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Abstract i 

Abstract 
 

 

Wood stiffness or modulus of elasticity (MOE) is one of the most important wood 

properties for solid timber applications, and as such, the efficacy of wood use, 

especially for structural timber is strongly related to MOE. MOE in Pinus radiata is 

highly variable and poorly understood. In this study, the effect of initial stand spacing 

and breed on outerwood MOE and the vertical distribution of MOE of Pinus radiata 

was assessed. Understanding positive or negative influences of growth caused by 

initial stand spacing and genetic material on MOE is appealing because it could 

enable us to better comprehend how forest growers could adapt silvicultural 

operations to the demands of wood processing. 

 

Physical characteristics of different breeds and propagation methods of Pinus radiata 

were assessed at a variety of initial stand spacings. Stem diameter, crown height, stem 

slenderness and branch size were all heavily influenced by stand spacing. Breed had a 

marginally significant influence on diameter and stem slenderness. Internode length 

was not affected by stand spacing, but showed sizeable differences, especially 

between the long internode 870 breed and the remaining growth and form (GF) 

breeds.  

 

Outerwood MOE was significantly (P<0.0001) influenced by stand spacing and 

breed, but not their interaction (P>0.05). MOE scaled positively with stand spacing. 

MOE increased by 39% from 5.4 GPa at 209 stems ha-1 to 7.5 GPa at 2551 stems ha-1. 

The majority of this increase (33%) occurred between 209 and 835 stems ha-1. 

Physiologically aged cuttings of greater maturation status exhibited greater MOE, 

with the three-year-old cuttings being stiffer than the one-year-old cuttings, seedlings 

from the 870, 268 and 850 series, by 15, 17, 22 and 27%, respectively. Stem 

slenderness exhibited the strongest significant (P<0.0001) relationship with MOE 

(r2=0.49), followed by green crown height (r2=0.46) and diameter (r2=0.44). Stem 

slenderness and green crown height had a direct influence on MOE that explained 

53% of the variance in MOE. 
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MOE was also significantly (P<0.0001) influenced by spacing and breed when using 

the resonance technique to assess whole stem MOE. The vertical distribution of MOE 

showed that the lowest portion of the stem (bolt 1) was approximately 30% less stiff 

than bolts 2 and 3. After the greatest MOE value had been obtained at bolt 3, MOE 

gently declined to the top of the measured stem. Variation of MOE within trees was 

significant (58%) at the high stockings of 1457 and 2551 stems ha-1, but somewhat 

lower (36%) at the lower stockings. The 870 breed was approximately 8% and 16% 

stiffer than the 268 and 850 breeding series respectively, across all stockings, with the 

three-year-old cuttings being 7% stiffer than the one-year-old cuttings. At stockings of 

481 stems ha-1 and less, the proportional height at which MOE was greatest within a 

tree was between 25% and 50% of stem height. At stockings above 481 stems ha-1 the 

proportional height at which maximum MOE was obtained was between 15% and 

40% of stem height. Bolt slenderness was found to be the most significant factor 

impacting on MOE of the bolt. 

 

Regression of critical buckling height against diameter at ground level yielded a 

scaling exponent of 0.55, which was lower than the scaling exponent of 0.67 predicted 

with constant density-specific stiffness. There was a tendency for some bolts with 

lower mean diameter to display significantly higher safety margins than bolts with 

higher mean diameter, suggesting that the largest bolts, which occur at the base of 

tree, are the point of most likely critical failure. 
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Chapter 1 
  

General Introduction 
 

 

Plantation forests occupy a large area of New Zealand and contribute to a significant 

proportion of New Zealand’s export sector. Export forestry is the third largest export 

industry in New Zealand, contributing 13% to the total export sector and 3.4% of 

national GDP. Plantation forests occupy 1.88 million hectares of the 26.9 million 

hectares of land within New Zealand, of which, Pinus radiata occupies 1.63 million 

hectares or 89% of the total forest resource. Currently, New Zealand’s forest industry 

supplies 1.1% of the world’s and 8.8% of Asia Pacific’s forest products trade, from 

0.05% of the world’s forest resource (N.Z.F.O.A., 2005), which illustrates the highly 

productive nature of the New Zealand forest resource.   

 

Pinus radiata’s predominance is attributed to its good growth rates, its broad site 

requirements, the degree to which growth patterns and stem characteristics can be 

controlled by tree improvement and forest management, and the versatility of the 

species for a range of end-uses. The timber can be readily sawn, peeled or converted 

to pulp (Cown, 1990).   

 

Wood stiffness or longitudinal modulus of elasticity (MOE) is one of the most 

important wood properties for solid timber applications (Evans and Ilic, 2001). 

Modulus of elasticity measures the resistance of a material to deflection, with the 

average MOE of Pinus radiata increasing with tree age. This occurs as a result of the 

MOE increasing rapidly with increasing cambial age or ring number from the pith. 

Corewood (the inner most cylindrical column of the tree) experiences lower and often 

unsatisfactory levels of MOE. For several reasons, including faster growth due to 

better silvicultural and genetic quality, rotations in New Zealand have become shorter, 

all of which increases the proportion of corewood within a tree thus affecting the 

quality of the timber produced (Jayawickrama, 2001). Whilst poor intrinsic wood 

properties found within the corewood zone influence MOE, a recent study has shown 

that initial stand spacing and genetics have an affect on corewood properties 
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(Lasserre, 2005). The study described here will examine the MOE of mature 

outerwood plus that of vertical bolts up the stem. The corewood zone is recognised as 

liable to be of inferior quality for numerous end-uses, in particular, solid timber 

applications and is aggravated by a much greater variability that arises from the 

rapidly changing properties within the corewood itself (Huang et al., 2003). However, 

if clones are selected for improved stiffness and then coupled with optimal 

silvicultural strategies for higher stiffness, then stiffness of the corewood region can 

be increased.  

 

Evaluation of the resource can be made using instruments based on acoustic 

principles, which are ideal tools for undertaking stiffness measurements as they allow 

for fast, simple and reliable determination of wood properties (Dickson et al., 2004). 

Two primary applications are those of “time of flight”, which allow for non-

destructive sampling and “resonance” methods, which is a destructive method 

(Andrews, 2000). The use of time of flight methods allows for rapid and non-

destructive evaluation of MOE and has the potential to be of great importance to tree 

breeders for selection of high stiffness clones, to silviculturalists to allow for 

monitoring of the effect of silviculture on stiffness and to forest owners wanting to 

select premium stems for the sawmill (Yang and Evans, 2003). The resonance method 

has been shown to be superior to the non-destructive time of flight method as it 

provides an estimate of whole log MOE opposed to that of just the outermost few 

rings of a tree (Andrews, 2002; Lasserre, 2005). 

 

Initial stand spacing can have a major influence on stem characteristics and intrinsic 

wood properties including MOE (Lasserre, 2005). It is well recognised that lower 

stocking rates result in numerous undesirable characteristics such as greater branch 

growth, thus larger knots, and rapid diameter growth and therefore, a higher 

proportion of less stiff corewood and greater taper. However, the occurrence of these 

traits at lower stocking rates has not halted the decline in stocking rates over the past 

few decades. Initial stand spacing may affect MOE in numerous ways. Tree sway, 

canopy height, radial growth rate and stem slenderness or taper are all possible 

mechanisms for MOE development, mitigated through stand spacing. By assessing 

how stand spacing impacts on MOE, and determining how the above factors dictate 

MOE formation, forest managers will be provided with valuable information allowing 
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for the determination of optimal initial stand spacing that will allow for greater 

control of MOE by silviculturalists. 

 

Coupled with stand spacing, another method to improve plantations is genetic 

improvement. In 1953 an intensive Pinus radiata breeding programme commenced 

with emphasis placed upon improvement in growth rate and stem form. A further 

breeding programme also started in the late 1960s with selection emphasis placed on 

longer internodal length to produce an increased proportion of clearwood (Wilson and 

Carson, 1990). The main breeding effort was established in 1987, in which a rating 

system was designed to rank seedlots for genetic quality. The rating system is based 

on growth and form (GF), where a higher improvement rating assures greater genetic 

improvement (Burdon, 1995). New Zealand’s Pinus radiata genetic improvement 

programme has been shown to deliver large gains in traits such as diameter and 

volume, straightness, log quality and branch cluster frequency (Jayawickrama, 2001). 

Although it has been found in genetic gain trials that higher GF rated stock has better 

attributes (Wilson and Carson, 1990), little is known about differences in key wood 

properties such as stiffness between different genetic materials. Therefore, wood 

properties have become a major thrust in New Zealand’s Pinus radiata breeding 

programme due to a realisation that there will be significant benefits in having 

improved wood properties in future forests (Sorensson et al., 1997). The present 

future in genetics of Pinus radiata is clonal forestry, which has great potential 

advantages for increased genetic gains and crop uniformity, but has inherent risks, in 

that it results in reduced genetic diversity through large scale clonal propagation.   

 

 

Thesis Objectives 
 

The general objective of this study is to determine the effect of initial spacing and 

breed on wood stiffness and the vertical distribution of wood stiffness. 

 

More specifically, this study addresses the following objectives: 

 

a)   Measure the effect of initial stand spacing and breed on stem size, stem  

slenderness, branching and internode length of Pinus radiata in Canterbury. 
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b)   Determine the effect of initial stand spacing and breed on outerwood and                           

whole stem MOE of Pinus radiata, using time of flight and resonance 

techniques. 

 

c)     Determine the distribution of MOE up the stem of Pinus radiata at different 

        initial stand spacings. 

 

d)     Using measured mechanical properties, determine the critical buckling height      

and allometric scaling relationships for trees within the experimental plot. 

Using a variant of the buckling formula, assess the potential of using critical 

MOE as a predictor of actual MOE.  

 

 

Experiment Location 

 

The experimental site was located at Burnham, approximately 18 km south-west of 

Christchurch (latitude 43o36.5’S, longitude 172o17.75’E, altitude 70 m a.s.l.).   

 

 

Figure 1.1. Location of experimental plot at Burnham. 
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Thesis Strategy 
 
 
This thesis consists of seven chapters. Chapters 1 and 2 provide a general introduction 

and a review of literature, with particular focus on what MOE is and why it is 

important, the internal and external factors that influence MOE and methods for 

assessing MOE. 

 

Chapter 3 examines the effect that initial stand spacing and breed has on a range of 

physical characteristics of Pinus radiata in Canterbury. Physical properties assessed 

include tree diameter, tree height, crown height, stem slenderness, branch diameter 

and internode length. 

 

Chapters 4 and 5 assess the effect that initial stand spacing and breed have on MOE of 

Pinus radiata. Outerwood MOE is examined using a time of flight acoustic 

instrument, whilst whole stem MOE is examined using a resonance instrument.  The 

vertical distribution of MOE is also examined.  

 

Chapter 6 examines critical height and critical MOE. Using measured MOE and wood 

density, critical buckling height and allometric scaling relationships are assessed for 

trees within the experimental plot. Critical MOE is determined for outerwood and 

vertical bolts up the stem and assessed to determine if it can be used as a predictor of 

actual MOE. 

 

The final chapter (7) presents concluding remarks and suggests further research that 

could be carried out concerning wood stiffness. 

 

As the chapters contained within this thesis have been written with the intent of 

publishing them, some paragraphs or expressed ideas will be viewed by the reader on 

a number of occasions. Although chapters in this thesis examine factors other than 

MOE, the focus of this thesis is undoubtedly on MOE, thus the fixed attention on 

MOE in the literature review. No discussion chapter has been included within this 

thesis as each chapter discusses the results found within. 
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Chapter 2 
 

Literature Review 
 

 

General Introduction 

 

Pinus radiata is an exotic conifer introduced into New Zealand from California in the 

1860’s. Pinus radiata is a native species of North America, growing at three locations 

in coastal Southern California and on two islands off the Pacific coast of Mexico. The 

species has become a major plantation species in the southern hemisphere where it is 

cultivated on a commercial scale in New Zealand (1.6 million ha) (N.Z.F.O.A., 2005), 

Chile (1.6 million ha) 1, Australia (0.74 million ha)2 and South Africa. It has also been 

successfully cultivated in Spain, France, Argentina, Greece and India1.  

 

Pinus radiata is versatile for a range of end-uses owing to its ease of drying, 

treatability and machinability (Cown, 1990). As a general purpose softwood, Pinus 

radiata can have few equals. Easy to saw, dry, treat with preservatives and machine, 

Pinus radiata is an even textured, medium density, softwood timber which is equally 

suitable for interior and exterior use, in structural or non-structural applications. It has 

also proven to be very suitable for the manufacture of plywood, particleboard and 

fibreboard, and it provides first-class material for both chemical and mechanical 

pulping. Few other timbers can match Pinus radiata for overall performance in such a 

diverse range of products (Harris, 1991). One of the major products obtained from 

this species is structural timber, therefore making stiffness or modulus of elasticity 

(MOE) an important element of wood quality (Jayawickrama, 2001).  

 

Performance and the potential value of products depend on a wide range of 

interlinked fundamental wood characteristics. These are influenced by the genetics, 

growth conditions, silviculture, and by the age at which the trees are harvested 

(Huang et al., 2003). The minimum technical considerations, both for the sawmiller 

and the consumer, are that the forest products are stiff, and that they remain straight 

                                                
1 http://www.greenplan.co.nz/Radiata_Pine.asp 
2 http://www.forests.act.gov.au/radiatapine.html 
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and stable.  Stiffness  or  the  lack  of  it,  is  all  the more  problematic  in  corewood 

compared with the outerwood. Consequently, as stands are harvested earlier, the 

industry has had to face a steady deterioration in wood quality through the increased 

proportion of corewood, which is further aggravated by a much greater variability that 

arises from the rapidly changing properties within corewood itself.  

 

Advances in tree breeding and changes in silvicultural practice over the last few 

decades have greatly enhanced growth rate of plantation grown conifers. These 

growth gains have resulted in shorter rotation lengths in New Zealand of less than 30 

years and therefore, an increased proportion of juvenile wood within the stem. This 

has caused a reduction in both the strength and stiffness quality of the wood being 

grown (Booker et al., 2000). Improvements in the overall performance of lumber 

products, especially stiffness, will depend on knowledge of the most important factors 

which can be influenced by either silviculture or tree breeding (Cown et al., 1999). 

Stiffness is a fundamentally important wood property which affects customer 

perceptions of value in both structural and appearance products, and thus greater 

controllability of stiffness is required of the sawmilling industry. 

 

Pinus radiata is subject to what has been traditionally called corewood (juvenile 

wood) and outerwood (mature wood). Whilst these terms are fundamentally flawed, 

owing to the fact that the terms are seriously inadequate for accommodating the 

behaviour of some important wood properties and seriously inconsistent with the 

well-established botanical concept of maturation (Burdon et al., 2004), they are 

suitable enough when concerned with stiffness and thus are referred to hereafter. The 

corewood experiences lower density, higher microfibril angles, smaller tracheid 

length and greater spiral grain than outerwood and as such, stiffness is much lower in 

the inner rings of the tree than outer rings. 
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Modulus of elasticity  

 

An important element of wood quality is that of “stiffness” or its modulus of elasticity 

(MOE). The end-use of wood material, especially for structural timber is strongly 

related to MOE (Kumar, 2004). However, the low bending stiffness of Pinus radiata 

tends to be a troublesome limitation, especially when the species is grown on the short 

rotations that are favoured by fertile sites and the silvicultural regimes that are 

designed for rapid attainment of piece-size specifications (Burdon et al., 2001). The 

important factors influencing the stiffness of timber are its density and the microfibril 

angle, but there are many other variables, some anatomical in origin such as knots and 

spiral grain and some environmental such as moisture content and temperature 

(Donaldson, 1995; Donaldson and Burdon, 1995; Dinwoodie, 1996; Booker et al., 

1997; Huang et al., 2003). Silvicultural practices such as initial stand spacing and the 

selection of genetic families have also been found to have an influence on MOE 

(Wang and Ko, 1998; Zhang et al., 2002; Lasserre, 2005).  

 

MOE defines the relationship between stress and strain within the elastic region. 

Timber is considered to be an orthotropic material with three mutually perpendicular 

axes in the longitudinal, radial and tangential directions (Xu, 2000). The longitudinal 

modulus of elasticity is a quantitative measure of the stiffness of the wood along the 

grain. It is the most commonly measured elastic property and the most important 

elastic constant. Elasticity implies that deformations produced by low stress are 

completely recoverable after loads are removed, and this is the accepted criterion of 

stiffness. The elastic ratios in the radial, tangential and longitudinal directions, as well 

as elastic constants, vary within species and with moisture content, microfibril angle 

and basic density (Green et al., 1999). 

 
MOE gradients within Pinus radiata trees show apparent radial changes but less 

conspicuous vertical changes as stated by Tsehaye (1995) and Xu and Walker (2000). 

Xu and Walker (2000) found in a mill study of 62 trees, that MOE increased radially 

from the pith to the cabium with the greatest rate of change occurring near the pith. 

Tsehaye (1995) also reported an increase in stiffness from the pith to the outer part of 

the log, with the outerwood been almost twice as stiff as that of the corewood. Xu and 

Walker (2000) found that MOE up the stem showed very little variation and that at    
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2.4 - 2.7 m up the butt, MOE gradients became cylindrical with no noticeable further 

decrease in MOE up the tree stem. Similarly, Tsehaye (1995) noted that stiffness 

changed little in going from the butt log to the top log.  

 

From a mill study, Xu and Walker (2004) concluded that the radial stiffness in Pinus 

radiata logs mimicked that of density, with a very poor corewood and an increasingly 

stiff outerwood. This trend is also observed in other species such as black spruce 

(Picea mariana) (Zhang et al., 2002) and Japanese larch (Larix kaempferi) (Nagao et 

al., 2000). Dickson et al. (2003) found in their study of Eucalyptus dunnii that strong 

correlations existed for density with MOE. Booker et al. (1997) in their study of Pinus 

radiata observed that basic density was well correlated with MOE (r2=0.78). 

Decreasing microfibril angle was found to have an r2=0.75 with MOE, whilst 

decreasing spiral grain had a correlation of r2=0.25. In assessing the relative 

importance of density and microfibril angle on MOE, the work by Donaldson (1995) 

and that of Cown et al. (1999) found that when the relationship between MOE, 

microfibril angle and density were partitioned into juvenile wood and outerwood, 

microfibril angle was of slightly greater importance than density in the juvenile wood 

but was significantly less important than density in the outerwood.  

 

Significant differences not only exist for MOE within trees but also have been found 

between trees. Tsehaye (1995) reported that the stiffest 10% of trees that were 

examined were almost 80% stiffer than the least stiff 10% of trees that were examined 

in a study of wood quality. The remaining trees of medium stiffness were 39% stiffer 

than the least stiff trees. It was also established that in the butt log, the inner half of 

the log had the lowest MOE of any part of the tree, whilst the outer half of the butt log 

had some of the highest MOE values for any part of the tree. Xu and Walker (2000) 

using data from 62 trees which had been cut into 35 x 90 mm lumber and machine 

stress graded from a 27-year-old stand in the Central North Island, New Zealand, 

found that by eliminating the least stiff 20% of lumber, the average stiffness of 

lumber from the remaining logs was enhanced. The difference in stiffness between the 

two populations was 1.6 GPa.  

 

An area of major concern with regards to stiffness is that of the butt log. The butt log 

is valuable due to its larger size, higher density and reduced knottiness (if pruned). 
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However, the butt logs of Pinus radiata have a high proportion of low stiffness 

corewood (Tsehaye, 1995; Xu and Walker, 2000). More significant is that the 

problems of the butt log are not just limited to the corewood. An enlarged low 

stiffness wood zone forms a truncated cone from the base of the tree to approximately 

three metres up the stem, which largely limits the structural use and profitability of 

butt logs (Xu and Walker, 2000; Huang et al., 2003; Xu et al., 2004). Hirakawa and 

Fujisawa (1996) found in sugi trees (Cryptomeria japonica), that in trees with low 

stiffness the cone is wider at the base and taller at the apex than in more stiff trees. 

Perstorper (1996) reported a similar observation in Norway spruce (Picea abies), 

however, only the lowest 1.0 m of the butt log was significantly affected. Xu (2000) 

found that in the butt log, up to 2.4 - 2.7 m, the average stiffness values are inferior to 

those found elsewhere in the stem. 

