs (including ‘extremely short’ runs) have poor coverage, especially in the

case of the sequential method of RCs, where all are below 21%, compared

with the assumed theoretical confidence level of 95%. However, the coverage

is significantly improved by the location of the first checkpoint having 100 RCs

(n1 = 100), as shown in Tables7 4.5 - 4.7 for the M/M/1/∞, M/D/1/∞, and

M/H2/1/∞ queueing systems, respectively. The experimental results of the

sequential RCs method are now comparable with NOBM and SA/HW; see

Tables 3.2 and 3.3 (M/M/1/∞), Tables 3.5 and 3.6 (M/D/1/∞), and Tables

3.8 and 3.9 (M/H2/1/∞) in Chapter 3.

Convergences of the coverage of the sequential RCs method when applying

the two different locations of the first checkpoint as having two RCs (n1 =

2) and 100 RCs (n1 = 100) are shown in Figure 4.7, for 3,000 independent

simulation runs of the M/M/1/∞ queueing system loaded at 0.5. One can

see that the final coverage of the sequential method of RCs obtained when

applying the location of the first checkpoint as having 100 RCs (n1 = 100) is

6For the M/M/1/∞ and M/D/1/∞, 30 RCs or more (n1 ≥ 30) as the location of the

first checkpoint is an acceptable location, while 100 RCs or more (n1 ≥ 100) is an acceptable

location for the M/H2/1/∞. However, we have selected 100 RCs or more (n1 ≥ 100), since

it is safer to use in practice.
7Note that the results for the method of RCs in Tables 4.5 - 4.7 were presented by the

number of collected observations to facilitate comparisons with NOBM and SA/HW.
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4.4 Location of the First Checkpoint for the Sequential Method of RCs

Table 4.5: Sequential method of RCs with the assumption of a minimum num-

ber of 100 RCs (n1 = 100) collected before stopping, from 10,000 simulation

replications: M/M/1/∞, theoretical confidence level = 0.95

ρ Number of Coverage of Probability of Threshold Mean of

too short runs too short runs being too short for filtering run-lengths

0.1 1327 85.9% 13.3% 426 541

0.2 1282 76.6% 12.8% 564 785

0.3 1317 68.0% 13.2% 792 1169

0.4 1226 58.4% 12.3% 1144 1793

0.5 1225 56.2% 12.3% 1795 2922

0.6 1237 52.1% 12.4% 3037 5097

0.7 1286 52.4% 12.9% 6007 10147

0.8 1220 49.4% 12.2% 14787 25675

0.9 1288 49.9% 12.9% 66487 114189

Table 4.6: Sequential method of RCs with the assumption of a minimum num-

ber of 100 RCs (n1 = 100) collected before stopping, from 10,000 simulation

replications: M/D/1/∞, theoretical confidence level = 0.95

ρ Number of Coverage of Probability of Threshold Mean of

too short runs too short runs being too short for filtering run-lengths

0.1 935 34.4% 9.4% 107 112

0.2 135 10.5% 1.1% 113 127

0.3 0 N/A 0.0% 113 156

0.4 0 N/A 0.0% 112 219

0.5 0 N/A 0.0% 129 373

0.6 446 0.0% 4.5% 223 781

0.7 1269 11.7% 12.7% 670 2044

0.8 1254 18.6% 12.5% 2910 7012

0.9 1264 31.6% 12.6% 21423 42596
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Table 4.7: Sequential method of RCs with the assumption of a minimum num-

ber of 100 RCs (n1 = 100) collected before stopping, from 10,000 simulation

replications: M/H2/1/∞, theoretical confidence level = 0.95

ρ Number of Coverage of Probability of Threshold Mean of

too short runs too short runs being too short for filtering run-lengths

0.1 1386 72.2% 13.8% 3950 5149

0.2 1342 72.1% 13.4% 6970 9129

0.3 1342 72.4% 13.4% 10550 13840

0.4 1346 75.6% 13.4% 15025 19890

0.5 1360 71.5% 13.6% 21080 28356

0.6 1305 69.1% 13.0% 30257 41887

0.7 1315 68.7% 13.1% 47713 68011

0.8 1335 63.6% 13.3% 90734 135191

0.9 1278 56.9% 12.8% 288628 459121

much better than the one when applying two RCs (n1 = 2).

As discussed in Chapter 2, the CIs of the coverage for any method of

simulation output data analysis should contain the confidence level assumed

for the final results [156]. In practice, this criterion is seldom met, so it is

more appropriate to claim that a method is accepted for practical applications

if the CIs of its coverage is sufficiently close to the assumed confidence level.

However, Figure 4.7 (a) and (b) show that the final coverage can still be far

away from the required level of 0.95, even if the location of the first checkpoint

as having 100 RCs (n1 = 100) is applied. As pointed out in [134], this is because

an insufficient number of bad final CIs was recorded, as well as the results

from ‘too short’ simulation runs are included in the final results. Applying

the location of the first checkpoint as having 100 RCs (n1 = 100) definitely

guarantees that the runs of the sequential method of RCs are not ‘extremely

short’.

Even more accurate results in terms of coverage analysis may be achieved

if we additionally adopt the proposed rules (including discarding ‘too short’
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Figure 4.7: Convergence of the coverage of the sequential method of RCs (when

estimating the mean response time at ρ = 0.5 from the M/M/1/∞ queueing

system at a confidence level = 0.95 with a statistical error ≤ 10%)

simulation runs) of experimental coverage analysis for the sequential method of

RCs. Therefore, to see an improvement in the final result, we assume that, for

representativeness of simulation output data for coverage analysis, a minimum

of 200 bad CIs must be recorded before sequential analysis of the coverage

can commence and then the results from all simulation runs shorter than a

threshold (of mean run-lengths minus one standard deviation of run-lengths)

are discarded. Typical convergence of the coverage to its final level for such

a scenario is shown in Figure 4.8. As we can see in Figures 4.7 (b) and 4.8,

such an approach results in a jump of the coverage from about 0.9 to close
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to the assumed confidence level of 0.95, as the statistical noise introduced by

‘too short’ simulation runs is removed. From these results, one can see that

applying the location of the first checkpoint as having 100 RCs (n1 = 100) and

employing the rules of experimental coverage analysis for sequential simulation

(discussed in Chapter 2), have great practical value.
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Figure 4.8: Convergence of the coverage of a sequential method of RCs when

applying the location of the first checkpoint as having 100 RCs (n1 = 100),

collecting at least 200 bad CIs before stopping, and discarding ‘too short’ runs

(when estimating the mean response time at ρ = 0.5 from the M/M/1/∞
queueing system at a confidence level = 0.95 with a statistical error ≤ 10%)

4.5 Coverage Analysis for Sequential Method

of RCs

All results of our sequential coverage analysis of the sequential RCs method

were obtained assuming the required statistical error of the final result was

5% or less, at a confidence level of 0.95, when applying the rules of experi-

mental coverage analysis for sequential simulation formulated in Chapter 2,

and when applying the two different locations of the first checkpoint as having

2 RCs (n1 = 2) and 100 RCs (n1 = 100). The results for the M/M/1/∞,

M/D/1/∞, and M/H2/1/∞ queueing systems obtained from non-sequential

coverage analysis of a fixed 200 replications and sequential coverage analysis
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for the location of the first checkpoint having 2 RCs (n1 = 2) are presented

in Figure 4.9. These results show that the final results analysed sequentially

are more reliable and credible than the one analysed non-sequentially, since

the final result analysed sequentially has higher and more stable coverage, and

narrower CIs. However, in heavily loaded systems for the three queueing sys-

tems and in lightly loaded systems for the M/D/1/∞ queueing system, the

coverage is still not acceptable.

Figure 4.10 shows the results obtained by sequential coverage analysis of

the sequential method of RCs when applying the two different locations of

the first checkpoint as having 2 RCs (n1 = 2) and 100 RCs (n1 = 100) for

the M/M/1/∞, M/D/1/∞, and M/H2/1/∞ queueing systems, respectively.

These results clearly show the remarkable improvement of the quality of the

sequential method of RCs when applying the location of the first checkpoint

as having 100 RCs (n1 = 100) in the sense of the final coverage and the satis-

factorily small statistical errors. The coverage in heavily loaded M/M/1/∞,

M/D/1/∞, and M/H2/1/∞ queueing systems obtained when applying the

location of the first checkpoint as having 100 RCs (n1 = 100) are quite satis-

factory, unlike NOBM8 and SA/HW which are far from the required level; see

Figures 2.7 (a) and (b) (M/M/1/∞), Figures 2.8 (a) and (b) (M/D/1/∞),

and Figures 2.9 (a) and (b) (M/H2/1/∞) presented in Chapter 2.

Figure 4.10 (b) also shows that the unusual poor coverage observed in

lightly loaded traffic of the M/D/1/∞ queueing system in the RCs method (see

also Figure 2.8 (c)) has been significantly improved by assuming the location

of the first checkpoint as having 100 RCs (n1 = 100). This clearly means that

choosing the proper location of the first checkpoint in the sequential method

of RCs is very important.

8In Akaroa-2 [28], after discarding observations collected during the initial transient pe-

riod, the locations of the first checkpoint in the sequential NOBM and SA/HW methods are

determined by r and max(2r, 2n0), where r is the number of batch means of batch size b

(the default initial values are r = 100, b = 50 for NOBM, and b = 1 for SA/HW) and n0 is

the length of the initial transient period, respectively; also see [128] for detailed discussion

of the first checkpoint for these two methods.
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(a) M/M/1/∞ queueing system
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(b) M/D/1/∞ queueing system
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(c) M/H2/1/∞ queueing system

Figure 4.9: Coverage analysis of sequential method of RCs when applying

the location of the first checkpoint as having 2 RCs (n1 = 2) (non-sequential

coverage analysis of 200 replications and sequential coverage analysis)
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(a) M/M/1/∞ queueing system
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(b) M/D/1/∞ queueing system
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(c) M/H2/1/∞ queueing system

Figure 4.10: Sequential coverage analysis of sequential method of RCs when

applying the two different locations of the first checkpoint as having 2 RCs

(n1 = 2) and 100 RCs (n1 = 100)
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4.6 Conclusions

Many methods of steady-state simulation output data analysis, such as spec-

tral analysis, batch means, regenerative cycles (RCs), and standardised time

series, have been proposed. The method of RCs naturally avoids the problem

of the initial transient period. Therefore, for simulation output data analysis

this is a very attractive alternative. However, a sequential steady-state sim-

ulation with the RC method can lead to inaccurate simulation results if the

simulation experiment stops too early, when the sequential stopping criterion is

accidentally temporarily satisfied. In particular, ‘extremely short’ simulation

runs observed when applying the sequential method of RCs seriously degrade

the quality in terms of coverage, unlike the other analysis methods: NOBM

and SA/HW where any ‘extremely short’ simulation runs have not been ob-

served. ‘Extremely short’ runs in the sequential method of RCs are caused

by an imprudent selection of the location of the first checkpoint. ‘Extremely

short’ runs have as few as two RCs, since the stopping rules have been satisfied

at the first checkpoint, when only two RCs are collected. This can happen due

to the random nature of the fluctuations in the estimated relative statistical

error during the stochastic simulation.

If the first checkpoint for sequential RCs is carefully selected, it is possible

to avoid collecting ‘extremely short’ simulation runs. Lavenberg and Sauer [89]

proposed that the simulation should be stopped when a minimum number of

RCs is observed (they assumed the arbitrary number of ten) and the required

statistical error is obtained. Therefore, we studied the sequential method of

RCs with a number of different locations for the first checkpoint. The exper-

imental results clearly show that the number of ‘extremely short’ simulation

runs is diminished by delaying the location of the first checkpoint. As having

stopped simulations after a minimum number of 100 RCs or more have been

observed, ‘extremely short’ simulation runs (especially the spike) completely

disappear, while ‘extremely short’ simulation runs can still be seen if a min-

imum number of ten RCs (n1 = 10) as the location of the first checkpoint,

suggested in [89], is used.

Based on our results, we have suggested the best location of the first check-
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point is after a minimum number of 100 RCs or more (n1 ≥ 100) have been

collected, especially for the sequential RCs method. This enables us to achieve

final results with the required statistical error and the required level of cov-

erage, as ‘extremely short’ and ‘too short’ runs are eliminated. Adopting

n1 ≥ 100 as the location of the first checkpoint leads to comparable experi-

mental results with NOBM and SA/HW.

The stopping rules having n1 = 100 as the location of the first checkpoint,

and the rules for experimental coverage analysis for sequential simulation pro-

posed in Chapter 2 have also been applied to the analysis of the steady-state

means for the M/M/1/∞, M/D/1/∞, and M/H2/1/∞ queueing systems.

These results clearly show that a remarkable improvement in the quality of

the sequential method of RCs is obtainable in the sense of the final coverage

and the satisfactorily small statistical errors. Our experimental results indicate

that the method of RCs in its sequential version is an attractive solution for

simulation practitioners if special care is taken to avoid including ‘too short’

simulation runs, to choose the appropriate location of the first checkpoint to

avoid ‘extremely short’ simulation runs, and to identify the regenerative state.
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Chapter 5

AUTOMATION OF

SEQUENTIAL

STEADY-STATE QUANTILE

ESTIMATION

5.1 Quantiles: Importance and Limitations

When simulating a dynamic stochastic system, such as a computer system or

telecommunication network, the simulator is frequently more concerned with

quantiles which can characterise the extreme performance of the simulated

system, than with its average behaviour. Quantiles are particularly useful

for planning necessary capacities for various resources, comparing the overall

performance of alternative designs, or establishing minimum standards of per-

formance. For example, part of the performance specification for the design of

an interactive computer system can be expressed in terms of quantiles of the

response time instead of the mean response time, e.g., the 0.9 quantile of the

response time should be less than or equal to, say, two seconds. In general,

although knowing all the quantiles would be equivalent to knowing the distri-

bution function, one usually looks at only a few quantiles or combinations of

quantiles to obtain information about the location, shape, and dispersion of
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the distribution [109].

We shall first define the concept of quantiles of a distribution of a random

variable X. If FX(x) is a continuous cumulative density function (cdf) and p

satisfies 0 < p < 1, then the equality

Pr[X ≤ Qp] = p (5.1)

means that Qp is the p quantile. Intuitively, it means that the random variable

X takes values less than or equal to Qp with probability p. If the cdf is not

continuous, Equation (5.1) does not give a quantile for all p ∈ (0, 1). Then,

Qp is defined as follows:

Qp = min{x : Pr[X ≤ x] = p}. (5.2)

Notice that Equation (5.2) is also valid for continuous FX(x) [109].

To estimate quantiles, let x1 ≤ x2 ≤ . . . ≤ xn, xi ≥ 0, be the or-

dered sequence of n observations of a random variable X, collected during the

simulation. The usual point estimator of the p quantile, Q̂p(n), is given by

Q̂p(n) =

{
xnp, if np is an integer

xbnpc+1, if np is not an integer
(5.3)

where 0 < p < 1, and bnpc denotes the integral part of np [109].

For large samples, the estimator Q̂p(n) performs well, since (bnpc+1)/n →
p as n → ∞. However, for small samples it may not perform well, particularly

when probability p is close to 0 or 1. This may be an important issue if a limited

number of observations are available. For such cases, the alternative quantile

estimators can be found in [17] and [119]. To efficiently compute quantiles,

a few variance reduction techniques, such as antithetic variates ([5]), Latin

hypercube sampling ([5]), control variates ([66], [69], [70]), and importance

sampling ([48]), have been used to reduce the variance of quantile estimates.

The problem is that when using the estimator of Equation (5.3), especially

in the case of correlated sequences of observations, the length of the sample

sequence required for achieving an adequately small statistical error of the p

quantile Q̂p(n) can be very large and impossible to predict in advance. Di-

rect application of Equation (5.3) in quantile estimation (QE) requires large
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amount of computer memory for storing the entire sequence of observations,

since this must be sorted whenever a new observation is recorded. The best

possible computation time to sort1 n observations is O(n log2 n), and memory

proportional to n is required to store sorted values in order to find a given order

statistic. This can be a problem. For example, in a steady-state simulation of

an M/M/1/∞ queueing system, with traffic intensity ρ = 0.9, the estimation

of the 0.99 quantile of the waiting times in the queue requires roughly 500,000

observations to achieve an estimate with a relative statistical error of no more

than 10% for a 90% CI. For the 0.999 quantile, the required sample size is

approximately 2,300,000 to achieve an estimate with a relative statistical error

of no more than 10% at 0.9 confidence level [62].

An accurate point estimate of the p quantile Q̂p(n) could require storing

the entire sequence of observations, and its dynamic ordering, as the sequence

is expanded. Additional storage would be needed to estimate the variance

of the p quantile Q̂p(n). Clearly, repeated storing and sorting of the entire

sequence for QE is impractical in such long runs. Several approaches for es-

timating quantiles that are linear in computation time and use little memory

have been proposed in [72], [74], and [163]. These approaches were originally

developed for traditional (non-sequential) procedures. As discussed in Chapter

1, sequential analysis of simulation output data is generally accepted as the

only efficient way of achieving an acceptable statistical error of the final results

[91]. A sequential QE approach based on a P 2 (Piecewise-Parabolic) formula

proposed by Jain and Chlamtac [74] has been proposed in [141] and [142].

The most commonly used stopping rule of a sequential stochastic simu-

lation, as discussed in the previous chapters, can be adapted for a sequential

QE. Assuming the estimates of an unknown quantile Θ come from a symmetric

distribution, the stopping rule is based on the relative half-width of the CIs at

1Numerous sorting algorithms are available in the literature, see for example, [67]. Among

them, quicksort is the best of the sorting methods with regard to the average computing

time. With the minor modification of quicksort based on the partition algorithm, the p

quantile defined in Equation (5.3) can be obtained by a partial sort instead of the full sort

of n observations.
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a given confidence level, defined as the ratio

ε(n) =
∆(n)

Θ̂(n)
; 0 < ε(n) < 1, (5.4)

where Θ̂(n) is the point estimate of the unknown quantile Θ from the sequence

of n observations and ∆(n) is the half-width of the CIs for Θ at the (1 - α)

confidence level, 0 < α < 1. In a sequential QE, as with sequential mean

estimation, the simulation experiment is also stopped at the first checkpoint

at which ε(n) ≤ εmax, where εmax is the required upper limit of the relative

statistical error of the final results at the 100(1-α)% confidence level, 0 <

εmax < 1 [100], [103].

Our aim is to find a robust estimator of quantiles which could be used

in practical applications of sequential steady-state simulation and could also

be implemented in a fully automated simulation package such as Akaroa-2

[28]. In this chapter, we have investigated three sequential QE approaches:

linear QE (proposed by Iglehart [72] in non-sequential procedures), batching

QE (proposed by Seila [163], [164] in non-sequential procedures) for the method

of regenerative cycles (RCs) in Section 5.2, and spectral P 2 QE (proposed by

Raatikainen [141], [142] in sequential procedures) for the method of non-RCs in

Section 5.3. These do not require storing and sorting of the entire sequence of

collected observations. Methods of sequentially detecting the initial transient

period for QE are also investigated in Section 5.3. The numerical results of the

coverage analysis of these three sequential quantile estimators are presented in

Section 5.5. Finally, our findings are summarised in Section 5.6.

5.2 Sequential QE Based on the Method of

RCs

Iglehart ([72]) and Seila ([163] and [164]) developed special methods of QE that

eliminate the problems of storing and sorting the entire sequences for processes

with regeneration points: points at which these processes restart (probabilis-

tically) afresh. An example is the waiting time process in an M/M/1/∞
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queueing system which regenerates every time a customer arrives to find the

queue empty; see Appendix B.3. Comparisons of their approaches to QE in

fixed-sample size stochastic simulations are given in [164].

Here, we consider two sequential quantile estimators for the RC method,

based on Iglehart’s and Seila’s non-sequential proposals, assuming the sequen-

tial stopping rule of Equation (5.4) based on the relative statistical error [100],

[103]. They are called the linear and the batching methods of QE. These require

O(n) computation time as they do not need sorting, and store only aggregated

data for four and two summary statistics, respectively.

5.2.1 Sequential QE Using the Linear Approach

The linear QE approach was originally developed by Iglehart [72] using the

method of RCs with a fixed-sample size. Here, we adapt that approach for

sequential QE. First, we specify a grid of h+1 points2 g0, g1, ..., gh, g0 <

g1 < ... < gh, so that all observations lie between g0 and gh. Next, to find a

given quantile estimate, this method estimates the cumulative density function

only at the grid points, and uses linear interpolation between them. Simulation

continues until the steady-state quantile has been estimated with the required

relative statistical error, at the given confidence level. A flowchart of this

procedure is given in Figure 5.1. n1 as the location of the first checkpoint

should be selected carefully to produce a sufficient number of observations to

ensure that all bins have observations.

Let us consider how the quantile Qp would be estimated in the course of

a simulation experiment by collecting observations in h bins, where an obser-

vation is put into bin i if the observation is between grid point gi−1 and gi.

Then, having simulated n RCs, we would accumulate the number of observa-

tions in each bin. If wn(i), i = 1, · · · , h, is the total number of observations in

bin i during n RCs, then the empirical cumulative distribution function of the

2The number of grid points (h+1) and the space between the grid points must be carefully

selected to ensure that all observations fall into one of bins and each bin has observations.

For example, if the number of grid points (h+1) selected is too large, we can not be sure

that each bin contains observations.
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Calculate the quantile (using   
   linear interpolation) and 
the variance of the quantile

          Is the 
required statistical  
    error reached?

 The steady-state parameters  
have been estimated with the 
    required statistical error

YES

NO

 Collect observations during one RC :  
          all observations lie between   
          grid points  (g   ,  ... , g   ) 

 Collect  observations  during n   RCs :  
        all  observations  lie  between   
         grid  points   (g   ,  ... , g   ) 0 h

0 h

1

Figure 5.1: Flowchart for the sequential linear QE in the method of RCs

random variable X, Fn(·), estimated after n RCs would jump by wn(i)/βn at

grid point gi, where βn is the total number of observations collected during n

RCs. Then, a new distribution function F̂n(gi) at grid point gi, is estimated by

linear interpolation between Fn(gi) and Fn(gi+1). Next, the sample quantile

Q̂p(n) after n RCs would be estimated by taking

Q̂p(n) = F̂−1
n (gi). (5.5)
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The variance of this estimator is estimated as

σ̂2(Q̂p(n)) = σ̂2(yij(n)) − 2Fn(gi)cov(yij(n), aij(n)) + F 2
n(gi)σ̂

2(aij(n)), (5.6)

where yij(n) and aij(n) are the sum and the number of observations collected

for bin i in the jth RC over n RCs, respectively [72]. Here, σ̂2(·) and cov(·, ·) are

estimates of the variance and covariance, and Fn(gi) is the empirical cumulative

distribution function of the random variable X after n RCs at grid point gi.

A 100(1−α)% CI for the quantile Qp can be obtained by dividing Equation

(B.35) in Appendix B.3 with the slope of Fn(Q̂p(n)) [72]. Then, a 100(1−α)%

CI for the quantile Qp is given by

Q̂p(n) ± tdf,1−α/2σ̂(Q̂p(n))

āF ′(Q̂p(n))n
1
2

, (5.7)

where tdf,1−α/2 is the (1 − α/2) quantile of the t distribution with df = n − 1

degrees of freedom, F ′(Q̂p(n)) is estimated by wn(Q̂p(n)+1)
βn

, which is the slope of

Fn(Q̂p(n)), and ā = 1
n

∑n
j=1(

∑h
i=1 aij(n)); see [72] for more detailed discussion.

