Comparing individual exposure to air and noise pollution in Montreal during rush hours according to the mode of transportation used

Philippe Apparicio ${ }^{\text {a }}$, Mathieu Carrier ${ }^{\text {a }}$, Anne-Marie Séguin ${ }^{\text {a }}$, Jérémy Gelb ${ }^{\text {a }}$, Marie-Ève Mathieu ${ }^{\text {b }}$, Simon Kingham ${ }^{\text {c }}$
${ }^{\text {a }}$ Environmental Equity Laboratory, INRS Urbanisation Culture Société, Montreal, Canada
${ }^{\text {b }}$ Physical Activity and Health Laboratory, Department of Kinesiology, University of Montreal, Canada
${ }^{\text {c GeoHealth Laboratory, Department of Geography, University of Canterbury, Christchurch, New Zealand }}$

Background

Benefits of urban cycling

- Increasing physical activity
- Reducing chronic diseases (diabetes, cadiovascular diseases, certain types of cancer) (Hamer et al., 2008; Hu et al., 2003; Sato et al., 2007; Gordon-Larsen et al., 2009; Woodcock et al., 2009)
- Reducing air pollutant emissions (Hatzopoulou et al., 2013; Rojas-Rueda et al., 2011)

Health risks of urban cycling

- Traffic incidents (injuries and mortality) (Skic et al., 2009; Morency et al., 2011)
- Exposure to air pollution (CO, $\mathrm{NO}_{2}, \mathrm{NO}_{\mathrm{x}}, \mathrm{PM}_{2.5}, \mathrm{PM}_{10}$)
- Development of asthma (Jerrett et al., 2008; McConnell et al., 2006)
- Potential risk to cardiovascular health (Brugge et al., 2007; Rioux et al., 2010)
- Prolonged exposure to road traffic noise
- Psychological stress (Passchier-Vermeer and Passchier, 2000)
- High blood pressure (Bluhm et al., 2007)
- Development of cardiovascular disease (Babisch, 2006)
- Hearing loss (Seto et al., 2007)

Differences in air pollution and inhaled doses according to the modes of transportation used

- Systematic review of 39 studies (Cepeda et al., 2017)
- Car commuters: higher exposure to air pollutants
- Active commuters: higher inhaled doses than car commuters

Three Research Objectives

Data Collection

(1) Real-time measurement of noise exposure

Brüel \& Kjaer - Personal Noise Dosimeter Type 4448

- Average value of $\mathrm{dB}(\mathrm{A})$ every minute (Laeq 1 min .)
- Calibration of the device once a day using the Sound Calibrator Type 4231
(2) Real-time measurement of NO_{2} exposure

Aeroqual Series 500 (Portable Air Quality Sensor)

- Nitrogen dioxide (NO_{2}) sensor
- Temperature and humidity sensor

- Average value of NO_{2} logged every minute
(3) Garmin Forerunner 920 XT
- Multisport GPS Watch
- Heart rate monitor
(4) Garmin VIRB XE
- Action camera
- GPS

Garmin Forerunner 920 XT
Garmin VIRB XE

Data Collection

Collection period

2016-06-16 to 2016-06-30 (dry weekdays)

Participants

8 master's students and 1 urban studies professor

- 3 teams of 3 people each
- One person by car 饣ि
- One person by bicycle oro
- One person by public transit

Trips during rush hours ($\mathbf{N}=99$)
8 am: from an outlying Montreal neighbourhood to the downtown area
5 pm : in the opposite direction

Trip duration (min.)

$$
\text { Total }=\begin{array}{ccc}
& \text { ? } & \\
1,239 & 1,280 & 1,375 \\
20: 39: 40 & 21: 20: 25 & 22: 55: 37
\end{array}
$$

Trip length (km / miles)

$\mathrm{N}=$| ००० | คि | 33 |
| :---: | :---: | :---: |
| 33 | 33 | |

$$
\begin{array}{lcc}
\text { Min. }=5.8 / 3.1 & 6.0 / 3.7 & 6.0 / 3.1 \\
\text { Max. }=20.0 / 12.4 & 20.8 / 12.4 & 20.0 / 12.4 \\
\text { Mean }=10.2 / 6.2 & 11.3 / 6.8 & 10.4 / 6.2 \\
\text { Total }=344 / 213 & 337 / 209 & 364 / 226
\end{array}
$$

Temperature (Celsius / Fahrenheit)

Min. = 10 / 50
Max. = $39 / 102$
Mean $=28 / 82$

Methodology: Estimating Ventilation and Inhaled Dose of NO_{2}

1. Test for each participant Marie-Eve Mathieu
Department of Kinesiology Physical Activity and Health Lab. University of Montreal

Progressive and

2. Individualized equation between heart rate (Garmin) and ventilation (Moxus)

3. Estimation of the ventilation per minute based on heart rate values measured by the multisport Garmin watch during the trip
4. Estimation of the dose of NO_{2} inhaled per minute during the trip
$\mu \mathrm{g} \mathrm{NO}=(\mathrm{V} / 1000) * \mathrm{P}$ with
$\mathrm{V}=$ Ventilation (liters per min.); $\mathrm{P}=\mathrm{NO}_{2}$ value

So
 -LAEQ INRS

Results: Comparing Travel Times

Results: Comparing Levels of Exposure to Road Traffic Noise

Significant impacts on health (including hearing impairment)
$70 \mathrm{~dB}(\mathrm{~A})$: Guideline value in a traffic area (World Health Organization)

Difference from the mean by car

* Significant difference at $\mathrm{P}=0.01$ (Tukey Test)

Results: Comparing Levels of Exposure to Air Pollution

Mapping the Results: A Web-Atlas

Concluding Remarks

- Inhaled dose: three times higher for cyclists than for car users
- Importance of measuring noise and the inhaled dose of air pollutant for cyclists, especially in cities with high levels of noise and air pollution

- LAEQ INRS

Future Work

Improvements in the methodological approach

- Biometric T-Shirt (Hexoskin)
- Heart Rate \& Breathing Rate \& Minute Ventilation

Planned activities (2016-2017)

- Cyclists' exposure to air and noise pollution
- Mexico City (March 2016): 201 km collected
- Saigon (Vietnam) (July 2017)
- Lyon (France) (October 2017)
- Auckland \& Christchurch (New Zealand) (???)

"LAEQ INRS

Results: Comparing Travel Times

	NO_{2}		
	¢)	- ¢0	9
$1^{\text {st }}$ Quartile	65.8	81.2	71.6
Median	88.7	102.8	82.3
Mean	97.4	101.0	96.1
$3^{\text {rd }}$ Quartile	115.6	125.4	115.2

-IAEQ INRS