 

It is obvious that a timber property such as stiffness should reflect the increase in 

density, since density is the measure of the mass of wood substance present in a given 

volume of timber. However, there is more to it than this. The quality of wood is not 

necessarily constant, even though the density of wood may be. The stiffness of wood 

in conjunction with density arises from its cellulose content and the way that it is 

distributed within the cell wall. Cellulose occurs as very long crystalline microfibrils 

that are very stiff in the direction of the microfibril axis (Cave and Walker, 1994). All 

this makes stiffness a difficult property to control and manipulate.  

 

The improvement of stiffness in plantation forests could have a major impact on 

forest revenue. Dickson and Walker (1997) estimated that a 25 - 50% increase in the 

MOE of corewood, would result in 50% of corewood been up-graded from low 

quality uses such as boxing, dunnage or paper, to uses like framing. This would 

benefit New Zealand growers by $250 million per year. 
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Internal influences on MOE 

 

Density  

 

Wood density is often considered to be the single most important wood property 

because of its strong influence on the quality of a wide range of solid wood and fibre 

products and has as such, received the most attention (Cown et al., 2002). Bunn 

(1981) states that “basic density is probably the single most important intrinsic wood 

property for most wood products”, while Bamber and Burley (1983) point out, “of all 

the wood properties, density is the most significant in determining end use”. 

Similarly, Zobel and van Buijtenen (1989) state that “density largely determines the 

value and utility of wood and overshadows the importance of other wood properties”. 

However, the importance of density as an indicator of wood quality alone is debatable 

because variability is due to many intrinsic factors, defects and variations inherent in 

basic wood structure. It is currently considered that density is the most useful 

characteristic to predict or assess wood quality because it is well correlated with the 

mechanical properties of wood such as strength and stiffness, yield and quality of pulp 

and other properties such as machinability, drying rate and acoustic properties 

(Silcock, 2005).  

 

Tree species have characteristic patterns of density within stems and in Pinus radiata 

the specific values are strongly influenced by a number of factors including tree age, 

position in the stem, site, environment, genotype and silviculture and is thus subject to 

much variation (Zobel and van Buijtenen, 1989; Cown, 1999; Cown et al., 2002). 

Variations in density occur within a stem in both the horizontal and vertical axes.  

Density is not a simple characteristic but is determined by several characteristics of 

wood such as cell size and wall thickness, the proportion of major growth ring 

components (earlywood and latewood), as well as chemical deposits within and 

between cells (Zobel and van Buijtenen, 1989). Since density is a function of the ratio 

of cell wall thickness to cell diameter, increasing density results in increasing stiffness 

of the cell (Silcock, 2005). 
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Pinus radiata can be described as a medium density softwood with an average basic 

density of 420 kg m-3.  Average wood density increases rapidly over the first 10 to 15 

rings from the pith (Xu et al., 2004), rising from around 300 - 320 kg m-3 at the pith to 

between 400 and 500 kg m-3 in mature wood depending on rotation age and site. The 

increase in density with age is thought to be principally due to increases in the 

proportion of higher density latewood within rings as the tree matures (Cown, 1999). 

Typically, average earlywood density increases from around 300 - 320 kg m-3 at the 

pith to 350 - 400 kg m-3 in “mature wood” – defined as wood further than 10 rings 

from the pith. On the other hand, average latewood density increases from 420 - 460 

kg m-3 near the pith to around 450 - 550 kg m-3 in the outer rings (Cown et al., 2002). 

The percentage of latewood within rings typically ranges from 10 - 20% near the pith 

to 50 - 60% in the outerwood, thus a corresponding increase in average basic density 

of successive rings particularly over the first 10 or so rings is observed (Cown, 1999). 

Variations in density between earlywood and latewood may seem large, however, 

variations found in Pinus radiata, are small in comparison with other pines such as 

the “southern pines or Caribbean pines” and very small in comparison with Douglas 

fir  (Pseudotsuga menziesii) (Harris and Cown, 1991). 

 

Cown et al. (1991a) reported that the average difference in basic density between the 

butt logs and the top logs of Pinus radiata ranges from 7% to 11%. Cown and 

McConchie (1982a) in their study of density on samples collected from 10 trees of 12-

year-old Pinus radiata from Kaingoroa Forest observed a drop in the mean basic 

density of 50 - 70 kg m-3 between the butt and three metres up the stem followed by a 

decrease of about 10 kg m-3 for each further three m height increment to the apex. In 

further studies, on samples collected from 10 trees of 24-year-old and 10 trees of    

34-year-old Pinus radiata, Cown and McConchie (1982b) and McConchie and Cown 

(1984) observed a decrease in the mean basic density of 20 – 30 kg m-3 between the 

butt and breast height and a further 20 – 30 kg m-3 decrease for each 10 m height 

increment to the apex. Tsehaye (1995) observed that butt logs were 6.5% denser than 

the top logs in his study of 48 trees from a 25-year-old plantation on the Canterbury 

Plains, whilst Donaldson and Burdon (1995) and Tian et al. (1995) also observed 

decreasing density with height in their study of Pinus radiata. 

 



Chapter 2 13 

Typically in Pinus radiata, stiffness increases by a factor of three to five during the 

first 30 years of growth. As basic density increases from the core outward, by 30 to 

40% over the first 20 to 30 annual growth layers (Tsehaye, 1995), the magnitude of 

the increase in MOE is far in excess of the increase that could be expected from 

density alone (Bendtsen and Senft, 1986; Cave and Walker, 1994). Microfibril angle 

is therefore seen to work in tandem with density to account for the majority of the 

increase in MOE experienced. Donaldson (1995) found that MOE was significantly 

correlated with basic density and microfibril angle. Basic density and microfibril 

angle together explained 80% of the variation in clearwood MOE, whilst Evans and 

Ilic (2001) found that density and microfibril angle accounted for 96% of the variation 

in MOE. 

 

 

Microfibril angle 

 

Microfibril angle is the angle between the helically wound cellulose microfibrils in 

the middle (S2) layer of the secondary wall of the tracheid and the longitudinal cell 

axis (Dadswell and Wardrop, 1959). Microfibrils are long thin filaments of crystalline 

cellulose and are the main component of the cell walls, making up about 80% of the 

volume of the middle lamella and form the structural framework of the tracheids, 

which account for more than 95% of the wood (by volume) (Walker 1993; 

Dinwoodie, 1996; Pahalawatta, 1999). The microfibrils are surrounded by a matrix of 

hemicelluloses and lignin. The winding angle of microfibrils in the S2 layer of cell 

walls has proved to have a major influence on wood properties, including stiffness, 

especially in conjunction with density. The performance of wood is closely associated 

with the microfibrillar angle of the S2 layer, and it is possible to relate a substantial 

amount of the variation in strength, stiffness, dimensional instability in the presence 

of moisture, and fracture morphology to variations in this angle (Dinwoodie, 1996). 

 

Microfibril angle varies within the stem with the highest angles occurring in the 

corewood – typically in the first 5 – 10 rings from the pith; and small angles occurring 

in the outerwood, with angles showing a curvilinear decline from pith to bark in Pinus 

radiata (Erickson and Arima, 1974; Bendtsen and Senft, 1986; Donaldson, 1993; 

Donaldson and Burdon, 1995; Xu et al., 2004). Microfibril angles tend to range 
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between 10 – 50 degrees within a tree, however, extreme values can be found as high 

as 70 plus degrees in some trees. Pith to bark trends tend to become flatter with height 

so that corewood is not as sharply defined beyond seven metres up the stem. Angles 

may also vary with height and in Pinus radiata, shows a rapid decline from the butt to 

seven metres height at rings of comparable cambial age. Angles then remain more or 

less constant but may show a slight increase in the corewood of the top log 

(Donaldson, 1992). Microfibril angles show variation within trees, between trees on 

the same site and trees in different locations or geographic regions (Donaldson, 1992; 

Donaldson, 1993). 

 

The changing microfibril angle has a functional purpose in conifer tree growth. It can 

be assumed that the age dependent decrease in microfibril angle found indicates a 

functional shift from the flexibility of a young shoot/stem that is required to allow the 

sapling to bend in high wind without breaking, to the greater rigidity of an older tree 

stem that must support the increasing weight of the stem and crown (Lindstrom et al., 

1998). Modifications of the angle allow branches to maintain their direction of growth 

and to enable stems forced out of vertical alignment to regain a vertical orientation 

(Barnett and Bonham, 2004).  It is therefore suggested that the microfibril angle of 

tracheids is a responsive function to vascular cambium activity, turgor pressure and 

mechanical strains on the tree stem (Lindstrom et al., 1998). Whilst these variations 

may be of benefit to the tree in order for its survival and continued optimal growth, 

they can have negative economic consequences for the forest and timber industries.   

 

Walker (1993) stated that microfibril angle in the corewood has an enormous effect 

on wood properties, and in particular, very strongly determines the stiffness of wood 

within the first 20 growth rings from the pith, as well as increasing longitudinal 

shrinkage. Tsehaye et al. (1997a) found that decreasing microfibril angle was well 

correlated with increasing MOE (r2=0.83). Lindstrom et al. (2004) found that 

microfibril angle had a high correlation with static MOE in three-year-old Pinus 

radiata (r2=0.75). 

 

A reduction in microfibril angle as distance from the pith increases has been observed 

in numerous species such as slash pine (Pinus elliotti) (Hiller, 1964); loblolly pine 

(Pinus taeda) (Bendtsen and Senft, 1986); cottonwood (Populus balsamifera) 
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(Bendtsen and Senft, 1986); Norway spruce (Picea abies) (Saranpaa et al., 1997) and 

sugi (Cryptomeria japonica) (Hirakawa et al., 1997). Walker and Butterfield (1996) 

have found that the stiffness of cells increase significantly (five-fold) from pith to 

cambium as the microfibril angle decreases from c. 40 to 10 degrees, whilst Huang et 

al. (2003) state that a three to five-fold increase in stiffness of the cell wall in the axial 

direction (along the grain) occurs. This occurrence has also been noted in the 

earlywood of sitka spruce (Picea sitchensis), where a six-fold increase in stiffness 

occurred when microfibril angle decreased from 40 to 10 degrees (Cowdrey and 

Preston, 1966). Similarly, Bendtsen and Senft (1986) observed a five-fold increase in 

stiffness over the first 30 growth rings in loblolly pine (Pinus taeda). It is dramatic 

changes in stiffness with decreasing microfibril angle like those examples outlined 

above that lead Cave and Walker (1994) to state that the measure of cellulose 

orientation in the S2 layer of the tracheid cell wall is a principle predictor of timber 

quality, with density behaving as an auxiliary variable. However, since microfibril 

angle tends to decline sharply with ring number from the pith towards the bark, a 

corresponding gradient is to be expected in its importance as a determinant of 

stiffness (Burdon et al., 2001; Evans and Kibblewhite, 2002).  

 

Microfibril angle is known to be inversely related to tracheid length (Donaldson, 

1993; Barnett and Jeronimidis, 2004). Because of this correlation, microfibril angle is 

indicative of cell length and as such gives information on the position of the tree from 

which the fibres are derived (Dadswell and Wardrop, 1959). The importance of 

tracheid length was observed by Echols (1955) in slash pine (Pinus elliottii) as 

tracheid length accounted for 91% of the variation in microfibril angle, whilst 

Erickson and Arima (1974) found that tracheid length accounted for 92% of the 

variation in Douglas fir. 

 

 

Tracheid dimensions 

 

Tracheid dimensions are highly correlated with microfibril angle and density. Like 

microfibril angle and density, tracheid length is subject to considerable variation 

within and between trees and sites (Cown et al., 1991a).  
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There is a general trend of increasing tracheid length over the first 15 to 20 annual 

growth layers. In this region, lengths more than double, from about 1.5 mm close to 

the pith, to 3.5 - 4.0 mm at the outer growth layers. Though values may increase 

slightly thereafter with increasing cambial age, there is a tendency for length to 

fluctuate around a mean value of a little over 4 mm (Bisset et al., 1951; Harris and 

Cown, 1991). Tracheid length also shows variations between earlywood and latewood 

of 0.5 mm. The longest tracheids have been found to occur in the outerwood at about 

50% of tree height. Tracheid diameter is thicker in earlywood than latewood in both 

the corewood and outerwood, with diameter been larger in the outerwood. Wall 

thickness is also greater in the outerwood but is thicker in the latewood than 

earlywood of both the corewood and outerwood (Harris and Cown, 1991).  

 

There are pronounced regional variations in length, which are weaker than for density, 

but are well correlated with mean annual temperature (r2=0.75) and latitude (r2=0.76). 

They decrease in length by about 0.75 mm from the north to the south of New 

Zealand (Cown et al., 1991a). 

 

Within a tree the microfibril angle changes with tracheid length over successive 

growth layers, the angle being least in the longest tracheids. The variations in 

microfibril angle that occur within trees and in relation to tracheid length are thought 

to be controlled by the strains imposed on the cells at their time of differentiation 

(Donaldson, 1992). 

 

Tsehaye et al. (1995) in their study on Pinus radiata from Canterbury found that the 

logs that yielded the stiffest lumber had the longest tracheids.  This was also observed 

in a subsequent study on Pinus radiata from Nelson (Tsehaye et al., 1997b).  

 

 

Spiral grain  

  

Spiral grain refers to the alignment of secondary xylem tracheids at an angle to the 

stem axis. The cause of spiral grain is not definitely known, but there is evidence that 

it is a hereditary characteristic of individual trees, and acting through the preferred 

orientation of the pseudo-transverse tangential division of the cambial initials 
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(Dinwoodie, 1996). Tian et al. (1995) found that 10% of the variation in the MOE of 

clearwood specimens could be explained by the variations in the angle of spiral grain, 

whilst Booker et al. (1997) found that decreasing spiral grain had a correlation of 

r2=0.25 with MOE. This result was also observed by Tsehaye et al. (1995). They 

found that with increasing spiral grain, stiffness decreased in comparison with the 

stiffness of straight grained specimens. Tsehaye et al. (1995) also found that 

corewood MOE was less sensitive to spiral grain than outerwood MOE, as in 

corewood, spiral grain has a complementary role to other major factors that result in 

corewood being of lower stiffness than outerwood.  

 

The greatest angles are usually reached by the completion of the second or third 

annual growth layer. After this, grain angle decreases slowly and usually approaches 

zero by the ninth annual growth layer, beyond which small grain angles, seldom 

exceeding two degrees may occur, thus making spiral grain in Pinus radiata 

essentially a feature of corewood (Harris and Cown, 1991). However, Cown et al. 

(1991b), suggest that spiral grain does not reach the “zero angle” until 15 rings from 

the pith. Tsehaye (1995) and Cown et al. (1991b) have observed when examining 

Pinus radiata samples that spiral grain increases in severity up the stem. They both 

observed that spiral grain increased significantly up to mid-height of the tree after 

which, changes were less marked. Tian et al. (1995) also noted that the grain 

increased until a maximum was reached at about 15 metres up the stem, followed by a 

gradual decrease further up the stem.  

 

Spiral grain has not only been found to influence MOE but be responsible for the 

higher longitudinal shrinkage observed in juvenile wood (Cown, 1999). Dinwoodie 

(1996) states that the presence of spiral grain has significant practical implications: 

twist in dry sawn timber, distortion in plywood sheets, short grained failure of timber 

under stress and problems during machining.   
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External influences on MOE 

 

Initial Spacing 

 

Initial spacing can have a major influence on stem characteristics and intrinsic wood 

properties including MOE, however, the effect of spacing and other influences such as 

genetics, on wood properties is not fully understood. The effect of spacing on growth 

and yield, however, is well understood and is an important tool used by 

silviculturalists. Stocking differences affect wood properties not only through their 

effect on crown development and growth rate but also through their effect on the 

utilization of nutrients and water (Zobel and van Buijtenen, 1989). 

 

Past research for numerous species has found that MOE increases with stocking. This 

is the case for Japanese cedar (Cryptomeria japonica) (Wang and Ko, 1998), black 

spruce (Picea mariana) (Zhang et al., 2002) and 11-year-old Pinus radiata (Lasserre 

et al., 2004). Wang et al. (2000b) found that for both dynamic and static MOE, lower 

density stands exhibited a trend toward decreased stress wave and static bending 

properties. In this study of western hemlock (Tsuga heterophylla) and sitka spruce 

(Picea sitchensis), the highest MOE values (stress wave and static bending) were in 

the control stands or un-thinned stands, followed by those trees in the lightly thinned 

stands followed by the medium and heavily thinned stands. 

 

Initial spacing is seen to affect the MOE of trees in numerous ways. The proposed 

mechanisms require further work in order to demonstrate if and to what degree they 

affect MOE. One proposed mechanism that is influenced by stocking which is an 

important component of the trees’ physical environment is windflow. Reduced 

stocking allows more wind to penetrate, increases the aerodynamic roughness of the 

canopy surface and increases turbulence. The trees’ crowns are less likely to touch 

and thus dampen each other’s sway (Cremer et al., 1982). The result is increased stem 

deflection. The effect of low stockings and windflow are varied. It can lead to 

mechanical stress, which can significantly increase grain angle from vertical to 

between 5 degrees and 17.5 degrees in Pinus radiata (Coutts and Grace, 1995). It also 

results in increased amounts of compression wood in the stem, which exhibits higher 
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longitudinal shrinkage than normal wood. The effect of wind also results in increased 

radial growth and a reduction in stem, branch and leaf elongation (Telewski and Jaffe, 

1986). Pruyn et al. (2000) found that increased stem movement induced by wind, 

reduced MOE in Populus trichocarpa, whilst Telewski and Jaffe (1986) have stated 

there is a clear tendency for a decrease in MOE of the stem in response to wind. The 

effect of spacing on tree sway and its effect on Pinus radiata MOE is currently being 

examined (E. Mason, pers. comm.). The changes in morphology and anatomy produce 

a tree which is less stiff to counteract excessive stem deflection and possible stem 

failure. It is also likely that in highly stocked stands, stem slenderness induces high 

MOE to counteract failure. 

 

Low initial stocking increases radial tree growth, which increases the relative 

proportion of stem volume occupied by the juvenile corewood which exhibits poor 

MOE values (Shelbourne, 1997). It is has been proposed that radial growth affects the 

proportion of anticlinal versus periclinal cell divisions and may therefore affect 

microfibril angle (J. Walker, pers. comm.). Lindstrom et al. (1998) found that the 

normal trend of pith to bark decrease in microfibril angle can be interrupted by a 

surge in growth rate such as may occur following thinning or removal of competitor 

trees. This has led to the suggestion that suppression of juvenile growth could 

contribute to a reduction in the amount of wood with high microfibril angle in a tree at 

harvest. Stem slenderness or taper is a further mechanism that theory suggests may 

regulate MOE. Watt et al. (2006a) found that tree taper, which is a function of 

stocking, accounted for 53% of the variation in MOE for four-year-old Pinus radiata 

across 22 plots established on a range of sites to evaluate site quality. They found that 

tree diameter and tree height had indirect effects on MOE mediated through taper, 

however, neither variable had a significant direct influence on MOE. The Euler 

buckling formula is related to stem slenderness, which suggests that in a competitive 

situation decreases in taper will induce increases in MOE to reduce the risk of critical 

failure of the stem. 

 

Canopy height is also seen as an influencing factor on MOE. It is known that green 

foliage and developing buds produce auxins, and it has been postulated that these 

auxins influence MOE (Larson, 1962). The canopy rises more rapidly in higher 

stocked stands and as such lower concentrations of auxins are present in areas below 
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the green canopy. Auxins play an important part in earlywood/latewood formation, as 

well as tracheid elongation in conjunction with gibberellin. Current evidence 

supporting the hypothesis that greater distance from the green canopy results in stiffer 

wood has come from a School of Forestry (University of Canterbury, New Zealand) 

experiment (Mason, 2006).  

 

 
Genetics 
 

New Zealand’s Pinus radiata breeding programme is reputedly the most advanced in 

the world (Dorey, 2001) and since 1953 has seen the considerable improvement of 

many internal and external characteristics. Pinus radiata production has traditionally 

been dominated by a focus on external log specifications such as diameter growth, 

straightness and forest health (Sorensson et al., 1997). Selections of seedlots in recent 

times have instead focused on wood quality issues as demonstrated by the 

development of a ‘high density breed’ and a ‘structural timber breed’. Wood 

properties have become a major thrust in New Zealand’s Pinus radiata breeding 

programmes due to a realisation that there will be significant benefits in having 

improved wood properties in future forests (Sorensson et al., 1997). 

 

The different genetic breeding series used in this study were all developed to exhibit 

some traits in a superior manner to other breeding series. Three of the most widely 

planted series within New Zealand are the 268, 850 and 870 breeding series. The 268 

and 850 series are from the same breed. The 870 breed was a first generation special 

purpose breed. Within the 268 series, one and three-year-old physiologically aged 

cuttings were developed.  