The pseudocode of the sequential procedures for the linear QE approach can

be found in Appendix D.1.

5.2.2 Sequential QE Using the Batching Approach

The batching QE approach was also originally developed for fixed-sample size

stochastic simulation only [163] and [164]. First, to adapt it to sequential QE,

one needs to group observations from a number of RCs into batches and consid-

ers quantile estimates computed for the batches as independent and identically

distributed observations. In sequential QE using the batching approach, ob-

servations collected during a batch have to be sorted. Before applying this

method, we must select a batch size b (the number of RCs in a batch), which

should sufficiently reduce the cost of computation time in sorting and the mem-

ory of storing within the required level of accuracy of the estimate. If the batch

size selected is too large, the accuracy of the estimates can be improved and

significant data reduction can be achieved. However, the computation time for

sorting and the memory for storing observations collected during a batch, can
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be increased severely. Therefore, the batch size b should be selected to satisfy

all the requirements of accuracy, computation time and memory. Seila [163]

recommended the batch size of 100 RCs or more to protect against inadequate

coverage probabilities. A flowchart of the sequential procedure for the batching

QE approach is given in Figure 5.2.

    Collect  observations  
from  one batch  of  b  RCs

Calculate the three sample quantiles from one 
sequence  of  a batch,  and  two  sequences    
   of  the 1st and 2nd half RCs of a batch

Determine the quantile from the 
  three sample quantiles using 
      the jackknife estimator    

   Collect  observations
from  one batch  of  b  RCs 

         Is the 
required statistical 
   error reached?

   Steady-state parameters have  
been estimated with the required 
               statistical error

YES

NO

                 Is the 
minimum number of r  batches  
        or more collected ?

YES

NO

 Determine the variance of the quantile 

1

Figure 5.2: Flowchart for the sequential batching QE in the method of RCs
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The batching method groups each batch of b RCs, and the three sample

quantile estimates are computed from each batch to incorporate a two-fold

jackknife procedure in order to reduce bias of the quantile estimators. One

sample quantile estimate is computed from all observations collected during a

batch, and the other two sample quantile estimates are computed from obser-

vations of the first and second half RCs of a batch. Assume that b is even, and

let Q̂p(b, i), Q̂p(b/2, i1), and Q̂p(b/2, i2) be the estimates of Qp computed from

the b RCs in the ith batch, and the first and second b/2 RCs in the ith batch us-

ing the ordinary quantile estimator3, respectively. Then, the jackknifed batch

p quantile is

J(Q̂p(b, i)) = 2Q̂p(b, i) − 1

2
(Q̂p(b/2, i1) + Q̂p(b/2, i2)). (5.8)

The sequence {J(Q̂p(b, i)), i = 1, 2, ..., r} over r batches consists of r i.i.d.

random variables. Let J(Q̄p(b, r)) and σ̂2(J(Q̄p(b, r))) denote the mean and

variance of such jackknifed quantile estimators, i.e.,

J(Q̄p(b, r)) =
1

r

r∑
i=1

J(Q̂p(b, i)); (5.9)

and

σ̂2(J(Q̄p(b, r))) =
1

r − 1

r∑
i=1

(J(Q̂p(b, i)) − J(Q̄p(b, r)))
2. (5.10)

Then, a 100(1 − α)% CI for the quantile Qp is given by

J(Q̄p(b, r)) ± tdf,1−α/2σ̂(J(Q̄p(b, r)))√
r

, (5.11)

where tdf,1−α/2 is the (1 − α/2) quantile of the t distribution with df = r −
1 degrees of freedom. The pseudocode of the sequential procedures for the

batching QE approach can be found in Appendix D.2.

3The sample quantile is obtained from the order statistic.
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5.3 Sequential QE for Non-Regenerative Pro-

cesses

QE for methods other than those based on RCs have been proposed by Hei-

delberger and Lewis [62], Jain and Chlamtac [74], and Raatikainen [141],

[142]. Heidelberger and Lewis’ QE method is based on an aggregation of

data sequences by using the maximum transformation, allowing it to work

with shorter sequences of (secondary) data. Only storing and sorting of the

reduced sequences are needed. They have pointed out the importance of the

problem of the initial transient period in the steady-state QE, but it has not

been investigated [62].

Jain and Chlamtac’s QE method is based on a P 2 (Piecewise-Parabolic)

formula. The detailed algorithm and its pseudocodes are given in [74]. The

P 2 algorithm solves the storage problem by allowing calculations of quantiles

dynamically, as the observations are generated. The sequence of observations

does not need to be stored. Instead, a few statistical counters are maintained

which help to refine the estimate. Therefore, QE using the P 2 algorithm

has a very small storage requirement, regardless of the number of observations

collected, and a small computing time, because no sorting is required. However,

this algorithm has also not considered the problem of the initial transient

period of the steady-state estimation.

An extended P 2 method based on the P 2 algorithm proposed in [74] has

been proposed by Raatikainen [141]. This method simultaneously estimates

several quantiles without storing and sorting the observations. A sequential

procedure for simultaneous estimation of several quantiles has been proposed

in [142]. This sequential version of the extended P 2 algorithm for estimating

steady-state quantiles uses a spectral method for estimating the variance of

the quantile estimates. This procedure has not been equipped with automated

detection of the length of the initial transient period. It has been determined

by a random number between 1,025 and 2,048 generated using a uniform dis-

tribution [142]. In that paper, the numbers of 1,025 and 2,048 were selected for

practical reasons only, since the observations were collected in segments and
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the assumed length of the segment in the sequential version of the extended

P 2 algorithm was 512.

Recently, another sequential QE approach has been proposed by Chen and

Kelton [18]. Chen and Kelton’s QE method is based on the order statistics

obtained from a pre-specified number of observations to estimate the sample

quantile, and the lower and upper bounds of the sample quantile. Storing

and sorting of the pre-specified number of observations are needed. However,

once the lower and upper bounds of the sample quantile are obtained, other

observations do not need to be stored. A newly generated observation will

then only be stored in the available memory when the observation is between

the lower and upper bounds inclusively. Therefore, this method reduces both

the memory requirement and the computation time. They have adopted the

stopping rule of absolute statistical error for a sequential QE. However, the

problem of the initial transient period of the steady-state estimation has not

been considered.

Therefore, firstly we will discuss detection methods of the initial transient

period for the steady-state estimation of quantiles, and investigate two de-

tection methods that should perform well (see [16], [57], and [81]) in a fully

automated simulation package [104]. Then, sequential QE using the spectral

P 2 approach ([100], [103]), not based on RCs, will be discussed, together with

the best detection method of the initial transient period.

5.3.1 Detection Methods of the Initial Transient Period

for QE

In steady-state simulations of non-regenerative processes, the performance af-

ter the system has reached a stable state is of interest. In such cases, results

of the initial transient period of the simulation should not be included in the

final results. If the initial transient period is not discarded properly, then the

inclusion of these observations in an estimate can lead to a serious bias in that

estimate, known as initialisation bias [104].

One way of dealing with initialisation bias is to run the simulation ex-
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periments for a sufficiently long period to make any influence of the initial

transient period negligible. While such an approach to a stochastic steady-

state simulation can sometimes lead to acceptable results, one may still finish

with statistically inaccurate results since it is difficult to ensure that the length

of run chosen is long enough.

A more appropriate method is to collect observations only after the system

has reached steady-state. This may completely eliminate the initialisation

bias. However, a problem with this approach is that one needs to recognise

that steady-state has been achieved. Of course, if the output is truncated too

early, then significant bias might still be present. If it is truncated too late,

then many good observations are lost.

A number of ways to estimate the length of the initial transient period of

steady-state simulations for estimators of mean values have been proposed in

[16], [57], and [162]. Basic problems related to the existence of initial transient

periods can be found, for example, in [128], [150], and [180]. The length of

the initial transient period has traditionally been determined using different

heuristic rules. A survey of heuristic rules can be found in [128]. More precise

measures of the length of the initial transient could be obtained by using

various statistical tests invented to test the stationarity of data sequences.

These tests operate in a hypothesis testing framework, formally testing the

null hypothesis that there is no initialisation bias in the output mean against

the alternate hypothesis that initialisation bias exists in the output.

Numerous statistical tests have been proposed by Goldsman, Schruben and

Swain [57], Schruben [160], and Yücesan [182]. Comparative studies can be

found in [16], [57], and [81]. Their studies revealed that two statistical tests

proposed by Schruben et al. [162], and Goldsman, Schruben and Swain [57]

can determine the length of the initial transient period quite well [104].

All heuristic rules and statistical tests for detecting the initial transient

period have been developed for the case where the steady-state mean of the

system is estimated, but none have been developed for estimating steady-state

quantiles. Most papers discussing QE have not considered the problem of the

initial transient period; see [18], [62], and [74], with the exception of one written
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by Raatikainen [142]. However, Raatikainen [142] has discarded an initial

transient period of random length (determined by the uniform distribution

U(1025, 2048)) to reduce the initialisation bias. This is definitely better than

no consideration of the initialisation bias, but it is not the best idea.

So far no theory has been developed on the rate of convergence of quan-

tiles to their steady-state values. However, from studies of the convergence of

quantiles to theoretical quantiles (see for example, M. Fisz [36], pp. 377 - 379),

it appears that sample quantiles should converge stochastically to their limit

values in much the same way as sample means. A quantile is also closely re-

lated to the probability of a level; see Equations (5.1) and (5.2). In the case of

a symmetric continuous distribution (e.g., normal distribution), for example,

a 50th percentile (e.g., 0.5 quantile) of the parameter of interest is equal to the

sample mean of the parameter of interest [109]. Therefore, this suggests that

one could apply statistical tests developed for the mean to detect the length

of the initial transient period of QE. We adopt two statistical tests proposed

by Schruben [162] and Goldsman, Schruben and Swain [57] to discover the

suitability of applying them in the case of QE. These are briefly summarised

below.

Schruben’s Test

Stationarity tests, based on a standardised time series estimator of mean value,

known as the maximum estimator, were first proposed by Schruben in [160].

These were improved by Schruben et al. in [162] using one of the standardised

time series estimators called the area estimator; see Appendix C for detailed

discussion of the two estimators. The latter test, based on the area estimator

([162]), will be called Schruben’s test in this dissertation.

Schruben’s test is based on the asymptotic convergence of partial sums

of deviations to a limiting stochastic process called the ‘Brownian bridge’

{Bt; 0 ≤ t ≤ 1}, i.e., a model of Brownian motion on the unit interval condi-

tioned to start and return to zero. It is used to test the hypothesis that a suf-

ficient number of initial transient observations has been discarded. Rejection
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or acceptance of the hypothesis that the given sub-sequence of observations

is stationary, or equivalently, that the initial transient period is not included

in collected observations, depends on the probability characterising the value

calculated from the considered sequence. This test is quite simple numerically,

and can be applied to a wide class of simulated processes.

A practical problem faced when implementing one of these tests is that

they require a priori knowledge of the steady-state variance σ2 of the simulated

process, which is not normally available when the test is applied, because the

system is still in its initial transient period. These tests solve this problem

by estimating the steady-state variance over the latter portion of the collected

data [160], [162]. This is done on the assumption that this latter portion of data

is more representative of the steady-state behaviour of the system, thus giving

a better estimate of the steady-state variance. The effectiveness of the test is

strongly dependent on how accurately the variance estimator is estimated.

Goldsman, Schruben and Swain’s Test

Goldsman, Schruben and Swain [57] discussed a few statistical tests, based on

the different variance estimators of the batch means, the area estimator, the

maximum estimator, and also combinations of these estimators, for detecting

the initial transient period. Cash et al. [16] have studied these statistical tests

and recommended that based on the maximum estimator. Therefore, this will

be considered as a candidate method for detecting the initial transient period

for QE in a fully automated simulation package. This test will be named the

GSS test after its authors.

The GSS test is a natural generalisation of the test proposed by Schruben

in [160]. In this test, observations x1, x2, · · · , xn are divided into r batches

of length b (assume n = rb). The variance estimator based on the first r′

batches is compared to the corresponding estimator from the remaining r − r′

batches. The null hypothesis of no initialisation bias in the output mean exits

is rejected if F > F1−α,3r′,3(r−r′). Here, F = Vr′/Vr−r′, where Vr′ and Vr−r′ are

the variance estimators from the first r′ batches and the last r − r′ batches,
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respectively, and F1−α,3r′,3(r−r′) is the 1− α quantile of an F distribution with

3r′ and 3(r − r′) degrees of freedom.

For the GSS test, the compromise choice of the number of batches r = 8

with a sufficiently large batch size b and the number of batches in the first

portion r′ = 6 were recommended in [16]. If these estimators are deemed to

be significantly different, then an initial transient mean is assumed to be still

present.

5.3.2 Comparisons of Two Statistical Tests for QE

Schruben’s test as the initial transient period detection method, based on

the area estimator for estimating the variance of the sample mean X(n) (see

Appendix C), has been proposed in [162] and implemented in the simulation

package Akaroa-2 [28]. When estimating the steady-state mean, the initial

transient period is automatically and sequentially detected.

There is a simple check to determine whether this method is suitable for

sequential QE in non-regenerative processes. Just after the initial transient

period, the value of (say) the 0.9 quantile of the waiting time in the queue for

an M/M/1/∞ queueing system with a traffic intensity of ρ = 0.8 should be

close to its theoretical steady-state 0.9 quantile, which can be calculated by

max

(
0,

E[w]

ρ
ln[10ρ]

)
, (5.12)

where E[w] is the theoretical mean waiting time in the queue [73], [104].

Equation (5.12) has been derived in the following way. The cumulative

distribution function of the waiting times can be shown to be

F (w) = 1 − ρe−wµ(1−ρ). (5.13)

This is a (defective) exponential distribution. From the distribution, we can

find out its quantiles. For example, the p quantile of the waiting time (wp) can

be computed as follows:

1 − ρe−wpµ(1−ρ) = p (5.14)
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or

wp =
1

µ(1 − ρ)
ln

(
ρ

1 − p

)
. (5.15)

This formula applies only if p is greater than (1 − ρ). All lower quantiles are

zero. This can be stated in one equation as follows:

wp = max

(
0,

E[w]

ρ
ln

[
ρ

1 − p

])
(5.16)

where the mean waiting time in the queue E[w] is ρ/(µ(1−ρ)). From Equation

(5.16), we can have the simplified version for the 0.9 quantile (Equation (5.12))

[73].

Figure 5.3 shows the theoretical convergence of the waiting time of the n-

th customer (in the M/M/1/∞ queueing system at a traffic intensity of 0.8)

to the theoretical steady-state waiting time. The theoretical steady-state is

calculated using Equation (5.16). The theoretical waiting time of the n-th

customer is calculated using the algorithm proposed by McNickle [115]. As

the number of customers n is increased, the waiting times converge to the
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0.8
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t) 
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10th customer 

50th customer 

100th customer 

200th customer 
Theoretical steady−state 

Figure 5.3: Theoretical convergence of the cumulative distribution function of

waiting times of the n-th customer in the M/M/1/∞ queue to the theoretical

steady-state (at a traffic intensity of ρ = 0.8)
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theoretical steady-state. For example, the mean waiting time of the 300th

customer at a traffic intensity of ρ = 0.8 is within -0.0739% of the steady-state

mean, while the 0.9 quantile of the 300th customer at a traffic intensity of

ρ = 0.8 is within -0.032% of the steady-state 0.9 quantile. Therefore, if the

empirical quantiles have similar convergence to the theoretical convergence as

shown in Figure 5.3, the initial transient detectors in the estimator of the

mean may also work moderately well for estimating steady-state quantiles.

The influence of even a mis-estimated initial transient period in QE can be

limited, since QE involves quite long runs of 8,681 ± 221 observations4.

If the theoretical and empirical values are dissimilar, some of the results

may be biased since initialisation bias still exists even after deleting the obser-

vations collected in the initial transient period. The results of the validation,

obtained using the Schruben test, are depicted in Figure 5.4 together with the

4This range of run-length is obtained from 6,000 independent replications when estimat-

ing the 0.9 quantile of response times in the M/M/1/∞ queueing system at a traffic intensity

of ρ = 0.9 using the spectral P 2 approach.
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Figure 5.4: Comparisons of theoretical and empirical values of cumulative

distribution function of waiting times in the queue when using the Schruben

test for detecting an initial transient period (M/M/1/∞ queueing system at

a traffic intensity of ρ = 0.8)
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theoretical values calculated using the Equation (5.16). To obtain the empiri-

cal quantiles, we executed 100,000 independent simulation runs and measured

the waiting time of the first recorded customer (after the initial transient pe-

riod) from each simulation run for 100,000 independent replications. The 0.9

quantile of the waiting time in the queue of the first recorded customer (after

the initial transient period) was calculated and compared with the theoretical

steady-state quantiles calculated using Equation (5.12). This simple exper-

iment shows that the 0.9 quantile of the waiting time in the queue is quite

close to its theoretical steady-state 0.9 quantile. The 0.9 quantile is within

-4.541% of the steady-state 0.9 quantile. This experiment is simple, but at

least gives some justification for using the detection method of the initial tran-

sient period, originally developed for the estimator of means, when estimating

the steady-state quantiles in the methods based on non-RCs [104].

Secondly, to find a better statistical test for detecting an initial transient

period for steady-state quantiles, we have also investigated the performance of

the GSS test based on the maximum estimator of the standardised time se-

ries which was reported as giving the best performance in Cash et al. [16] and

Goldsman et al. [57]. The empirical results of the GSS test are depicted in Fig-

ure 5.5 together with the theoretical values calculated using Equation (5.16).

To obtain the empirical quantiles, we also executed 100,000 independent simu-

lation runs and measured the waiting time of the first recorded customer (after

the initial transient period) from each simulation run for 100,000 independent

replications. In this case, the 0.9 quantile is within +6.65% of the steady-state

0.9 quantile. The convergence of the waiting time to the theoretical steady-

state should follow the result shown in Figure 5.3. However, the empirical

results of the GSS test do not follow. When also comparing the results of the

Schruben and GSS tests (shown in Figure 5.4 and Figure 5.5, respectively),

the GSS test clearly shows considerably worse performance than Schruben’s

test, since the empirical values are much larger than the theoretical values over

the (almost) entire range of quantiles [104].

Another comparison of the Schruben and GSS tests is presented in Table
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Figure 5.5: Comparisons of theoretical and empirical values of cumulative

distribution function of waiting times in the queue when using the GSS test

for detecting an initial transient period (M/M/1/∞ queueing system at a

traffic intensity of ρ = 0.8)

5.15. The statistical data is obtained from the same data as in Figures 5.4

and 5.5. The mean value of the waiting time in the queue of the first recorded

customer (after the initial transient period) and the mean number of transient

observations obtained from 100,000 independent replications are presented in

Table 5.1 (I). As we can see, the mean of the waiting times obtained from the

Schruben test is closer to the theoretical steady-state mean waiting time than

the mean of the waiting times obtained from the GSS test. The two tests have

detected longer initial transient periods than the period required theoretically,

but the detected initial transient periods with the Schruben test are a little

longer than the GSS test. This suggests that Schruben’s test is better than the

GSS test in detecting the length of the initial transient period when estimating

5The theoretical steady-state mean waiting time in the queue for the M/M/1/∞ queueing

system equals ρ/(µ(1 − ρ)) [73]. The procedure of calculating the theoretical number of

transient observations required when estimating the waiting time can be found in [115]. If

we make the assumption that we are in steady-state when the mean waiting time is very

close (within 0.05%) to the steady-state value, then (using the algorithm proposed in [115])

we can achieve steady-state within 0.05% after 326 customers.

147



5.3 Sequential QE for Non-Regenerative Processes

Table 5.1: Statistics obtained from the Schruben and GSS tests for detecting

the initial transient period in the steady-state estimation of means (M/M/1/∞
queueing system at the 0.95 confidence level with the required relative statis-

tical error of 10% or less)

(I)

Mean of Mean of

Waiting Times Transient Observations

Theory 0.4 326

Schruben Test 0.384 ± 0.0024 455.74 ± 2.83

GSS Test 0.457 ± 0.0028 372.56 ± 2.31

(II)

Quantile Theory Schruben Test GSS Test

0.5 0.2350 0.2336 (-0.596%) 0.3197 (+36.04%)

0.9 1.04999 0.9925 (-5.475%) 1.1089 (+5.610%)

0.95 1.3903 1.2999 (-6.502%) 1.4368 (+3.344%)

0.99 2.1910 1.9921 (-9.078%) 2.1900 (-0.045%)

(III)

ρ GSS Test (372) Schruben Test (455)

Mean 0.9 Quantile Mean 0.9 Quantile

0.6 −6.3e − 11 % +2.024e − 4 % −2.5e − 13 % +2.024e − 4 %

0.7 −3.38e − 6 % +1.233e − 4 % −1.81e − 7 % +1.251e − 4 %

0.8 −2.48e − 2 % −1.36e − 2 % −7.14e − 3 % −7.55e − 3 %

0.9 -5.3168 % -5.9082 % -3.6169 % -4.0526 %

mean values.

Quantiles at 0.5, 0.9, 0.95, and 0.99, obtained for the Schruben and GSS

tests from the results of Figures 5.4 and 5.5, are presented in Table 5.1 (II)

with the theoretical values. The errors of the mean and 0.9 quantile of the

waiting time to the theoretical steady-state obtained at the traffic intensities
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of 0.6 to 0.9 using the algorithm proposed in [115], when the lengths of the

initial transient period are assumed to be 372 (observed for GSS test) and 455

(observed for Schruben Test), are also presented in Table 5.1 (III). As expected,

the errors of estimates of steady-state mean and 0.9 quantile of the waiting

times have decreased if longer length of the initial transient period is assumed.

The differences between the estimates of 0.9 quantile and the theoretical value

are larger than differences in means, but they converge in a similar way as

the autocorrelations increase. This agrees well with the experimental evidence

shown in Figure 5.4. Therefore, the initial transient detectors developed for

the case where the steady-state mean of the system is estimated can be applied

when estimating steady-state quantiles, since no better detection method of the

initial transient period for QE is available. The Schruben test again appears

to be better than the GSS test, since it detects the reasonably longer end point

of the initial transient period, which produces smaller errors to the theoretical

steady-state.

5.3.3 Sequential QE Using the Spectral P 2 Approach

Here, we consider a fully automated sequential procedure for QE, which we will

call spectral P 2. The length of the initial transient stage is automatically de-

termined using the Schruben test ([162]), which is quite a reasonable method

for detecting the initial transient period in a sequential QE as discussed in

Section 5.3.2. Then steady-state QE begins, and stops when the relative sta-

tistical error reaches the required level. The spectral P 2 QE approach is based

on the P 2 algorithm proposed by Jain & Chlamtac [74] for estimating quan-

tiles, and on the formula given in Raatikainen [140], [142], modified from the

SA/HW method (originally proposed for estimating the variance of the mean

in [63]), for estimating the variance of the quantile estimate . When the output

sequence of n observations is stationary and satisfies the φ-mixing condition6,

the quantile estimate Q̂p(n), based on the order statistic, has a normal limiting

6The φ-mixing property informally states that if the process runs for a sufficiently long

time, observations in the distant past are approximately independent of those in the present

[93].
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distribution. These asymptotic properties of the order statistics in estimating

the variance of the quantile estimate are well summarised in [142].

