UC®GEOHEALTH LABORATORY

Using GIS to assess the impact of childhood environments on obesity

Andreas Wilson, Simon Kingham, Malcolm Campbell & Paul Beere

UC©GEO HEALTH

Geohealth Laboratory, University of Canterbury, Christchurch, New Zealand

Contents

- Introduction
- Aim and Objectives
- Background
- National analysis
- Hamilton City (NZ) analysis ٠
- Conclusion
- Questions

Aims and Objectives

- Aim
- · To examine the relationship between environmental exposure near the school, home and 'route'; and health outcomes among children
- Objectives
- · To undertake a national analysis of childhood obesity using the NZ health survey
- Identify the exposure of school children to obesity based on the • characteristics of the food and physical environments in Hamilton
- To relate obesogenic environment and health among Hamilton • children

Background

- Childhood Obesity
- Obesity is a major global public health issue
- Childhood Obesity in New Zealand "One-third of children are overweight or obese; 11 percent are obese in 2011-13." (NZHS, 2015).
- **Obesogenic Environments** "Obesity is a normal response to an abnormal environment" (Weight Management Centre, 2010)
- Applications of GIS in Public Health Processing, analysing and interpreting spatial and geographical data

Food Environment vs Physical Environment

- Access of food sources within a given . community
- Obesogenic Food Environment characteristics:
 - High number of fast food outlets (Toxic food environment) - Low number of healthy food
 - outlets
- Built and physical aspects of the environment, which influences how people interact within their environment
- Obesogenic Physical Environment characteristics:
- Lack of accessibility to physical exercise Lack of recreational grounds and parks Lack of active transport infrastructure (walkability and cyclability)
- · Typically in areas of high social and economic deprivation

Nationwide Analysis

- New Zealand Health Survey (NZHS) children aged 5-14. (n=2404)
- NZHS data variables : Age, Ethnicity, Social Deprivation, Nutrition, Mode of Transport, Food Security, Body Mass Index (BMI)
- Relationship between NZHS data variables and BMI
- Nationwide Regression Analysis between BMI and Active Transport

BMI, age and mode

BMI vs Mode of	Transport
----------------	-----------

Model	Unstandardized Coefficients		Standardized Coefficients	Sig.	95.0% Confidence Interval for B	
	Beta	Std. Error	Beta		Lower Bound	Upper Bound
Walk	.468	.200	.048	.019	.076	.860
Bike	.842	.427	.040	.049	.005	1.679
Skate	-1.372	.487	057	.005	-2.326	418
Car	-1.011	.197	104	.000	-1.396	626
Bus	1.059	.255	.084	.000	.559	1.559

Active vs passive transport

• Exclusively active vs exclusively passive transport

Nutrition vs BMI

Hamilton City Analysis

- North Island
- NZ's 4th most populated city, 150,000
 69.5% Pākehā/European
 - 69.5% Pākehā/
 21.3% Māori
 - 21.3% Maon
 13.8% Asian
 - 5.1% Pacific Peoples
- 2.0% Other
- Dairy farming
- Chiefs (Rugby) and WBOP Magic (Netball)
- Hamilton identified as an area of obesity concern

UC©GEO HEALTH

Hamilton City Analysis

- Geospatial Analysis of obesogenic environments
- NZHS children aged 5-14 (N=70)
- NZHS data variables : Age, Ethnicity, Social Deprivation, Nutrition, Mode of Transport, Food Security, Body Mass Index (BMI)
- Exposure to obesogenic (& non-) environment and BMI
- BMI and Transport Mode

UC©GEO HEALTH

- Hamilton City Boundary Map
- Identify NZHS participants aged 5-14

- Food Environment
 Takeaugur
 - TakeawaysDeli/Eating houses
 - DairiesBakeries
- Physical Environment

 Green space

Network Route Analysis

- Closest Facility Network

 Schools
 - Pop weighted Centroids
- Match the NZHS child to the nearest age/gender appropriate school

Neighbourhood Environment – Home and School Buffer

- 5- 14 NZ Health Survey Meshblocks
- Full Primary School and home
- 200m Buffer Zone round both

<u>Neighbourhood Environment – Route</u> <u>Buffer</u>

- Food environment vs Physical environment
- 200 metre buffer round school & home
- 30 metre buffer round route
- 100 metre buffer round route
- Non obesogenic environment

3

Neighbourhood Environment

- Food environment vs Physical environment
 Closest Facility Network
- Analysis
- 30 metre buffer zone
- 100 metre buffer zone
- Obesogenic environment

Hamilton City Geospatial analysis results

- Food environment = the number of fast food outlets within the participants route buffer
- Physical environment= the amount of greenspace within the participants route buffer

BMI vs Environment

Regression Analysis: BMI and Food Environment

Model Summary					
			Adjusted R	Std. Error of the	
Model	R	R Square	Square	Estimate	
1	.130ª	.017	.002	4.12	
a Predic	tors: (Con	stant). ObesogenicEnvironme	ent30m		

Re	egression	Analysis: BMI and Physical I	Environm	ent
		Model Summary		
		-	Adjusted	Std. Error of the
Model	R	R Square	R Square	Estimate
1	.117ª	.014	001	4.12
 a. Predicto 	ors: (Consta	ant), VAR00001		

No statistical significance - low R Squared values

Key Findings

· No significant connection between a participants environment

Mode of transport does not have a significant bearing on BMI

• Social Indicators are far more effective at predicting BMI

UC©GEO HEALTH

Transport Mode vs Food Environment

		Model	Summary		
			Adjusted R	Std. Error of	of the
Model	R	R Square	Square	Estimat	e
Walk	.115 ^a	.013	001	2.875	
Bike	.075 ^a	.006	009	2.886	
Skate	.149 ^a	.022	.008	2.862	
Car	.169 ^a	.028	.014	014 2.852	
Bus	.119 ^a	.014	.000 2.873		
	Unstandar Beta	dized Coefficie Std. Error	ents Standardiz Bet	ed Coefficients aModel	Sig.
Walk	657	.687		115	
Bike	-1.050	1.703	-	075	
Skate	-2.095	1.689		149	
Car	.962	.682		.169	
Bue	067	091		110	

UC©GEO HEALTH

Limitations

- Geospatial assumptions about NZHS participants most likely route to school.
- Hamilton City small sample size

and BMI status

status (Social Deprivation)

status

Conclusion

No connection found between obesogenic environments and increased BMI status

Use of GIS to develop a method for estimating home, school and journey to school environmental exposure

Questions