 

The number “850”, “870”, “268”, is a prefix number denoting a particular series of 

breed. The first digit in the series number refers to the regional origin of the breed (8 

signifies collections carried out by the New Zealand Forest Research Institute, not 

necessarily within one conservancy, whilst the 2 means that it come from Kaingaroa 

Forest). The second two digits refer to the year of selection; either 1950, 1970 or 1968 

(Vincent and Dunstan, 1989). The 850 and 268 breeding series both have a GF rating. 

Seedlots of the GF breed cover a range of gain expectations which can be classified 



Chapter 2 21 

by their GF rating. A relatively unimproved seedlot will have a low GF rating. The 

rating is an index that allows improvements in growth and form to be combined for 

ranking the approximate genetic quality of one seedlot versus another (Vincent, 

1987). 

 

The 850 breeding series was selected for a combination of the following features: 

straight stems, light flat angled branching, absence of cones in the lower to mid bole, 

high vigour and lack of malformation. This series has a GF rating of 14. The 268 

breeding series has a GF rating of 22 and comes from the density series. It has a 

multimodal habit, very good growth and stem form (Jayawickrama et al., 1997a). 

These GF breeds were devised to be good for structural timber and, when pruned, 

knot-free timber. However, their selection resulted in the reduction of the average 

internode length below that of unimproved plantations, which reduces the yield of 

clearwood in unpruned logs, thus the development of the 870 breed (Jayawickrama et 

al., 1997b). 

 

The 870 breed is a first generation long internode breed. This breed is designed for 

longer internodes in an effort to obtain long clear sections from unpruned trees. 

Carson and Inglis (1988) found the 870 breed had significantly longer mean internode 

lengths than the 850 and 268 breeding series (Shelbourne et al., 1986). The 870 breed 

was selected for freedom from malformation, stem straightness, good vigour and 

uninodal branch habit. However, it tended to show increased malformation, show 

more susceptibility to top breakage in areas with frequent strong winds such as the 

Canterbury Plains and have larger diameter branches than GF families (Jayawickrama 

et al., 1997b). 

 

One (GF 19) and three (GF 17) year-old cuttings were developed from the 268 

breeding series. Cuttings provide greater stability at time of planting and in the early 

years of growth as they have thicker stems and thicker, more stable roots. They also 

exhibit better stem form (Menzies et al., 2004). However, physiological age should be 

kept to three years or less if diameter growth losses are to be avoided. Cown (1988) 

concluded that physiological ageing of seven years or less in cuttings will produce 

similar properties to those of seedlings. This was also supported by Lausberg et al. 

(1995), who observed few significant differences and no consistent trends.  
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Tree breeders are currently focussed on stiffness and stability, which are now 

accepted as the top priorities for breeding solid wood as stated by Sorensson et al. 

(1997) and Jayawickrama et al. (1997a). Preliminary studies on small numbers of 

entries by Matheson et al. (1997) and Shelbourne (1997) found high heritabilities for 

MOE of Pinus radiata. Individual-tree heritability estimates for MOE of 0.53 by 

Kumar et al. (2002), compared favourably to those reported by Matheson et al. 

(1997). However, these values are almost double that reported by Kumar (2004) who 

sampled a greater number of specimens. Given this heritability for MOE, clonal 

forestry allows for the predictability of such characteristics, which facilities its 

management and utilisation for particular end-products (Shelbourne, 1997). 

 

Tree-to-tree variation in most wood properties is not only significant but is typically 

strongly heritable, which makes it easy to improve specific properties by selective 

breeding. Selection for density, which is highly heritable, is of course an option for 

indirect improvement of MOE (Burdon et al., 2001). 

 

Cown et al. (1992) reported narrow-sense heritabilities of 0.9 - 1.0 for basic density. 

Burdon (1992) reported a value of 0.7 for narrow-sense heritability of density while 

Burdon and Low (1992) reported heritabilities for density of 0.73 for two New 

Zealand land race populations. Lindstrom et al. (2004) also found heritability of 

density to be high (0.78 - 0.90). They also found that spiral grain was heritable (0.55). 

 

Microfibril angle in radiata pine is known to be significantly heritable (h2=0.7), 

(Donaldson and Burdon, 1995). Lindstrom et al. (2004) found heritability of 

microfibril angle to be high (0.8 – 0.9) in the lower bolt of three-year-old Pinus 

radiata. Donaldson (1997) stated that the significant genetic component to microfibril 

angle variability does suggest that some clones have more control over microfibril 

orientation during wood formation than do others. Donaldson (1995) also has stated 

that genetic effects can account for up to 70% of between tree variation in microfibril 

angle within sites. The angle is affected by physiological age, but only within the 

juvenile wood region, where, generally, average angles are reduced by one degree for 

every year of physiological ageing.  
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It would be of considerable interest to both growers and plant breeders whether MOE 

is influenced by the interaction between initial stand spacing and genetic populations. 

The absence of such an interaction would mean that plant spacing and genetic 

populations can be used as complementary approaches for improving MOE (Lasserre, 

2005). Previous information examining such interactions is limited as spacing studies 

tend to exclude genetic populations as a variable, whilst genetic trials use limited 

spacings to allow for greater and more accurate assessment of the genetic material 

(Carson et al., 1999). The unique design of a Nelder spacing trial as used in this study 

allowed interactions between plant spacing and genetic populations to be examined. 

 

 

Environment 

 

Significant variability in wood properties is a characteristic common to all wood 

because a tree is subject to many constantly changing influences such as temperature, 

moisture availability and soil condition. MOE of Pinus radiata is perhaps at its lowest 

in stands situated on dry, stony sites on the Canterbury Plains (Walford, 1985; 

Tsehaye et al., 1995). This has been shown in machine stress graded tests by Cave 

and Walker (1994) for MOE in which Canterbury Pinus radiata was only 40% as stiff 

as that from Nelson. Previous work by Walford (1985) from static bending tests has 

shown that some of the least stiff timber in New Zealand came from the drier, stonier 

sites on the Canterbury Plains.  

 

The environment has a strong effect on wood density in New Zealand. It has been 

demonstrated that average annual temperature and rainfall are the dominant climatic 

influences or latitude and altitude. The environment can influence density as summer 

drought can reduce the amount of latewood, which reduces wood density in the 

growth ring, thus impacting on MOE (Cave and Walker, 1994). National wood 

density surveys have showed that density differences of 25 - 30% occur across the 

latitudinal range of New Zealand (Cown, 1999; Beets et al., 2001). Overall, mature 

wood density decreases by seven kg m-3 for every one degree increase in latitude and 

every 100 metre increase in altitude. Most species show variation in wood density 

across the growth ring which is primarily a response to seasonal climatic variations 

and the formation of latewood (Walker, 1993). Harris (1965) found that basic density 
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of the outer ten growth layers at breast height at 37 sites throughout New Zealand, 

was found to be closely correlated with mean annual temperature (r2=0.88). Tracheid 

length was also found to be positively correlated with temperature (r2=0.56). Cown et 

al. (1991a) found that environmental factors accounted for 61% of the variation in 

corewood and 66% of the variation in outerwood that they observed. 

 

Beets et al. (2001) observed in their study of 27-year-old Pinus radiata in Woodhill 

Forest, north of Auckland, that high cumulative autumn/winter/spring rainfall 

decreased the latewood percentage and decreased mean wood density, while high 

summer rainfall appeared to have the opposite effect. 

 

Watt et al. (2006a) reported that average minimum temperature accounted for 57% of 

the variation in MOE for four-year-old Pinus radiata across 22 site quality plots, in 

which the month of March had the strongest relationship with MOE (r2=0.60). They 

speculated that the significant influence of temperature on MOE may be mediated 

through regulation of latewood development. As for March being the most significant 

month, they state that given that latewood with high MOE is formed during this 

period, it follows that sites with warmer temperatures and increased growth rates over 

this month will develop a greater percentage of high MOE latewood and as a 

consequence higher overall stem MOE.  

 

 

Methods for assessing the stem 

 

Techniques have been developed that can measure the intrinsic wood quality of logs 

or trees. These techniques are based on acoustics, which offer one route to determine 

MOE of wood based on stress wave, ultrasound velocity or sonic resonance 

(Lindstrom et al., 2002). The most popular techniques used are stress wave or transit 

time methods, also known as “time of flight” and sonic resonance methods. Both 

techniques were used in this study. Properly defined and executed, acoustic 

measurements provide reliable measures of stiffness.  
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Non-destructive testing techniques are frequently used in the forest products industry 

using stress waves and have by far received the most attention. Stress wave 

propagation in wood is a dynamic process that is directly related to the physical and 

mechanical properties of wood. Examples of the use of stress wave techniques include 

internal inspections of wooden structures and evaluating internal defects, especially 

decay in street and specimen trees in public gardens and parks (Divos and Szalai, 

2002; Grabianowski, 2003; Wang et al., 2004; Silcock, 2005) and grading of veneer 

for laminated veneer lumber products (Grabianowski, 2003). In addition to these 

applications, stress wave techniques can be used to non-destructively evaluate the 

modulus of elasticity of trees and logs (Arima et al., 1990; Ross and Pellerin, 1991; 

Booker et al., 1997; Ross et al., 1997; Tsehaye et al., 1997b; Huang, 2000; Wang et 

al., 2000a; Lindstrom et al., 2002) 

 

The time of flight method measures the time it takes for an introduced stress wave to 

travel from one point in a sample to another (Lasserre, 2005). It was originally 

developed to detect rot in trees, not to measure MOE. However, it is the only accurate 

non-destructive method for measuring MOE in standing trees as no access to the ends 

of the stem is required. It has been closely correlated to other more precise acoustic 

methods. However, the method can only estimate MOE within the few outermost 

growth rings (Andrews, 2000). Huang (2000) concluded in his study of plantation 

grown loblolly pine (Pinus taeda) trees that the velocity of sound wave propagation in 

the outerwood to be a useful tool for predicting lumber stiffness, whilst Wang et al. 

(2000a) concluded that in situ stress wave measurements provide relatively accurate 

and reliable stress wave information that could be used to assess the mechanical 

properties of wood in standing trees.  

 

The velocity of sound wave propagation in the outerwood of standing trees is a 

function of MOE and density (Divos and Szalai, 2002). Stress wave propagation in 

wood is a dynamic process that is internally related to the physical and mechanical 

properties of wood. The speed of sound is significantly influenced by the moisture 

content of the wood because that in turn influences the green density of the tree.  

 

The resonance method is destructive, however, it has been shown to be superior to the 

time of flight method (Andrews, 2000; Lindstrom et al., 2004; Lasserre, 2005). Here, 
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the stress wave is introduced at one end of the specimen. It travels down the specimen 

until it gets reflected. The reflected wave is measured at the same end of the specimen 

as where the wave was launched. Resonance systems tend to measure the average 

speed of a number of reverberating waves, rather than the time of arrival of a first 

wave front. The resonance method has been shown to be sensitive to the presence of 

bark and branches. Lasserre (2005) noted that when branch and bark removal 

occurred, an increase in MOE values by an average of 8.3% and 5.4% respectively 

occurred. 

 

Several studies have found that resonance generated MOE is more closely related to 

static MOE than time of flight generated MOE. Dickson et al. (2004) found a highly 

significant and positive relationship for acoustic resonance measurements made on 

logs, whilst a weaker but still significant relationship was obtained for time of flight 

measurements from standing Pinus radiata trees. There was a significant positive 

relationship between acoustic wave velocity in logs and trees and the timber stiffness. 

Lindstrom et al. (2004) found that resonance and time of flight generated MOE were 

in close agreement with MOE from traditional static bending (r2=0.96 and 0.81 

respectively), whilst earlier work by Lindstrom et al. (2002) found a strong 

correlation between time of flight measured MOE and static MOE (r2=0.96). 

 

Numerous studies have shown a good to strong relationship (r2=0.66 to 0.97) between 

the dynamic MOE of trees and logs and the static MOE of lumber cut from logs 

(Arima et al., 1990; Ross and Pellerin, 1991; Booker et al., 1997; Ross et al., 1997; 

Tsehaye et al., 1997b; Huang, 2000; Wang et al., 2000a; Wang et al., 2001; 

Lindstrom et al., 2002). Wang et al. (2000a) found that the average stress wave 

velocity measured in trees was very close to that measured in the small, clear 

specimens, in which statistical analyses indicated no significant difference between 

the mean stress wave velocity in trees and that in small, clear specimens. The 

correlation coefficient (r2=0.83) was highly significant at the 0.01 confidence level, 

whilst Huang (2000) found that the relationship between stem stress wave velocity 

and lumber MOE was r2=0.76. Such relationships between dynamic MOE and static 

MOE allow for confident estimation of MOE and thus provide silviculturists and 

geneticist with a valuable tool for the determination of MOE.   

 



Chapter 3 27 

Chapter 3 
 

Effect of initial stand spacing and breed on stem size,  
taper, internode length and branching  

of Pinus radiata in Canterbury 
 

 

INTRODUCTION 

 

During the establishment of a forest plantation, two of the most important decisions 

made are the selection of appropriate genetic material and suitable initial stand 

spacing. Initial spacing can have a major influence on stem characteristics including 

diameter, taper or stem slenderness, crown height and branch diameter. Differences in 

stocking affect wood properties not only through their effects on crown development 

and growth rate but also through their impacts on the utilization of nutrients and water 

(Zobel and van Buijtenen, 1989). As with initial spacing, tree breed can influence 

internal and external characteristics in varying ways depending on what trait or traits 

that genetic material was selected to exhibit. Whilst considerable research has 

focussed on how genetic material and initial stand spacing impact on the external 

characteristics of growth and form (Fries, 1984; Carson et al., 1999; Land et al., 

2003), apparently no reported studies have examined the interaction of these factors 

on Pinus radiata, incorporating such variation in stand spacing and genetic material 

as that used in this trial.  

 

Tree morphology is markedly affected by intra-specific competition. Intra-specific 

competition is a function of initial stand spacing and the growth rate of the trees, and 

thus begins earlier at high initial stockings than at low ones. When competition 

between trees reaches a certain point, self-pruning causes the live crown to recede, 

which is commonly attributed to the earlier death of lower limbs due to shading, with 

trees in stands of low stocking retaining live branches in their bases longer than trees 

growing in dense stands. This in turn influences diameter, stem slenderness and 

branch size. Under the crown competition of a dense stand, branching variability is 

less, and less foliage is carried on a per tree basis. Radial growth is markedly 

responsive to spacing, with larger diameters occurring at wider spacings, with growth 
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under high stand stockings less in absolute terms, but latewood production being 

greater in proportional terms (Lanner, 1985; Ballard and Long, 1988). Cromer and 

Pawsey (1957) found that a linear relationship existed between mean diameter and 

spacing, whilst Sjolte-Jorgensen (1967) found that the mean diameter of trees in a 

stand increased with increasing spacing. 

 

Tree height appears to be relatively unaffected by stand spacing, except in extreme 

situations. It has been asserted on numerous occasions that stocking has no significant 

impact on height growth. Hocker (1979) stated that “height growth is not too greatly 

affected by stand density…except that height growth may be affected where the 

stands are near the extremes of stocking”. Lanner (1985) states that “it is almost 

axiomatic that height growth of canopy trees is insensitive to initial spacing and to the 

changes in spacing that follow the thinning of stands”, whilst Cremer et al. (1982) and 

Siemon et al. (1976) noted that stocking of Pinus radiata had little or no influence on 

tree height. However, in a review of experiments by Sjolte-Jorgensen (1967), it was 

found that in most cases for conifers, the mean height of the stand is increased with 

increasing stocking. This observation of increasing height has also been noted by 

Mason (1992), Maclaren et al. (1995) and Carson et al. (1999). 

 

Stem slenderness is markedly affected by spacing, as it increases as stand stocking 

increases. This is primarily due to the ratio of height to diameter growth experienced 

by the tree. Secondary to this, stem slenderness is affected as the distance between the 

live crown and the base of the stem increases, with proportionately more growth 

occurring at the top of the first log than at the base thus reducing taper of the log 

(Larson, 1969). This radial expansion of the stem has been observed to occur below 

an application point of auxin (Sundberg et al., 2000), an important growth hormone, 

which explains why the maximum radial growth occurs in the general vicinity of the 

live crown base, which results in small crowned trees been more cylindrical as 

opposed to the strongly tapered stems of trees with long, vigorous crowns (Larson, 

1962). 

 



Chapter 3 29 

Branch size is heavily influenced by stocking, and is recognised to be a vital factor in 

assessing quality and value of timber. It is measured using branch index (BIX)3. BIX 

has a major impact on the recovery of structural timber grades and as such, is an 

important external property that declines when stocking increases. Larger knots 

produced as a result of increased BIX have been acknowledged to be responsible for 

stiffness reduction, especially in structural timber and are therefore undesirable 

features (Xu, 2002). Tombleson et al. (1991) found that branch index for the second 

log of Pinus radiata decreased with increasing stocking. However, they observed that 

there was no obvious trend with stocking for internode length, which has also been 

noted by Siemon et al. (1976) and Grace and Carson (1993). Ballard and Long (1988) 

also found that branch size was strongly influenced by stand spacing, whilst Cromer 

and Pawsey (1957) found in their study of Pinus radiata that a linear relationship 

between average branch size and initial stocking existed. 

 

New Zealand has a longstanding genetic improvement program for Pinus radiata, 

which has seen breeders been proactive in trying to improve external and internal 

characteristics of Pinus radiata. The breeding program has been described in 

numerous publications (e.g. Shelbourne et al., 1986; Jayawickrama et al., 1997a). The 

breeding programme has produced planting stock with altered external features such 

as internode length and branch diameter. Three of the most widely planted series 

within New Zealand are the 268, 850 and 870 breeding series. The 268 and 850 series 

are from the same breed. The 870 breed was a first generation special purpose breed 

selected for long internodes. Within the 268 series, one and three-year-old 

physiologically aged cuttings were developed. A brief description of traits and origins 

of the breeds is given to provide background on the material on which this study was 

carried out on.   

 

The number “850”, “870” and “268” is a prefix number denoting a particular series of 

breed. The first digit in the series number refers to the regional origin of the breeding 

series (8 signifies collections carried out by the New Zealand Forest Research 

Institute, not necessarily within one conservancy, whilst the 2 means that it come 

from the Rotorua district). The second digit refers to the year of selection; either 1950, 

                                                
3 BIX is the mean of the largest branch in each of the four quadrants for the nominated log length. 
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1970 or 1968 (Vincent and Dunstan, 1989). The 850 and 268 breeding series both 

have a growth and form (GF) rating. Seedlots of the GF breed cover a range of gain 

expectations which can be classified by their GF rating. A relatively unimproved 

seedlot will have a low GF rating. The rating is an index that allows improvements in 

growth and form to be combined for ranking the approximate genetic quality of one 

seedlot versus another (Vincent, 1987). 

 

The 850 breeding series was selected for a combination of the following features: 

straight stems, light flat angled branching, absence of cones in the lower to mid bole, 

high vigour and lack of malformation and has a GF rating of 14. The 268 breeding 

series was selected for fast diameter growth, good stem form and multinodal branch 

habit with evenly distributed branch clusters, with the seedlings, one-year-old cuttings 

and three-year-old cuttings from the 268 series having GF ratings of 22, 19 and 17, 

respectively. (Shelbourne et al., 1986). These GF breeds were devised to be good for 

structural timber and when pruned, knot-free timber. However, their selection resulted 

in the reduction of the average internode length below that of unimproved plantations, 

which lead to the development of the 870 breed (Jayawickrama et al., 1997b). 

 

The one (GF 19) and three (GF 17) year-old cuttings come from the 268 series but 

different seedlots. Cuttings have been found to provide greater stability at time of 

planting and in the early years of growth as they have thicker stems and thicker, more 

stable roots. They also exhibited better stem form and less malformation (Menzies et 

al., 2004). However, it is recommended to confine physiological age of planting stock 

to three years or less if diameter growth losses are to be avoided. Cown (1988) 

concluded that physiological ageing of seven years or less in cuttings will produce 

intrinsic wood properties similar to those of seedlings. This was also supported by 

Lausberg et al. (1995), who observed few significant differences and no consistent 

trends in younger physiologically aged cuttings.  