A flowchart of the sequential procedure of the spectral P 2 QE in the method

based on non-RCs is given in Figure 5.6. The location of the first checkpoint

and next checkpoints have been determined by following the procedure dis-

cussed in [27] and [128]. The location of the first checkpoint is determined

by

w1 = max[200, 2 ∗ n0], (5.17)

where n0 is the number of observations collected from the initial transient

period. The next checkpoints after the first checkpoint are determined by

using the linear spacing method. In linear checkpoint spacing, the distance

between successive checkpoints is determined as a multiple of the length of the

initial transient period by

wi = 2 ∗ n0 ∗ SpacingFactor (5.18)

[27]. We have assumed the SpacingFactor 1.5. The pseudocode can be found

in Appendix D.3.

Having collected n observations, the p quantile Q̂p(n) estimated by the P 2

algorithm is actually approximated from the inverse of the empirical cumula-

tive distribution function by a piecewise-parabolic formula. The P 2 algorithm

consists of maintaining the five markers. Each marker has a height, which is

equal to the estimation of a specific quantile, an actual position, and a desired

position. The parabolic formula assumes that the curve passing through any

three adjacent markers is a parabola of the form qi = an2
i + bni + c, where qi

is the height and ni is the actual position of the i-th marker. That is, one can

have the following three equations:

qi−1 = an2
i−1 + bni−1 + c,

qi = an2
i + bni + c, and (5.19)
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 Discard n   observations collected   
   from the initial transient period 

Collect  5 observations for using the P   algorithm 
      and initialize all required parameters

Calculate the statistical error 

Determine the steady-state estimator 
of the quantile using the P   algorithm

   Collect an observation 

            Is the 
required statistical error    
          reached?

    The steady-state parameters have been  
estimated with the required statistical error
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2 
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           w   = max[200, 2*n  ]
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checkpoint reached?

YES

NO

0
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Figure 5.6: Flowchart for the method of sequential spectral P 2 QE in the

method of non-RCs
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qi+1 = an2
i+1 + bni+1 + c.

The coefficients a, b, and c are determined by solving the above three equations.

Then, a marker height at n
′
i = ni + d, where d = ±1, is adjusted using either

the parabolic formula of

q
′
i = qi +

d

ni+1 − ni−1

{
(ni − ni−1 + d)

qi+1 − qi

ni+1 − ni

+ (ni+1 − ni − d)
qi − qi−1

ni − ni−1

}
,

(5.20)

or the linear formula of

q
′
i = qi + d

qi+d − qi

ni+d − ni
. (5.21)

The parabolic formula is usually used, but the linear formula is sometimes used

to keep the marker heights in an increasing order. Finally, the height of the

third marker q3 is the estimate of the p quantile Q̂p(n): see [74] for detailed

discussion.

The variance of the quantile estimate Q̂p(n) is estimated by using the for-

mula given in [142]. As the number of observations becomes large, the variance

of Q̂p(n) can be approximated by

σ2(Q̂p(n)) =
S(0; Q̂p(n))

nf̂ 2(Q̂p(n))
, (5.22)

where S(0; Q̂p(n)) is the spectral density at frequency 0, estimated using

the SA/HW method proposed by Heidelberger and Welch [63] (see also Ap-

pendix B.2), and f̂(Q̂p(n)) is the empirical density function, approximated by

f̂(Q̂p(n)) = (b+2aF̂ (Q̂p(n)))−1 since Q̂p(n) is an approximation of the inverse

of the empirical cumulative distribution function, F̂−1(n) = an2 + bn+ c [142].

A 100(1 − α)% CI for the quantile Qp is given by

Q̂p(n) ± tdf,1−α/2σ̂(Q̂p(n))√
n

, (5.23)

where tdf,1−α/2 is the (1 − α/2) quantile of the t distribution with degrees of

freedom df = 7.
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5.4 Experimental Coverage Analysis for Se-

quential QE

The robustness of each estimator can be measured experimentally by the cov-

erage of its CIs as discussed and justified in Chapter 2. We have checked

whether the rules of experimental coverage analysis for sequential simulation

formulated in Chapter 2 give similar effects for QE. Firstly, the convergences

of coverage for the three different approaches of QE: linear QE, batching QE,

and spectral P 2 QE, are depicted in Figure 5.7. (We have obtained results

as assuming n1 = 1, 000 RCs as the location of the first checkpoint and 21

grid points spaced 0.2 units apart for the linear QE approach, and r1 = 10

batches as the location of the first checkpoint and a batch size of 100 RCs

for the batching QE approach. The reason for choosing these values will be

discussed in the next section.) These results also show a high initial instability

of coverage as in the mean value estimation; see Figure 2.5 in Chapter 2.

The convergences of coverage for the three different approaches of QE when

applying the rules of experimental coverage analysis for sequential simulation

in Chapter 2, are depicted in Figure 5.8. These results, obtained after filtering

unusually short simulation runs, which are not reliable, show a clear improve-

ment of the final coverage as in the mean value estimation; see Figure 2.6 in

Chapter 2. The coverage analysis was stopped when a relative statistical error

of at least 5% at the 0.95 confidence level was reached and the recommended

(in [134]) 200 bad CIs (i.e., CIs that do not cover the theoretical value) were

collected.

Having compared the results presented in Figures 5.7 and 5.8, one can also

see the importance of applying appropriate method of coverage analysis in

the case of estimating quantiles. Note that sequential analysis of coverage not

only leads to more accurate results, but it also allows for full automation of the

tedious comparative studies of properties of different estimators. Therefore,

we will apply these rules of experimental coverage analysis (from Chapter 2)

with the same conditions to the three different approaches of QE: linear QE,

batching QE, and spectral P 2 QE, in Section 5.5.
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(a) The linear QE
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(b) The batching QE
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(c) The spectral P 2 QE

Figure 5.7: Convergence of the coverage for QE (M/M/1/∞ at ρ = 0.5 and

0.9 quantile, confidence level of 0.95)
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(b) The batching QE
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(c) The spectral P 2 QE

Figure 5.8: Convergence of the coverage for QE after discarding ‘too short’

simulation runs (M/M/1/∞ at ρ = 0.5 and 0.9 quantile, confidence level of

0.95)
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5.5 Performance Evaluation of Sequential QE

Approaches

All numerical results refer to a sequential steady-state simulation stopped when

the final steady-state estimate of the 0.9 quantile of the response time in the

M/M/1/∞ queueing system, selected as a basic model, reached the required

relative statistical error of 10% or less, at the 0.95 confidence level. For the

linear QE, we have assumed two options of 21 grid points spaced 0.2 units

apart and 31 grid points spaced 0.1 units apart for all observed observations

are between the minimum value of the grid (zero) and the maximum value of

the grid (four or three), since the theoretical 0.9 quantiles of the response times

in the M/M/1/∞ queueing system are from 0.255843 at ρ = 0.1 to 2.302590

at ρ = 0.9. (The theoretical 0.9 quantiles can be calculated using Equation

(5.12).) We have also assumed the two locations of the first checkpoint7, to

prevent the simulation runs from stopping too early, to be at 100 RCs or more

(which is a sufficient number of RCs for the mean value estimation (see Chapter

4) and 1,000 RCs or more (which is assumed for QE in [72]).

To determine whether n1 = 100 RCs is appropriate as the location of

the first checkpoint for linear QE, we have shown the distribution of run-

lengths obtained from 1,000 simulation runs in Figure 5.9. These results clearly

show that n1 = 100 RCs is improper, since the phenomenon of ‘extremely

short’ simulation runs produced by choosing the improper location of the first

checkpoint; see Chapter 3 and Chapter 4, has appeared as when the mean

value in the RCs method was estimated. Therefore, we applied n1 = 1, 000

RCs as the location of the first checkpoint. At this point the ‘extremely short’

runs disappeared.

The results of coverage obtained with the combinations of the above op-

tions are depicted in Figure 5.10. To show the relevance of sequential coverage

7According to the results presented in Chapters 3 and 4, the poor quality of the final

results obtained from the sequential method of RCs is caused by ‘extremely short’ simulation

runs stopped accidentally. This problem has been solved in the case of estimating mean

values by choosing the proper location of the first checkpoint.
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(a) Load = 0.1
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(b) Load = 0.2
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(c) Load = 0.3
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(d) Load = 0.4
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(e) Load = 0.5
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(f) Load = 0.6
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(g) Load = 0.7
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(h) Load = 0.8
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(i) Load = 0.9

Figure 5.9: Simulation run-lengths, measured by the number of RCs, for linear

QE (M/M/1/∞, 0.9 quantile, the location of the first checkpoint: n1 = 100

RCs, 21 grid points spaced 0.2 units apart)
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(a) Fixed-sample size of 200 runs (*:

n1 = 100 RCs, o: 21, and ♦: 0.2)
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(b) Sequential coverage analysis (*:

n1 = 100 RCs, o: 21, and ♦: 0.2)
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(c) Sequential coverage analysis (*:

n1 = 1, 000 RCs, o: 21, and ♦: 0.2)
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(d) Sequential coverage analysis (*:

n1 = 1, 000 RCs, o: 31, and ♦: 0.1)

Figure 5.10: Coverage analysis of the linear QE approach in the sequential

method of RCs (M/M/1/∞, 0.9 quantile, *: the location of the first check-

point, o: the number of grid points, and ♦: the space between grid points)

analysis of quantile estimators, we have also obtained the results (based on 200

independent replications8) for traditional fixed-sample size analysis of cover-

age, and depicted them in Figure 5.10. Sequential coverage analysis produces

better results than coverage analysis conducted with a fixed-sample size of 200

runs. This is because the final coverage is from the (quite) stable region of

coverage and is improved by discarding the ‘too short’ simulation runs; also

see Figures 5.7 and 5.8. In all these cases, simulation runs shorter than a

8In simulation literature, many reported results of coverage analysis have usually been

obtained from a fixed number of between 10 - 200 replications. As discussed in Chapter 2,

such fixed numbers of replications for coverage analysis are not usually sufficient.
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threshold (of mean run-length minus one standard deviation of run-lengths)

were classified as ‘too short’.

However, the coverage analysed with 21 grid points spaced 0.2 units apart

is poor especially in lightly loaded traffic whether n1 = 100 RCs or n1 = 1, 000

RCs is used as the location of the first checkpoint; see Figure 5.10 (b) and (c).

This is caused by the fact that the quantiles obtained are too far away from

the theoretical value; see Figure 5.11.
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Figure 5.11: Linear QE approach in the method of RCs (M/M/1/∞, ρ=0.1,

0.9 quantile, the location of the first checkpoint: n1 = 1, 000 RCs, 21 grid

points spaced 0.2 units apart)

The coverage analysed with n1 = 1, 000 RCs as the location of the first

checkpoint and 31 grid points spaced 0.1 units apart has significantly improved

especially in lightly loaded traffic; see Figure 5.10 (d). This indicates that the

linear QE approach is very much affected by the number of grid points and the

spacing between them. We can not also guarantee that all bins have sufficient

observations to produce reliable quantiles, especially if a particular bin used

to calculate a certain quantile may have no observations or fewer observations

than other bins. This can definitely produce distinctly biased quantiles. It

also requires RCs in a simulated system to be recognised. If a distribution

of the observations is known prior, the linear QE approach is desirable since

the assumptions of the number of grid points and space between them can
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be optimised. Otherwise, the linear QE approach hardly produces reliable

quantiles, since these assumptions cannot be optimised.

For the batching QE, we have assumed batch sizes, which are the number

of RCs per batch, of 100 RCs and 200 RCs, since Seila [163] has recommended

using 100 RCs or more to protect against inadequate coverage probabilities.

We have also assumed r1 = 10 batches9 as the location of the first checkpoint.

To determine whether the phenomenon of ‘extremely short’ simulation runs

appears when applying this location, we have also depicted the distribution of

run-lengths obtained from 1,000 simulation runs in Figure 5.12. These results

show that r1 = 10 batches is the proper choice10.

The results of coverage are depicted in Figure 5.13. We have also shown

the results obtained for traditional fixed-sample size analysis of coverage and

sequential coverage analysis. Sequential coverage analysis produces better re-

sults than the traditional coverage analysis as with the linear QE approach.

The coverage obtained with a batch size of 100 RCs is close to the required

level of 0.95, except at a traffic intensity of ρ = 0.9.

In the case of ρ = 0.9, quantiles are usually underestimated; see Figure

5.14 (depicted only for 200 replications). This can be improved by increas-

ing the batch size. Therefore, we have tested the batching QE with a batch

size of 200 RCs and depicted the results in Figure 5.13 (c). These results

show the significant improvement of coverage especially at a traffic intensity

of ρ = 0.9. Even though this approach needs some storage for observations

collected during 200 RCs and sorting within those collected observations, it

is quite desirable, since it is simple and does not need prior knowledge of the

distribution of the observations. However, it does need to recognise the RCs

in a simulated system.

The results obtained by traditional fixed-sample size analysis of coverage

and sequential coverage analysis for the spectral P 2 QE approach are depicted

9Seila [163] recommended using at least 10 batches. This means the batching QE needs

to collect at least 1,000 RCs or more.
10We have also tested the batching QE with r1 = 2 batches as the location of the first

checkpoint. That results have shown that this is improper, since ‘extremely short’ simulation

runs appear.
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(c) Load = 0.3
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(d) Load = 0.4
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(f) Load = 0.6
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(g) Load = 0.7

0 50 100 150 200 250
0

50

100

150

200

250

300

350

Run Length

F
re

q
u

e
n

c
ie

s

(h) Load = 0.8
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Figure 5.12: Simulation run-lengths, measured by the number of batches, for

batching QE (M/M/1/∞, 0.9 quantile, the location of the first checkpoint:

r1 = 10 batches, the batch size: 100 RCs)
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(a) Fixed-sample size of 200 runs (*:

r1 = 10 batches, and o: 100 RCs)
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(b) Sequential coverage analysis (*:

r1 = 10 batches, and o: 100 RCs)
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(c) Sequential coverage analysis (*:

r1 = 10 batches, and o: 200 RCs)

Figure 5.13: Coverage analysis of the batching QE approach in the sequential

RCs (M/M/1/∞, 0.9 quantile, *: the location of the first checkpoint, and o:

the batch size)

in Figure 5.15. All these results are obtained after discarding observations

collected during the initial transient period. Sequential coverage analysis pro-

duces better results. However, the spectral P 2 QE approach produces poor

results especially in terms of coverage, because many numbers of quantiles ob-

tained for the spectral P 2 QE are far from the theoretical value; see Figure

5.16.

The mean length of the initial transient periods detected by the Schruben

test when estimating 0.9 quantiles using the spectral P 2 QE approach from
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Figure 5.14: Batching QE approach in the sequential RCs (M/M/1/∞, ρ=0.9,

0.9 quantile, the location of the first checkpoint: r1 = 10 batches, the batch

size: 100 RCs)
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(a) Fixed-sample size of 200 runs
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(b) Sequential coverage analysis

Figure 5.15: Coverage analysis of the sequential spectral P 2 QE approach

(M/M/1/∞, 0.9 quantile)

6,000 independent replications for the M/M/1/∞ queueing system is also pre-

sented in Table 5.2. The length of the initial transient period detected by

Schruben test is much shorter than the one, which is determined by a random

number between 1,025 and 2,048 generated using a uniform distribution, used

by Raatikainen [142]. However, it is enough to eliminate the initialisation bias

without the loss of many good observations.

Table 5.3 shows the means and CIs of quantiles obtained from 6,000 inde-
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Figure 5.16: Spectral P 2 QE approach in the method of non-RCs (M/M/1/∞,

ρ=0.9, 0.9 quantile)

Table 5.2: The mean length of the ini-

tial transient periods detected by Schruben

test when estimating 0.9 quantiles using

the spectral P 2 QE approach from 6,000 in-

dependent replications for the M/M/1/∞
queueing system

Load Means of initial transient periods

0.1 260 ± 7

0.2 267 ± 6

0.3 275 ± 7

0.4 287 ± 7

0.5 302 ± 8

0.6 327 ± 8

0.7 367 ± 9

0.8 441 ± 11

0.9 642 ± 16
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Table 5.3: Means and CIs of 0.9 quantiles obtained from 6,000 independent

simulation replications executed for the three QE approaches: linear QE, batch-

ing QE, and spectral P 2 QE, in the M/M/1/∞ queueing system at a confidence

level of 0.95 (
√

means that the CIs of a quantile contain the theoretical quan-

tile)

ρ Quantiles Means & CIs of Means & CIs of Means & CIs of

in Theory linear QE batching QE spectralP 2 QE

0.1 0.255843 0.266191 0.255504
√

0.256416
√

[0.259498, 0.272968] [0.249080, 0.262009] [0.249968, 0.262944]

0.2 0.287823 0.291034
√

0.286768
√

0.289103
√

[0.283716, 0.298444] [0.279557, 0.294069] [0.281834, 0.296464]

0.3 0.328941 0.335710
√

0.326654
√

0.332504
√

[0.327269, 0.344257] [0.318440, 0.334971] [0.324143, 0.340969]

0.4 0.383764 0.384938
√

0.380337
√

0.390177
√

[0.375258, 0.394738] [0.370774, 0.390021] [0.380366, 0.400111]

0.5 0.460517 0.463603
√

0.455172
√

0.471884
√

[0.451946, 0.475407] [0.443727, 0.466761] [0.460019, 0.483898]

0.6 0.575646 0.572436
√

0.567250
√

0.598979

[0.558042, 0.587010] [0.552986, 0.581692] [0.583918, 0.614229]

0.7 0.767528 0.758939
√

0.755950
√

0.805627

[0.739855, 0.778262] [0.736941, 0.775196] [0.785370, 0.826139]

0.8 1.151290 1.133944
√

1.135087
√

1.23074

[1.105432, 1.162815] [1.106545, 1.163987] [1.202068, 1.264468]

0.9 2.302590 2.056829 2.184843 2.520956

[2.005110, 2.109197] [2.129905, 2.240470] [2.457568, 2.585141]

pendent simulation replications executed for the three QE approaches: linear

QE11, batching QE12, and spectral P 2 QE, in the M/M/1/∞ queueing system.

Note that the spectral P 2 QE approach produces slightly greater quantiles with

11With n1 = 1, 000 RCs as the location of the first checkpoint and 31 grid points spaced

0.1 units apart.
12With r1 = 10 batches as the location of the first checkpoint and the batch size of 200

RCs.
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increasing the traffic intensity. This agrees well with the results obtained us-

ing the extended P 2 method of Raatikainen [141]. This clearly causes poor

coverage in the spectral P 2 QE approach. The results presented in Table 5.3

show that the batching QE approach is the best in terms of the CIs of quantiles

covering the theoretical quantiles.

We have also presented the results of bias obtained for the three QE ap-

proaches, from the same data used in Table 5.3, in Figure 5.17. The bias

measures the systematic deviation of the estimator from the true value of the

estimated parameter [128]; for example, in the case of the quantile estimate

Q̂p(n), the bias is calculated by

Bias[Q̂p(n)] = E[Q̂p(n) − Qp], (5.24)

where Qp is the theoretical quantile. The results show that the bias becomes

severe with increasing traffic intensity. The batching QE approach is less biased

than the others at a traffic intensity of ρ = 0.9.

Comparing the results presented so far, one can see that the best results in

the analysis of very dynamic queueing processes can be achieved by applying

batching QE if one chooses the proper location of the first checkpoint and the

batch size, and the RCs in a simulated system are recognised easily. Otherwise,

the spectral P 2 QE approach, which produces slightly greater quantiles, is an
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Figure 5.17: Bias of the three QE approaches: the linear QE, the batching QE,

and the spectral P 2 QE (M/M/1/∞, 0.9 quantile)
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alternative if the small difference is not really important in practice.

We have also applied the two heuristic rules13: Rules I and V, which are

recommended in Chapter 3 since they can ensure the final results are within an

assumed level of confidence or better. The results obtained for each approach

are presented in Figures 5.18 - 5.20, respectively.
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(a) When applying Rule I (take the longest of R runs; R = 1, 2 and 3)
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(b) When applying Rule V (combination of Rules III and IV)

Figure 5.18: Coverage of the CIs with Rules I and V (proposed in Chapter 3)

of the linear QE in the sequential method of RCs (when estimating the 0.9

quantile of response times in the M/M/1/∞ queueing system, the location of

the first checkpoint: n1 = 1, 000 RCs, the number of grid points: 31, and the

space between grid points: 0.1)

13Proposed for preventing ‘too short’ runs being included in the final results when esti-

mating the mean value in Chapter 3.
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(a) When applying Rule I (take the longest of R runs; R = 1, 2 and 3)
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(b) When applying Rule V (combination of Rules III and IV)

Figure 5.19: Coverage of the CIs with Rules I and V (proposed in Chapter 3)

of the batching QE in the sequential method of RCs (when estimating the 0.9

quantile of response times in the M/M/1/∞ queueing system, the location of

the first checkpoint: r1 = 10 batches, and the batch size: 200 RCs per batch)

Rules I and V work well for the linear QE and batching QE approaches.

The final results obtained for each approach with Rule I, which is to select the

longest run from a few repeated simulation runs, are improved to the (near)

assumed confidence level of 0.95; see Figure 5.18 (a) and Figure 5.19 (a). The

final results obtained with Rule V are improved over the assumed confidence

level of 0.95; see Figure 5.18 (b) and Figure 5.19 (b). These results are in

good agreement with the results obtained when estimating the mean value;

see Chapter 3.
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Figure 5.20: Coverage of the CIs with Rules I and V (proposed in Chapter 3)

of the spectral P 2 QE approach in the sequential method of non-RCs (when

estimating the 0.9 quantile of response times in the M/M/1/∞ queueing sys-

tem)

However, Rule I does not work for the spectral P 2 QE approach at all; see

Figure 5.20 (a), while Rule V slightly improves the final results, but not to

a satisfactory level; see Figure 5.20 (b). This is because, as discussed before,

quantiles estimated using the spectral P 2 QE approach are slightly greater than

the theoretical quantiles.
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5.6 Conclusions

Quantiles are convenient measures of an entire range of simulation output

data. However, the direct estimation of quantiles, based on storing and con-

secutive multiple sorting of entire sequences of observations collected during

the sequential steady-state simulation, appears to be impractical in real appli-

cations of a stochastic simulation. In general, the computation time to sort n

observations is O(n log2 n) and memory proportional to n is required to store

sorted values in order to find a given order statistic.

A few quantile estimators, which overcome the inherent limitations of QE,

have been proposed so far. Those approaches for estimating quantiles only

require linear computation time and little memory. However, most of them are

based on the traditional fixed-sample size approach, even though the sequential

approach is generally recognised as the more credible approach in controlling

the final statistical error in a stochastic simulation.

In this chapter we have studied the properties of three sequential quantile

estimators: linear QE and batching QE for the method of RCs, and spectral

P 2 QE for the method of non-RCs, to determine the best one to implement

in a fully automated simulation package such as Akaroa-2 [28]. As our results

show, only the batching QE approach offers a reasonable quality of the final

results, in terms of coverage analysis and bias, when estimating the response

times in the M/M/1/∞ queueing system. However, the batching QE approach

does require recognition of the RCs in a simulated system. If this is the case

then the batching QE approach is a good method. Otherwise, the spectral P 2

QE approach, which produces the poor coverage caused by slightly greater

quantiles, can be an alternative since the poor coverage can be improved by

assuming a higher statistical error of the final results.