 

On an individual tree, internode length is under strong genetic control. Tree breeders 

have taken advantage of this fact in developing a special purpose “long internode” 

breed (Grace and Carson, 1993). The 870 breed is the first generation long internode 

breed. It is designed for longer internodes in an effort to obtain long clear sections 

from unpruned trees. Carson and Inglis (1988) found that the 870 breed had 
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significantly longer mean internode lengths than the 850 and 268 breeding series. The 

870 breed was selected for freedom from malformation, stem straightness, good 

vigour and uninodal branch habit and come from a much narrower genetic base than 

both the 850 and 268 series. It however, tended to show increased malformation, 

show more susceptibility to top breakage in areas with frequent strong winds such as 

the Canterbury Plains and have larger diameter branches than GF breeds 

(Jayawickrama et al., 1997b).  

 

The objective of this study was to examine the influence of initial stand spacing and 

breed on stem and branch characteristics of Pinus radiata, identifying where 

significant interactions between breed and stocking exist. The wide range of stand 

spacings coupled with the three breeding series, two propagation methods and 

different maturation status of the cuttings allowed for a thorough examination of the 

effects these factors have on stem geometry of Pinus radiata on a dryland site. 
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MATERIALS AND METHODS 

 

Location 

 

Measurements were taken from 17-year-old Pinus radiata trees that had been grown 

in a Nelder experiment (Nelder, 1962) located at Burnham, approximately 18 km 

south-west of Christchurch (latitude 43o36.5’S, longitude 172o17.75’E, altitude 70 m 

a.s.l.). The trial was situated on Lismore stony silt loam soil (N.Z.S.B., 1968) and 

experienced a mean annual precipitation of 650 mm, in which seasonal water deficits 

do occur during January to March, when evapotranspiration exceeds rainfall            

(G. Furniss, pers. comm.).  

 

Experimental Plot 

 

The experiment comprised five breed/cutting treatments, including seedlings from the 

850, 870, and 268 breeding series and cuttings taken from one-year-old and three-

year-old parents. Both the one and three-year-old cuttings were from the 268 series. 

The Nelder contained 45 spokes separated by 8 degree intervals in 10 circular rings 

(Figure 3.1) with high initial stocking rates present at the centre of the Nelder to low 

initial stocking rates present on the outer ring of the Nelder (Table 3.1). Each 

breed/cutting treatment occupied nine of the spokes split in a group of five spokes on 

one side of the plot and a group of four spokes on the other side of the plot.  

 

Table 3.1. Nelder design. 

Circle Radii of Equivalent Initial 
number planting square spacing 

  circles(m) spacing(m) (stems ha-1) 
Buffer 12.35 / / 

1 14.20 1.98 2551 
2 16.31 2.28 1924 
3 18.75 2.26 1457 
4 21.54 3.00 1111 
5 24.75 3.46 835 
6 28.44 3.97 635 
7 32.68 4.56 481 
8 37.56 5.24 364 
9 43.16 6.03 275 

10 49.59 6.92 209 
Buffer 56.99 / / 
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The trees had not received thinning at any stage prior to examination. Due to natural 

mortality, windthrow or malformation, 385 of the original 450 trees were suitable for 

examination. A total of 182 trees had a complete set of neighbours. The 65 trees 

assessed for BIX and internode length were selected from this population.  

 

Figure 3.1. Plan of the Nelder spacing design experiment. Trees are planted at each spot. 

 

Measurements 

 

Measurements of diameter at breast height, tree height and crown height were made 

for the 385 trees. Diameter was measured using a tree diameter tape, whilst tree height 

and crown height were measured using a vertex height instrument. Crown height was 

interpreted as the first live whorl. Branch diameter and internode length was measured 

on 65 trees which had been felled. The 65 trees selected represented a combination of 

the five breed/cutting treatments and seven of the initial stand spacings. The largest 

branch in each quadrant at every whorl in the second log (6.0 - 12.0 m) was measured 

using callipers two centimetres from the trunk so that node swelling was minimised as 

a factor. Quadrant 1 always faced true north. Internode lengths for each log (6.0 - 12.0 

m) were obtained from internodes that were completely within the log length 

mentioned above by measuring the vertical distance from the top of one whorl to the 

base of the whorl above. Values of internode length were averaged to determine the 

mean internode length for each tree. 
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Data Analysis 

 

All analyses were undertaken using SAS (SAS Institute, 2000). Mean values of the 

block level data were used for all analyses unless otherwise indicated. An analysis of 

variance examined the main and interactive effects of spacing and breed on diameter, 

height, slenderness and distance to canopy. The mean was determined for all variables 

to assess what impact spacing and breed had on the variables and a Student-Neuman-

Keuls (SNK) test was used to determine if the means were significantly different. 

 

By taking into account repeated measures within trees a linear mixed model (proc 

MIXED) was used to assess the effect of height to the base of the internode on 

internode length. As internode length was not found to vary with height, subsequent 

analyses were undertaken at the block level using average internode length.  

 

The effects of spacing and breed on BIX were initially assessed using analysis of 

variance. The continuous variables tree diameter and mean internode length were then 

included in the model to see if these terms could account for variation in BIX 

attributable to spacing and breed.  

 

Plots of residuals were examined for bias. Residual values were plotted against 

predicted values and independent variables.  

 

 

RESULTS 

 

Initial stand spacing had a highly significant (P<0.0001) influence on tree diameter at 

breast height, with diameter increasing over two-fold from 17.7 to 36.6 cm as stand 

spacing declined (Table 3.2). Tree height was not significantly affected by stocking 

ranging from 16.6 m at 209 stems ha-1 to 18.4 m at 481 stems ha-1. Crown height was 

also found to be very significantly influenced by spacing (P<0.0001), and exhibited a 

curvilinear relationship, which flattened off at higher stockings (Figure 3.2). Another 

stem characteristic found to be significantly influenced by spacing was stem 

slenderness (P<0.0001), with slenderness exhibiting a uniform increase with 

increasing stocking.  
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Table 3.2. Mean diameter, height, crown height and slenderness by initial stand spacing. 

Initial Mean Mean Crown  Slend- 
spacing diameter height height erness 

(stems ha-1) (cm) (m) (m) (m/cm) 
209 36.6 16.6 1.8 0.46 
275 34.7 17.5 2.7 0.51 
364 35.0 17.7 3.4 0.51 
481 31.8 18.4 5.4 0.59 
635 28.6 18.0 6.9 0.64 
835 24.9 17.7 7.8 0.74 
1111 24.0 17.8 8.8 0.77 
1457 21.9 17.6 9.3 0.84 
1924 18.9 16.8 9.4 0.95 
2551 17.7 17.3 10.2 1.03 

Initial stand spacing (stems ha-1)
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Figure 3.2. Relationship between initial stand spacing and distance to green crown for each 

breed/cutting treatment; three-year-old cuttings (black circle), one-year-old cuttings (white 

circle), 850 breed (black square), 870 breed (white square) and 268 breed (black triangle). 

 

The influence of breed/cutting treatment on diameter was marginally significant 

(P=0.0418), with the 850 series displaying the largest mean diameter (29.4 cm), 

whilst the 870 series and the three-year-old cuttings exhibited the lowest mean 

diameter (26.3 cm) (Table 3.3). Tree height was not significantly by breed, although 

the 850 series demonstrated a noticeably greater mean height than the remaining 

treatments. The effect of breed on crown height was not significant. Stem slenderness 
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was marginally (P=0.0211) influenced by breed. The three-year-old cuttings were 

slightly more slender than other breed/cutting treatments. 

 

Table 3.3. Mean diameter, height, crown height and slenderness by breed/cutting treatment. 

Breed/ Mean  Mean Crown  Slend- 
cutting diameter height height erness 

treatment (cm) (m) (m) (m/cm) 
1-year-old 27.2 17.6 6.6 0.70 
3-year-old 26.3 17.5 7.3 0.75 

268 27.8 17.4 6.3 0.68 
850 29.4 18.2 6.0 0.68 
870 26.3 17.1 6.7 0.71 

 

Interactions between spacing and breed/cutting treatments were not statistically 

significant for diameter, height, slenderness and crown height. 

 

Internode length was significantly influenced by breed (P<0.05) but not stocking or 

the interaction of the two. The 870 breed with a mean length of 61 cm across all stand 

spacings was significantly different from the four remaining breed/cutting treatments, 

which had mean lengths between 37 and 47 cm. The height to the base of the 

internode was found to have no influence on internode length. Internode length was 

not significantly correlated with diameter. 

 

Initial stand spacing significantly influenced BIX (P<0.0001), with values for BIX 

ranging from 35 mm at 364 stems ha-1 to 13 mm at 2551 stems ha-1. Neither breed or 

the interaction of breed and initial stand spacing had a significantly influence on raw 

BIX means.  

 

Tree diameter exhibited a strong (r2=0.80) significant (P<0.0001) positive 

relationship with BIX (Figure 3.3). Inclusion of stem diameter in the model accounted 

for the stocking effect on BIX; the latter effect was found to be insignificant when 

added to the model with stem diameter.  
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Figure 3.3. Relationship between BIX and tree diameter for the five breed/cutting treatments; 

three-year-old cuttings (black circle), one-year-old cuttings (white circle), 850 breed (black 

square), 870 breed (white square) and 268 breed (black triangle). Linear lines have been 

drawn through those breeds with the highest and lowest BIX for a given diameter; the 870 

breed (solid line) and the 268 breed (dotted line), respectively.  

 

Examination of the regression of BIX against stem diameter showed that for a given 

diameter, BIX differed considerably between breeds (Figure 3.3). Analysis of 

covariance indicated that breed significantly influenced the intercept between BIX 

and diameter (P<0.01), but not the slope (P>0.05). After adjustment was made for 

diameter, BIX exhibited a 5.5 mm range between breeds, with the 870 series and 268 

series, representing the breeds with the highest and lowest BIX for a given tree 

diameter, respectively.  

 

After correction had been made for tree diameter, a plot of residual BIX against mean 

internode length revealed a positive relationship (Figure 3.4). Mean internode length 

was significant (P<0.0001) when included in the model with stem diameter (also 

P<0.0001) and improved the coefficient of determination of this model from 0.80 to 

0.90. Inclusion of mean internode length in the model accounted for the breed effect 

on BIX; the latter effect was found to be insignificant when added to the model with 

stem diameter and mean internode length.  
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Figure 3.4. Relationship between residual BIX and mean internode length for the five 

breed/cutting treatments; three-year-old cuttings (black circle), one-year-old cuttings (white 

circle), 850 breed (black square), 870 breed (white square) and 268 breed (black triangle). 

 

 

DISCUSSION 

 

The results obtained provide considerable insight into how spacing regulates stem 

geometry. As stem geometry (diameter, height, stem slenderness, branch index) is an 

important concern for forest managers, demonstration of the effect of a wide range of 

operationally used spacings on these important external tree characteristics is useful. 

Spacing had a significant impact on diameter, crown height, stem slenderness and 

BIX, whilst breed marginally affected diameter and stem slenderness but significantly 

affected internode length.  

 

Competition through stand spacing acts to reduce the growth rates of all individuals 

by the same proportion. This results in plants at high stockings showing less unequal 

size distribution than plants at lower stockings. This generalised statement applies to 

trees within this trial. Greatest variations in dimension occurred for diameter, 

slenderness and branch size at higher stockings, whilst tree height and crown height 

showed minor variation at high stockings.  
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Both Jayawickrama et al. (1997b) and Carson and Inglis (1988) stated that the 870 

breed tended to grow more slowly than GF trees. This was consistent with the study 

reported here. Both GF breeds (850 and 268 series) demonstrated greater diameter 

and height growth than the 870 series. The 850 and 268 series had a mean diameter 

that was 3.1 cm and 1.5 cm larger respectively than the 870 breed, whilst the 850 and 

268 series displayed a mean height that was 1.1 m and 0.3 m taller respectively. The 

differences in diameter were not statistically different, however, the 850 series was 

statistically different from the 870 series for mean height. The use of cuttings within 

this trial showed that the cuttings were neither superior nor inferior to the seedlings 

for any of the measured properties.  

 

Diameter, as one would expect, was considerably affected by initial stand spacing.  

There was an almost uniform decrease in diameter with increasing stocking that 

resulted in over a two-fold increase in diameter. This relationship between stocking 

and diameter has been known for considerable time but it is still routinely confirmed, 

more recently from the Tikitere Agroforestry Trial (Knowles et al., unpubl), and from 

work by Holley and Stiff (2003) and Land et al. (2003) using loblolly pine (Pinus 

taeda).  

 

No relationship was found between tree height and initial stand spacing. Variation in 

mean height varied little between the ten stockings (16.6 - 18.4 m) within this trial. 

This result corroborates previous observations (Siemon et al., 1976; Hocker, 1979; 

Cremer et al., 1982; Lanner, 1985). However, it contradicts Sjolte-Jorgensen (1967), 

Mason (1992), Maclaren et al. (1995) and Carson et al. (1999), who all noted that 

mean height increased with increasing stocking in their observations of trials.  

 

Crown height showed a substantial change of nine metres between the low and high 

stand spacings, with significant differences existing between spacings for crown 

height up to 1111 stems ha-1, after which changes in crown height were less 

pronounced. A roughly uniform increase of one metre was found between spacings 

for the first seven rings of the Nelder plot representing 209 to 1111 stems ha-1. 

Beekhuis (1965) noted that both Brown (1962) and Whiteside (1962) had observed an 

approximate one metre increase in crown height for every 0.3 m increase in spacing, 
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which was similar to results observed here. There was no evident relationship 

between tree height and crown height, which was to be expected as crown height is a 

response variable to spacing and tree height was shown to have no correlation with 

stand spacing.  

 

Slenderness was also significantly influenced by spacing. It is well established that in 

general, in trees of the same age, slenderness decreases with increasing diameter 

(Sjolte-Jorgensen, 1967; Wang and Ko, 1998; Zhang et al., 2002). In this trial, more 

than a two-fold increase in slenderness occurred between the lowest and highest stand 

stockings.  

 

The significant influence of initial stand spacing on branch index for the second log in 

this trial corroborates findings by Tombleson et al. (1991) and Ballard and Long 

(1988). Findings demonstrate that variation in BIX between stockings was attributable 

to differences in diameter. This is consistent with previous studies which show that 

diameter accounts for variation in spacing induced differences in BIX (Smith, 1986; 

Knowles and Kimberley, unpubl; Woollons et al., 2002). For a given diameter the 

greatest difference in BIX between breeds was between the 268 and 870 series. The 

BIX for the 870 breed was found to be on average 5.5 mm larger than the 268 breed 

after adjusting for stem diameter. This is supported by Carson and Inglis (1988), 

Jayawickrama et al. (1997b) and Watt et al. (2000) who have all found that for a 

given tree diameter the 870 breed tended to have larger diameter branches than GF 

trees. Carson and Inglis (1988) state that selection for long internodes increased 

average internode length but also tended to increase average branch size, which can 

be supported from observations made in this trial.  

 

Mean internode length accounted for the within and between breed effect on BIX. 

This is consistent with research by Watt et al. (2000), and extends these findings to a 

greater range of stockings and breeds. Analyses done at the tree level (data not 

shown) indicate that the relationship between mean internode length and BIX was 

strongest for the 268, 870 and 850 series. For these breeds our results suggest that 

inclusion of internode length in models of branch diameter may provide a useful 

means of quantifying within and between breed variation in BIX.  
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The effect of spacing on internode length agrees with findings by Siemon et al. (1976) 

and Tombleson et al. (1991) who observed no obvious trend. Compared to many 

other conifers, a distinctive feature of Pinus radiata is the relatively long internodes 

which separate the whorls of branches (Lavery, 1986), that are under strong genetic 

control once the juvenile state of the tree is passed (Lavery, 1986; Grace and Carson, 

1993). The effect of breed on internode length was well demonstrated within this trial 

and compared favourable with results from Carson and Inglis (1988), who noted that 

the 870 breed had significantly longer mean internode lengths than the 850 breeding 

series.  

 

Carson and Inglis (1988) noted that the 268 series was extremely multimodal, but this 

observation was not consistent with results reported here. The 850 and 268 series had 

an essentially identical number of whorls per tree throughout the trial, whilst as 

expected, the 870 breed had considerably fewer whorls. Correlations in this study 

suggest that internode length of Pinus radiata may be relatively independent of tree 

size, which is in agreement with Woollons et al. (2002). In attempting to model 

internode length, Woollons et al. (2002) noted that ‘it is evident internode length can 

be regarded as a random phenomenon’. Results from this study and previously from 

Carson and Inglis (1988) confirm that there is a large potential for exploiting genetic 

variation in internode length to dramatically increase the yields of clearwood, without 

unduly compromising growth rate. There are obvious advantages in growing 

clearwood in long pieces, namely, reducing the costs of re-cutting and increasing the 

versatility of the product for meeting a range of end uses. 

 

 

CONCLUSIONS 

 

• No statistically significant interactions between spacing and breed were 

found for any of the variables examined. 

 

• Diameter, crown height and slenderness were all significantly influenced 

by initial stand spacing. Stem diameter decreased from 36.6 cm to 17.7 cm 

as stand stocking increased from 209 stems ha-1 to 2551 stems ha-1. Mean 

crown height increased from 1.8 m to 10.2 m with increasing stand 



Chapter 3 42 

stocking, whilst stem slenderness increased from 0.46 to 1.03 m cm-1 with 

increasing stand stocking.  

 

• The 850 breeding series had a longer canopy than any of the other 

breed/cutting treatments, and also had the largest mean diameter, although 

the effect on diameter was only just statistically significant.  

 

• BIX was positively correlated with tree diameter. After adjustment was 

made for tree diameter, BIX was positively correlated with internode 

length, and the two variables together explained 90% of variation in BIX.  

 

• The 870 breed had significantly longer internode lengths than the other 

breed/cutting treatments demonstrating its defining physical characteristic. 

The 870 breed had a mean internode length of 61 cm, whilst the remaining 

four breed/cutting treatments had mean internode lengths which ranged 

from 37 cm to 47 cm. 

 



Chapter 4 43 

 

Chapter 4 
  

Modelling the influence of initial stand spacing and breed on 
outerwood modulus of elasticity of 17-year-old Pinus radiata   
 

 

INTRODUCTION 

 

An important element of wood quality is “stiffness”, which is also known as modulus 

of elasticity (MOE). The usefulness of structural timber is strongly related to MOE 

(Kumar, 2004). The longitudinal modulus of elasticity is the most commonly 

measured property to define elastic behaviour of wood and measures the resistance of 

wood to deformation under an applied load. MOE is often considered more important 

than strength (modulus of rupture) for predicting wood quality of Pinus radiata 

because boards rarely break in normal use; much more frequently a load results in 

excessive deflection (Walford, 1985). 

 

Low stiffness of Pinus radiata limits utilisation options, and is more prevalent when 

the species is grown on the short rotations that are favoured by fertile sites and 

silvicultural regimes that are designed for rapid attainment of piece-size specifications 

(Burdon et al., 2001). Consequently, two important decisions affecting stiffness made 

during establishment of a forest plantation are the selection of appropriate genetic 

material and initial stand spacing. Research has revealed that both of these factors 

have a significant influence on MOE (Wang and Ko, 1998; Zhang et al., 2002; 

Lasserre et al., 2005),  

 

Initial spacing can have a major influence on stem characteristics and intrinsic wood 

properties, and thus the quality of the products yielded from the plantation. The effect 

of spacing on MOE has received limited attention, although examples of such work is 

scattered in the literature (Wang and Ko, 1998; Zhang et al., 2002; Lasserre et al., 

2004). Stand dynamics, coupled with tree morphology and anatomy is markedly 

affected by initial stand spacing, however, the consequent effect of initial spacing on 

stiffness is not well understood. Past research for numerous species has found that 
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MOE scales positively with stand stocking. This is the case for Japanese cedar 

(Cryptomeria japonica) (Wang and Ko, 1998), black spruce (Picea mariana) (Zhang 

et al., 2002) and 11-year-old Pinus radiata (Lasserre et al., 2004).  

 

Stand spacing may affect MOE through numerous mechanisms. The identification of 

possible mechanisms is on-going as is determining to what degree these possible 

mechanisms influence MOE. Windflow is believed to affect MOE as it is an 

important component of a tree’s physical environment that is influenced by stand 

spacing. Closer spacings lower stem deflection through reducing wind speed within 

the canopy and by dampening stem oscillations as the canopies of neighbouring trees 

buffer each other (Cremer et al., 1982). Pruyn et al. (2000) found that increased stem 

movement induced by wind, reduced MOE in Populus trichocarpa, whilst Telewski 

and Jaffe (1986) have stated there is a clear tendency for a decrease in MOE of the 

stem in response to wind. Stand spacing also strongly influences radial growth rate 

which in turn is thought to influence MOE by altering microfibril angle through the 

proportion of earlywood within a tree, as well as having a direct effect on microfibril 

angle within earlywood. Green canopy and the role that auxins, a major plant growth 

regulator, play in earlywood/latewood formation, as well as tracheid elongation in 

conjunction with gibberellin is another possible mechanism influencing MOE 

formation (Larsen, 1962; Mason, 2006). Recent research (Watt et al., 2006b) also 

suggests that taper or stem slenderness may regulate MOE. The Euler buckling 

formula suggests that in a competitive situation increases in stem slenderness require 

that trees increase MOE in order to reduce the risk of critical failure of the stem. 

When light demanding species such as Pinus radiata are grown with high levels of 

competition, rapid height growth is important to ensure they are not overtopped by 

neighbours. Under high levels of stand stocking trees become etiolated as priority is 

given to height growth at the expense of diameter increment, thus a tree will undergo 

elastic buckling unless MOE increases (Watt et al., 2006a). It is hypothesised that 

trees are able to sense and respond to higher compressive stress as a result of greater 

height growth and thus produce new wood with higher MOE, possibly by 

manipulating the angle of cellulose microfibrils in the secondary cell wall (Watt et al., 

2006b). 
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Genetics also strongly influence MOE, which has seen the current attention of tree 

breeders more focused on stiffness and stability, which are now accepted as top 

priorities for solid wood breeding (Jayawickrama et al., 1997a; Sorensson et al., 

1997). Preliminary studies on a small number of samples by Matheson et al. (1997) 

and Shelbourne (1997) have found high heritabilities for MOE in Pinus radiata. 

Individual-tree heritability estimates for MOE of 0.53 by Kumar et al. (2002), 

compared favourably to those reported by Matheson et al. (1997), however, these 

values are almost double that reported by Kumar (2004) who sampled a greater 

number of specimens. Variation in MOE in clonal material is wide, and studies have 

shown that Pinus radiata corewood values for MOE at age 10 may range 4.3 GPa or 

198% between different clones (Sorensson et al., 2002). Given this high heritability, 

and the wide variation observed across clonal material, breeding and clonal selection 

has the potential to markedly enhance MOE.   

 

Forest growers are interested in how stand stocking and genetics interactively 

influence MOE. Lasserre et al. (2005) observed that while genotype and spacing both 

significantly influenced MOE, these factors did not significantly interact, indicating 

that genotype and stand stocking had an additive effect on MOE. Previous studies 

examining such interactions are limited as spacing studies tend to exclude genetic 

populations as a factor, whilst genetic trials use limited spacings to allow for greater 

and more accurate assessment of the genetic material (Carson et al., 1999). This study 

utilises the unique design of a Nelder spacing trial (Nelder, 1962) which allows for 

interactions between plant spacing and genetic populations to be examined more fully. 

The wide range of genetic material and stand spacings used in the trial reported here 

provided an opportunity for a much greater analysis of these two variables and their 

relative influence on MOE of Pinus radiata, than had been previously carried out.  

 

Path analysis can be used to partition the influences that stem dimensions have on 

stiffness if a suitable causal model can be developed. This was carried out to 

determine to what degree did stem dimensions influence stiffness of the trees 

examined. A hypothesised model of MOE outlining linkages between MOE, stem 

slenderness, diameter, height, and distance to the green crown is outlined in Figure 

4.1. Within this model predictive variables may influence MOE directly (solid line), 

indirectly, whereby their effect is mediated through another variable (dotted line), or 
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both directly and indirectly. As stem slenderness, diameter and distance to the green 

crown are known to influence MOE, direct pathways have been drawn from these 

variables to MOE. Direct pathways have been drawn from diameter and height to 

stem slenderness. The direct pathway drawn from diameter to green crown height, 

assumes diameter acts as a surrogate for stand density, which has a well documented 

effect on green crown height (Beekhuis, 1965). Given that tree height also affects 

green crown height (Beekhuis, 1965) a direct pathway has been added between these 

variables.  

    

Figure 4.1. Proposed causal pathways linking tree dimensions and modulus of elasticity. 

Solid lines represent direct pathways of influence, while dashed lines represent indirect 

pathways of influence on modulus of elasticity. The double headed arrow between height and 

diameter indicates a covariance.  

 

The objectives of this study were to (i) determine the main and interactive effects of 

initial stand spacing and breed on outerwood stiffness and (ii) partition the direct and 

indirect effects of diameter, stem slenderness, tree height and distance to the green 

crown on outerwood stiffness.  
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MATERIALS AND METHODS 

 

Location 

 

Measurements were taken from 17-year-old Pinus radiata trees that had been grown 

in an Nelder experiment (Nelder, 1962) located at Burnham, approximately 18 km 

south-west of Christchurch (latitude 43o36.5’S, longitude 172o17.75’E, altitude 70 m 

a.s.l.). The trial was situated on Lismore stony silt loam soil (N.Z.S.B., 1968) and 

experienced a mean annual precipitation of 650 mm, in which seasonal water deficits 

do occur during January to March, when evapotranspiration exceeds rainfall            

(G. Furniss, pers. comm.).  

 

Experimental Plot 

 

The experiment comprised five breed/cutting treatments, including seedlings from the 

850, 870, and 268 breeding series and cuttings taken from one-year-old and three-

year-old parents. Both the one and three-year-old cuttings were from the 268 series. 

The Nelder contained 45 spokes separated by 8 degree intervals in 10 circular rings 

(Figure 4.2) with high initial stocking rates present at the centre of the Nelder to low 

initial stocking rates present on the outer ring of the Nelder (Table 4.1). Each 

breed/cutting treatment occupied nine of the spokes split in a group of five spokes on 

one side of the plot and a group of four spokes on the other side of the plot.  

  

Table 4.1. Nelder design. 

  Radii of Equivalent Initial 
Circle planting square spacing 

number  circles(m) spacing(m) (stems ha-1) 
Buffer 12.35 / / 

1 14.20 1.98 2551 
2 16.31 2.28 1924 
3 18.75 2.26 1457 
4 21.54 3.00 1111 
5 24.75 3.46 835 
6 28.44 3.97 635 
7 32.68 4.56 481 
8 37.56 5.24 364 
9 43.16 6.03 275 

10 49.59 6.92 209 
Buffer 56.99 / / 
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The trees had not received thinning at any stage prior to examination. Due to natural 

mortality, windthrow or malformation, 385 trees were suitable for examination. 

 

Figure 4.2. Plan of the Nelder spacing design experiment. Trees are planted at each spot. 

 

Three of the most widely planted series within New Zealand are the 268, 850 and 870 

breeding series. As these genotypes were developed between twenty to forty years 

ago they now constitute a large proportion of mature Pinus radiata within New 

Zealand. The 268 and 850 series were predominantly selected for good stem form, 

multinodal branch habit and fast diameter growth, and are from the same breed. 

Physiologically aged cuttings were developed within the 268 series to provide greater 

stability at time of planting and in the early years of growth as they have thicker stems 

and thicker, more stable roots. The 850 breeding series had a growth and form (GF) 

rating of 14, whilst the seedlings, one-year-old cuttings and three-year-old cuttings 

from the 268 breeding series had GF ratings of 22, 19 and 17, respectively. The GF 

rating reflects a seedlots relative genetic worth for growth and stem form, with growth 

given twice as much weight as stem form (Carson, 1996). A relatively unimproved 

seedlot will have a low GF rating. These GF breeds were devised to be good for 

structural timber and, when pruned, knot-free timber. However, their selection 

resulted in the reduction of the average internode length below that of unimproved 

plantations, thus the development of a special purpose “long internode” breed, the 870 

breed (Jayawickrama et al., 1997b). This breed is designed for longer internodes in an 
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effort to obtain long clear sections from unpruned trees. None of these breeds were 

bred with improved stiffness properties in mind. 

 

Measurements 

 

Measurements of diameter at breast height, tree height and crown height were taken 

immediately prior to measurements of modulus of elasticity (MOE). Green dynamic 

modulus  of  elasticity (GPa)   was  determined for 385  sample trees  between 0.5 and 

2.0 metres up the stem using the time of flight technique. 

 

MOE can be measured in standing trees using non-destructive acoustic techniques. 

Transit time or stress wave velocity was determined on all standing trees by time of 

flight using the portable instrument TREETAP (Version 4), a non-destructive acoustic 

tool developed at the University of Canterbury, New Zealand (Figure 4.3). 

 

Figure 4.3. A schematic outline of the measurements undertaken on standing trees using time 

of flight instrument, TREETAP. 

 

The use of non-destructive techniques to assess the properties of wood provides 

obvious benefits. A variety of acoustic tools are available to assess the properties of 
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wood including MOE, but only time of flight tools provide a way of assessing the 

properties of standing trees (Ross, 1999). Time of flight tools use in-situ stress wave 

measurements to provide stress wave information that can be used to assess the 

mechanical properties of wood in standing trees. The method can only estimate MOE 

within the few outermost growth rings (Andrews, 2000), however, useful 

relationships between stress wave velocity measurements and properties of trees, logs 

and lumber have been observed (Huang, 2000; Wang et al., 2000a). Studies have 

found a strong relationship between standing tree MOE obtained by time of flight 

measurements and MOE measured in small clear wood specimens (Ross, 1999; 

Yamamoto, 2000).  Lindstrom et al. (2002) found a strong correlation existed 

between time of flight generated MOE and MOE from traditional static bending 

(r2=0.96). 

 

Transit time was measured on both the windward and leeward sides of the standing 

tree without removing the bark. Two probes connected to the TREETAP were 

inserted in the butt log of the tree at a distance of 1.5 m from each other. A third probe 

was inserted lower in the stem at approximately 0.15 m from the lower probe. This 

third probe was tapped and the velocity of sound was measured between the other two 

probes. TREETAP detects the acoustic wave as it passes the first stop transducer and 

starts a timer which records the time it takes for the wave to reach the second stop 

transducer placed a known distance from the first. The time delay and the distance 

between the two sensors allow the stress wave velocity to be calculated. The velocity 

measurement was repeated eight times for each side of the tree (i.e. 16 measurements 

per tree) as this improves the consistency of the stress wave velocity through the 

outerwood and thus the estimate of dynamic outerwood MOE for each tree.  

 

The following equation was applied to estimate MOE: 

 

MOE = ρV2  

 

where ρ is green density (kg m-3) and V is stress wave velocity (m s-1). Stress wave 

velocity was determined from sample length (l) and transit time (t) as; V = l t-1.  
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Green density was calculated from a sample of 38 discs taken at 1.4 metres above 

ground level from selected trees representing a combination of breeds and initial stand 

spacings. At time of felling 30 mm discs were taken for the 38 trees. Green density 

was determined as green weight/green volume, using the immersion technique. From 

analyses of these measurements, green density was found to vary with neither breed 

nor stocking and mean density was 935 kg m-3 (± 8.2 kg m-3). 

 

Data Analysis 

 

All analyses were undertaken at the plot level using SAS (SAS Institute, 2000). 

Values of MOE were averaged across both sides of the tree, before plot means were 

determined. An initial analysis of variance was conducted to examine the main and 

interactive effects of stand spacing and breed on stem dimensions and MOE. Multiple 

range testing was undertaken using the Student-Neuman-Keuls (SNK) test.  

 

Univariate relationships between MOE and the continuous variables diameter, tree 

height, distance to canopy and stem slenderness were examined using appropriate 

functional forms, both between and within breeds to determine which variables were 

significantly related to MOE. Analysis of covariance was used to determine how well 

each variable accounted for the effects of stand spacing and breed on MOE.   

 

To control for the effects of common cause, path analysis was used as an extension to 

regression analysis, using the CALIS procedure (SAS Institute, 2000). Path analysis is 

a multivariate statistical technique which bridges the gap between empirical 

observation and theoretical research. This technique requires development of a 

preconceived causal model in which directional flow and the inter-relationships 

among independent (exogenous) and dependent (endogenous) variables are specified, 

as outlined in Figure 4.1. A more complete description of path analysis is given in 

Wright (1921, 1934), Li (1975) and Rao and Morton (1980). 

 

Path analysis was used to determine the significance of pathways in Figure 4.1. Non-

significant pathways, denoted by t-values of less than 1.96 were removed from the 

model. After all non-significant pathways were removed model statistics were 

examined. For the overall model values of the chi-square ratio greater than 0.05 
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indicate an acceptable fit between model and data. However as the chi-square statistic 

has some limitations as an inferential test (see Kaplan 1990, for review), the goodness 

of fit index, normed fit index and comparative fit index (CFI) were also used to 

determine the adequacy of the model fit to the data. All of these indices range from 0 

to 1, with values over 0.9 indicating an acceptable fit between model and data. A 

model exhibiting acceptable fit between the model and the data also has normalised 

residuals which are less than 2.  

 

 

RESULTS 

 

MOE was found to be significantly influenced by both spacing (P<0.0001) and breed 

(P<0.0001). Examination of the partitioned sums of squares revealed that spacing had 

the greater influence on MOE. Values of MOE scaled positively with stand stocking 

by 39% across the range in stand stocking. There was a rapid linear increase in MOE 

from 5.4 GPa at 209 stems ha-1 to 7.2 GPa at 835 stems ha-1, after which the rate of 

increase in MOE with further increases in stand stocking declined, reaching 7.5 GPa 

at 2551 stems ha-1 (Table 4.2). 

 

Table 4.2. Influence of initial stand spacing on MOE. Each value shown is the mean ± 

standard error. Means followed by the same letter are not significantly different at P<0.05.  

Initial   Mean SNK 
spacing MOE grouping 

(stems ha-1) (GPa)   
209 5.4  (0.24) A 
275 5.7  (0.25) AB 
364 5.9  (0.18) AB 
481 6.6  (0.22) BC 
635 6.7  (0.30) BC 
835 7.2  (0.41) C 
1111 7.1  (0.27) C 
1457 7.1  (0.30) C 
1924 7.6  (0.21) C 
2551 7.5  (0.26) C 

 

The significant influence of breed/cuttings was mainly attributable to the high values 

of MOE recorded for the cuttings (Figure 4.4). Modulus of elasticity was lowest for 

the 850 and 268 series, with values averaging 6.1 and 6.3 GPa, respectively. The 

average respective MOE values for the 870 breed and one-year-old cuttings of 6.6 and 
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6.7 GPa, substantially exceeded that of the 850 and 268 series. The three-year-old 

cuttings had an average MOE of 7.7 GPa, which significantly exceeded the one-year-

old cuttings and seedlings from the 870, 268 and 850 series by 15, 17, 22 and 27%, 

respectively. No significant interaction (P>0.05) was found between breeding series 

and stand spacing (Figure 4.4).   
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Figure 4.4. Relationship between mean MOE and initial stand spacing for the five 

breed/cutting treatments; three-year-old cuttings (solid line), one-year-old cuttings (long 

dash), 870 breed (short dash), 268 breed (dot) and 850 breed (dash-dot-dot-dash). 

 

No significant interaction (P>0.05) was found between breed and stand stocking. The 

propagation influence on MOE between the three-year-old cuttings and the breed 

exhibiting the lowest MOE values, the 850 series, ranged from 1.87 GPa at 2551 

stems ha-1 to 1.1 GPa at 209 stems ha-1.  The maximum difference between the three-

year-old cuttings and the 850 series was 3.03 GPa at 835 stems ha-1. 

 

The MOE variation between the windward (6.56 GPa) side of all trees was 

significantly different (P=0.0015) from the leeward (6.9 GPa) side of all trees. Of the 

tree dimensions examined, stem slenderness exhibited the strongest significant 

(P<0.0001) relationship with MOE. Stem slenderness exhibited a positive relationship 

with MOE (Figure 4.5), which accounted for 49% of the variance in the data. 
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Distance to the green crown was significantly and positively related to MOE (Figure 

4.6), accounting for 46% in the data. When distance to the green crown was expressed 

as a percentage of tree height the coefficient of determination increased marginally to 

0.48. Diameter exhibited a significant (P<0.0001) negative linear relationship with 

MOE (Figure 4.7), accounting for 44% of the variance in MOE. Height was not 

significantly related to MOE. Within breeds, stem slenderness was more closely 

related to MOE than diameter or distance to the green crown for all five breed/cutting 

treatments, with coefficients of determination ranging from 0.4 for the 268 series to 

0.87 for the 870 breed. 
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Figure 4.5. Relationship between modulus of elasticity and stem slenderness for three-year-

old cuttings (black circles), one-year-old cuttings (white circles), seedlings from the 268 

(black squares), 850 (white squares) and 870 (black triangles) breeding series. Linear lines 

have been drawn through data for the three-year-old cuttings (solid line) and 850 breed (dash-

dot-dot-dash) as after correction has been made for stem slenderness, these represent the 

breeds with the highest and lowest MOE, respectively.  
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Figure 4.6. Relationship between modulus of elasticity and green crown height for three-

year-old cuttings (black circles), one-year-old cuttings (white circles), seedlings from the 268 

(black squares), 850 (white squares) and 870 (black triangles) breeding series. Linear lines 

have been drawn through data for the three-year-old cuttings (solid line) and 850 breed (dash-

dot-dot-dash) as after correction has been made for green crown height, these represent the 

breeds with the highest and lowest MOE, respectively.  
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Figure 4.7. Relationship between modulus of elasticity and diameter for three-year-old 

cuttings (black circles), one-year-old cuttings (white circles), seedlings from the 268 (black 
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squares), 850 (white squares) and 870 (black triangles) breeding series. Linear lines have been 

drawn through data for the three-year-old cuttings (solid line) and 850 breed (dash-dot-dot-

dash) as after correction has been made for diameter, these represent the breeds with the 

highest and lowest MOE, respectively.  

 

Analysis of covariance showed that when included singly in the model, diameter and 

green crown height accounted for the effect of stand spacing on MOE. Although stand 

spacing was still marginally significant (P<0.05) in the predictive model of MOE with 

stem slenderness, stand spacing added very little explanatory power (partial r2=0.02). 

In contrast, addition of breed was highly significant (P<0.001) for univariate 

relationships between MOE and stem slenderness, diameter and distance to the green 

crown (expressed as a proportion of tree height), with breed accounting for an 

additional 15, 20, and 18% of the variance in MOE respectively. 

 

Path analysis was used to test the significance of the relationships outlined in the 

initial model, described in Figure 4.1. As the pathway between MOE and diameter 

was insignificant (P>0.05; t value = 0.11) this pathway was dropped from the initial 

model. 

 

For the modified model outlined in Figure 4.8, an acceptable level of model fit to the 

data was demonstrated by all goodness of fit indices (all >0.98) and the chi-square 

ratio (P=0.44). None of the normalised residuals exceeded 1.l in magnitude. In 

addition all remaining pathways in the model were significant (t values >1.96).  

 

Path coefficients within the modified model (Figure 4.8) indicated that tree 

slenderness had a slightly higher direct influence on MOE than distance to the green 

crown (path coefficients of 0.40 vs. 0.35). Relationships of both these variables to 

MOE were positive. Although diameter and height did not directly influence MOE, 

they did have significant indirect effects on MOE via stem slenderness and green 

crown height. The final model explained 53% of the variance in MOE, 91% of the 

variance in stem slenderness and 82% of the variance in green crown height (Figure 

4.8).  
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Figure 4.8. Final path analysis model, with significant (P<0.05) pathways shown. Solid lines 

represent direct pathways of influence while dashed lines represent indirect pathways of 

influence. Values next to each line give the path coefficient for that pathway. The amount of 

variance (r2) explained for each endogenous variable is shown. 

 

 

DISCUSSION 

 

This study shows considerable variation in Pinus radiata MOE between spacings. The 

substantial improvement in MOE with increasing stocking is consistent with findings 

in other coniferous species over comparable spacing levels (Wang and Ko, 1998; 

Chuang and Wang, 2001; Zhang et al., 2002). For Pinus radiata, previous research 

(Lasserre et al., 2004) has found that stand stocking scales positively with MOE in the 

outermost rings of 11-year-old trees, between stand spacings of 835 and 2500 stems 

ha-1. Data used in this study from 17-year-old trees indicates a less pronounced gain 

across this stand stocking range (6% vs. 42%) which suggests that outerwood MOE 

between these stand stockings will converge with age, possibly as competition in the 

lower stand stockings increases. Our research extends these previous findings by 

Lasserre et al., (2004) to the commonly used operational stand spacings of between 

209 and 835 stems ha-1 over which MOE increased by 33%. This result indicates that 

managers have considerable control over outerwood MOE in mature wood on dryland 

sites through selection of appropriate stockings.  