We have also studied two statistical tests to determine the suitability of

applying them in the case of QE: Schruben’s test and the GSS test, which were

originally developed for detecting the initial transient period when estimating

the steady-state mean [162], and [57]. Our results show that these tests also

work when estimating the steady-state quantiles. Schruben’s test appears to be
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better, since the empirical quantiles of the waiting time in the queue obtained

with it are much closer to their theoretical steady-state quantiles, with smaller

errors.

One of the inherent problems in sequential steady-state simulations is that

a simulation run can be very short since the stopping condition can be acci-

dentally and temporarily satisfied. These short runs degrade the quality of the

final result. This problem has been solved by applying the rules of experimen-

tal coverage analysis (discussed in Chapter 2) for the three QE approaches:

linear QE, batching QE, and spectral P 2 QE. The other problem, especially in

the sequential method of RCs, is that ‘extremely short’ simulation runs are

produced by choosing an improper location of the first checkpoint. This prob-

lem also occurred when estimating quantiles using the linear QE and batching

QE approaches based on the method of RCs; similarly for the mean value esti-

mation in the RC method. This problem has been solved by choosing a proper

location of the first checkpoint, after collecting at least 1,000 RCs.

The two recommended heuristic rules: Rules I and V, proposed for prevent-

ing ‘too short’ simulation runs being included in the final results (in Chapter 3),

have been applied for the three QE approaches. These rules work well for the

linear QE and batching QE approaches, but they do not work for the spectral

P 2 QE approach since this approach produces slightly greater quantiles.
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Chapter 6

SPEEDUP IN PARALLEL

AND DISTRIBUTED

SIMULATION

6.1 Introduction

Dynamic discrete-event systems, such as manufacturing processes, telecommu-

nication networks, computer systems, etc., are difficult to evaluate analytically

due to their complex and often nonlinear behaviour. Simulation is often the

only way to evaluate such systems. Some real-world situations, such as con-

trolling air traffic, commanding a large military operation, and determining

issues in a competitive marketplace, need to have simulation results in a very

short time [41]. However, studies of even moderately complex systems can

require excessive computing time to obtain statistically accurate results.

Recent advances in technology, the availability of fast processors, and large

memories have helped those computationally intensive simulations. How-

ever, dynamic discrete-event simulation still creates a significant computational

problem with increasing model complexity. Therefore, parallel and distributed

simulation holds great promise for meeting the simulation needs of develop-

ers of increasingly complex systems, since the use of parallel and distributed



6.1 Introduction

computer systems can significantly speed up run times, enabling a simulation

program to execute on a computing system containing multiple processors,

such as personal computers interconnected by a communication network.

The required number of observations increases dramatically as the autocor-

relations increase. For instance, the required run-lengths to estimate the mean

response time in a steady-state simulation of an M/M/1/∞ queueing system

with traffic intensities ρ = 0.9, ρ = 0.99 and ρ = 0.999, are 582386, 61156736,

and 6143485196, respectively. The procedure of calculating the theoretically

required run-length can be found in Appendix F. The number of observa-

tions collected is proportional to the CPU time. Our experiments show that

the estimation of the mean response time in the M/M/1/∞ queueing system

requires roughly 8.3 minutes (ρ = 0.99) and 1.3 days (ρ = 0.999) on a 350

Mhz Pentium II to achieve an estimate with a relative statistical error of no

more than 5%. For a simple open queueing system with traffic intensities

ρ = 0.99 and ρ = 0.999, the times to find a steady-state mean response time

are approximately 3 hours and 7.3 days, respectively.

Excessive run times hinder the development and validation of simulation

models, and can even preclude some performance evaluation studies. There are

two possible solutions to this problem. One is to find more efficient estimators,

i.e. estimators that require fewer observations to reach a satisfactory level of

statistical error [130]. Another obvious solution is to speed up the simulation

by executing it on a multiprocessor or distributed computer system by applying

the single replication in parallel (SRIP) scenario or the multiple replications

in parallel (MRIP) scenario [136]. Detailed discussion of the SRIP and MRIP

scenarios can be found in Chapter 1.

We have only considered the MRIP scenario to speed up the simulation in

this chapter, since it is able to offer a speedup proportional to the number of

processors involved [26], [136], [151]. For example, a 500 station FDDI (Fiber

Distributed Data Interface) token ring simulation required approximately 9.7

hours on a single processor, and as little as 5.5 minutes using all 128 processors

of an Intel i860 hypercube under the MRIP scenario [151].

In this chapter, we comment on the speedup obtainable in parallel and
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distributed discrete-event simulations. Theoretical limitations on the speedup

of sequential stochastic simulations under the MRIP scenario are discussed in

Section 6.2. In Section 6.3, we present the empirical results of the speedup

obtained for the MRIP scenario when estimating mean values and quantiles for

simulation output data analysis methods based on RCs (regenerative cycles)

and non-RCs.

6.2 Theoretical Speedup in the MRIP Scenario

Following Gunther [58], speedup is commonly associated with a measure of

parallel numerical performance, and quantifies the reduction in elapsed time

achieved by executing a fixed amount of work on a successively greater number

of processors. The simplest way of describing the speedup is depicted in Figure

6.1 as an ideal parallelism [58]. Ideal parallelism assumes that a total simula-

tion time which runs on a uniprocessor in time T (1) can be fully partitioned

and executed on P homogeneous simulation processors simultaneously in time

T (1)/P [58]. This can give a linear speedup.

However, most simulations cannot be partitioned in this ideal way because

some portion of the simulation needs to be executed sequentially. Therefore,

that portion can only be executed on a single processor. This simulation can be

classified into two portions: one can execute in parallel and the other can only

execute sequentially; see Figure 6.2 [58]. In this case, defining the parameter

f < 1, which is a fraction of the simulation which cannot be parallelised (in the

steady-state simulation, this corresponds to the relative length of the initial

transient period), the total simulation time by P homogeneous simulation

processors T (P ) is f · T (1) (for the sequential portion) plus ((1− f) · T (1))/P

(for the parallel portion). Therefore, we can write the time reduction, when

assuming a simulation executes using P homogeneous simulation processors,

as:

T (P ) = f · T (1) +
(1 − f) · T (1)

P
. (6.1)
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Single-processor execution time: T(1)

parallelisable

P-processors execution time: T(1)/P

time reduction

Figure 6.1: Ideal parallelism (taken from [58])

Single-processor execution time: T(1)

parallelisable

time reduction

sequential

Figure 6.2: Parallelism with two portions: one executes in parallel and the

other can only execute sequentially (taken from [58])
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The conventional definition of the speedup is given by

S(P ) =
T (1)

T (P )
. (6.2)

Substituting Equation (6.1) into Equation (6.2), the speedup S(P ) is given by

S(P ) =
T (1)(

f + 1−f
P

)
T (1)

(6.3)

or

S(P ) =
P

1 + f · (P − 1)
. (6.4)

Speedup achievable with Equation (6.4) based on Amdahl’s law is depicted

in Figure 6.3. As we can see from Figure 6.3, if the value of the parameter f

vanishes (f = 0.0), then the speedup would follow the ideal linearly increasing

trajectory. Otherwise, depending on the value of f , the speedup falls away

from the ideal trajectory. As P → ∞, Equation (6.4) has an asymptotic
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Figure 6.3: Speedup achievable with Equation (6.4) based on Amdahl’s law
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bound at 1/f . Equation (6.4) can be regarded as an upper limit of the speedup,

since it assumes each parallel subtask is homogeneous with identical processing

demands [58]. In reality, applications are less uniform. Therefore, the speedup

will be inferior to that expected on the basis of Amdahl’s law [26], [133].

Following [133], to analyse the average speedup of sequential steady-state

simulation runs under the MRIP scenario, let us note that each processor

runs an independent replication of the simulation process. Therefore, it first

generates data characterising the initial transient period (if there is such a

period) and these data are discarded. Only later, having entered the steady-

state region, does a simulation processor start its contribution to the steady-

state analysis by submitting its data to a global analyser.

Obviously, the best speedup is achievable if one launches simulation pro-

cessors on an homogeneous set of processors. With heterogeneous processors

speeding up the simulation may not even be possible. This case occurs when

one of the processors is fast enough to generate the required number of ob-

servations before any of the slower processors reaches the first checkpoint.

Therefore, we assume that a steady-state simulation is run on a set of P ho-

mogeneous simulation processors, and the length of the simulation is measured

by the total number of observations submitted by P simulation processors to

the global analyser before the simulation is stopped. Furthermore, assuming

the very fine granularity of a stochastic simulation (the small distance between

checkpoints), the speedup of a steady-state simulation in the MRIP scenario

would be governed by the truncated Amdahl’s law [133].

Following [133], let us assume that a sequential steady-state simulation

under the MRIP scenario is stopped when P homogeneous simulation proces-

sors have delivered the total number of observations Nmin needed to satisfy

the stopping criterion. As the number of processors increases, we will reach

a situation in which all P processors reach their first checkpoint before the

global analyser stops the simulation. Let D be the location of the first check-

point (i.e., the number of observations generated when the first checkpoint is

reached), and let

Pmin = min{P : D · P ≥ Nmin}. (6.5)
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Adding more than Pmin processors would not increase the speedup, since

it has already reached its maximum speedup of

Smax = Pmin. (6.6)

The effect of adding more than Pmin processors is that the total number of

observations when the simulation is stopped is greater than Nmin. Having more

observations (generated by P > Pmin processors) only improves the statistical

error. Therefore, the upper limit of the maximum speedup can be rewritten

as

Smax =
Nmin

D
. (6.7)

Linking Equations (6.3) and (6.7) leads to the following truncated Amdahl’s

law proposed by Pawlikowski and McNickle in [133]:

Sp(P ) =




1
f+(1−f)/P

for P < Pmin = (1−f)Nmin

D
,

1
f+D/Nmin

for P ≥ Pmin = (1−f)Nmin

D
,

(6.8)

where f is the relative length of the initial transient period, which means the

simulation cannot be parallelised, P is the number of processors (P > 1), D is

the location of the first checkpoint, Nmin is the total number of observations

needed, and Sp(P ) is the speedup achievable with P homogeneous simula-

tion processors. The speedup obtained from the truncated Amdahl’s law of

Equation (6.8), when assuming Pmin = 10 processors, is plotted in Figure 6.4.

As discussed in [133], one can draw the following conclusions from these

results:

• To obtain maximum speedup under the MRIP scenario, Pmin processors

or more are needed to collect the required number of observations.

• The longer the relative length of the initial transient period, the smaller

the speedup. As the value of parameter f increases, the speedup falls

away from the theoretical trajectory.

• The truncated Amdahl’s law is valid for average speedup.
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Figure 6.4: Speedup achievable theoretically under the MRIP scenario accord-

ing to the truncated Amdahl’s law (Pmin = 10)

• If the length of the initial transient period is negligible in comparison

with the total simulation run-length, or the length of the initial transient

period has no role in the steady-state analysis, such as in the method of

RCs, then the speedup should be linear with the number of processors

engaged.

6.3 Empirical Speedup in the MRIP Scenario

To analyse the speedup of parallel and distributed simulations under the MRIP

scenario, one needs to take into account specific computational requirements

of the method used to estimate the variance and its statistical error. Speedup

obtained in the MRIP scenario has been reported in [26], [131], and [136].

Although, potentially, speedup improves in proportion to the number of pro-

cessors involved, in practice it can depend heavily on the method used to
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estimate the variance. Ewing et al. [26] reported that the speedup obtained

using the SA/HW method is close to the expected theoretical value and much

better than using NOBM, since in the SA/HW method each processor begins

sending estimates to the global analyser after the initial transient period is

over without other startup overheads.

Empirical results of the speedup obtained under the MRIP scenario, ap-

plying the SA/HW method to analyse a steady-state estimate’s variance and

mean response time in the M/M/1/∞, M/D/1/∞, and M/H2/1/∞ queueing

systems at a traffic intensity of ρ = 0.5 with a relative statistical error of at

least 5% at the 0.95 confidence level, are depicted in Figure 6.5. All empirical

results are averaged from 100 independent sequential steady-state simulation

runs executed using Akaroa-2 [28]. Statistics averaged from these runs are also

presented in Table 6.1.

Table 6.1: Statistics averaged from 100 independent sequential steady-state

simulation runs applying the SA/HW method to estimate the mean response

time at a traffic intensity of ρ = 0.5 with a relative statistical error of at least

5% at the 0.95 confidence level

M/M/1/∞ M/D/1/∞ M/H2/1/∞
Total Length 14833 ± 3045 3289 ± 676 110576 ± 22700

Initial Length 309 ± 63 282 ± 58 465 ± 96

Initial/Total (f) 2.08 ± 0.56% 8.57 ± 2.31% 0.42 ± 0.11%

No. of Checkpoints 15.17 ± 3.11 2.9 ± 0.59 82.83 ± 17

When sequential steady-state simulations were executed using Akaroa-2

[28], we found similar results to those reported in [26] for the M/M/1/∞ and

M/H2/1/∞ queueing systems. Particularly, the speedup for the M/H2/1/∞
queueing system is almost linear. This is not surprising since the total length

of the simulation is quite long and the relative length of the initial transient

period is quite short.

The speedup obtained for the M/D/1/∞ queueing system is not significant

because the required number of observations to meet the stopping criteria
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(a) M/M/1/∞ queueing system
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(b) M/D/1/∞ queueing system
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(c) M/H2/1/∞ queueing system

Figure 6.5: Speedup obtained under the MRIP scenario for the SA/HW

method when estimating steady-state mean response times (ρ = 0.5)
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are usually collected after only three checkpoints. The theoretically required

number of observations for the M/D/1/∞ queueing system is quite small

compared to the other systems; see Appendix F for the theoretically required

number of observations, and Table 6.1 for the empirically collected number of

observations. Therefore, the speedup can only reach a low level of the threshold

when the relative length of the initial transient period (f) is also considered.

The speedup obtained from SA/HW, in general, follows the truncated Amdahl’s

law closely.

As shown in Figures 6.3 and 6.4, the speedup is very much affected by the

relative length of the initial transient period. However, the RC method under

the MRIP scenario should achieve a linear speedup proportional to the num-

ber of processors engaged, since this method has no problem with the initial

transient period. Empirical results of the speedup obtained under the MRIP

scenario, applying the RC method1 to analyse a steady-state estimate’s vari-

ance and mean response time in the M/M/1/∞, M/D/1/∞, and M/H2/1/∞
queueing systems at a traffic intensity ρ = 0.5 with a relative statistical error

of at least 5% at the 0.95 confidence level, are depicted in Figure 6.6.

As expected, the speedup for the M/M/1/∞ and M/H2/1/∞ queue-

ing systems is almost linear to the number of processors engaged since the

run-lengths of the simulation are quite long. However, the speedup in the

M/D/1/∞ queueing system has not increased linearly because the total num-

ber of observations needed to satisfy the stopping criterion is collected at the

first checkpoint when using about nine processors; see Table 6.22. Note that

the location of the first checkpoint is 100 RCs (n1 = 100). The numbers

of observations and RCs collected by a single processor in the M/D/1/∞
queueing system are relatively smaller than the other systems. As discussed

before, adding more than nine processors in the case of the M/D/1/∞ queue-

ing system does not improve the speedup but increases the total number of

observations. These results agree well with the truncated Amdahl’s law.

The truncated Amdahl’s law is also applicable to the estimation of steady-

1The location of the first checkpoint is 100 RCs (n1 = 100).
2See Appendix F for the theoretically required number of observations.
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(a) M/M/1/∞ queueing system
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(b) M/D/1/∞ queueing system
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(c) M/H2/1/∞ queueing system

Figure 6.6: Speedup obtained under the MRIP scenario for the method of RCs

when estimating steady-state mean response times (ρ = 0.5)
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Table 6.2: Statistics averaged from 100 independent sequential steady-state

simulation runs applying the RCs method to estimate the mean response time

at a traffic intensity ρ = 0.5 with a relative statistical error of at least 5% at

the 0.95 confidence level

M/M/1/∞ M/D/1/∞ M/H2/1/∞
Theoretically

Required Obs. 16903 3073 131385

Num. of Obs.

Collected by P=1 13015 ± 2715 1704 ± 350 119025± 24435

(Proportion) (76.99 ± 16.07%) (55.45 ± 11.39%) (90.59 ± 18.60%)

Num. of RCs

Collected by P=1 6629 ± 2048 855 ± 176 58961 ± 12104

state quantiles since they can be estimated under the MRIP scenario. There-

fore, we have investigated how much speedup can be obtained when estimating

steady-state quantiles with the two sequential QE methods: spectral P 2 QE

(based on the method of non-RCs) and batching QE (based on the method of

RCs); see Chapter 5 for further discussion of these methods.

Empirical results of the speedup obtained when applying spectral P 2 QE

to estimate the 0.9 quantile for the response time in the M/M/1/∞ queueing

system at a traffic intensity of ρ = 0.5 with a relative statistical error of at

least 5% at the 0.95 confidence level, are depicted in Figure 6.7. The statistics

are also presented in Table 6.3. All empirical results are averaged from 100

independent sequential steady-state simulation runs executed using Akaroa-

2 [28]. Figure 6.7 shows that the speedup for estimating quantiles under the

MRIP scenario is similar to that of estimating mean values. We can clearly see

that the speedup depends on the total run-length of the simulation, the relative

length of the initial transient period, and the number of checkpoints observed

when running a simulation on a single processor. The empirical speedups have

not reached the theoretical speedups. This is because the total number of

observations collected has been increased a little excessively by increasing the

number of processors.
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Figure 6.7: Speedup achieved from spectral P 2 QE based on the method of

non-RCs to estimate the 0.9 quantile for the response time in the M/M/1/∞
at a traffic intensity of ρ = 0.5

Table 6.3: Statistics averaged from 100 in-

dependent sequential steady-state simulation

runs applying the method of spectral P 2 QE

to estimate the 0.9 quantile for the response

time in the M/M/1/∞ at a traffic intensity of

ρ = 0.5

M/M/1/∞
Total Length 7631 ± 1567

Initial Length 306 ± 63

Initial/Total (f) 4.02 ± 1.08%

Number of Checkpoints 7.4 ± 1.5

Empirical results of the speedup obtained by applying the method of batching

QE, based on RCs under the MRIP scenario, to estimate the 0.9 quantile for

the response time in the M/M/1/∞ queueing system at a traffic intensity ρ =

0.5 with a relative statistical error of at least 5% at the 0.95 confidence level,

are depicted in Figure 6.8. All empirical results are also averaged from 100
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independent sequential steady-state simulation runs executed using Akaroa-2

[28]. The results show that the speedup is achieved linearly up to with about

thirteen processors engaged. Adding more than thirteen processors does in-

crease the total number of collected RCs, but it does not improve the speedup.

This is not surprising since the mean of empirically collected RCs is 12670

± 2601 RCs and the assumed location of the first checkpoint3 is 1,000 RCs

(n1 = 1, 000). These results also follow the truncated Amdahl’s law well.
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Figure 6.8: Speedup achieved from batching QE based on the method of RCs

to estimate the 0.9 quantile for the response time in the M/M/1/∞ at a traffic

intensity of ρ = 0.5

These results lead us to conclude:

• If the distance between checkpoints is too short, say for instance, equals

one observation, a simulation running on a single processor takes much

longer to collect the required number of observations since the processor

has to check the stopping criteria when every observation is generated.

However, if these simulations are run under the MRIP scenario, one

can offer significant speedup proportional to the number of processors

engaged.

3n1 = 1, 000 RCs as the location of the first checkpoint for QE has been recommended

to avoid producing ‘extremely short’ simulation runs; see Chapter 5.
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• The speedups achieved when using the method of RCs to estimate mean

values and quantiles differ from theoretically obtainable ones because

of the existing granularity of the analysis (significant distance between

checkpoints). If the simulation run-length is very long and the number

of checkpoint is large, the linear speedup can be achieved because the

relative length of the initial transient period is irrelevant and the location

of the first checkpoint has also no significant role.

6.4 Conclusions

Although parallel and distributed simulations have led to many important

results in different domains, a robust and effective general methodology for

dealing with various complex models has not yet been produced. Parallel and

distributed simulations can offer especially significant speedup over a sequential

steady-state simulation. The effectiveness of the SRIP scenario depends on the

level of inherent parallelism in the system to be simulated. If this level is high

and the synchronisation, deadlocks and causality errors are properly solved,

then the SRIP scenario can significantly speed up the simulation. However,

the SRIP scenario has its specific problems and limitations, such as a lack

of fault-tolerance, most of which do not occur in the MRIP scenario. The

MRIP scenario is almost universally applicable, and is also statistically more

efficient in the sense of the mean squared error of the final estimates. The

MRIP scenario potentially offers linear speedup proportional to the number of

processors involved.

We have commented on parallel and distributed simulations based on the

MRIP scenario in terms of the speedup achievable when estimating mean val-

ues and quantiles using the methods of RCs and non-RCs. Empirical results

obtained using Akaroa-2 show quite good agreement with the truncated Am-

dahl’s law, which was derived for estimating the theoretical speedup obtainable

under the MRIP scenario in [133], for the speedup of steady-state simulations.

The optimal speedup under the MRIP scenario when estimating mean values

and quantiles can be achieved if the total run-length of the simulation is very
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long, the relative length of the initial transient period is very small or zero,

and the distance between checkpoints is short. The speedup when using the

method of RCs to estimate mean values and quantiles is not affected by the

relative length of the initial transient period, but it can be limited by the

location of the first checkpoint.
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Chapter 7

SUMMARY, CONCLUSIONS,

AND FUTURE RESEARCH

In this thesis, we have investigated research issues related to a steady-state

simulation. In particular, we have concentrated on how to obtain more credible

results using a fully automated simulation tool in both distributed and non-

distributed stochastic simulations. A complete summary and conclusions of

the main contributions of this thesis follow in Section 7.1. Recommendations

for future research are presented in Section 7.2.

7.1 Summary and Conclusions

In Chapter 2, we studied three interval estimators of proportions based on

the normal distribution, the arcsin transformation and the F distribution, in

the context of their application in sequential coverage analysis. Experimental

studies of coverage analysis were required to assess the quality of the practical

implementations of the methods of simulation output data analysis used to

determine CIs in sequential stochastic simulations. Interval estimators for

proportions using the (symmetric) normal approximation have been commonly

used for coverage analysis of simulation output data even though alternative

estimators of (asymmetric) CIs for proportions have been proposed in the



7.1 Summary and Conclusions

past. This is probably because the normal approximation has been easier to

use in simulation practice than the other interval estimators. However, current

computing technology can now deal with alternative estimators. Even CIs for

coverage analysis based on the F distribution can be calculated easily by a

standard computer.

Three interval estimators were applied to sequential coverage analysis of the

SA/HW method of analysis of steady-state mean response times, in simulations

of the M/M/1/∞, M/D/1/∞, and M/H2/1/∞ queueing systems. Although

the numerical results of coverage analysis show that they are very similar in

terms of CIs, there are some concerns about their validity. Estimators based

on the F distribution have been found to be more accurate and appropriate

for use in coverage studies, especially if a higher confidence level is assumed.

In Chapter 2, based on our experimental studies, we also extended some

basic rules, proposed originally in [134] for the proper experimental coverage

analysis of sequential steady-state simulations. The numerical results of se-

quential coverage analysis by applying these revised rules were presented for

three output data analysis methods: NOBM, SA/HW, and RCs, in simulations

of the M/M/1/∞, M/D/1/∞, and M/H2/1/∞ queueing systems. With those

results, we reach better conclusion, since the final CIs at different traffic lev-

els were exactly the same width, unlike the final CIs at different traffic levels

obtained with the rules proposed in [134].

In Chapter 3, we addressed the problem of sequential steady-state simu-

lations conducted to study long run mean values of performance measures of

stable dynamic systems. The problem is that the inherently random nature

of output data collected during the stochastic simulation, due to the pseudo-

random nature of input data, can cause an accidental, temporary satisfaction

of the stopping rule of such a sequential estimation. It is quite frequently asso-

ciated with producing a ‘too short’ simulation run having poor coverage. Our

experimental evidence showed that this phenomenon occurs frequently, with a

resulting significant degradation of the coverage of the final results.
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At the least, lowering the probability of using results from ‘too short’ simu-

lation runs is one of the very few possible practical ways available for simulation

practitioners to improve the quality of the final results from their simulation

experiments. We proposed a few simple heuristic rules of thumb that, if ap-

plied in practice, can reduce to a negligible level the probability that results

come from prematurely finished simulations. The effectiveness of these rules

was quantitatively assessed using the results of coverage analysis of the three

different methods of simulation output data analysis: NOBM, SA/HW, and

RCs, in sequential steady-state simulations. In particular, Rules I and V ap-

pear to be effective. However, no rules can guarantee that the final CIs from

the sequential stochastic simulation will exactly contain the theoretical value

with a probability equal to the assumed confidence level.

To obtain the coverage with an assumed level of confidence, one needs to

collect the number of theoretically required observations. However, none of

the three methods of simulation output data analysis: NOBM, SA/HW, and

RCs, in sequential steady-state simulations for the M/M/1/∞, M/D/1/∞,

and M/H2/1/∞ queueing systems collects the theoretically required number

of observations, especially in the case of heavily loaded queueing systems.

With the current state-of-the-art simulation output data analysis methods, we

cannot assume that the exact level of coverage will be reached. However, we

can at least improve the coverage by applying one of Rules I and V, since the

number of observations approaches the theoretically required number.

The selection of the appropriate rule depends on the confidence level re-

quired. Rule I, which selects the longest run from a few repeated simulation

runs, appears to be the most effective in the case where one always wishes

to have the final results within an assumed level of confidence, because the

coverage from the selected run can be improved to the assumed level of confi-

dence by adjusting the number of replications R. Otherwise, in the case where

one always wants to guarantee the final results having a high confidence level,

the alternative is Rule V, as the resulting coverage is always between the as-

sumed level of confidence and the maximum level for lightly or heavily loaded

queueing systems.
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Many methods of steady-state simulation output data analysis, such as

spectral analysis, batch means, regenerative cycles (RCs), and standardised

time series, have been proposed. However, only the method of RCs can natu-

rally avoid the problem of the initial transient period. Therefore, the method

of RCs is a very attractive alternative. However, a sequential steady-state sim-

ulation with the RC method can lead to inaccurate simulation results if the

simulation experiment stops too early when the sequential stopping criterion

is accidentally temporarily satisfied, as can happen in practice from time to

time. We investigated this aspect of sequential steady-state simulation with

the RC method in Chapter 4.

A problem is that many simulation runs in the sequential method of RCs

have often as few as two RCs. This seriously degrades the quality in terms of

coverage, unlike the other analysis methods: NOBM and SA/HW. However, if

the location of the first checkpoint for sequential RCs is carefully selected, it is

possible to avoid collecting those ‘extremely short’ simulation runs. To observe

this, we studied the sequential method of RCs with a number of different

locations for the first checkpoint (locating it between n1 = 2 to n1 = 150 RCs).

The experimental results clearly showed that the number of ‘extremely short’

simulation runs is diminished by delaying the first checkpoint. As assuming a

minimum number of 100 RCs or more as the location of the first checkpoint,

‘extremely short’ simulation runs completely disappear, while ‘extremely short’

simulation runs still exist if a minimum number of 10 RCs as the location of

the first checkpoint, suggested in [89], is used.

In Chapter 4, we also extended a stopping rule by adopting n1 = 100 RCs as

the location of the first checkpoint, based on experimentally obtained results,

especially for a sequential RC method which helps to achieve final results

with the required statistical error and the required level of coverage. The

experimental coverage was significantly improved by adopting the proposed

stopping rule for a sequential RC method, being comparable with NOBM and

SA/HW, while the coverage of ‘too short’ simulation runs (including ‘extremely

short’ runs) obtained without it is surprisingly poor, all below 21%, compared

with the assumed theoretical confidence level of 95%.
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The stopping rule for a sequential RC method and the rules for experi-

mental coverage analysis for sequential simulation proposed in Chapter 2 have

been applied to the analysis of the steady-state means for the M/M/1/∞,

M/D/1/∞, and M/H2/1/∞ queueing systems. These results clearly show

that a remarkable improvement in the quality of the sequential method of RCs

was obtainable in the sense of the final coverage. In such a case, the restriction

of the minimum number of RCs as the location of the first checkpoint played

a crucial role. Our experimental results indicated that the sequential method

of RCs is an attractive solution for simulation practitioners if special cares are

taken to avoid ‘too short’ simulation runs, to choose an appropriate location

of the first checkpoint, and to identify the regenerative state.

In Chapter 5, we considered sequential quantile estimations in steady-state

simulations. Quantiles are often used to give a more complete description of

the distribution, since one statistic - for instance, the mean value of a ran-

dom variable - is seldom sufficient as a summary of an entire distribution.

However, the direct estimation of quantiles, based on storing and consecutive

multiple sorting of entire sequences of observations collected during the se-

quential steady-state simulation appears to be impractical in real applications

of a stochastic simulation. A few approaches for estimating quantiles, which

only require linear computation time and little memory, have been proposed

so far.

In particular, we studied the properties of three sequential quantile esti-

mators: linear and batching QE for the method of RCs, and spectral P 2 QE

for the method of non-RCs, to determine the best one to implement in a fully

automated simulation package such as Akaroa-2 [28]. As our results show,

only the batching QE approach offers a reasonable quality of the final results,

in terms of coverage analysis and bias, when estimating the response times in

an M/M/1/∞ queueing system. However, this does require easy recognition

of the RCs in a simulated system. Otherwise, the spectral P 2 QE approach,

which produces the poor coverage caused by slightly greater quantiles, can be

an alternative since the poor coverage can be improved by assuming a higher

195



7.1 Summary and Conclusions

statistical error of the final results.

We also studied two statistical tests to determine the suitability of applying

them in the case of QE: Schruben’s test [162] and the GSS test [57], which were

originally developed for detecting the initial transient period when estimating

the steady-state mean. Our results show that these tests also work when

estimating the steady-state quantiles. Schruben’s test appears to be better,

since the empirical quantiles of the waiting times in the queue obtained with it

are much closer to their theoretical steady-state quantiles with smaller errors.

One of the inherent problems in sequential steady-state simulations, which

is that any simulation run can be very short since the stopping condition can be

accidentally and temporarily satisfied, also happened when estimating quan-

tiles. These short runs degrade the quality of the final result. This problem was

solved by applying the rules of experimental coverage analysis (discussed in

Chapter 2) for the three QE approaches. The other problem, especially in the

sequential method of RCs, is that ‘extremely short’ simulation runs are pro-

duced by choosing an improper location of the first checkpoint. This problem

also occurred when estimating quantiles using the linear QE and batching QE

approaches based on the method of RCs. This problem was solved by choosing

a proper location of the first checkpoint, after collecting at least 1,000 RCs.

The two recommended heuristic rules: Rules I and V, proposed for prevent-

ing ‘too short’ simulation runs being included in the final results (in Chapter

3), were applied for the three QE approaches. These rules work well for the

linear QE and batching QE approaches, but they do not work for the spectral

P 2 QE approach since this approach produces slightly greater quantiles.

Simulations of even moderately complex systems can require excessive com-

puting time to obtain statistically accurate results. Advanced technologies of

fast processors and large memories have helped those computationally inten-

sive simulations. However, the stochastic nature of discrete-event simulation

still creates a significant computational problem with increasing model com-

plexity. Therefore, parallel and distributed simulation holds great promise for
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meeting the simulation needs of developers of increasingly complex systems,

since the use of parallel and distributed computer systems significantly speeds

up run times, enabling a simulation program to execute on a computing sys-

tem containing multiple processors, such as personal computers interconnected

by a communication network. Although parallel and distributed simulations

have led to many important results in different domains, a robust and effective

general methodology for dealing with various complex models has not yet been

produced.

In Chapter 6, we studied parallel and distributed discrete-event simula-

tions based on the MRIP scenario in terms of the speedup achievable when

estimating mean values and quantiles using the methods of RCs and non-RCs.

Empirical results obtained using Akaroa-2 showed quite good agreement with

the truncated Amdahl’s law, which was derived for estimating the theoreti-

cal speedup obtainable under the MRIP scenario in [133], for the speedup of

steady-state simulations.

In general, the optimal speedup under the MRIP scenario when estimating

mean values and quantiles can be achieved if the total run-length of the sim-

ulation is very long, the relative length of the initial transient period is very

small or zero, and the distance between checkpoints is short. The speedup

when using the method of RCs to estimate mean values and quantiles is not

affected by the relative length of the initial transient period, but it can be

limited by the location of the first checkpoint.

7.2 Suggestions for Future Research

In this thesis we have investigated some statistical issues that underlie the

estimation of credible final results in sequential steady-state simulations. To

obtain credible final results in fully automated sequential steady-state simu-

lations, a host of problems remain unanswered. The following suggestions for

future research are related to the original contributions of this thesis to find

out better methods or techniques for a fully automated simulation package
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which can produce more credible simulation results.

• No simulation output data analysis methods can ensure that the final

CIs from the sequential stochastic simulation will exactly contain the

theoretical value with a probability equal to the assumed confidence level.

One of the ongoing problems of research in this area is to find a valid

method of output data analysis (in the sense of coverage) for simulations

of highly dynamic stochastic processes, such as heavily loaded queueing

systems and telecommunication networks.

• The batching QE approach based on the RC method offers good quality

final results. However, this approach requires the stochastic process of

interest to have (frequently occurring) regeneration points. This property

is not shared by many real-world systems, such as a queueing system

with two or more non-Poisson arrival streams. Therefore, the batching

QE approach should be modified for the non-RC method.

• The spectral P 2 QE approach for the method of non-RCs produces the

poor coverage caused by slightly greater quantiles. However, it can be

applied for any system, since it does not require the recognition of the

RCs in a simulated system. Therefore, the spectral P 2 QE approach

should be further investigated.

• All heuristic rules and statistical tests for detecting the initial transient

period have been developed for the case where the steady-state mean of

the system is estimated, but none have been developed for estimating

steady-state quantiles. Fortunately, we have shown that the Schruben’s

test could be applied for estimating quantiles. However, the ultimate

solution would be to find a method of determining the length of the

initial transient period in the sense of probability distribution, which

can be applied for means, quantiles, proportions, and etc.

• One usually looks at only a few quantiles or combinations of quantiles

to obtain information about the location, shape, and dispersion of the

distribution. However, the empirical cumulative distribution function
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is a summary of all the quantiles, that can be used to estimate the

entire cumulative distribution function. Therefore, the estimation of

distributions rather than quantiles should be investigated.

• One of the inherent problems in sequential steady-state simulations is

that any simulation run can be ‘too short’ since the stopping condition

can be accidentally and temporarily satisfied. This accidental satisfac-

tion of the stopping condition is usually caused by the sudden decrease

of the relative statistical error within two consecutive checkpoints. As a

means of avoiding ‘too short’ runs, one could consider adopting a method

in which the changes in the relative statistical error can be smoothed,

for example by fitting a simple least squares line, before the stopping

condition is checked.

• The central idea of RCs is to exploit the fact that, when {X (t) : t ≥ 0}
is a regenerative process, random observations collected between suc-

cessive regeneration points are independent and identically distributed.

The theoretically required run-length at the low level of autocorrelation

should be much shorter than the one at the high level of autocorrelation.

Therefore, it may be possible to prove theoretically that the method of

RCs has been particularly prone to early stopping.

• The long-range dependence discovered in telecommunication networks

has received a great attention in recent years. However, we are not aware

of any methods of simulation output data analysis have been tested on

long-range dependent processes. Therefore, the problem with output

data analysis of long-range dependent processes is an open question.
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[149] Różański, R. The Asymptotic Consistency and Efficiency of Fixed-Size

Sequential Confidence Sets. Probability and Mathematical Statistics 18,

1 (1998), pp. 19–31.

216



REFERENCES

[150] Randhawa, S. U., and Baxter, L. K. A Study in the Application of

Schriber’s Truncation Rule to Simulation Output. Transactions of The

Society for Computer Simulation 9, 3 (1992), pp. 175–192.

[151] Rego, V. J., and Sunderam, V. S. Experiments in Concurrent

Stochastic Simulation: The EcliPSe Paradigm. Journal of Parallel and

Distributed Computing 14 (1992), pp. 66–84.

[152] Rezvan, M. Improving VBR Voice Performance in Integrated Services

Broadband Wireless Networks. Master’s thesis, Dept. of Computer Sci-

ence, University of Canterbury, Christchurch, New Zealand, 1991.

[153] Righter, R., and Walrand, J. C. Distributed Simulation of Discrete

Event Systems. Proceedings of the IEEE 77, 1 (Jan. 1989), pp. 99–113.

[154] Robinson, S. An Heuristic Technique for Selecting the Run-Length

of Non-Terminating Steady-State Simulations. Simulation 65, 3 (1995),

pp. 170–179.

[155] Rubin, D. B., and Schenker, N. Efficiently Simulating the Coverage

Properties of Interval Estimates. Applied Statistics 35, 2 (1986), pp. 159–

167.

[156] Sauer, C. H. Confidence Intervals for Queueing Simulations of Com-

puter Systems. ACM Performance Evaluation Review 8, 1-2 (1979),

pp. 46–55.

[157] Schmeiser, B. Batch Size Effects in the Analysis of Simulation Output.

Operations Research 30 (1982), pp. 556–568.

[158] Schriber, T. J., and Andrews, R. W. A Conceptual Framework

for Research in the Analysis of Simulation Output. Communications of

the ACM 24, 4 (April, 1981), pp. 218–232.

[159] Schruben, L. W. A Coverage Function for Interval Estimators of

Simulation Response. Management Science 26 (1980), pp. 18–27.

[160] Schruben, L. W. Detecting Initialization Bias in Simulation Output.

Operations Research 30, 3 (1982), pp. 569–590.

217



REFERENCES

[161] Schruben, L. W. Confidence Interval Estimation Using Standardised

Time Series. Operations Research 31 (1983), pp. 1090–1108.

[162] Schruben, L. W., Singh, H., and Tierney, L. Optimal Tests for

Initialization Bias in Simulation Output. Operations Research 31 (1983),

pp. 1167–1178.

[163] Seila, A. F. A Batching Approach to Quantile Estimation in Regen-

erative Simulations. Management Science 28, 5 (1982), pp. 573–581.

[164] Seila, A. F. Estimation of Percentiles in Discrete Event Simulation.

SIMULATION 39, 6 (1982), pp. 193–200.

[165] Shedler, G. S. Regenerative Stochastic Simulation. Academic Press,

Inc., 1993.

[166] Song, W.-M. T. Estimators of the Variance of the Sample Mean:

Quadratic Forms, Optimal Batch Sizes, and Linear Combinations. PhD

thesis, Department of Statistics, School of Industrial Engineering, Pur-

due University, 1988.

[167] Stacey, C., Pawlikowski, K., and McNickle, D. C. Detection

and Significance of the Initial Transient Period in Quantitative Steady-

State Simulation. In Proceedings of the 8th Australian Teletraffic Re-

search Seminar, ATRS’93 (Melbourne, Australia, 1993), pp. 193–202.

[168] Steiger, N. M., and Wilson, J. R. Improved Batching For Confi-

dence Interval Construction In Steady-State Simulation. In Proceedings

of the 1999 Winter Simulation Conference (1999), P. A. Farrington, H.

B. Nembhard, D. T. Sturrock, and G. W. Evans (eds.), pp. 442–451.

[169] Tanner, M. Practical Queueing Analysis. The IBM McGraw-Hill Se-

ries, 1995.

[170] Tokol, G., Goldsman, D., Ockerman, D. H., and Schruben,

L. W. Standardised Time Series Lp-Norm Variance Estimators for Sim-

ulations. Management Science 44, 2 (1998), pp. 234–245.

218



REFERENCES

[171] Tseng, S., and Fogg, B. J. Credibility and Computing Technology.

Communications of the ACM 42, 5 (May 1999), pp. 39–44.

[172] Wagner, D. B., and Lazowska, E. Parallel Simulation of Queueing

Networks: Limitations and Potentials. Performance Evaluation Review

17 (1989), pp. 146–155.

[173] Walpole, R. E., and Myers, R. H. Probability and Statistics for

Engineers and Scientists. Macmillan Publishing Co., Inc., New York,

2nd Ed., 1978.

[174] Welch, P. On the Relationship between Batch Means and Overlapping

Batch Means. In Proceedings of the 1987 Winter Simulation Conference

(1987), A. Thesen, H. Grant, and W. D. Kelton (eds.), pp. 320–323.

[175] Westaway, F. W. Scientific Method: Its Philosophical Basis and Its

Modes of Application. Blackie & Son Limited, 3rd Ed., 1924.

[176] Whitt, W. Planning Queueing Simulations. Management Science 35,

11 (1989), pp. 1341–1366.

[177] Whitt, W. Simulation Run Length Planning. In Proceedings of the

1989 Winter Simulation Conference (1989), E. A. MacNair, K. J. Mus-

selman, and P. Heidelberger (eds.), pp. 106–112.

[178] Whitt, W. The Efficiency of One Long Run Versus Independent Repli-

cations in Steady-state Simulation. Management Science 37, 6 (1991),

pp. 645–666.

[179] Wilson, E. B. An Introduction To Scientific Research. McGraw-Hill

Book Company. Inc., 1952.

[180] Wilson, J. R., and Pritsker, A. A. B. A Survey of Research on

the Simulation Startup Problem. Simulation 31 (1978), pp. 55–58.

[181] Yau, V., and Pawlikowski, K. AKAROA: A Package for Auto-

matic Generation and Process Control of Parallel Stochastic Simulation.

In Proceedings 16th Australian Computer science Conference (1993),

pp. 71–82.

219



REFERENCES
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Appendix A

Automated Simulation Package:

Akaroa-2

The simulation package, Akaroa-21, is used as a performance evaluation tool in

this dissertation. Akaroa-2 is the latest version of a fully automated simulation

tool designed for running parallel and distributed stochastic simulations under

the Multiple Replications In Parallel (MRIP) scenario in a local area network

(LAN) environment [27], [28], [181].

A.1 Architecture of Akaroa-2

The Akaroa-2 system has three main components: akmaster, akslave, and

akrun, plus three auxiliary components: akadd, akstat, and akgui; more de-

tailed discussion can be found in [27] and [28]. The relationships between

the three main components of Akaroa-2 are shown in Figure A.1. Each bold-

1The first version of Akaroa was designed at the Department of Computer Science,

University of Canterbury in Christchurch, New Zealand, by Associate Professor K. Paw-

likowski (Computer Science) and Victor Yau (Computer Science) and Dr. D. McNickle

(Management). The latest version (Akaroa-2) is a reimplementation by Dr. Greg Ew-

ing (Computer Science). The Akaroa-2 package can be freely downloaded for the purpose

of teaching and non-profit research activities at universities and research institutes from

http://www.cosc.canterbury.ac.nz.



A.1 Architecture of Akaroa-2

outlined box represents one Unix process, and the connecting lines represent

Transmission Control Protocol and Internet Protocol (TCP/IP) stream con-

nections.

Figure A.1: Architecture of Akaroa-2 (taken from [28])

Akmaster is the master process which coordinates the activity of all other

processes initiated by Akaroa-2. It launches new simulations, maintains state

information about running simulations, performs global analysis of the data

produced by simulation engines, and makes simulation stopping decisions.

The akslave processes run on hosts which run simulation engines. The sole

function of the akslave is to launch simulation engine(s) on its host as directed

by the akmaster.

Once the akmaster and any desired akslaves are running, the akrun pro-

gram is used to initiate a simulation. It first contacts the akmaster process,

obtaining its host name and port number from a file left by the akmaster in

the user’s home directory. For each simulation engine requested, the akmaster

chooses a host from among those hosts on the LAN which are running ak-

slave processes. It instructs the akslave on that host to launch an instance of
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the user’s simulation program, passing on any specified arguments. The first

time the simulation program calls one of the Akaroa-2 library routines, the

simulation engine opens a connection to the akmaster process and identifies

the simulation to which it belongs, so that the akmaster can associate the

connection with the appropriate simulation data structure.

Akadd is used to add more simulations to a running simulation. This can

be used to replace simulation engines which have been lost for some reason, or

to speed up the simulation if more hosts become available. Akstat is used to

obtain information about the state of the Akaroa-2 system: which hosts are

available, which simulations are running, and what progress each simulation is

making. Akgui provides a graphical user interface for starting and monitoring

simulations that can be used instead of, or in addition to, akrun and akstat.

In the Akaroa-2 system, each engine performs sequential analysis of its own

data to form a local estimate of each performance measure. At more or less

regularly determined checkpoints, the engine sends its local estimates to the

akmaster process, where the local estimates of each performance measure from

all engines are combined to give a set of global estimates. Whenever a new

global estimate is calculated, the relative statistical error is computed, and

compared with the requested precision. When the precision of all analysed

performance measures becomes satisfactory, the akmaster terminates all the

simulation engines, and sends the final global estimates to the akrun process,

which in turn reports them to the user.

A.2 Transient Period Detection in Akaroa-2

A number of ways to estimate the length of the initial transient period of

steady-state simulations have been proposed; see Section 5.3.1 for more de-

tailed discussion. Basic problems related to the existence of initial transient

periods can be found, for example, in [128] and [150]. The length of the ini-

tial transient period has traditionally been determined using various heuristic

rules.

More precise measures of the length of the initial transient period could be
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obtained by using various statistical tests to test the stationarity of data se-

quences. Each operates in a hypothesis testing framework, formally testing the

null hypothesis that there is no initialisation bias in the output mean against

the alternate hypothesis that initialisation bias in the output exists.

In Akaroa-2, a method applied for automatic detection of the length of the

initial transient period was proposed by Pawlikowski [128]. It is based on the

Schruben’s test [162] using the SA/HW method for the variance estimator;

see Section 5.3.1 for the Schruben’s test and Appendix B.2 for the SA/HW

method. This has been implemented in the simulation package Akaroa-2 [28].

In the case of steady-state simulation, a fully automated sequential sta-

tistical test for detecting the initial transient period in Akaroa-2 follows the

following steps:

1. A rough, first approximation of the number of initial observations that

should be discarded is obtained by applying a heuristic rule of thumb

(labelled R5 in [128]).

• the initial transient period is over after n observations x1, x2, · · · , xn

crosses the mean X̄(n) k times2, where X̄(n) = 1
n

∑n
1 xi.