 

The considerable gain in MOE for the three-year-old cuttings and the moderate gain 

in MOE for the one-year-old cuttings over seedlings suggest that a possible source of 

MOE improvement may be through propagation technique and physiological age. 
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Although physiological age is the main difference between the cuttings, they 

originated from different seedlots and have different GF ratings, thus possibly 

impacting on the relative difference in MOE obtained from these two treatments. 

Menzies et al. (2004) observed that acoustic velocity at breast height (as an indicator 

of stiffness) increased significantly and consistently with increasing physiological 

age. Given that cuttings from more mature trees show more adult-like morphological 

characteristics, such as declining microfibril angle up the stem, than seedlings, one 

would expect wood in cuttings, for given ring numbers from the pith, to match that of 

wood of a point higher up in seedlings. On that basis, one would expect the butt logs 

of cuttings with maturation to have lower microfibril angle and greater MOE (Burdon 

et al., 2004).  

 

There was no significant interaction between stand spacing and breed, which indicates 

that silviculture and breeding can be used as complementary approaches to improve 

MOE. The lack of an interaction concurs with Lasserre et al. (2004) who found that 

no significant interaction between stand stocking and clonal genotype existed in 11-

year-old Pinus radiata. Further research should investigate whether the lack of 

interaction between breed and stand stocking is maintained along the length of the 

stem.  

 

MOE is believed to be influenced by numerous mechanisms that interact. The 

identification of these mechanisms is the topic of on-going research, however, 

evidence to date suggests that a number of these possible mechanisms may contribute 

to MOE formation. Whilst these mechanisms were not specifically examined in this 

research, the strong influence that was found between stem slenderness and green 

crown height on MOE further strengthens the developing belief by many that these 

factors directly influence MOE formation, whilst casting doubt on the importance of 

diameter as a direct influence on MOE.  

 

A significant negative relationship was found between rate of growth and MOE in this 

study. This observation has also been noted in other studies for Douglas fir 

(Pseudotsuga menziesii) (Walford, 1985) and  11-year-old Pinus radiata (Lasserre et 

al., 2004). Low initial stocking, which increases radial tree growth, has been 

postulated to result in an increase in the relative proportion of the stem occupied by 
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the juvenile corewood which exhibits poor MOE values (Shelbourne, 1997). It is has 

been proposed that radial growth affects the proportion of anticlinal versus periclinal 

cell divisions and may therefore affect microfibril angle (J. Walker, pers. comm.). 

However, exactly how the cell divisions impact on microfibril angle is unknown. 

Lindstrom et al. (1998) found that the normal trend of pith to bark decrease in 

microfibril angle can be interrupted by a surge in growth rate such as may occur 

following thinning or removal of competing trees. This has led to the suggestion that 

suppression of juvenile growth could contribute to a reduction of the amount of wood 

with high microfibril angle in a tree at harvest. This relationship may also be 

explained by the variation in latewood percentage between trees of high and low 

diameter. Previous research has shown that trees with a high diameter have a lower 

percentage of latewood and lower density than trees with a low diameter (Chuang and 

Wang, 2001). As latewood fibres display a higher MOE than those of earlywood, the 

lower incidence of latewood in larger trees could account for the observed low MOE 

within these larger diameter trees.  

 

Whilst all this evidence supports radial growth rate as a possible mechanism for 

MOE, Lasserre (2005) observed that when comparing Pinus radiata at two sites with 

almost perfectly equivalent yields but separated by two years of age, radial growth 

apparently did not affect MOE. Although there was an age difference, diameter at 

both sites was indistinguishable, as was MOE, suggesting that increased radial growth 

rate at the younger site, did not have an impact on MOE. Further research that would 

contradict radial growth as a mechanism for MOE development comes from Watt et 

al. (2006a, 2006b) who observed that stem diameter was positively correlated with 

MOE. Furthermore, results from this study suggest that variation in MOE across stand 

stocking gradients may be the direct result of spacing induced changes on stem 

slenderness and green crown height, and that diameter only indirectly affects MOE 

through these variables.  

 

The significant positive influence of distance to the green canopy on MOE found in 

this study is consistent with previous research. In a study which included a range of 

pruned heights Mason (2006) found that distance to the green crown exhibited a 

significant positive relationship with MOE. Distance to the green canopy within this 

Nelder experiment was found to be significantly and positively correlated with MOE, 
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however, distance to canopy as an impacting factor on MOE could not be accurately 

assessed in this experiment, as it was a response variable as a result of competition 

induced through spacing.  

 

The mechanism by which green crown height influences MOE has been outlined by 

Larson (1962) and Brown (1971) who hypothesised that auxins produced by both the 

green foliage and developing buds strongly influence corewood formation. The 

production of large diameter earlywood cells is dependent upon relatively high auxin 

concentrations, where the current season’s growth and the internodes immediately 

beneath it form juvenile wood (Zobel and van Buijtenen, 1989). With increasing 

distance down the stem, cell size gradually decreases, and at lower internodes, true 

latewood is produced as the auxin stimulus originating from the terminal meristems 

becomes more limiting. This however, is not the only factor impacting on latewood 

formation. As the growth period advances, auxin synthesis continues to decline and 

latewood cells can be found at higher and higher internodes in the tree. Proceeding 

down the tree, auxin synthesis not only decreases but the branch distance over which 

the stimulus must be translocated to the main stem increases so that the lower 

branches contribute less and less auxin to the supply of the main trunk (Larson, 1962). 

These lower auxin concentrations result in thicker cell walls, longer fibre length and 

decreased fibril angle; properties which all contribute to increased MOE (Herman, 

2005). Therefore, trees with high crowns such as those in highly stocked stands may 

produce lower proportions of earlywood in the bole and greater proportionate 

quantities of higher density latewood (Larson, 1962) with improved wood properties. 

This hypothesis has been further strengthened by observations from Megraw (1985), 

who observed that as the vigorous crown moved upwards, faster earlywood to 

latewood transition occurred, resulting in greater wood density in areas below the 

crown.  

 

Auxins also play a role in tracheid elongation. Kalev and Aloni (1998) observed that 

gibberellin, a growth hormone, in the presence of auxin promoted tracheid elongation 

in leaves and the stem (Herman, 2005) by stimulating growth of both the upper and 

lower ends of the tracheid. Tracheid length is known to be inversely related with 

microfibril angle, a known major influencing factor on MOE, with very strong 

correlations having been observed (r2>0.9) between tree species (Echols, 1955; 
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Erickson and Arima, 1974; Donaldson, 1992). Furthermore, in addition to tracheid 

length affecting microfibril angle, it is also seen to influence density, another known 

major factor impacting on MOE, as some studies have proposed that greater wood 

density could be partly explained by longer and thicker tracheids (Dutilleul et al., 

1998).  

 

Green canopy may affect MOE not only through auxin gradients, but also though its 

impact on stem slenderness, which has been recognized as a mechanical explanation 

of stiffness development (Watt et al., 2006a). Numerous studies of stem form have 

shown that trees with long, vigorous crowns produce strongly tapering stems with a 

rather high proportion of earlywood to latewood. As the crown recedes, owing either 

to advancing age, stand closure, or artificial pruning, the stem becomes more 

cylindrical and the proportion of earlywood to latewood decreases. If the hypothesis is 

accepted that auxin gradients regulate the size of the wood elements within an annual 

ring, then it is logical to extend this hypothesis to include an auxin regulating 

influence over increment distribution as well (Larson, 1962). Radial expansion of 

xylem and phloem elements has been observed below an application point of auxin 

(Sundberg et al., 2000) which explains why the maximum radial growth occurs in the 

general vicinity of the live crown base, which results in small crowned trees being 

more cylindrical as opposed to the strongly tapered stems of trees with long, vigorous 

crowns (Larson, 1962). 

 

Of the tree dimensions examined slenderness was found to be most strongly related to 

MOE. Theory suggests that the positive relationship observed between MOE and stem 

slenderness occurs as trees growing in very dense stands with high slenderness require 

high MOE to mitigate the possibility of stem buckling through self weight. Although 

no buckling was observed within the Nelder trial, the possibility of buckling was quite 

real for trees planted at the highest stand stockings as individual tree stem slenderness 

reached values of up to 175 m m-1, which exceed all previously reported values within 

the literature (Holbrook and Putz, 1989; Niklas, 1994a). In an adjacent 17-year-old 

stand of trees planted at 10 000 stems ha-1, 13% of the trees exhibited buckling (M. 

Watt, pers. comm.). Stem slenderness for twenty of these buckled trees (determined as 

Ht/DBH), exhibited a range from 122 to 178 m m-1 (M. Watt, pers. comm.), which is 
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comparable to tree slenderness values at the upper end of the range found in our study 

(range of 28 to 175 m m-1). 

 

Although diameter has often been used to predict MOE within sites for trees growing 

under competition, there is considerable evidence to suggest that the effects of 

diameter and height on MOE are mediated through slenderness. The relationship 

between stem slenderness and diameter depends on the circumstances in which trees 

are grown. Considerable research has investigated how stand spacing variation in 

spacing trials within a single site influences MOE at a given age. As with this 

research, these studies typically conclude that increasing stand stocking has little 

effect on height growth, but does reduce diameter growth markedly, which results in 

increases in slenderness (Zhang et al., 2002; Lasserre, 2005). This research shows 

these increases in slenderness across stand stocking gradients to be positively related 

to MOE. As has been previously found, the correlation of MOE with diameter is 

negative (Chuang and Wang, 2001: Zhang et al., 2002; Lasserre et al., 2005), and 

MOE exhibits little correlation with height (Zhang et al., 2002; Lasserre, 2005).  

 

Relationships between MOE and diameter and height have been found to be quite 

different across site gradients. The recent study by Watt et al. (2006a) into variation in 

Pinus radiata MOE of trees grown across a nationwide environmental gradient at the 

same high stand stocking found height, diameter and slenderness to be positively 

correlated to MOE, with slenderness exhibiting the strongest correlation with MOE 

(r2=0.61). Most of the variation in slenderness was attributable to between-site 

variation in height as height growth was far more responsive to improving site 

conditions than diameter growth. Taken together these results demonstrate the 

disparity in relationships between diameter and MOE and height and MOE. These 

results also suggest that both the effects of site conditions and within-site competition 

levels on MOE are at least partially mediated through changes in slenderness, when 

trees are grown at high stockings. In the study reported here and that by Watt et al. 

(2006a), slenderness was found to exhibit a positive correlation with MOE. It is quite 

likely in both cases that increases in slenderness induced increases in MOE to reduce 

the risk of stem buckling.  
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The relationship between the possible mechanisms discussed above and their 

influence on MOE will undoubtedly be complex. Thus, it will be difficult to 

determine what mechanisms contribute what proportion, if any, to development of 

MOE gradients within trees. However, the now recognised importance of stiffness as 

a wood quality variable will ensure the continued work of examining the mechanical 

and management influences on MOE.  

 

Results from this trial, in addition to those from Lasserre et al. (2004), unquestionably 

show that greater MOE can be achieved from higher stockings. Gains in MOE were 

also achieved through the use of physiologically aged cuttings. The process of 

growing plantation products is driven by economics, therefore, to use stockings 

comparable with those used at the high stand stockings used in this trial, financial 

penalties would be incurred compared to use of low stockings. However, the 

possibility of implementing regimes using higher stocked stands needs to be further 

investigated. Similarly, the use of physiologically aged cuttings over standard 

seedling material would incur greater cost at time of establishment. Stiffness is a 

fundamentally important wood property which affects customer perceptions of value 

in both structural and appearance products, and thus improvement and greater 

controllability of stiffness may justify these greater growing costs in some 

circumstances. By developing management regimes in which genetic breeds with 

higher stiffness wood are used along with stand spacings that achieve a compromise 

between sufficient final stem size and higher stockings, then the industry can look to 

increase profitability through better utilisation of products. 

 

 

 CONCLUSIONS 

 

• Distinguishable increases in MOE (39%) were achieved with increased 

stand stocking. The majority of this gain (33%) occurred between 209 

and 835 stems ha-1.  

 

• Gains in MOE were also exhibited through the use of different 

propagation techniques; namely the use of cuttings over seedlings, with 

cuttings of greater physiological age displaying greater MOE. 
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• Differences in MOE between seedlings and cuttings of greater 

physiological age were greater at higher stand stockings. 

 

• No significant interaction was found to exist between initial stand 

spacing and breed. Any interaction between spacing and breed that 

existed was greatest at the highest stand stocking where differences in 

MOE between breed were most evident.  

 

• Stem slenderness (r2=0.49) explained the greatest amount of variation 

in MOE, followed by distance to the green crown (r2=0.46) and 

diameter (r2=0.44). 
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Chapter 5 

 

Influence of initial stand spacing and breed on vertical 
distribution of wood stiffness in 17-year-old Pinus radiata  

 

 

INTRODUCTION 

 

Wood stiffness or longitudinal modulus of elasticity (MOE) is one of the most 

important wood properties for solid timber applications (Evans and Ilic, 2001). As a 

result, stiffness has been recognised as an important property of Pinus radiata timber 

that requires greater attention due to potential lost earnings by the industry arising 

from poor performing, low stiffness timber.  

 

Radial changes in stiffness throughout a stem in Pinus radiata have been well 

documented (Tsehaye, 1995; Xu and Walker, 2000), with MOE in Pinus radiata 

increasing radially from the pith to the cambium, with the greatest rate of change 

occurring near the pith. However, vertical changes in stiffness are less conspicuous. 

Vertical changes in MOE show no obvious difference along the vertical direction of 

the stem as noted by Tsehaye (1995) and Tsehaye et al. (2000), whilst Xu and Walker 

(2000) observed no real apparent change after approximately three metres up the 

stem. The butt log, up to approximately three metres up the stem, has been identified 

as a zone of low stiffness. However, as stiffness varies radially, one would expect 

variation up a tree because the radius of a stem diminishes with height. The observed 

lack of change in stiffness vertically up the stem as observed by Tsehaye (1995), 

Tsehaye et al. (2000) and Xu and Walker (2000) might be a surprise in view of the 

increasing preponderance of corewood up the stem and the decline in the values of 

most physical characteristics. This could be attributed to averaging within the stem 

section. The corewood at the base of the stem is significantly less stiff than elsewhere 

in the tree, but the butt log has also both more and stiffer outerwood to compensate; 

whereas at the top of the stem the corewood is somewhat stiffer, but there is only little 

outerwood of moderate stiffness (Buchanan et al., 1999).  
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The localised reduction in MOE at the base of the tree up to approximately three 

metres up the stem as reported by Hirakawa and Fujisawa (1996), Perstorper (1996) 

and Xu and Walker (2000) has been suggested to serve a functional purpose (K. 

Niklas, pers. comm.). It has been suggested that the base of tree acts as a “hinge” to 

allow trees the ability to sway when external forces are applied. Niklas speculated that 

the localised reduction in MOE was adaptive in terms of wind-induced bending 

moments which allow the trunk to bend in the wind. 

 

Although stiffness gradients in Pinus radiata have received increased attention in the 

recent past, there has been no reported previous research investigating the impact of 

different initial stand spacings, breeding series, propagation techniques and 

physiological age of cuttings on the vertical distribution of stiffness in Pinus radiata. 

This is supported by Jayawickrama (2001) who states that few studies have examined 

variation in MOE up the stem of Pinus radiata trees.  

 

Wood properties have become a major thrust in New Zealand’s Pinus radiata 

breeding programmes due to a realisation that there will be significant benefits in 

having improved wood properties in future forests (Sorensson et al., 1997). Selections 

of seedlots in recent times have focused on wood quality issues as demonstrated by 

the development of a ‘high density breed’ and a ‘structural timber breed’. Preliminary 

studies on small numbers of entries by Matheson et al. (1997) and Shelbourne (1997) 

found high heritabilities for MOE for Pinus radiata. Individual-tree heritability 

estimates for MOE of 0.53 by Kumar et al. (2002), compared favourably to those 

reported by Matheson et al. (1997), however, these values are almost double that 

reported by Kumar (2004) who sampled a greater number of specimens. Given this 

heritability for MOE, genetics has the potential to markedly enhance MOE. Whilst 

examining the outerwood of Pinus radiata (Chapter 4), it was observed that cuttings 

were stiffer than seedlings, with cuttings of greater maturation, having higher MOE 

than younger cuttings. Whether this influence will eventuate when examining vertical 

variation in MOE is unknown as no previous findings examining this connection have 

been found in the literature.      
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Initial stand spacing has been found to influence MOE (Wang and Ko, 1998; Zhang et 

al., 2002; Lasserre et al., 2004). Research has found that MOE increases with 

stocking for Japanese cedar (Cryptomeria japonica) (Wang and Ko, 1998), black 

spruce (Picea mariana) (Zhang et al., 2002), juvenile Pinus radiata (Lasserre et al., 

2004) and mature Pinus radiata (Chapter 4). MOE up the stem has been examined in 

Norway spruce (Bruchert et al., 2000) and was found to decrease up the stem, 

especially above 50% of stem height. No apparent research has examined the impact 

that stand spacing has on the vertical distribution of MOE up the stem in Pinus 

radiata. 

 

The objective of this study was to examine the main and interactive effects of initial 

stand spacing and breed on vertical variation in MOE of Pinus radiata. 
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METHODS AND MATERIALS 

 

Location 

 

Measurements were taken from 17-year-old Pinus radiata trees that had been grown 

in a Nelder experiment (Nelder, 1962) located at Burnham, approximately 18 km 

south-west of Christchurch (latitude 43o36.5’S, longitude 172o17.75’E, altitude 70 m 

a.s.l.). They were situated on Lismore stony silt loam soil (N.Z.S.B., 1968) and 

experienced a mean annual precipitation of 650 mm, in which seasonal water deficits 

do occur during January to March, when evapotranspiration exceeds rainfall            

(G. Furniss, pers. comm.).  

 

Experimental Plot 

 

The experiment comprised five breed/cutting treatments, including seedlings from the 

850, 870, and 268 breeding series and cuttings taken from one-year-old and three-

year-old parents. Both the one and three-year-old cuttings were from the 268 series. 

The Nelder contained 45 spokes separated by 8 degree intervals in 10 circular rings 

(Figure 5.1) with high initial stocking rates present at the centre of the Nelder to low 

initial stocking rates present on the outer ring of the Nelder (Table 5.1). Each 

breed/cutting treatment occupied nine of the spokes split in a group of five spokes on 

one side of the plot and a group of four spokes on the other side of the plot.  

  

Table 5.1. Nelder design. 

  Radii of Equivalent Initial 
Circle planting square spacing 

number  circles(m) spacing(m) (stems ha-1) 
Buffer 12.35 / / 

1 14.20 1.98 2551 
2 16.31 2.28 1924 
3 18.75 2.26 1457 
4 21.54 3.00 1111 
5 24.75 3.46 835 
6 28.44 3.97 635 
7 32.68 4.56 481 
8 37.56 5.24 364 
9 43.16 6.03 275 

10 49.59 6.92 209 
Buffer 56.99 / / 
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The trees had not received thinning at any stage prior to examination. Due to natural 

mortality, windthrow or malformation, 385 trees were suitable for examination. 

 

Figure 5.1. Plan of the Nelder spacing design experiment. Trees are planted at each spot. 

 

Three of the most widely planted series within New Zealand are the 268, 850 and 870 

breeding series. As these genotypes were developed between twenty to forty years 

ago they now constitute a large proportion of mature Pinus radiata within New 

Zealand. The 268 and 850 series were predominantly selected for good stem form, 

multinodal branch habit and fast diameter growth, and are from the same breed. 

Physiologically aged cuttings were developed within the 268 series to provide greater 

stability at time of planting and in the early years of growth as they have thicker stems 

and thicker, more stable roots. The 850 breeding series had a growth and form (GF) 

rating of 14, whilst the seedlings, one-year-old cuttings and three-year-old cuttings 

from the 268 breeding series had a GF rating of 22, 19 and 17, respectively. The GF 

rating reflects a seedlots relative genetic worth for growth and stem form, with growth 

given twice as much weight as stem form (Carson, 1996). A relatively unimproved 

seedlot will have a low GF rating. These GF breeds were devised to be good for 

structural timber and, when pruned, knot-free timber. However, their selection 

resulted in the reduction of the average internode length below that of unimproved 

plantations, thus the development of a special purpose “long internode” breed, the 870 

breed (Jayawickrama et al., 1997b). This breed is designed for longer internodes in an 
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effort to obtain long clear sections from unpruned trees. None of these breeds were 

bred with improved stiffness properties in mind. 