2. Following the first rough selection of the transaction point for the initial

data, the length of the initial transient period is more precisely deter-

mined sequentially by applying the statistical tests proposed by Schruben

et al. in [162] for testing the stationarity of collected observations.

3. If the sequence of tested data cannot be considered stationary, it is dis-

carded and the next sequence of observations tested. This process is

repeated until the test determines that the system is free from the ef-

fect of the initial transient period, or some predefined upper limit on the

simulation length is reached.

2This heuristic rule is sensitive to the value of k. The selection of k = 25 was adopted in

Akaroa-2 as recommended in [43].
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A.3 Random Number Generator in Akaroa-2

To achieve full credibility of simulation studies for the performance evaluation

of a system one needs to use valid simulation models in valid simulation ex-

periments. The most effective way of achieving this is to use good, thoroughly

tested pseudo-random number generators (PRNGs).

It is a generally accepted and commonly used practice today to use algorith-

mic generators of (pseudo-random) uniformly distributed numbers as sources

of basic randomness in a stochastic simulation. The most popular generators

of simulation practice have belonged to a class of multiplicative linear con-

gruential (MLC)-PRNGs, based on recursive algorithms in integer modulo M

arithmetic. In today’s world of 32-bit computers, MLC-PRNGs with a mod-

ulus of M = 231 − 1 have focused special attention and, following exhaustive

analysis, about 20 of them have been recommended as acceptable sources of

independent and uniformly distributed pseudo-random numbers (see [34], [95],

[96], [126]). These are the generators that have been used, for example, in

GPSS (version H and PC), SIMSCRIPT II.5, SIMAN and SLAM II [93].

Akaroa-2 (version 2.4.1) used MLC-PRNGs3 with a seed of x0 = 1 and a

modulus of M = 231 − 1 whose 50 multipliers are taken from the top of the

list of over 200 in [34]. The 50 multipliers used in Akaroa-2 (version 2.4.1) are

listed in Section A.3.1. The akmaster process concatenates these 50 sequences

into one sequence with a total length of about 1011 numbers; more detailed

discussion can be found in [27] and [28]. This number has been used in our

(computationally intensive) quality evaluation of the distributed estimators in

Akaroa-2.

Recently, L’Ecuyer and Simard [97] have discovered that, when concern-

ing the two-dimensional, [0, 1)2, uniformity of random numbers generated by

a LC-PRNGs, any LC-PRNGs fail the Birthday Spacing Test, if one applies

this test to n ≥ 8 3
√

L numbers generated by a given LC-PRNG, where L is the

length of its cycle. This means that pseudo-random numbers should not be

3MLC-PRNG is given by xi = A ∗ xi−1 mod M , where A is the multiplier, M is the

modulus, and x0 is the seed.
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used as a source of randomness in a single application if the simulation requires

n ≥ 8 3
√

L numbers. For example, a LC-PRNG with the cycle length of L = 231,

when applying the rule of n ≥ 8 3
√

L, produces only 10321 acceptable pseudo-

random numbers. This means that 516050 pseudo-random numbers, generated

by MLC-PRNGs with 50 multipliers implemented in Akaroa-2 (version 2.4.1),

can be used in a single simulation if pseudo-random numbers are used in pairs.

However, in our applications we were concerned with one-dimensional unifor-

mity in the interval [0, 1). Therefore, the restriction imposed by [97] is not

directly applicable in our studies. This allows us to claim that the sequence

of 1011 pseudo-random numbers generated in Akaroa-2 (version 2.4.1) was suf-

ficient for our research. The numbers of collected observations in a single

simulation were always less than 3 ∗ 106.

However, using these MLC-PRNGs in real-life applications, for example,

in simulation studies of networks fed by streams of teletraffic modelled by

strongly autocorrelated processes, rare events simulations, and so on, can cause

a potentially serious errors. These applications require very long samples of

simulation output data to be collected or, equivalently, very long CPU time

is needed for their generation to obtain final results with an acceptably small

statistical error. Therefore, one obviously needs PRNGs of much longer cycles

than those that would have been satisfactory two years ago.

Fortunately, PRNGs have been found that should be adequate in the fore-

seeable future for simulations demanding a long CPU time. A number of Mul-

tiple Recursive LC-PRNGs, and Combined Multiple Recursive LC-PRNGs, of

cycles between 2185 to 2377, can be found in [96], together with their portable

implementations. Another discovery in the class of LC-PRNGs based recur-

sions in polynomial arithmetic is known as the Generalised Feedback Shift

Register PRNG (GFSFR-PRNG). A twisted GFSFR-PRNG, known as the

Mersenne Twister, with a cycle 219937 − 1, and good virtual randomness in up

to 623 dimensions, for up to 32-bit accuracy, has been proposed in [114], also

with a portable implementation4.

To cope with the recent requirements for a fully automated simulation tool,

4see http://www.math.keio.ac.jp/matumoto/emt.html

228



A.3 Random Number Generator in Akaroa-2

the PRNG in Akaroa-2 has recently5 been changed to a Combined Multiple

Recursive LC-PRNG described in [96]. The Combined Multiple Recursive

LC-PRNG has two order 3 components as following (see [29] and [96]):

s1[n] = (a12 ∗ s1[n − 2] + a13 ∗ s1[n − 3]) mod m1, (A.1)

and

s2[n] = (a21 ∗ s2[n − 1] + a23 ∗ s2[n − 3]) mod m2, (A.2)

where m1 = 4294967087, m2 = 4294944443, a12 = 1403580, a13 = -810728,

a21 = 527612, and a23 = -1370589. Then, using Equations (A.1) and (A.2),

a pseudo-random number is obtained by

x[n] = {((s1[n] − s2[n]) mod m1) + 1}/(m1 + 1).

To see whether the new PRNG affects results presented in this dissertation,

we have performed sequential coverage analysis using the method of SA/HW

when estimating the mean response time in the M/H2/1/∞ queueing system

only, by applying the principles of the sequential coverage analysis discussed

in Chapter 2. We selected the M/H2/1/∞ queueing system to re-execute with

the new PRNG, since this model theoretically requires many more observations

to be collected than the M/M/1/∞ and M/D/1/∞ queueing systems. The

theoretically required observations for those queueing systems can be found in

Appendix F.

Each replication for coverage analysis was obtained with the required sta-

tistical error of 10% or less, and sequential coverage analysis was performed

assuming that the required statistical error of the final result was 1% or less,

both at a confidence level of 0.95. All numerical results obtained with the

two different PRNGs: Multiplicative Linear Congruential (MLC)-PRNGs and

Combined Multiple Recursive LC-PRNGs, are depicted in Figure A.2. As we

can see in Figure A.2, the results of sequential coverage analysis obtained with

the new PRNG is not significantly different from the results obtained with the

MLC-PRNGs with a modulus of M = 231 − 1.
5see [29]. The latest version of Akaroa-2 including the manual (version 2.6.1) updated

on 8 August 2000 can be downloaded from http://www.cosc.canterbury.ac.nz.
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Figure A.2: Sequential coverage analysis using the method of SA/HW when

estimating the mean response time in the M/H2/1/∞ queueing system with

the two different PRNGs: Multiplicative Linear Congruential (MLC)-PRNGs

and Combined Multiple Recursive LC-PRNGs (the confidence level = 0.95)

To evaluate the null hypothesis that the two PRNGs are equal, we have

executed the statistical test of one way ANOVA (Analysis Of Variance) with

the results shown in Figure A.2. The purpose of ANOVA is to assess whether

the observed differences between the two PRNGs are statistically significant.

The calculations of the F statistic and its P value are organised in Table

A.1, which contains numerical measures of the variation between PRNGs and

within PRNGs. The Model and Error as sources of variation give information

related to the variation between PRNGs and within PRNGs, respectively. The

Corrected Total is the sum of the values for the Model and Error. Each Sum

of Squares is a sum of squared deviations for the entries corresponding to the

Model, Error, and Corrected Total. Each Degrees of Freedom is a degrees of

freedom for the Model (M − 1), Error (N −M), and Corrected Total (N − 1),

where M is the number of groups and N is the number of observations in all

groups. For each source of variation, the Mean Square is the sum of squares

divided by the degrees of freedom. Each Mean Square for the Model and Error
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Table A.1: Statistical test of one way ANOVA for the coverage obtained

using the method of SA/HW when estimating the mean response time in the

M/H2/1/∞ queueing system with the Multiplicative Linear Congruential

(MLC)-PRNGs and Combined Multiple Recursive LC-PRNGs

Sum Degrees Mean

Source of of Square F Value P Value

Squares Freedom

Model 0 1 MSM = MSM/MSE = 0.967

0 0

Error 0.00454 16 MSE =

0.00028

Corrected 0.00454 17 MST =

Total 0.00026

is called MSM and MSE, respectively. The MSM and MSE are estimates of the

variance between PRNGs and within PRNGs. Then, to test the null hypothesis

(H0) in one way ANOVA, the F statistic is calculated by F = MSM/MSE.

When H0 is true, the F statistic has the F distribution with (M − 1, N −M)

degrees of freedom, while when Ha is true, the F statistic tends to be large.

We reject H0 in favour of Ha if the F statistic is sufficiently large. The P

value of the F test is the probability that a random variable having the F

distribution with (M − 1, N −M) degrees of freedom is greater than or equal

to the calculated value of the F statistic [120].

As shown in Table A.1, the result of the statistical test of one way ANOVA

confirms that the two different PRNGs are not significantly different, since

the P value of the F test is very large. Therefore, our results obtained with

Multiplicative Linear Congruential (MLC)-PRNGs in this dissertation do not

seem to be affected by their use in the reported research project.
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A.3.1 The Multipliers used in Akaroa-2

The multipliers used by the MLC-PRNGs in Akaroa-2 (version 2.4.1) are listed

below. They are taken from a list published by Fishman and Moore [34].

The ones marked * have been recommended by those authors as being of

particularly high quality since they have satisfactorily passed a set of statistical

tests [34].

No. Multiplier No. Multiplier

1 742938285* 2 950706376*

3 1226874159* 4 6208991*

5 1343714438* 6 2049513912

7 781259587 8 482920380

9 1810831696 10 502005751

11 464822633 12 1980989888

13 329440414 14 1930251322

15 800218253 16 1575965843

17 1100494401 18 1647274979

19 62292588 20 1904505529

21 1032193948 22 1754050460

23 1580850638 24 1622264322

25 30010801 26 1187848453

27 531799225 28 1402531614

29 988799757 30 1067403910

31 1434972591 32 1542873971

33 621506530 34 473911476

35 2110382506 36 150663646

37 131698448 38 1114950053

39 1768050394 40 513482567

41 1626240045 42 2099489754

43 1262413818 44 334033198

45 404208769 46 257260339

47 1006097463 48 1393492757

49 1760624889 50 1442273554
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Appendix B

Selected Methods of Sequential

Simulation Output Data

Analysis of Mean Values

Obtaining statistically valid final results by stochastic simulation is difficult

because observations collected during the simulations are typically correlated,

and the simulated process initially moves along a non-stationary trajectory.

Let us consider the sequence of observations x1, x2, · · · , xn collected during

a simulation run. The observations can be used to estimate the sample mean

µx by calculating the arithmetic average of the sample:

X(n) =
1

n

n∑
i=1

xi. (B.1)

However, let us note that this estimate is a function of the sequence of ran-

dom observations x1, x2, · · · , xn, and, as such, it assumes different, random

values in different simulation experiments. Following a standard statistical

approach, the accuracy of any such estimate can be assessed by considering

the probability

Pr(X(n) − ∆x(n) ≤ µx ≤ X(n) + ∆x(n)) = 1 − α, (B.2)

where ∆x(n) is the half-width of the CI for the estimator, at an assumed

confidence level (1 − α), 0 < α < 1.



Selected Methods of Sequential Simulation Output Data Analysis of Mean Values

On the basis of the central limit theorem1, if observations x1, x2, · · · , xn

are realizations of independent and identically distributed random variables

X1, X2, · · · , Xn, one can have

∆x(n) = tdf,1−α/2, σ̂[X(n)], (B.3)

where tdf,1−α/2 is the (1 − α/2) quantile of the Student t-distribution with

degrees of freedom df = n − 1, and σ̂2[X(n)] is the estimator of the variance

of X(n), which is given by

σ̂2[X(n)] =
1

n(n − 1)

n∑
i=1

(xi − X(n))2. (B.4)

Unfortunately, observations collected during simulations are usually not

statistically independent. The general formula for the variance of the mean

X(n) of observations x1, x2, · · · , xn collected from a covariance stationary2

process is

σ̂2[X(n)] =

[
R(0) + 2

n−1∑
k=1

(1 − k

n
)R(k)

]
/n, (B.5)

where

R(k) = E[(Xi − µx)(Xi−k − µx)], 0 ≤ k ≤ n − 1 (B.6)

is the autocovariance of order k.

Neglecting the existing statistical autocorrelations, (that is equivalent to

ignoring all the terms except R(0) in Equation (B.5)), can lead to significant

errors of estimation. For example, in an M/M/1/∞ queueing system with

90% utilisation, the variance of the mean queue length calculated according

to Equation (B.5) is 367 times greater than that from Equation (B.4); see

[128]. Estimating σ2[X(n)] without considering the autocorrelation among the

observations would lead to either an excessively pessimistic or (more often),

1The central limit theorem states that as the sample size increases, the distribution of

X(n) becomes closer to a normal distribution.
2A discrete-time stochastic process X1, X2, · · · is said to be covariance stationary if µi = µ

(for i = 1, 2, · · · and −∞ < µ < ∞), σ2
i = σ2 (for i = 1, 2, · · · and σ2 < ∞), and

Ci,i+j = cov[Xi, Xi+j ] is independent of i for j = 1, 2, · · · [93].
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optimistic CI for µx. The estimation of the variance of the sample mean in

autocorrelated processes is a major problem in assessing the CIs of the mean

value during the stochastic simulation.

Various methods for data collection and analysis have been proposed to

diminish the effect of the non-stationarity of simulated queueing processes

(especially the initial non-stationarity caused by the initial transient period)

and the autocorrelation of events (correlations among collected observations).

These methods either try to weaken (or remove) autocorrelations among ob-

servations, or to exploit the correlated nature of observations in the estima-

tion of variance needed for determining the CIs for the estimated parameters.

Observations collected during the initial transient period neither belong to a

stationary sequence nor characterise steady-state behaviour of the simulated

process. Neglecting the existence of the initial transient period can also lead

to significant bias in steady-state estimates of analysed performance measures.

Various techniques for detecting the end point of the initial transient period

can be found, for example, in [16], [57], and [128].

Many methods have been proposed to address the problems of autocor-

relation and the initial transient period. Those relevant to this dissertation

are:

• batch means

• methods based on spectral analysis

• regenerative cycles.

These three approaches are based on one ‘long’ replication, but differ from

each other as they apply different approximations and data transformations

for constructing CIs of the estimated parameters. Each method has its own

merits and also potential difficulties. Hence, the quality of the final point and

interval estimators produced may vary depending on the choice of output data

analysis method.
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B.1 Batch Means Methods

B.1 Batch Means Methods

Various approaches based on the batch means (BM) have been proposed to

discover the best options, such as the number of batches and batch sizes; see

for example [38], [50], [90], [118], and [174]. Automated sequential simulation

analysis procedures for implementing the BM can be found in [8], [128], and

[168], and research on methods of BM under the MRIP scenario can be also

found in [121].

The classical estimator known as Non-Overlapping Batch Means (NOBM)

(we consider only NOBM which is also commonly called BM) is most widely

used in simulation practice to calculate interval estimators from a single (long)

simulation run by weakening correlations existing between consecutive data.

NOBM requires that sequences of analysed data are stationary. Thus the initial

transient observations, collected during the initial transient period, should be

discarded. This approach is based on the assumption that observations more

separated in time are less correlated. Thus, for sufficiently long batches of

observations, the batch means are (almost) uncorrelated; see [13] for a formal

justification.

The sequence of n original observations x1, x2, · · · , xn is divided into non-

overlapping batches (x11, x12, · · · , x1m), (x21, x22, · · · , x2m), · · · of each batch

size m, sufficiently large so that the mean values over these batches are (almost)

independent. Batch means X1(m), X2(m), · · · , Xb(m), where

X i(m) =
1

m

m∑
j=1

xij , (B.7)

are used as (secondary) output data in the statistical analysis of the simulation

results to obtain the mean and interval estimates of the process. The mean µx

is estimated by

X(b, m) =
1

b

b∑
i=1

X i(m), (B.8)

where b is the number of batches.

A 100(1 - α)% CI for the steady-state mean µx obtained by applying the
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method of NOBM is given by

X(b, m) ± tb−1,1−α/2σ̂[X(b, m)], (B.9)

where

σ̂2[X(b, m)] =

b∑
i=1

{Xi(m) − X(b, m)}2

b(b − 1)
(B.10)

is the estimator of the variance of X(b, m), and tb−1,1−α/2, for 0 < α < 1, is

the upper (1−α/2) critical point from the Student t-distribution with degrees

of freedom b − 1.

The popularity of NOBM among practitioners continues because of the

simplicity of the theory, regardless of reports of relatively poor coverage us-

ing this method, especially in heavily loaded systems. This is probably be-

cause sometimes batch sizes are accepted, even though they are not sufficiently

large enough to obtain uncorrelated batch means. For example, one can select

batches of as few as eight observations [33]. Song [166] showed a trade-off be-

tween bias and variance for a batch means estimator in accordance with batch

sizes. Batches not having optimal numbers of observations can not guarantee

that the final results are analysed properly within the NOBM method.

Determination of the optimal batch size and the number of batches are

definitely problems for the batch means estimator. A few algorithms to deter-

mine the best number of batches b and the best batch size m, so that the batch

means can be assumed to be independent and normally distributed, have been

developed; see [19], [54], and [157].

Correlation between the batch means of the batch size m can be measured

by estimators of the autocorrelation coefficients

r̂(k, m) =
R̂(k, m)

R̂(0, m)
, (B.11)

where

R̂(k, m) =
1

b − k

b∑
i=k+1

[X i(m) − X(n)][X i−k(m) − X(n)] (B.12)
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is the estimator of autocovariance of lag, k = 0, 1, 2, · · · , in the sequence of

batch means X1(m), X2(m), · · · , Xb(m).

The sequential approach using the method of NOBM has been implemented

in Akaroa-2 [28]. An algorithmic description in sequential simulation with this

method, implemented in Akaroa-2, can be found in [128].

B.2 Methods Based on Spectral Analysis

Methods of variance estimation based on spectral analysis (SA) efficiently ex-

ploit the serial correlation between observations collected during one long sim-

ulation run. Analysed observations x1, x2, · · · , xn must represent a stationary

sequence, thus, as in NOBM, we assume that initial observations collected

during the initial transient period have been discarded.

The autocovariance function R(k) and the spectral density function px(f)

are closely related; more detailed discussion of their derivation can be found,

for example, in [11], [14] and [76]. The spectral representation for the autoco-

variance function R(k) can be shown as

R(k) =

∫ 1/2

−1/2

px(f) cos(2πfk) df. (B.13)

The spectral density function px(f) can be shown as

px(f) =
∞∑

k=−∞
R(k) cos(2πfk), −∞ ≤ f ≤ +∞. (B.14)

The variance σ2[X(n)] can be obtained from Equation (B.5), which is given

in terms of the autocovariance function R(k). Assuming
∑∞

k=−∞ |R(k)| < ∞,

we also have

lim
n→∞

nσ2[X(n)] =

∞∑
k=−∞

R(k) = px(0) (B.15)

from Equations (B.5) and (B.14). Hence for sufficiently large n, the estimator

of σ2[X(n)] can be approximated from an estimator of the spectral density
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function px(f) at frequency f = 0, i.e.

σ2[X(n)] ≈ px(0)

n
. (B.16)

Several techniques have been proposed to obtain good estimators of the

spectral density function px(f). Most of them follow classical techniques of

spectral estimation, based on the concept of spectral windows (special weight-

ing functions introduced to lower the final bias of the estimators), for example,

the Tukey-Hanning window; see [76] and the Parzen window; see [127]. How-

ever, the usefulness of spectral windows in reducing the bias of the estimate

p̂x(0) has been questioned in [63] and [64]. The spectrum is an even function,

i.e., symmetric about zero. This means that it has either a peak or a valley

at zero and is not approximately linear. Hence any weighted average of the

spectrum about the point zero will result in a biased estimate of px(0) and a

larger region of averaging, i.e., the wider the spectral window, the more bi-

ased the estimate will be. Therefore, the spectral window should be narrow to

lower the bias, but the variance of px(0) increases as the width of the window

decreases.

Another method based on spectral analysis to estimate the variance σ2[X(n)]

was developed by Heidelberger and Welch in [63] and [64]. This method esti-

mates px(0) from a regression fit to the logarithm of the average periodogram

of the sequence of observations x1, x2, · · · , xn. The periodogram is a function

of the discrete Fourier transform Ax(j) of the observations, i.e.

I(
j

n
) =

1

n
|Ax(j)|2 (B.17)

and

Ax(j) =
n∑

s=1

xse
−(2Iι(s−1)j)/n, (B.18)

where ι =
√−1 and 0 < j < n/2. The periodogram has the following approx-

imate properties under very general conditions (see [63]);

E[I(
j

n
)] ≈ px(

j

n
), 0 < j < n/2, (B.19)
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V ar[I(
j

n
)] ≈ p2

x(
j

n
), 0 < j < n/2, (B.20)

cov[I(
j

n
), I(

i

n
)] ≈ 0, 0 < i 6= j < n/2. (B.21)

A reasonable approach to obtain an estimate of px(0) from the values of

the periodogram in the region near zero is to assume the spectrum is a smooth

function in this region and apply regression techniques. However, there are two

problems associated with applying regression techniques to the periodogram:

the variance is not constant and the exponential distribution is very positively

skewed.

The former problem can be easily solved by taking the logarithm of the

periodogram function. This has approximately the following properties (see

[63]);

E[log(I(
j

n
))] ≈ log(px(

j

n
)) − 0.577, 0 < j < n/2, (B.22)

V ar[log(I(
j

n
))] ≈ 1.645, 0 < j < n/2, (B.23)

cov[log(I(
j

n
)), log(I(

i

n
))] ≈ 0, 0 < i 6= j < n/2. (B.24)

The other problem of the positive skewness of the distribution in the peri-

odogram can be reduced by averaging over adjacent periodogram values before

taking the logarithm. The resulting function

L(fj) = log{
[
I(

2j − 1

n
) + I(

2j

n
)

]
/2} (B.25)

for fj = (4j − 1)/2n can be used in the application of regression techniques to

estimate px(0). Then, this function is approximated by a polynomial to obtain

its value at zero. Finally, we can get the variance σ2[X(n)] by applying the

estimated value of px(0) to Equation (B.16). (We will refer to this method as

SA/HW after its authors.)

A 100(1 − α)% CI for the steady-state mean obtained by applying the

method of SA/HW is given by

X(n) ± tdf,1−α/2σ̂sp[X(n)], (B.26)
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assuming

σ̂2
sp[X(n)] =

1

n
p̂x(0), (B.27)

and tdf,1−α/2, for 0 < α < 1, is the upper (1−α/2) critical point from the Stu-

dent t-distribution with degrees of freedom df . There is no definitive method

for choosing the parameter df , but the value of df depends here on the ra-

tio of n/dfmax, where dfmax is the value of the upper lag considered in the

autocovariance function R(df); see [12] and [30].

The method of SA/HW [63] provides flexibility and stability in estimating

σ2[X(n)] and also produces quite accurate final results. The sequential ap-

proach using this method has been implemented in Akaroa-2 [28], and QNSim

[146]. An algorithmic description in sequential simulation with this method,

implemented in Akaroa-2, can be found in [128].

B.3 Regenerative Cycle Method

The method of regenerative cycles (RCs), first suggested by Cox and Smith

[20], to analyse collected observations of the process {X (t) : t ≥ 0} has been

systematically developed by a number of authors. The central idea of RCs

is to exploit the fact that, when {X (t) : t ≥ 0} is a regenerative process,

random variables between successive regeneration points are independent and

identically distributed (i.i.d.). Thus it can circumvent the autocorrelation

problem in estimates.

Let {X (t) : t ≥ 0} be a continuous time stochastic process. A definition of a

regenerative process can be defined in terms of ‘stopping times’ for a stochastic

process. A stopping time for a stochastic process {X (t) : t ≥ 0} is a random

variable T taking values in [0, +∞). The random times {Ti : i ≥ 0} are said

to be regeneration points (or regenerative times) for the process {X (t) : t ≥ 0},
and {X (t) : Ti−1 ≤ t ≤ Ti} is said to be the i-th cycle of the process. The

requirement that {Ti : i ≥ 0} be stopping times for {X (t) : t ≥ 0} means that

for any fixed time t the occurrence of a regeneration point prior to time t (that

is, Ti ≤ t) may depend on the evolution of the process in the time interval
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(0, t ] [165].

The RC method assumes that any regenerative process starts afresh (proba-

bilistically) at each consecutive regeneration point. Thus, observations grouped

into batches of random length, determined by successive regenerative points

of the simulated process, are statistically independent, since the simulation

always starts from a regenerative state, that is, the point at which its future

state transitions do not depend on the past.

The method of RCs based on n RCs usually uses estimators in the form

of a ratio of two variables. To estimate a steady-state mean µx of, for exam-

ple, the waiting times in a queueing system, on the basis of observed waiting

times x1, x2, x3, . . . , xn of consecutive customers, we are given the pairs of (sec-

ondary) output data (a1, y1), (a2, y2), . . . , (an, yn). These are the realisations

of i.i.d. random variables Ai and Yi, 1 ≤ i ≤ n, where Ai and Yi denote,

respectively, the number of customers processed and the sum of the waiting

times in the ith RC. Let y(n), a(n), s2
11(n), s2

22(n), and s2
12(n) be the usual

unbiased estimators for E[Y ], E[A], V ar[Y ], V ar[A], and cov[Y, A] for any i,

respectively; that is

y(n) =
1

n

n∑
i=1

yi, (B.28)

a(n) =
1

n

n∑
i=1

ai, (B.29)

s2
11(n) =

1

n − 1

n∑
i=1

(yi − y(n))2 , (B.30)

s2
22(n) =

1

n − 1

n∑
i=1

(ai − a(n))2 , (B.31)

and

s2
12(n) =

1

n − 1

n∑
i=1

(yi − y(n)) (ai − a(n)) . (B.32)
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As a consequence of the strong law of large numbers3 for sequences of i.i.d.

random variables, the point estimator of the mean

r̂(n) =
y(n)

a(n)
(B.33)

is a strongly consistent estimator of the steady-state mean µx, that is, r̂(n) →
µx with probability one as n → ∞. Moreover, the estimator for variance

s2(n) = {s2
11(n) − 2r̂(n)s2

12(n) + r̂2(n)s2
22(n)} (B.34)

is also strongly consistent, that is, s2(n) → σ2(n) with probability one as

n → ∞ [165].

A 100(1− α)% CI4 for the steady-state mean µx obtained by applying the

method of RCs based on n RCs is given by

r̂(n) ± s(n)tn−1,1−α/2

a(n)
√

n
, (B.35)

where tn−1,1−α/2, for 0 < α < 1, is the upper (1 − α/2) critical point from the

Student t-distribution with degrees of freedom n − 1.

As a consequence of the i.i.d. output data within consecutive RCs, the

problems related with the initial transient period and the autocorrelations

vanish simultaneously; more detailed discussion of RCs can be found in [21],

[22], [71], and [165]. However, the random length of RCs makes the control of

the accuracy of the final results more difficult. The various methods of RCs

offer a very attractive solution to the main ‘tactical’ problems of stochastic

simulation, but require a deeper a priori knowledge of the simulated processes.

Usually a few, or even infinitely many, different sequences of regeneration

points (for different types of regeneration states) can be distinguished in the

behaviour of a system.

While the accuracy of the final simulation results from the method of RCs

depends on the number of simulated RCs, the rate at which RCs occur depends

3Strong law of large numbers for i.i.d. random variables: Let {Xn : n ≥ 1} be a sequence

of independent and identically distributed random variables, and set Sn = X1+X2+· · ·+Xn

for n ≥ 1. If E[|X |] < ∞, then Sn/n → E[X ] with probability one as n → ∞ [165].
4The detailed derivation for constructing CIs can be found, for example, in [22] and [165].
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on the simulated system. For example, in heavily loaded but stable queueing

systems regenerative states can occur very rarely, making the method of RCs

very ineffective, since it becomes difficult, if possible at all, to form a reliable

point estimate and its CI. If a small number of RCs is recorded, the perfor-

mance of this method appears to be poor indeed, worse than NOBM [91].

Our sequential implementation of the RCs method for the experimental

studies in Akaroa-2 is based on the theory discussed here. A flowchart of the

procedure is given in Figure B.1. The sequential algorithm is also described in

the following section.

Sequential Procedure for the Method of RCs

The width of an estimated CI can be controlled by the use of an appropriate

sequential stopping rule. Any sequential stopping rule, for example, based

on a relative statistical error or an absolute statistical error, can be used in

conjunction with the RC method. Among the possible criteria for stopping the

experiment in the sequential RC method, we adopt a stopping criterion based

on the relative half-width of the CIs at a given confidence level (1−α), defined

as the ratio ε(n) in Equation (4.12) of Chapter 4. The simulation experiment

is stopped when ε(n) ≤ εmax, where εmax is the required limit of the relative

statistical error of the results at the 100(1−α)% confidence level, 0 < εmax < 1.

A sequential method of RCs is described below by the pseudocode using

the following parameters [98]:

(1 - alpha) : The assumed confidence level of the final results

(0 < alpha < 1)

Maximum Relative Statistical Error (epsilon_{max}) : The maximum

acceptable value of the relative statistical error of the CIs

(0 < epsilon_{max} < 1)

PROCEDURE RegenerativeAnalysis;

{Uses a ratio estimator for the method of regeneration cycles}
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 collect  observations during 1 RC

collect information of the sum 
    and the length of the RC

update the statistics for estimating 
      the mean and the variance collect  observations

       during 1 RC 

         Is  the 
required  statistical 
   error  reached?

   steady-state  parameters  have  
been  estimated  with  the  required 
               statistical  error

YES

NO

                 Is the 
minimum number of 100 RCs  
        or more collected ?

YES

NO

determine the mean and the variance 

Figure B.1: Flowchart for the sequential method of RCs

PROCEDURE GetNextRC;

* Get an RC by collecting observations until a regeneration

point is detected.

* Collect information of the sum and the length of an RC.
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B.3 Regenerative Cycle Method

- RCSum

- RCLength

* Collect the following statistics for estimating the

variance s^2(n) with RCSum and RCLength of RCs

- MeanRCLength = SUM(RCLength) / NRCs;

- MeanRCSums = SUM(RCSum) / NRCs;

- SumofSqRCSums = SUM(RCSum*RCSum);

- SumofSqRCLengths = SUM(RCLength*RCLength);

- SumofRCSumbyRCLength = SUM(RCSum*RCLength);

END GetNextRC;

PROCEDURE UpdateStatistics;

{Update the overall variance and the mean using the

classical estimator described in Chapter 4.

The sums are updated dynamically, which is offering a

quicker method for determining the overall variance.}

* Update following statistics using formulae s^2_{11}(n),

s^2_{22}(n), and s^2_{12}(n) described in the previous

section.

- VarTourSums = s^2_{11}(n);

- VarTourLengths = s^2_{22}(n);

- covariance = s^2_{12}(n);

* Calculate the overall mean and overall variance using

the classical estimator.

- OverallMean = MeanRCSums / MeanRCLength;

- OverallVariance = s^2(n);

END UpdateStatistics;
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BEGIN {main procedure}

{initialise parameters for calculating statistics from

the collected observations in RCs}

NRCs = 1; {Number of RCs collected}

RCSum = 0; {Sum of the observations within an RC}

RCLength = 0; {Length of a single RC}

MeanRCSums = 0.0; {Overall mean of observations in RCs}

MeanRCLength = 0.0; {Overall mean of lengths of RCs}

{For estimating the variance s^2(n)}

SumofSqRCSums = 0.0; {Sum of squares of sum of observations

in an RC}

SumofSqRCLengths = 0.0; {Sum of squares of length of an RC}

SumofRCSumbyRCLength = 0.0; {Sum of length of an RC multiply

by sum of an RC}

{a condition of stopping the simulation has not been met yet}

StopSimulation = false;

while (not StopSimulation) {do}

* Call GetNextRC;

{The following procedures will be called after the minimum

number of 100 RCs or more collected.}

* Call UpdateStatistics;

* Update the value of the relative statistical error using

Equation (4.14) in Chapter 4.

if (relative statistical error <=

Maximum Relative Statistical Error)

StopSimulation = true;

else StopSimulation = false;
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B.3 Regenerative Cycle Method

enddo;

END RegenerativeAnalysis;
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Appendix C

Standardised Time Series Used

in Statistical Tests for Detection

of the Initial Transient Period

To estimate the variance of the sample mean of stationary observations we

can use the central limit theorem to standardise i.i.d. random variables into

an asymptotically standard normal random variable. Schruben originally in-

troduced this idea in [161]. In this approach, a sequence of observations

x1, x2, · · · , xn is first divided into b contiguous batches of length m (assume

n = bm); the observations x(i−1)m+1, x(i−1)m+2, · · · , x(i−1)m+m comprise the ith

batch, i = 1, 2, · · · , b. Then, each batch is transformed into its standard form

required by the functional central limit theorem, which is a generalisation of

the central limit theorem.

We denote the grand mean by

X(n) ≡ 1

n

n∑
p=1

xp. (C.1)

For i = 1, 2, · · · , b and j = 1, 2, · · · , m, the jth cumulative mean from batch i

is

X i(j) ≡ 1

j

j∑
p=1

x(i−1)j+p. (C.2)



Standardised Time Series Used in Statistical Tests for Detection of the Initial
Transient Period

(The quantity Xi(j) is called the ith batch mean.) For i = 1, 2, · · · , b and

0 ≤ t ≤ 1, the standardised time series from batch i of length m is given by

Ti,m(t) ≡ bmtc(X i(m) − Xi(bmtc))
σ
√

m
, (C.3)

where b·c is the greatest integer function and σ2 = limn→∞ nσ2[X(n)].

Schruben [161] shows that if observations x1, x2, · · · , xn are a stationary

sequence satisfying certain mild moments and φ-mixing conditions1, then as

m → ∞ one can have

Ti,m(t) → B(t), 0 ≤ t ≤ 1, (C.4)

a standard Brownian bridge process, which is a mathematical model of Brow-

nian motion on the interval [0, 1]. All finite-dimensional joint distributions

of B are normal and cov(B(s),B(t)) = min(s, t)(1-max(s, t)), 0 < s, t < 1.

Schruben also shows that Ti,m(t) and mX i(m) are asymptotically independent

as the batch size m becomes large.

Schruben [161] proposed two estimators to estimate the variance of X(n)

using two functions of Ti,m(t): the maximum of Ti,m(t), 0 ≤ t ≤ 1, and the

sum of Ti,m(p/m), from p = 1 to m. Estimators using these two functions are

known as the maximum estimator and the area estimator, respectively. These

are as follows:

• the maximum estimator

σ2
max[X(n)] =

1

3b2

b∑
i=1

Mi, (C.5)

where Mi = li,max

[
X i(m) − X i(li,max)

]2
/(m−li,max), and li,max = min{l :

Ti,m(l/m) ≥ Ti,m(p/m), for l = 1, 2, · · · , m and p = 1, 2, · · · , m}, which

is the location on [0,1] of the maximum of the i-th standardised time se-

ries, 1 ≤ i ≤ b.

1The φ-mixing property (informally) means that, if the process runs for a sufficiently

long time, observations in the distant past are approximately independent of those in the

present [93].
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An approximate 100(1 − α)% CI for the steady-state mean µx obtained

by applying the maximum estimator is given by

X(n) ± t3b,1−α/2σ̂max[X(n)], (C.6)

where t3b,1−α/2 is the (1 − α/2) quantile of a t-distribution with degrees

of freedom 3b; see [161].

• the area estimator

σ2
area[X(n)] =

12

(m2 − 1)n2

b∑
i=1

A2
i , (C.7)

where Ai = σ[X i(m)]
√

m
∑m

p=1 Ti,m(p/m).

An approximate 100(1 − α)% CI for the steady-state mean µx obtained

by applying the area estimator is given by

X(n) ± tb,1−α/2σ̂area[X(n)], (C.8)

where tb,1−α/2 is the (1 − α/2) quantile of a t-distribution with degrees

of freedom b; see [161].

The standardised time series method is easy to apply and has some asymp-

totic advantage over the batch means method. However, selecting the batch

size m is not easy and, while the property of φ-mixing is easy to assume, for

many models it is difficult to prove. The major source of error for a stan-

dardised time series is in choosing too small a batch size m. Research on

determining the best batch size for standardised time series, for both the sim-

ulation output data analysis and the initialisation bias test, continues both

theoretically([49], [166]) and experimentally ([55], [57]).

The maximum estimator is asymptotically superior to the area estimator

as m → ∞; see [55]. There is also a claim that the standardised time series

requires longer batches than the method of batch means [166]. The relation-

ships between batch means and the area estimator, and comparisons of their

efficiencies for large sample sizes can be found in [49]. A number of variants of

the area estimator can be found in [53], [56], and [170]. There are also differ-

ent approaches of combining the (weighted) area estimators or the maximum

estimator with the batch means method [24] and [57].
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Appendix D

Sequential Procedures for QE

This appendix presents the pseudocode of the sequential procedures for QE

using the three approaches: linear, batching, and spectral P 2, described in

Chapter 5. Among the possible criteria for stopping the experiment in the

sequential QE method, we adopt a stopping criterion which is based on the

relative half-width of the CIs at a given confidence level (1 − α), defined as

the ratio ε(n) in Equation (5.4) of Chapter 5. The simulation experiment

is stopped when ε(n) ≤ εmax, where εmax is the required limit of the relative

statistical error of the results at the 100(1−α)% confidence level, 0 < εmax < 1.

D.1 Sequential QE Using the Linear Approach

Sequential procedures for QE using the linear approach are described below

using the following parameters:

(1 - alpha) : The assumed confidence level of the final results

(0 < alpha < 1)

Maximum Relative Statistical Error (epsilon_{max}) : The maximum

acceptable value of the relative statistical error of the CIs

(0 < epsilon_{max} < 1)

QuantileFactor : p of the p-quantile

GridSpacingFactor : The space between grid points



D.1 Sequential QE Using the Linear Approach

h+1 : The number of grid points (g(j), j = 0, 1, ..., h) and

the grid points are spaced by the GridSpacingFactor

m : The number of RCs

PROCEDURE RegenerativeLinearQEAnalysis;

PROCEDURE GetNextRC;

* Get an RC by collecting observations until a regeneration

point is detected.

* Collect information of the number of observations in an RC

that are less than or equal to grid points g(j) and the

length of an RC.

- NObsGrid_g(j);

- TourLength;

* Accumulate the sum and sum of squares of sample statistics.

- NObsGrid_g(j) = NObsGrid_g(j) + NObsGrid_g(j-1);

- SumofGrid_g(j) = SumofGrid_g(j) + NObsGrid_g(j);

- SumofSqGrid_g(j) = SumofSqGrid_g(j) + (NObsGrid_g(j))^2;

- SumofNumGrid_g(j) = SumofNumGrid_g(j) +

TourLength*NObsGrid_g(j);

- SumofGridGrid_g(j) = SumofGridGrid_g(j) +

NObsGrid_g(j-1)*NObsGrid_g(j);

- SumofNum = SumofNum + TourLength;

- SumofSqNum = SumofSqNum + TourLength^2;

* Increase the NRCs.

- NRCs = NRCs + 1;

END GetNextRC;
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D.1 Sequential QE Using the Linear Approach

PROCEDURE UpdateStatistics;

* Find the grid point on both sides of quantile estimate.

- SumofGrid_g(j-1) <= SumofNum*QuantileFactor

<= SumofGrid_g(j);

* Compute the sample cumulative distribution function at

grid points g(j-1) and g(j).

- SampleCDF_g(j-1) = SumofGrid_g(j-1) / SumofNum;

- SampleCDF_g(j) = SumofGrid_g(j) / SumofNum;

* Calculate the quantile estimate.

- QuantileEstimate = g(j-1) + ((QuantileFactor -

SampleCDF_g(j-1))/(SampleCDF_g(j) -

SampleCDF_g(j-1)))*(g(j) - g(j-1));

* Compute the mean and variance of the lengths of RCs.

- MeanRCs = SumofNum / NRCs;

- VarianceRCs = (NRCs*SumofSqNum - (SumofNum^2))

/ (NRCs*(NRCs - 1));

* Compute quantities that will be used to compute the

variance of QuantileEstimate.

- B_g(j) = ((NRCs*SumofSqGrid_g(j)) -

(SumofGrid_g(j))^2)/(NRCs*(NRCs-1));

- C_g(j) = ((NRCs*SumofNumGrid_g(j)) -

(SumofNum*SumofGrid_g(j)))/(NRCs*(NRCs-1));

- D_g(j) = B_g(j) - (2*SampleCDF_g(j)*C_g(j)) +

(SampleVariance*SampleCDF_g(j)*SampleCDF_g(j));

- V = (((QuantileEstimate - g(j))/(g(j-1) - g(j)))*D_g(j-1))

+ (((QuantileEstimate - g(j-1))/(g(j) - g(j-1)))*D_g(j));

* Compute the density estimate.

255



D.1 Sequential QE Using the Linear Approach

- DENS = (SampleCDF_g(j)-SampleCDF_g(j-1))/(g(j)-g(j-1));

* Calculate the overall variance.

- Variance = V/(MeanRCs^2 * DENS^2 * NRCs);

END UpdateStatistics;

BEGIN {main procedure}

{initialise parameters for calculating statistics from

the collected observations in RCs}

NRCs = 0; {Number of RCs collected}

TourLength = 0; {Length of a single RC}

NObsGrid_g(j) = 0; {The number of observations in an RC

that are less than or equal to grid

points g_(j), j = 0, 1, ..., h}

SumofGrid_g(j) = 0; {Sum of NObsGrid_g(j) in an RC}

SumofSqGrid_g(j) = 0; {Sum of squares of NObsGrid_g(j) in an RC}

SumofNumGrid_g(j) = 0;{Sum of TourLength*NObsGrid_g(j) in an RC}

SumofGridGrid_g(j) = 0; {Sum of NObsGrid_g(j-1)*NObsGrid_g(j)

in an RC}

SampleCDF_g(j) = 0; {The sample cumulative distribution

function at a grid point g(j)}

SumofNum = 0; {Sum of the length of an RC}

SumofSqNum = 0; {Sum of squares of the length of an RC}

QuantileEstimate = 0.0; {The quantile estimate}

Variance = 0.0; {Variance of QuantileEstimate}

MeanRCs = 0.0; {Mean length of RCs}

VarianceRCs = 0.0; {Variance of MeanRCs}

{a condition of stopping the simulation has not been met yet}

StopSimulation = false;
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Call GetNextRC;

while (not StopSimulation) {do}

* Call GetNextRC;

{Following procedures are called after the minimum number

of m RCs collected.}

* Call UpdateStatistics;

* Update the value of the relative statistical error using

Equation (5.4) of Chapter 5.

if (relative statistical error <=

Maximum Relative Statistical Error)

StopSimulation = true;

else StopSimulation = false;

enddo;

END RegenerativeLinearQEAnalysis;

D.2 Sequential QE Using the Batching Approach

Sequential procedures for QE using the batching approach are described below

using the following parameters:

(1 - alpha) : The assumed confidence level of the final results

(0 < alpha < 1)

Maximum Relative Statistical Error (epsilon_{max}) : The maximum

acceptable value of the relative statistical error of the CIs

(0 < epsilon_{max} < 1)

b : The batch size (i.e., the number of RCs in a batch)

r : The number of batches
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PROCEDURE RegenerativeBatchingQEAnalysis;

PROCEDURE GetNextBatch;

* Get one batch of b RCs, producing observations x_(1),

x_(2), ..., x_(m).

* Compute three sample quantiles: SampleQuantile from all

observations of x_(1), x_(2), ..., x_(m) in the i-th batch,

SampleQuantile1 from the first half observations of x_(1),

x_(2), ..., x_(m/2) in the i-th batch, and SampleQuantile2

from the second half observations of x_(m/2+1), x_(m/2+2),

..., x_(m) in the i-th batch.

* Calculate the jackknifed batch quantile.

- Quantile = (2*SampleQuantile) -

((SampleQuantile1 + SampleQuantile2)/2);

* Accumulate the sum and sum of squares of Quantile.

- SumofQuantile = SumofQuantile + Quantile;

- SumofSqQuantile = SumofSqQuantile + Quantile^2;

* Increase the BatchCount.

- BatchCount = BatchCount + 1;

END GetNextBatch;

PROCEDURE UpdateStatistics;

{Update the overall variance and the quantile.}

* Calculate the overall quantile and overall variance.

- QuantileEstimate = SumofQuantile/BatchCount;

- Variance = (SumofSqQuantile-SumofQuantile^2/BatchCount)
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/ (BatchCount * (BatchCount-1));

END UpdateStatistics;

BEGIN {main procedure}

{initialise parameters for calculating statistics from

the collected observations in a batch of b RCs}

BatchCount = 0; {Number of batches collected}

Quantile = 0.0; {The jackknifed batch quantile}

SumofQuantile = 0.0; {Sum of Quantile}

SumofSqQuantile = 0.0; {Sum of squares of Quantile}

QuantileEstimate = 0.0; {The quantile estimate}

Variance = 0.0; {Variance of the estimator}

{a condition of stopping the simulation has not been met yet}

StopSimulation = false;

Call GetNextBatch;

while (not StopSimulation) {do}

* Call GetNextBatch;

{Following procedures are called after the minimum number

of r batches collected.}

* Call UpdateStatistics;

* Update the value of the relative statistical error using

Equation (5.4) of Chapter 5.

if (relative statistical error <=

Maximum Relative Statistical Error)

StopSimulation = true;

else StopSimulation = false;
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enddo;

END RegenerativeBatchingQEAnalysis;

D.3 Sequential QE Using the Spectral P 2 Ap-

proach

Sequential procedures for QE using the spectral P 2 approach are described

below using the following parameters:

(1 - alpha) : The assumed confidence level of the final results

(0 < alpha < 1)

Maximum Relative Statistical Error (epsilon_{max}) : The maximum

acceptable value of the relative statistical error of the CIs

(0 < epsilon_{max} < 1)

QuantileFactor : p of the p-quantile

PROCEDURE SpectralP2QEAnalysis;

PROCEDURE Initialization;

* Set the increments in desired positions.