 

Measurements 

 

Measurements of diameter at breast height, tree height and crown height were taken 

immediately prior to measurements of modulus of elasticity (MOE). Seventy-two 

trees representing the five different breed/cutting treatments and six of the initial stand 

spacings were selected. Three repetitions of each of the breed by spacing interactions 

were sought. The felled trees were completely surrounded by neighbouring trees. All 

felled stems were de-limbed and cut into two metre long bolts up the entire length of 

the stem (Table 5.2). Small end diameter and large end diameter was measured using 

callipers for all bolts. Assessment of wood velocity for all two metre bolts (n=543) 

from the seventy-two felled trees was carried out using HITMAN, which provided a 

volume weighted average of velocity (Harris and Andrews, 1999).  

 

Table 5.2. Bolt number and corresponding height (m) up the stem.  

Bolt 1 Bolt 2 Bolt 3 Bolt 4 Bolt 5 Bolt 6 Bolt 7 Bolt 8 
0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 

 

Velocity was assessed with the use of a resonance tool (HITMAN, Carter Holt Harvey 

Forests Limited, New Zealand). HITMAN (now called Director HM200) allows the 

operator to obtain measurements by holding the sensor against the end of a stem and 

hitting the same end with a hammer to induce a sound wave that travels down the 

length of the log and reverberates off the other end (Figure 5.2).  

 

Figure 5.2. A schematic outline of the resonance measurement device, HITMAN. 
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HITMAN measures the audible frequency of sound waves (Kumar, 2004). The 

reverberation time measurement is based on multiple acoustic passes, up to several 

hundred, instead of only a single acoustic pass. The reverberation time is measured by 

the sensor and provides a direct measure of the log’s stiffness; the stiffer the log, the 

faster the wave and vice versa (Harris and Andrews, 1999).  

 

Lindstrom et al. (2004) found that resonance generated MOE was in close agreement 

with static MOE (r2=0.96), whilst earlier observations by Lindstrom et al. (2002) 

found a correspondence between resonance generated MOE and MOE from 

traditional static bending to be very strong (r2=0.98) and relatively unbiased              

(y = 1.04x). 

 

The resonance measurement of velocity is a near perfect spatial average of the log, 

both in log length and cross sectional area. The impact resonance method usually 

determines the frequency of the reverberation by Fourier analysis of the measurement 

period i.e., the outcome is an average of the entire measurement period including the 

time to achieve plane wave response (Harris et al., 2002). 

 

Green dynamic modulus of elasticity (GPa) was determined using the following 

equation:  

 

MOE = V2
ρ / 1000           

 

where V2 is velocity (km s-1) and ρ is green density (kg m-3).  

 

Green density was calculated from a sample of 38 discs taken at 1.4 metres above 

ground level from selected trees representing a combination of breeds and initial stand 

spacings. At time of felling 30mm discs were taken for the 38 trees. Green density 

was determined as green weight/green volume using the immersion technique. From 

analyses of these measurements, green density was found to vary with neither breed 

nor stocking and mean density was 935 kg m-3 (± 8.2 kg m-3). 
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Data analysis 

 

All analyses were undertaken using SAS (SAS Institute, 2000). Using a MIXED 

model with a cross-over design, an analysis of variance was used to examine the 

effects of independent variables including spacing, breed, diameter, and stem 

slenderness on mean bolt MOE. The interactive effects of spacing and breed on MOE  

were also assessed. The generalised model used was: 

 

Yijkl  = u + Si + Bj + (SBij) + Dk + SSl + eijkl 

 

where Yijkl  is the dependent variable MOE, u is the overall mean, S is spacing, B is 

breed (SB) is the interaction between spacing and breed, D is stem diameter, SS is 

stem slenderness and e is the model error. 

 

Plots of residuals were inspected for bias. Residual values were plotted against 

predicted values and independent variables. SAS procedure CAPABILITY was used 

to test for normality of residual frequency distributions. 

 

Multiple regression analysis (MIXED model with a cross-over design) was used to 

determine what impact continuous variables such as large end diameter, mean bolt 

diameter and bolt slenderness had on MOE, whilst simple regression was used to 

determine the significance and strength of diameter at breast height, large and small 

end diameter, mean bolt diameter plus bolt slenderness, and two forms of whole tree 

slenderness on MOE at different spacings and between breeds. 

 

 

RESULTS 

 

Mean tree MOE, taken as the average of all bolts within a tree, was significantly 

influenced by initial stand spacing (P<0.0001). Examination of the partitioned sums 

of squares revealed that spacing had considerably greater influence on mean tree 

MOE than breed did. MOE scaled positively with stand spacing with MOE increasing 

from 5.18 GPa at 275 stems ha-1 to 6.96 GPa at 2551 stems ha-1 (Figure 5.3) or a 34% 

increase. 
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Mean tree MOE was also significantly influenced by breed (P<0.0001). The 870 

breed was approximately 8% and 16% stiffer than the 268 and 850 breeding series, 

respectively. Propagation technique did not appear to influence MOE, however, the 

maturation status of the cuttings did, as the three-year-old cuttings were 7% stiffer 

than the one-year-old cuttings. Multiple comparison tests showed that within 

spacings, MOE between the breeds displayed a moderately uniform pattern. 
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Figure 5.3. Relationship between mean tree MOE and initial stand spacing at the plot level. 

 

A significant interaction (P<0.0001) between spacing and breed for MOE was present 

that could explain only a low proportion of the variation (r2=0.32) in mean tree MOE. 

However, this interaction did not exist in any meaningful form. The breed treatments 

did not display uniform patterns of MOE within and between initial stand spacings.  

 

The vertical distribution of MOE up the stem displayed a peaked pattern. Bolt 1 was 

found to be close to the weakest bolt (5.06 GPa) over the length of the stem, being 

only marginally stiffer than bolt 8 (5.02 GPa) at the top of the stem. Bolt 1 was 29% 

weaker than bolt 2 (6.54 GPa) and 31% weaker than bolt 3 (6.64 GPa), which was the 

stiffest bolt in the stem. After MOE had reached its maximum value at bolt 3, a gentle 

decline in bolt stiffness was observed to the top of the measured stem.  
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Spacing had a substantial impact on MOE up the stem. The MOE of the lowest bolt 

was greater with increased stocking, whilst all stockings had a similar MOE for the 

bolt at the top of the measured stem. It was at the top of the stem that the least amount 

of variation in MOE between the different stockings was present (Figure 5.4).  
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Figure 5.4. Plot of MOE up the stem at each initial stand spacing; 2551 stems ha-1 (black 

circles), 1457 stems ha-1 (white circles), 635 stems ha-1 (black squares), 481 stems ha-1 (white 

squares), 364 stems ha-1 (black triangles) and 275 stems ha-1 (white triangles). 

 

The variation in MOE between stockings was greatest at bolt 2, where a 56% or a 

3.11 GPa difference existed between 275 and 2551 stems ha-1. The relative decrease 

in vertical MOE between the stiffest bolt in the tree and the weakest bolt in the tree 

was considerably larger at 2551 and 1457 stems ha-1 than for the remaining four 

stockings. The variation in MOE between the weakest and stiffest bolt within a tree 

was greatest at 2551 and 1457 stems ha-1, where there was 58% difference in MOE, 

whilst at the remaining lower stockings, that difference was reduced to approximately 

36% (Figure 5.4). 

 

The interaction between breed and height up the stem on MOE was not significant 

(P=0.1381). All breed/cutting treatments displayed a substantially lower MOE in bolt 
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1 than in bolt 2. MOE remained relatively constant for all breed/cutting treatments 

between bolt 2 and bolt 4, before declining up the stem (Figure 5.5). The relative 

difference in MOE between the five breed/cutting treatments at all stand spacings 

remained largely constant.  
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Figure 5.5. Plot of MOE up the stem for each breed/cutting treatment; 870 breed (black 

circles), three-year-old cuttings (white circles), 268 breed (black squares), one-year-old 

cuttings (white squares) and 850 breed (black triangles). 

 

When tree height was normalised for all initial stand spacings, the portion of a tree 

that displayed the highest MOE increased vertically when stocking decreased. At 

stockings of 635 stems ha-1 or greater, the bottom 15% of the stem was of low MOE. 

The maximum MOE was obtained between 15% and 40% of stem height before 

declining to the top of the stem. At stockings of 481 stems ha-1 and less, the bottom 

15% was again identified as being of low MOE. A transitional period towards the 

maximum MOE was present between 15% and 25% of stem height, whilst maximum 

MOE was obtained between 25% and approximately 50% of stem height before 

declining to the top of the stem.  

 

Variations in the proportional height of MOE were also present for breed. All five 

breed/cutting treatments displayed low MOE up to 15% of stem height. Both the 

three-year-old and one-year-old cuttings exhibited maximum MOE between 15% and 
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30% of stem height before decreasing, whilst the 268, 850 and 870 breeding series 

obtained maximum MOE between 15% and 40% of tree height, before declining to 

the top of the stem.  

 

Mean bolt MOE was significantly influenced (P<0.0001) by spacing for all bolts 

except those at the very top of the stem, whilst the effect of breed was only significant 

for bolt 1 and bolt 8 (P<0.05). Bolt slenderness expressed as bolt length/difference 

between large and small end diameter was found to have a significant (P<0.0001) 

correlation with bolt MOE, however, it only explained a low proportion (r2=0.24) of 

the variation in MOE across all spacing treatments (Figure 5.6). Large and small end 

diameter plus mean bolt diameter (Figure 5.7) were all significant (P<0.0001), but 

only explained 7%, 3% and 5% of the variation in bolt MOE. Tree height was found 

to have no impact on bolt MOE, however, crown height did (P<0.0001) for all but the 

top two bolts (bolts 7 and 8). 
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Figure 5.6. Relationship between MOE and bolt slenderness (bolt length/difference between 

large end diameter and small end diameter of bolt) for all bolts. 
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Mean bolt diameter (cm)
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Figure 5.7. Relationship between MOE and mean bolt diameter for all bolts. 

 

 

DISCUSSION 

 

Previous work by Tsehaye (1995) and Xu (2000) examining vertical changes of whole 

stem MOE noted that no real apparent change up the stem was evident and that MOE 

values remained very consistent. This trial however, has found large variations in the 

vertical distribution of MOE. Tsehaye (1995) reported that there was no obvious 

difference in mean stiffness along the vertical direction of the stems, whilst Xu (2000) 

reported that in the vertical direction, stiffness rises from the ground line and reaches 

the mean stiffness of the stem at a height of approximately 2.7 metres. Thereafter, the 

variation of stiffness in the vertical direction was insignificant.  

 

The lowest portion of the tree (bolt 1) was often found to exhibit the lowest MOE 

values of any part of the tree within this trial and had MOE values considerably lower 

(29%) than that of the second bolt. This pattern has also been noted by Xu (2000), 

who found that in the butt log, up to 2.4 - 2.7 metres, the average stiffness values were 

inferior to those found elsewhere in the stem. Furthermore, after MOE had reached its 

maximum value at bolt 3 (4 - 6 m up the stem), a gentle decline in stiffness was 
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observed to the top of the stem. Xu and Walker (2000), who tested MOE on 90 x 35 x 

4200 mm boards and averaged the boards from within a log length (4.2 m long) to 

give a mean MOE for that log, observed that the butt log had the lowest MOE values, 

whilst the MOE values in the second log were the highest before decreasing up the 

stem. The height up the stem of the second log (4.2 - 8.4 m) which displayed the 

greatest MOE, corresponds well with results of the study reported here, however,    

bolt 2 (2 - 4 m up the stem) in this trial was found to exhibit a MOE value very similar 

to that of the stiffest bolt. This particular length was included in the butt log for Xu 

and Walker (2000) and subsequently their study missed whether this portion of the 

stem was in fact of high MOE. The vertical changes in MOE up the stem as noted by 

Xu and Walker (2000) displayed only an 8% difference between the weakest and 

stiffest logs, in which some of the accuracy would have undoubtedly been lost due to 

averaging, however, it was somewhat less than the 58% difference at the higher 

stockings and the 36% difference at lower stockings within this trial. Similarly, 

Tsehaye et al. (2000) found in their study of 3.6 metre logs from Canterbury, where 

the mean log MOE was derived from 90 x 35 mm dressed boards, that only a 6% 

difference existed between the weakest and stiffest logs, with the second log being the 

stiffest.  

 

The discovery in this trial of low stiffness within the lowest portion of the stem 

confirms previous observations by Tsehaye (1995), Xu (2000) and Xu and Walker 

(2000). It is also a common feature found within other species, such as sugi trees 

(Hirakawa and Fujisawa, 1996) and Norway spruce (Perstorper, 1996). Xu (2000) 

stated that up to approximately three metres up the stem, stiffness was inferior to that 

in the stem above this point, whilst Xu and Walker (2000) found that the low stiffness 

was within the butt log, which extended 4.2 metres up the stem. This trial suggests 

that the area of low stiffness within the butt log might be confined to an even smaller 

distance up the stem, as the second bolt displayed MOE values almost identical to that 

of the stiffest bolt within this trial. This zone of poor MOE is probably a result of the 

large proportion of low stiffness corewood present within the butt log, which forms a 

truncated cone from the base of the tree to approximately three metres up the stem 

(Xu and Walker, 2000; Huang et al., 2003; Xu et al., 2004). This localised reduction 

in MOE has been suggested to serve a functional purpose (K. Niklas, pers. comm.). It 

has been suggested that the base of tree acts as a “hinge” to allow trees the ability to 
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sway when external forces are applied. Niklas speculated that the localised reduction 

in MOE was adaptive in terms of wind-induced bending moments which allow the 

trunk to bend in the wind. Furthermore, low MOE at the base that affects the 

structural integrity of the tree may be due to other functions that the stem is required 

to perform other than stability. 

 

Within the study reported here, the height up the stem at which MOE was greatest 

increased as stocking decreased as demonstrated by the increase in MOE with 

proportional height. MOE reached its greatest value for individual trees in the trial 

reported here between 15% and 40% of stem height at stockings of 635 stems ha-1 and 

above, and between 25% and 50% of stem height at stockings of 481 stems ha-1 and 

below. As the mass and thus weight of trees higher up the stem is greater at lower 

stockings, the relative increase in MOE up the stem may be a response in order to 

support the extra weight of a thicker stem, larger branches and greater leaf area. This 

increase in MOE proportionally higher up the stem at lower stockings compared with 

higher stockings would have enabled the affected stems to handle the increased 

weight of the stem and therefore, reduce the possibility of elastic buckling. This may 

also be in response to the impact of external forces such as wind and snow. The 

increased “sail area” of a larger tree with a large stem covered in foliage may require 

increased stiffness to ensure that when these external forces are applied, a tree can 

structurally support itself from mid-stem mechanical failure.  

 

It is surprising that MOE should be greatest some distance up the stem at any 

stocking, considering that the proportion of corewood increases dramatically with 

height up the stem and conventional analysis would expect a deterioration in log 

quality with height. The interpretation lies in the abnormally low stiffness of the 

corewood in the butt log being counterbalanced by very stiff outerwood, whereas at 

the top of the stem the corewood is somewhat stiffer, but there is only little outerwood 

of moderate stiffness (Tsehaye et al., 2000).  

 

Burdon et al. (2004) have suggested that in addition to having corewood and 

outerwood, a tree has different degrees of each. They suggest that corewood up the 

tree can be divided into juvenile corewood at the bottom, transitional corewood 

approximately three to five metres up the stem and mature corewood above it. The 
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same applies for outerwood. These results reported here would support such a 

concept. As several wood properties, which are known to be important, show pith to 

bark trajectories that vary markedly up the stem, such segregation has merit.  

 

Megraw (1985) has stated that the concept of juvenile wood consisting of a 

cylindrical core from the bottom to the top of the tree is a useful concept, but that it is 

not biologically correct because juvenile wood changes somewhat up the tree, which 

is why Burdon et al. (2004) suggested their concept. A fundamental property 

influencing MOE is density, however this property is unlikely to provide an 

explanation why MOE exhibits a peak between 15% and 50% of stem height. 

Numerous observations (Cown and McConchie, 1982a, 1982b; Donaldson and 

Burdon, 1995; Tian et al., 1995) have noted that density decreases with increasing 

height up the stem, particularly up to a height of approximately three metres. Tracheid 

length also impacts on MOE, particularly through its relationship with microfibril 

angle which has been found to be very strong (r2=0.91 - 0.92) (Echols, 1955; Erickson 

and Arima, 1974). Tsehaye et al. (1995) and Tsehaye et al. (1997b) found that in 

Pinus radiata from Canterbury, the logs that yielded the stiffest lumber had the 

longest tracheids, which occurred at approximately 50% of tree height. Microfibril 

angle shows a rapid decline from the butt to a height of seven metres at rings of 

comparable cambial age, after which angles then remain more or less constant  

(Donaldson, 1992). The reduction of microfibril angle in the corewood higher up the 

stem has been suggested to be a result of physiological ageing of the cambium 

(Barnett and Bonham, 2004), however, the whole tree, not just a certain area, exhibits 

physiological ageing. Microfibril angle may contribute to the stiffest part of the tree 

being between 15% and 50% of stem height as Lindstrom et al. (2004) and Tsehaye et 

al. (1997a) found that decreasing microfibril angle was well correlated with 

increasing MOE (r2=0.75; 0.83). Xu et al. (2004) strongly support the notion that 

microfibril angle is primarily responsible for low-stiffness wood in butt logs and an 

increasing MOE up the stem to a certain point. 

 

As with the examination of outerwood MOE (Chapter 4), whole stem MOE of two 

metres bolts up the stem was found to show a greater correlation with slenderness 

than diameter. In previous studies and that of the outerwood MOE in this thesis, 

slenderness and diameter were assessed on a whole stem, often having just one 
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measurement of each for a tree. In this assessment of vertical MOE, slenderness and 

diameter were assessed every two metres up the stem and assessed to see if a 

correlation with MOE existed. As with previous observations (Watt et al., 2006a), 

slenderness displayed a positive relationship with MOE and was found to be a 

substantially more important indicator of MOE than diameter.  

 

Sawmillers are not primarily interested in obtaining significantly superior wood, but 

that as much of the wood supply as possible should meet some minimum threshold 

value for stability, stiffness and strength (Huang et al., 2003). It is therefore necessary 

not to set about creating more trees with greater stiffness but to raise the level of the 

least stiff trees in a stand. As plantations in New Zealand continue to be harvested at 

ages younger than in the past, a higher percentage of corewood will exist in the 

resource, thus creating a lower quality and more variable wood resource for industry 

to process. Increased corewood content in sawlogs would mean that the proportion of 

lower grade lumber in the sawmilling industry increases in both absolute and relative 

terms (Lindstrom et al., 2005). Sawn lumber with high proportions of corewood is 

known to have lower modulus of elasticity along with other undesirable properties 

such as substantial drying distortion. However, by incorporating genetics, plantation 

management, namely migrated through stand spacing, and improved log sorting using 

portable acoustic methods, this trial has shown that average whole stem MOE at stand 

level can be raised.  

 

 

CONCLUSIONS  

 

• Mean tree MOE displayed a 34% difference in MOE between 275 stems 

ha-1 and 2551 stems ha-1, ranging from 5.18 GPa to 6.96 GPa. 

 

• Gains in MOE occurred between different breeds. The 870 breed displayed 

an 8% and 16% gain in MOE over the 268 and 850 breeding series, 

respectively.   

 

• The lowest portion of the stem (bolt 1) was approximately 30% less stiff 

than bolts 2 and 3 immediately above. After the maximum MOE was 
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obtained at bolt 3, a gentle decline in MOE occurred up to the top of the 

stem. 

 

• Vertical variation in MOE was significant, with MOE for individual bolts 

exhibiting a 56% difference at stockings of 1457 stems ha-1 and above, 

with a 36% difference in MOE up the stem occurring at stockings of 635 

stems ha-1 and below. 

 

• The proportional height at which maximum MOE was obtained increased 

from between 15% and 40% at stockings of 635 stems ha-1 and greater to 

between 25% and 50% of stem height at stockings of 481 stems ha-1 and 

less.  
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Chapter 6 
 

Determination of critical buckling height and critical MOE 
using measured wood properties in Pinus radiata 

 

 

INTRODUCTION 

 

The vertical stems of terrestrial plants must mechanically sustain their own weight 

against the influence of gravity. They also must be sufficiently stiff and strong to 

resist bending and avoid breaking when subjected to large externally applied 

mechanical forces (Niklas, 1993), thus MOE (also referred to as E) and density (ρ) are 

important mechanical properties. These properties are of interest because, in theory, 

the quotient of MOE and ρ (i.e. the density-specific stiffness, E/ρ) determines the 

extent to which vertical stems can grow before they reach their critical buckling 

height (i.e. the height at which elastic buckling is predicted to occur).  