- IncrementsPositions_(1) = 0;

- IncrementsPositions_(2) = p/2;

- IncrementsPositions_(3) = p;

- IncrementsPositions_(4) = (1+p)/2;

- IncrementsPositions_(5) = 1;

* Set the desired positions.

- DesiredPositions_(1) = 1;

- DesiredPositions_(2) = 1+2p;
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- DesiredPositions_(3) = 1+4p;

- DesiredPositions_(4) = 3+2p;

- DesiredPositions_(5) = 5;

* Set actual positions.

- ActualPositions_(i) = i, for i = 1, ..., 5;

* Set markers heights.

- MarkerHeights_(i) = x_(i), for i = 1, ..., 5;

* Initialize the QuantileEstimate and variance of

QuantileEstimate.

- QuantileEstimate = 0.0;

- Variance = 0.0;

END Initialization;

PROCEDURE FindCell(x);

* Find cell k such that (MarkerHeights_(k) <= x <=

MarkerHeights_(k+1)) and adjust extreme values

(MarkerHeights_(1) and MarkerHeights_(5)) if necessary.

- case of x

[x < MarkerHeights_(1)] MarkerHeights_(1)= x; k=1;

[MarkerHeights_(1) <= x < MarkerHeights_(2)] k=1;

[MarkerHeights_(2) <= x < MarkerHeights_(3)] k=2;

[MarkerHeights_(3) <= x < MarkerHeights_(4)] k=3;

[MarkerHeights_(4) <= x < MarkerHeights_(5)] k=4;

[MarkerHeights_(5) < x] MarkerHeights_(5)= x; k=4;

end case;

END FindCell;
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PROCEDURE IncreaseActualPositions;

* Increase actual positions of markers i = k+1 to 5.

- ActualPositions_(i) = ActualPositions_(i) + 1;

END IncreaseActualPositions;

PROCEDURE IncreaseDesiredPositions;

* Increase desired positions for all markers i = 1 to 5.

- DesiredPositions_(i) = DesiredPositions_(i) +

IncrementsPositions_(i);

END IncreaseDesiredPositions;

PROCEDURE AdjustHeightsActualPositions;

* Adjust heights and actual positions of markers i = 2 to 4.

If (MarkerHeights_(i-1) < qt < MarkerHeights_(i+1)) is

satisfied, MarkerHeights_(i) is calculated from the parabolic

formula. Otherwise, MarkerHeights_(i) is calculated from the

linear formula.

- for i =2 to 4 do

d = DesiredPositions_(i) - ActualPositions_(i);

{offset of desired position}

dp = ActualPositions_(i+1) - ActualPositions_(i);

{offset of next position}

dm = ActualPositions_(i-1) - ActualPositions_(i);

{offset of previous position}

qp = (MarkerHeights_(i+1) - MarkerHeights_(i)) / dp;

qm = (MarkerHeights_(i-1) - MarkerHeights_(i)) / dm;

if (d >= 1 and dp > 1) {
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qt = MarkerHeights_(i)+((1-dm)*qp+(dp-1)*qm)/(dp-dm);

if (MarkerHeights_(i-1) < qt < MarkerHeights_(i+1))

MarkerHeights_(i) = qt;

else MarkerHeights_(i) = MarkerHeights_(i) + qp;

ActualPositions_(i) = ActualPositions_(i) + 1;

}

else if (d <= -1 and dm < -1) {

qt = MarkerHeights_(i)-((1+dp)*qm-(dm+1)*qp)/(dp-dm);

if (MarkerHeights_(i-1) < qt < MarkerHeights_(i+1))

MarkerHeights_(i) = qt;

else MarkerHeights_(i) = MarkerHeights_(i) - qm;

ActualPositions_(i) = ActualPositions_(i) - 1;

}

enddo;

END AdjustHeightsActualPositions;

PROCEDURE UpdateStatistics;

* Return MarkerHeights_(3) as the estimate of p-quantile.

- QuantileEstimate = MarkerHeights_(3);

* Calculate density for variance of QuantileEstimate.

- DENS = ((ActualPositions_(4)-ActualPositions_(2))/ObsCount)

* ( ( (ActualPositions_(3) - ActualPositions_(2))/

(ActualPositions_(4) - ActualPositions_(3)) ) *

(MarkerHeights_(4) - MarkerHeights_(3)) +

( (ActualPositions_(4) - ActualPositions_(3))/

(ActualPositions_(3) - ActualPositions_(2)) ) *

(MarkerHeights_(3) - MarkerHeights_(2)) );

* Calculate variance of the estimator of mean using the spectral

analysis method described in Appendix B.2.
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- sigma_sq = p_x(0)/ObsCount;

* Calculate the variance of QuantileEstimate.

- Variance = sigma_sq/(DENS^2);

END UpdateStatistics;

BEGIN {main procedure}

{Parameters for calculating the p-quantile using the Spectral

P^2 approach}

IncrementsPositions_(i); {Increments of desired positions}

DesiredPositions_(i); {Desired positions}

ActualPositions_(i); {Actual positions}

MarkerHeights_(i); {Markers Heights}

QuantileEstimate; {Quantile Estimate}

Variance; {Variance of QuantileEstimate}

ObsCount; {Number of observations}

{a condition of stopping the simulation has not been met yet}

StopSimulation = false;

* Discard n_0 observations collected from the initial transient

period. The length of the initial transient period is

determined by using Schruben test discussed in Section 5.3.1.

* Collect the five observations (x_i, i = 1, ..., 5) and

sort them in ascending order (x_(i), i = 1, ..., 5).

- ObsCount = 5;

* Call Initialization;

* Decide the location of the first checkpoint.
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- w_1 = max[200, 2*n_0];

while (not StopSimulation) {do}

* Get an observation.

- x = x_j, j = 6, ...;

- ObsCount = ObsCount + 1;

* Call FindCell(x);

* Call IncreaseActualPositions;

* Call IncreaseDesiredPositions;

* Call AdjustHeightsActualPositions;

{Following procedures are called when the checkpoint is reached.}

* Call UpdateStatistics;

* Update the value of the relative statistical error using

Equation (5.4) of Chapter 5.

if (relative statistical error <=

Maximum Relative Statistical Error)

- StopSimulation = true;

else { * Decide the next checkpoint.

- w_1 = 3 * n_0;

- StopSimulation = false; }

enddo;

END SpectralP2QEAnalysis;
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Appendix E

Statistics from a Survey of

Literature on Applications of

Stochastic Simulation

More detailed results of a survey of technical literature over seven recent years,

published in the Proceedings of INFOCOM, and over three recent years, pub-

lished in three important technical journals: IEEE Transactions on Commu-

nications, IEEE/ACM Transactions on Networking, and Performance Evalua-

tion, are depicted in Figures E.1 - E.4, and in Table E.1. The abbreviations

used in these figures and tables are:

• TN: Total number of papers surveyed

• NS: Number of papers based on Simulation

• TS: Terminating Simulation

• SS: Steady-State Simulation

• US: Unspecified type of Simulation

• A1: Papers in which output data obtained from the TS are statistically

analysed

• A2: Papers in which output data obtained from the TS are not properly

analysed
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• A3: Papers in which output data obtained from the SS are statistically

analysed

• A4: Papers in which output data obtained from the SS are not properly

analysed

• A5: Papers in which neither statistical analysis of the simulation output

data nor the simulation type is mentioned.
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Figure E.1: Statistics of research papers, published in the Proceedings of IEEE

INFOCOM, in which results were obtained by simulation
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Figure E.2: Statistics of research papers, published in IEEE Transactions on

Communications, in which results were obtained by simulation
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The results presented in Figures E.1 - E.4, and in Table E.1 show that in

about 56% of the surveyed papers, in which results were obtained by simula-

tion, the authors do not even mention what statistical analysis method of the

simulation output data or simulation type they used. Their final simulation

results can not be acceptable as a scientific approach. Some other results can

also be found in Chapter 1.
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Figure E.3: Statistics of research papers, published in IEEE/ACM Transac-

tions on Networking, in which results were obtained by simulation
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Figure E.4: Statistics of research papers, published in Performance Evaluation:

An International Journal, in which results were obtained by simulation
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Table E.1: Statistics of research papers published in the technical literature

(a) the Proceedings of IEEE INFOCOM

Year Total Number Number of Papers TS SS US

of Papers based on Simulation A1 A2 A3 A4 A5

1992 177 100 15 13 14 5 53

1993 167 64 11 6 5 3 39

1994 175 81 1 5 17 17 41

1995 156 77 2 7 17 20 31

1996 176 80 3 9 20 13 35

1997 168 98 13 24 4 8 49

1998 172 99 15 23 3 3 55

(b) IEEE Transactions on Communications

Year Total Number Number of Papers TS SS US

of Papers based on Simulation A1 A2 A3 A4 A5

1996 230 139 23 32 9 2 73

1997 227 120 16 26 4 6 68

1998 221 118 19 24 8 1 66

(c) IEEE/ACM Transactions on Networking

Year Total Number Number of Papers TS SS US

of Papers based on Simulation A1 A2 A3 A4 A5

1996 83 37 8 8 1 0 20

1997 80 33 7 5 4 0 17

1998 68 39 11 9 0 4 15

(d) Performance Evaluation Journal

Year Total Number Number of Papers TS SS US

of Papers based on Simulation A1 A2 A3 A4 A5

1996 66 30 9 6 0 1 14

1997 42 24 5 7 1 1 10

1998 37 16 5 4 2 0 5
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Appendix F

Theoretically Required

Simulation Run-Length for

Some Stationary Queueing

Systems

In a typical simulation, neither a variance nor a mean of parameters (such as

waiting times, queue lengths, and so on) are known beforehand. Nevertheless,

a simulation practitioner would like to plan a simulation and, in particular,

estimate how long the simulation must be run so as to obtain a CI with the as-

sumed statistical error. To help planning a simulation before any data has been

collected, Whitt ([176]) has proposed that a required run-length is estimated

from the approximation of the stochastic model of interest by a more elemen-

tary Markov model that can be analysed analytically. They have showed that

some stochastic models can be approximated by reflecting Brownian motion1

[176], [177].

However, the required simulation run-length for some stationary queueing

systems can be calculated exactly. Depending on which steady-state parame-

1Reflecting Brownian motion is Brownian motion on the positive real line with constant

negative drift, constant positive diffusion coefficient, and an impenetrable reflecting barrier

at the origin.



F.1 Run-Length for the M/M/1/∞ Queueing System

ters of a queueing system are estimated in a sequential simulation, simulation

run-lengths to satisfy the required confidence level with the acceptable statis-

tical error are different. Here, we only consider two steady-state parameters:

the mean waiting time in the queue and the mean response time from the

M/M/1/∞, M/D/1/∞, and M/H2/1/∞ queueing systems, to calculate the

theoretically required simulation run-length. The detailed derivation proce-

dures are as follows.

F.1 Run-Length for the M/M/1/∞ Queueing

System

The derivation of a formula, which can calculate the theoretically required

run-length for the M/M/1/∞ queueing system, in this section follows the

discussion in Daley [23].

First, we assume the sample mean waiting time in the queue from an

M/M/1/∞ queueing system is to be estimated with 5% relative statistical

error for a 95% CI. Thus if Ŵq is the estimate of the sample mean waiting

time in the queue, then we want

Pr(|Ŵq − Wq| ≤ 0.05Wq) = 0.95. (F.1)

If ρ = λ/µ is the traffic intensity, then the theoretical mean steady-state

waiting time in the queue can be obtained by

Wq =
ρ2

λ(1 − ρ)
, (F.2)

and the theoretical variance of the waiting time in the queue is also obtained

by

σ2(Wq) =
ρ3(2 − ρ)

λ2(1 − ρ)2
, (F.3)

where λ is the arrival rate and µ is the service rate [73] (p. 525).

The Laplace-Stieltjes transform of the response times in the M/G/1/∞
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queueing system is defined as:

W ∗(s) =
(1 − ρ)sB∗(s)

s − λ[1 − B∗(s)]
, (F.4)

where B∗(s) is the Laplace-Stieltjes transform of a function f(t), and also from

the convolution property of transforms, it can be written as

W ∗(s) = W ∗
q (s)B∗(s), (F.5)

where W ∗
q (s) is the Laplace-Stieltjes transform of the waiting time in the

M/G/1/∞ queueing system, since

ResponseT ime = WaitingT imeintheQueue + ServiceT ime. (F.6)

Therefore, the Laplace-Stieltjes transform of the waiting times in the M/G/1/∞
queueing system is

W ∗
q (s) =

s(1 − ρ)

s − λ[1 − B∗(s)]
; (F.7)

see [84] for the detailed discussion.

From these results, the Laplace-Stieltjes transforms of the response time

and waiting time for the M/M/1/∞ queueing system can be easily obtained,

since it is the special case of the M/G/1/∞ queueing system with the squared

coefficient of variation of the service time C2
s is one. The Laplace-Stieltjes

transform B∗(s) of the exponential service time for the M/M/1/∞ queueing

system is defined by

B∗(s) =

∫ ∞

0

e−stµe−µtdt =
µ

µ + s
(F.8)

in [84] (p. 195). The Laplace-Stieltjes transform W ∗(s) of the response time

for the M/M/1/∞ queueing system is calculated from Equation (F.4) using

Equation (F.8) as follows:

W ∗(s) =
µ(1 − ρ)

s + µ(1 − ρ)
, (F.9)

and the Laplace-Stieltjes transform W ∗
q (s) of the waiting time is also calculated

from Equation (F.7) using Equation (F.8) as follows:

W ∗
q (s) =

(s + µ)(1 − ρ)

s + (µ − ρ)
, (F.10)
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in [84] (p. 202).

From Daley [23], if the system has been operating for a long time and one

selects N observations with waiting times W1, · · · , WN , then the sample mean

waiting time in the queue

Ŵq =
N∑

i=1

Wi/N (F.11)

has, for sufficiently large N ,

Nσ2(Ŵq) ≈ σ2(Wq)

[
1 + 2

∞∑
j=1

ρj(m)

]
, (F.12)

where

1 + 2

∞∑
j=1

ρj(m) =
1 + ρ

1 − ρ
+

λ(W
′′′
q − W

′
qW

′′
q )

(1 − ρ)(W ′′
q − W ′

qW
′
q)

(F.13)

(where W
′
q , W

′′
q and W

′′′
q can be obtained by the first, second and third dif-

ferentiations2 of the Laplace-Stieltjes transform W ∗
q (s), in Equation (F.10), of

the waiting times in the queue, respectively, and σ2(Wq) can be calculated by

(W
′′
q − W

′
qW

′
q) ); see [23] and [32].

From Equation (F.1), we have

Pr

(
|Ŵq − Wq|

σ(Ŵq)
≤ 0.05Wq

σ(Ŵq)

)
= 0.95 (F.14)

or

0.05Wq

σ(Ŵq)
= 1.96. (F.15)

From Equations (F.12) and (F.15), we can obtain the following equation

N = A(ρ)

(
1.96

0.05Wq

)2

, (F.16)

where

A(ρ) = σ2(Wq)

[
1 + ρ

1 − ρ
+

λ(W
′′′
q − W

′
qW

′′
q )

(1 − ρ)(W ′′
q − W ′

qW
′
q)

]
2This can be easily calculated using, for example, Maple.
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=
ρ3(2 − ρ)

λ2(1 − ρ)2

[
2µ3 + 5λµ2 − 4µλ2 + λ3

(2µ − λ)(µ − λ)2

]
; (F.17)

from the private communication with D. McNickle (2000), [23] and [32]. As

simplifying Equation (F.16), the number of observations N required theoret-

ically when estimating the mean waiting time in the M/M/1/∞ queueing

system with 5% of the relative statistical error for a 95% CI can be calculated

by

N = 1536.64

(
2 + 5ρ − 4ρ2 + ρ3

ρ(1 − ρ)2

)
. (F.18)

The numbers of observations required in theory, with a relative statistical

error of 5% and 10% at a 95% CI, are presented in Table F.1.

Table F.1: Required run-length when estimating the mean waiting time in

the M/M/1/∞ queueing system at a 95% CI

ρ Relative Statistical Rrror = 5% Relative Statistical Rrror = 10%

0.1 46,687 11,671

0.2 34,190 8,547

0.3 33,105 8,276

0.4 36,357 9,134

0.5 44,562 11,140

0.6 60,441 15,110

0.7 94,710 24,830

0.8 189,775 47,443

0.9 681,072 170,268

F.2 Run-Length for the M/D/1/∞ Queueing

System

The required observations in theory for a sequential steady-state simulation

when estimating the mean waiting time for the M/D/1/∞ queueing system
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can be obtained from the M/G/1/∞ queueing system, since the M/D/1/∞
queueing system is a special case of the M/G/1/∞ queueing system with the

squared coefficient of variation of the service time C2
s is zero [169], [176]. For

the M/D/1/∞ queueing system, the theoretical mean waiting time in the

queue can be obtained by

Wq =
ρE[s]

2(1 − ρ)
, (F.19)

and the theoretical variance of the waiting time in the queue is also obtained

by

σ2(Wq) =
ρ(E[s])2

3(1 − ρ)
+

ρ2(E[s])2

4(1 − ρ)2
, (F.20)

where ρ is the traffic intensity and E[s] is the service time, (s is constant) [73].

The Laplace-Stieltjes transform B∗(s) of the service time for the M/D/1/∞
queueing system is defined by

B∗(s) = e−sE[s] (F.21)

in [84] (p. 218), and the Laplace-Stieltjes transform W ∗
q (s) of the waiting time

for the M/D/1/∞ queueing system can be calculated from Equation (F.7)

using Equation (F.21). Therefore, the Laplace-Stieltjes transform W ∗
q (s) of

the waiting time in the queue for the M/D/1/∞ queueing system is

W ∗
q (s) =

s(1 − λE[s])

s − λ[1 − e−sE[s]]
. (F.22)

We can calculate the number of observations N required theoretically when

estimating the mean waiting time in the M/D/1/∞ queueing system with 5%

of the relative statistical error for a 95% CI from

N = A(ρ)

(
1.96

0.05Wq

)2

, (F.23)

where

A(ρ) = σ2(Wq)

[
1 + ρ

1 − ρ
+

λ(W
′′′
q − W

′
qW

′′
q )

(1 − ρ)(W ′′
q − W ′

qW
′
q)

]
, (F.24)
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(where W
′
q , W

′′
q and W

′′′
q can be obtained by the first, second and third dif-

ferentiations of the Laplace-Stieltjes transform W ∗
q (s), in Equation (F.22), of

the waiting times in the queue, respectively, and σ2(Wq) can be calculated by

(W
′′
q − W

′
qW

′
q) ); see [23] and [32].

The numbers of observations required in theory, with a relative statistical

error of 5% and 10% at a 95% CI, are presented in Table F.2.

Table F.2: Required run-length when estimating the mean waiting time in

the M/D/1/∞ queueing system at a 95% CI

ρ Relative Statistical Rrror = 5% Relative Statistical Rrror = 10%

0.1 26,559 6,639

0.2 17,607 4,401

0.3 16,028 4,007

0.4 17,073 4,268

0.5 20,488 5,122

0.6 27,744 6,936

0.7 43,904 10,976

0.8 89,637 22,409

0.9 330,093 82,523

F.3 Run-Length for the M/H2/1/∞ Queueing

System

The required observations in theory for a sequential steady-state simulation

when estimating the mean waiting time for the M/H2/1/∞ queueing system

can be also obtained in the same way.

The Laplace-Stieltjes transform B∗(s) of the service time for the M/H2/1/∞
queueing system is defined by

B∗(s) =
α1µ1

µ1 + s
+

α2µ2

µ2 + s
(F.25)
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in [84] (p. 141), and the Laplace-Stieltjes transform W ∗
q (s) of the waiting time

can be calculated from Equation (F.7) using Equation (F.25). Therefore, the

Laplace-Stieltjes transform W ∗
q (s) of the waiting time in the queue for the

M/H2/1/∞ queueing system is

W ∗
q (s) =

s(1 − λ(α1

µ1
+ α2

µ2
))

s − λ[1 − ( α1µ1

µ1+s
+ α2µ2

µ2+s
)]

. (F.26)

We can calculate the number of observations N required theoretically when

estimating the mean waiting time in the M/H2/1/∞ queueing system with 5%

of the relative statistical error for a 95% CI by

N = A(ρ)

(
1.96

0.05Wq

)2

, (F.27)

where

A(ρ) = σ2(Wq)

[
1 + ρ

1 − ρ
+

λ(W
′′′
q − W

′
qW

′′
q )

(1 − ρ)(W ′′
q − W ′

qW
′
q)

]
, (F.28)

(where W
′
q , W

′′
q and W

′′′
q can be obtained by the first, second and third dif-

ferentiations of the Laplace-Stieltjes transform W ∗
q (s), in Equation (F.26), of

the waiting times in the queue, respectively, and σ2(Wq) can be calculated by

(W
′′
q − W

′
qW

′
q) ); see [23] and [32].

The numbers of observations required in theory, with a relative statistical

error of 5% and 10% at a 95% CI, are presented in Table F.3. We assumed α1

= 0.09175, α2 = 1 - α1, µ1 = 0.18350, and µ2 = 1.81650.

F.4 Theoretically Required Run-Length When

Estimating the Mean Response Time

Following the same procedures described above for the mean waiting time

in the queue, we can obtain the number of observations required in theory

when estimating the mean response time from the M/M/1/∞, M/D/1/∞,

and M/H2/1/∞ queueing systems by applying the Laplace-Stieltjes transform

B∗(s) of the service time for the M/M/1/∞, M/D/1/ ∞, and M/H2/1/∞

278



F.4 Theoretically Required Run-Length When Estimating the Mean Response Time

Table F.3: Required run-length when estimating the mean waiting time in

the M/H2/1/∞ queueing system at a 95% CI

ρ Relative Statistical Rrror = 5% Relative Statistical Rrror = 10%

0.1 149,966 37,491

0.2 136,379 34,094

0.3 144,345 36,086

0.4 163,911 40,977

0.5 198,230 49,557

0.6 259,526 64,881

0.7 383,801 95,950

0.8 710,709 177,677

0.9 2,308,130 577,032

queueing systems into Equation (F.4), respectively. The number of obser-

vations required in theory when estimating the mean response time with a

relative statistical error of 5% and 10% at a 95% CI are presented in Table

F.4. (Note that RSE in the table means the relative statistical error.)

Table F.4: Required run-length when estimating the mean response time

from the M/M/1/∞, M/D/1/∞, and M/H2/1/∞ queueing systems

ρ M/M/1/∞ M/D/1/∞ M/H2/1/∞
RSE=5% RSE=10% RSE=5% RSE=10% RSE=5% RSE=10%

0.1 2,636 659 85 21 23,704 5,926

0.2 4,225 1,056 277 69 42,313 10,578

0.3 6,616 1,654 667 166 64,271 16,067

0.4 10,415 2,603 1,451 362 92,143 23,035

0.5 16,903 4,225 3,073 768 131,385 32,846

0.6 29,196 7,299 6,695 1,673 194,522 48,630

0.7 56,514 14,128 15,996 3,999 316,490 79,122

0.8 136,760 34,190 47,123 11,780 632,608 158,152

0.9 582,386 145,596 242,230 60,557 2,187,886 546,971
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