 

Recent research (Watt et al., 2006a, 2006b), including that of this thesis, suggests that 

MOE may be regulated by stem slenderness. When light demanding species such as 

Pinus radiata are subject to competition from neighbouring plants, rapid height 

growth is important to ensure that they are not overtopped. Under high levels of 

competition trees become etiolated as priority is given to height growth at the expense 

of diameter increment. Based on Euler’s buckling formula, the critical height (Hcrit) 

that a vertical tree stem can reach before it undergoes elastic buckling is given by the 

following equation: 

3/2

3/1

crit D
E

CH 






=
ρ

         (1)  

where C is the constant of proportionality, E is modulus of elasticity, ρ is the average 

wood density and D is stem diameter (Greenhill, 1881). For a given MOE actual 

height will approach the critical height as height for a given diameter, or stem 

slenderness, increases. In a recent study (Watt et al., in prep) which used both 

examined mechanical and structural properties of 15-year-old buckled trees, equation 

1 was found to provide a reasonable approximation of the buckling height. 
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The value for C can vary between 0.79 and 1.97 depending on assumptions about 

loading conditions and tree taper (Niklas, 1997). Regardless of the numerical value of 

C, however, equation 1 predicts that the scaling of H obtains the proportionality        

H ∝  D2/3, provided E/ρ and the safety factor remain constant. This assumption is the 

basis for the elastic similarity model proposed by McMahon (1973) and McMahon 

and Kronauer (1976) which predicts the scaling of tree height based on diameter (i.e. 

H ∝  D α=2/3). However, if E/ρ is not a constant, then the scaling exponent α for the 

proportional relation H ∝  D α depends upon the scaling of E/ρ with D (Niklas, 1993). 

The testing of the assumption has typically been carried out at a very broad level, 

investigating variation between genera (Niklas, 1993) and between species (Niklas, 

1994a). More recently, this assumption has been tested on four-year-old Pinus radiata 

across a wide environmental range (Watt et al., 2006b), however, how it relates with 

mature Pinus radiata exhibiting a wide range of stem diameters and MOE is 

unknown. 

 

For a given MOE, actual height will approach the critical height as stem slenderness 

(S) increases. Low slenderness ratios (H/D) indicate that very large self-loads are 

required to induce elastic buckling, whilst high slenderness ratios indicate that smaller 

self-loads are required to produce elastic buckling. These generalities exist because, 

for any columnar support member, the slenderness ratio is proportional to (E/P)1/2, 

where E is the stiffness and P is the maximum self-load that a column can support,  

i.e. H3/D2 ∝  (E/P)1/2. Thus, the mechanical stability of very slender columnar stems 

requires either tissues with high stiffness or stems with low P (Niklas et al., 2006). 

The Greenhill (1881) equation shows that trees can increase their critical height to 

avoid buckling as slenderness increases by increasing their density-specific stiffness 

(E/ρ), which is mainly accomplished through increases in MOE as green density is 

relatively constant (Watt et al., 2006a). 

 

Even though the height of a tree, H, may never exceed the critical buckling height, 

Hcrit, the degree to which H approaches Hcrit may influence wood properties. The 

safety factor is defined as the quotient of Hcrit and H. If growth in size attains a safety 

factor less than unity, then the stem is predicted to elastically deform under its own 

weight. Safety factors greater than unity, therefore, indicate that an individual plant 
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can sustain greater mechanical loadings than those imposed by its own biomass 

(Niklas, 1994a). Rearrangement of equation 1 in terms of the safety factor (Hcrit/H) as: 

  
S

DEC

H

H 3/13/1
crit )/( −

= ρ
        (2) 

shows that for a given diameter, increases in slenderness need to be accompanied by 

increases in MOE to maintain a constant safety factor (Watt et al., 2006b). 

Furthermore, using a variant of the Euler column formula, the MOE that a tree must 

obtain for a given height and diameter to ensure that elastic buckling is avoided can 

be calculated, where E is critical MOE: 

 23

3

DC

H
E

ρ=            (3) 

 

The objective of this study was to (i) use measured wood properties to assess critical 

buckling height for each felled tree, whilst using allometric analysis to examine 

relationships between Hcrit, H, D, S and MOE, at the whole tree level; (ii) determine 

critical MOE for outerwood and compare with measured outerwood MOE obtained 

using a time of flight instrument at the whole tree level and (iii) determine critical 

MOE for each two metre bolt up the stem for the 72 felled trees at the bolt level, 

unless otherwise stated. Results are to be examined with particular focus on critical 

buckling height and theoretical critical MOE for outerwood and vertical bolts.  

 

 

METHODS AND MATERIALS 

 

Location 

 

Measurements were taken from 17-year-old Pinus radiata trees that had been grown 

in a Nelder experiment (Nelder, 1962) located at Burnham, approximately 18 km 

south-west of Christchurch (latitude 43o36.5’S, longitude 172o17.75’E, altitude 70 m 

a.s.l.). They were situated on Lismore stony silt loam soil (N.Z.S.B., 1968) and 

experienced a mean annual precipitation of 650 mm, in which seasonal water deficits 

do occur during January to March, when evapotranspiration exceeds rainfall            

(G. Furniss, pers. comm.).  
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Experimental Plot 

 

The experiment comprised five breed/cutting treatments, including seedlings from the 

850, 870, and 268 breeding series and cuttings taken from one-year-old and three-

year-old parents. Both the one and three-year-old cuttings were from the 268 series. 

The Nelder contained 45 spokes separated by 8 degree intervals in 10 circular rings 

(Figure 5.1) with high initial stocking rates present at the centre of the Nelder to low 

initial stocking rates present on the outer ring of the Nelder (Nelder, 1962) (Table 

5.1). Each breed/cutting treatment occupied nine of the spokes split in a group of five 

spokes on one side of the plot and a group of four spokes on the other side of the plot. 

The trees had not received thinning at any stage prior to examination. Due to natural 

mortality, windthrow or malformation, 182 trees that had complete neighbours were 

suitable for examination. From this population, 72 trees were examined. 

 

Measurements 

 

Measurements of outerwood MOE were made on 385 Pinus radiata trees representing 

ten different initial stand spacings and five breed/cutting treatments using the time of 

flight instrument, TREETAP (Chapter 4). 

  

Seventy-two Pinus radiata trees representing five different breed/cutting treatments 

and a range of initial stand spacings were then felled (Chapter 5). Three repetitions of 

each of the breed by spacing interactions were sought. All 72 stems were de-limbed 

and cut into two metre long bolts up the entire length of the stem (Table 6.1). 

Assessment of wood velocity for all two metre bolts (n=543) from the 72 felled trees 

was carried out using HITMAN, an acoustic resonance instrument, which provided a 

volume weighted average of velocity (Harris and Andrews, 1999).  

 

Table 6.1. Bolt number and corresponding (m) height up the stem.  

Bolt 1 Bolt 2 Bolt 3 Bolt 4 Bolt 5 Bolt 6 Bolt 7 Bolt 8 
0-2 2-4 4-6 6-8 8-10 10-12 12-14 14-16 

 

Green density was calculated from a sample of 38 discs taken at 1.4 metres above 

ground level. At time of felling 30mm discs were taken for the 38 trees. Green density 
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was determined as green weight/green volume using the immersion technique. From 

analyses of these measurements, green density was found to vary with neither breed 

nor stocking and mean density was 935 kg m-3 (± 8.2 kg m-3). 

 

Data analysis 

 

Critical height was determined using equation 1, where a value for C of 0.792 was 

used, which assumes that the applied force to the tree stem is distributed over the full 

extent of the tree (Greenhill, 1881). For dimensional consistency, equation 1, requires 

that density-specific stiffness be expressed in units of m, by converting the value of ρ 

which was 935 kg m-3 into Newton m-3 (i.e. 1 kg weight force = 9.8067 N).  

 

Regression models of the form 

 

 logY = logβ + αlogX 

 

were used to determine the parameters α and β for the allometric relationships defined 

as logY and logX (Watt et al., 2006b). Reduced major axis regression (RMA) analyses 

were used to determine the scaling exponents and allometric constants (i.e. αRMA and 

logβRMA, respectively) for the logY vs. logX allometric trends observed. RMA was 

used as the objective of the regression analysis was to determine functional rather 

than predictive relationships between two biological variables (Niklas et al., 2006). 

The regression parameters were computed using the formulae αRMA = αOLS/r and 

logβRMA = Ylog  - αRMA Xlog , where αOLS is the ordinary least squares (OLS) 

regression exponent, r is the OLS correlation coefficient and Ylog  and Xlog  denote 

the mean values of variables logY and logX (Niklas, 1994b; Watt et al., 2006b). The 

95% confidence intervals (CI) for αRMA and logβRMA were determined using the 

formulae 95% CI = αRMA ± tN-2 (MSE/SSX)1/2 and 95% CI = logβRMA ± tN-2 { MSE[(1/n) 

+ (logX2/SSX)]} 1/2, where tN-2 is the t value, MSE is the OLS regression model mean 

square error, SSX is the OLS sums of squares and n is the sample size (Niklas, 1994b; 

Watt et al., 2006b). 
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Critical MOE, which is the MOE that a tree must obtain for a given height and 

diameter to ensure that elastic buckling is avoided, was calculated for both outerwood 

and vertical bolts. Critical MOE for the vertical bolts was determined using the 

diameter of the bolt at the midpoint of the stem section and the height of the stem 

above the midpoint of the bolt. As well as assessing comparative differences between 

critical MOE and actual MOE, critical MOE as a predictor of actual MOE was 

examined.  
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RESULTS 

 

Critical height and allometric scaling relationships 

 

Critical buckling height for the 72 trees assessed showed that actual height (H) was 

below that of critical height (Hcrit) (Figure 6.1). Only one tree at the highest stand 

stocking was deemed to be especially close to unity (H = Hcrit). This was due to the 

very low stem diameter that the tree displayed. This low diameter combined with the 

relative height of the tree meant that stem slenderness was high, considerably more 

than any other tree.  
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Figure 6.1. Log-log (base 10) plot of ground line diameter against actual height (white 

circles) and estimated critical buckling height (black circles). 

 

Regression of critical buckling height against diameter (Figure 6.1) yielded a scaling 

exponent of 0.55, which was lower than the scaling exponent of 0.67 predicted with 

constant E/ρ by equation 1, as (E/ρ)1/3 scaled with D to the power of -0.25. The 

scaling exponent between actual height, H, and D was 0.30. MOE scaled negatively 

with stem diameter to the power of -0.75, but positively with stem slenderness to the 

power of 0.78 (Table 6.2).  
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Table 6.2. Summary statistics of reduced major axis (RMA) regression of logY vs. log X. 

logY logX αRMA logβRMA r2 

Hcrit D 0.55 (0.45 - 0.64) 0.66 (0.21 - 1.10) 0.87 

H D 0.30 (0.07 - 0.53) 0.81 (0.30 - 1.33) 0.08 

(E/p)1/3 D -0.25 (-0.44 - -0.06) 2.28 (1.10 - 3.46) 0.39 

MOE S 0.78 (0.60 - 0.96) -0.69 (-1.07 - -0.32) 0.42 

MOE D -0.75 (-0.93 - -0.56) 1.81 (1.45 - 2.16) 0.39 
The scaling exponent (αRMA) and allometric constant (logβRMA) are  

presented with 95% confidence intervals in parentheses.  
 

Trees with greater slenderness ratios displayed lower safety factors than trees with 

lower slenderness. The measurements showed that the average safety margin (Hcrit/H) 

of the trees in this study was 1.60, in which only five of the 72 trees had a safety 

margin greater than 2 (i.e., Hcrit was double that of H). The safety factor ranged from 

1.07 to 2.50 and increased with increasing diameter and decreasing stem slenderness. 

The regression of log(Hcrit/H) against logD indicated that the safety factor was 

moderately correlated with stem diameter (r2=0.39). Stem slenderness and the safety 

factor were highly correlated (r2=0.79), with an exponential regression curve 

providing the best fit for the data (Figure 6.2).  
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Figure 6.2. Relationship between the safety factor (Hcrit/H) and stem slenderness (H/D). 
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Critical MOE  

 

The assessment of critical MOE for outerwood found that all but one of the 385 trees 

had an actual MOE at breast height (1.4 m above the ground) above the theoretical 

MOE required for the given diameter and height of any tree to ensure elastic buckling 

was avoided (Figure 6.3). As a predictor of actual MOE, critical MOE was significant 

(P<0.0001), but only accounted for a low proportion (r2=0.29) of the variation in 

measured MOE. Critical MOE explained a slightly greater proportion of the variation 

in measured MOE than was explained by stem diameter (r2=0.28) at the tree level, 

though it was less than was explained by stem slenderness (r2=0.33) at the tree level.  
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Figure 6.3. Plot of measured outerwood MOE against critical outerwood MOE. 

 

The examination of critical MOE for each individual vertical bolt revealed that all 

vertical bolts from the 72 felled stems were above the estimated critical MOE (Figure 

6.4). The mean diameter and height of the stem above the middle of any bolt was used 

to assess what the theoretical MOE required was to ensure that elastic buckling did 

not occur at that point of the stem. When assessing bolt MOE, critical MOE displayed 

greater correlation (r2=0.22) with measured MOE than diameter (r2=0.03), however, it 

was not as strong as the correlation shown by bolt slenderness (r2=0.24).  
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 Figure 6.4. Plot of measured vertical bolt MOE against critical vertical bolt MOE. 

 

Whilst actual MOE was low at the base, followed by an abrupt rise in MOE, critical 

MOE rarely displayed such a pattern for the 72 trees examined (Figure 6.5). Variation 

in critical MOE within any one stem was also less than that demonstrated by actual 

MOE and typically exhibited less abrupt fluctuations in MOE at any point up the 

stem. 

 

A noticeable trend to arise out of the assessment of critical bolt MOE was that there 

was a clear tendency for some bolts with lower mean diameter to have greater safety 

margins; that is the actual MOE was substantial greater than the theoretical critical 

MOE (Figure 6.6). 
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Figure 6.5. Plot demonstrating disparity between actual MOE (black shapes) and critical 

MOE (white shapes) up the stem of three trees (actual MOE and critical MOE for each tree 

have same shape) at 2551 stems ha-1 (solid line), 1457 stems ha-1 (long dash) and 635 stems 

ha-1 (dots).  
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Figure 6.6. Relationship between safety factor (MOE/critical MOE) and mean diameter of all  

measured bolts.  
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DISCUSSION 

 

The examination of critical buckling height revealed that none of the trees were above 

the theoretical point of buckling. Only trees at the highest stand stocking were 

expected to be close to the buckling point, with a single tree especially close to unity. 

As tree height was relatively similar within the trial, increasing stem diameter, thus 

decreasing stem slenderness resulted in increased safety margins. 

 

The scaling exponent between critical height and diameter at ground level was lower 

than predicted (0.55 vs. 0.67) and more closely resembles the stress similarity model 

(α = 0.50), contradicting the assertion that trees obtain elastic similarity (H ∝  D2/3). 

This exponent is not consistent with findings of Watt et al. (2006b) who observed a 

scaling exponent of 0.95 in four-year-old Pinus radiata. Such differences in scaling 

exponents between trials can be explained by previous research from Whittaker and 

Woodwell (1968), who found that young trees have a higher scaling exponent 

between height and diameter than mature trees. The scaling exponents of critical and 

actual height resulted in a divergence between these two variables with increasing 

stem diameter. A greater amount of the variation in MOE was attributable to stem 

slenderness (r2=0.42) than diameter (r2=0.39). 

 

Safety margins (Hcrit/H) increased with increasing diameter at ground level. This 

violated the assumption of constant safety margins which form the basis of the elastic 

similarity model. The scaling exponent of 0.30 between actual height and diameter 

observed in this trial was substantially lower than the scaling exponent (α = 0.67) as 

predicted by the elastic similarity model. This low scaling exponent between height 

and diameter at ground level occurred as the low variation in height was accompanied 

by a higher variation in diameter across the site. The scaling exponent is very 

different from that observed by Watt et al. (2006b) who found that the safety margin 

declined with increasing diameter at ground level (α = 1.63). Such differences may be 

explained by between site variations or age differences in the material examined.  

 

The safety factor was above unity for all trees and was only very close to unity for 

one tree at the highest stand stocking (2551 stems ha-1). Assuming the value of 

density-specific stiffness measured at the base of a tree is representative of the whole 
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stem, our measurements show that the average safety margin of the trees in this study 

was 1.60 with a range of 1.07 to 2.50. These values are similar to those reported for 

nine-year-old sweet gum (Holbrook and Putz, 1989) and those of four-year-old Pinus 

radiata (Watt et al., 2006b) growing under competition. Significantly higher safety 

factors (4 - 5) compared to that reported here have been suggested in the literature 

(McMahon, 1973; McMahon and Kronauer, 1976; Niklas, 1993, 1994b). The safety 

margin improved with increasing diameter and decreasing stem slenderness. The 

relatively low safety margins found in this study are likely to be attributable to the 

higher stocking rates indicative of plantation grown trees, which induces a more 

unstable etiolated form than occurs in open grown trees.  

 

These results in conjunction with Watt et al. (2006b) suggest reductions in the safety 

factor, associated with increases in slenderness, induced increases in MOE to reduce 

the risk of stem buckling. In this trial, diameter was found to be negatively correlated 

with MOE, whilst slenderness was positively correlated. Watt et al. (2006a) found in 

four-year-old Pinus radiata that diameter and slenderness were both positively 

correlated with MOE. This similarity in the relationship between slenderness and 

diameter suggests that slenderness might have been a causal variable rather than a 

response variable, and that the effects of diameter on MOE were mediated through 

slenderness.  

 

The relationship found between MOE and stem slenderness in this trial has a sound 

theoretical basis. Using a variant of the Euler buckling formula, Greenhill (1881) 

showed that MOE scaled positively with the maximum slenderness that can be 

attained before buckling occurs. It therefore suggests that trees with high slenderness 

are increasing MOE to further increase the threshold at which buckling occurs. The 

strong relationship between slenderness and safety factor was not surprising as 

slenderness is the dominant term in equation 2. 

 

The Euler formula must be viewed as a pedagogical tool that offers insights into the 

relations among variables that are much more complex in most real biological 

contexts. The formula assumes that columns are perfectly straight and uniform in 

cross-section; that the column must be constructed from an isotropic material, i.e. it 

must have a uniform MOE throughout; and that the weight of the column must be 
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significantly less than the weight it supports, i.e. the column is essentially considered 

to be weightless. Clearly, stems are rarely if ever ideal columns. They typically taper, 

lack a uniform MOE, and they are anything but weightless (Niklas, 1992). Even so, 

the Euler column formula provides a handy tool for examining relationships between 

biological variables. 

 

Bolts with greater diameter were identified as more likely to have lower safety 

margins than bolts with lower diameters. This suggests that points where the diameter 

is greatest (i.e. at the base of a tree) are the most likely places for elastic failure to 

occur. This would reinforce statements made in Chapter 5 that the base of a tree is an 

area of concern, not only for potential lost earnings arising from low stiffness wood 

located in the base, but also as a point most vulnerable to failure when external forces 

such as wind and snow are applied. It has been suggested (K. Niklas, pers. comm.) 

that the base of a tree acts as a “hinge” to allow trees the ability to sway when external 

forces are applied. Niklas speculated that the localised reduction in MOE was 

adaptive in terms of wind-induced bending moments which allow the trunk to bend. 

This may be why the lowest bolts in this trial were so comparatively weak compared 

with bolts immediately above and why they were most likely to be susceptible to 

failure. Furthermore, this low MOE at the base that affects the structural integrity of 

the tree may be due to other functions that the stem is required to perform other than 

stability.  

 

  

CONCLUSIONS  

 

• The scaling exponent for H ∝  D was α = 0.30, therefore the relationship 

did not comply with the elastic similarity model. 

 

• The relationship between stem slenderness and MOE was significant and 

suggested that stem slenderness may be an important factor in stiffness 

development. Allometric scaling determined that slenderness (r2=0.42) 

showed greater correlation with MOE than diameter (r2=0.39). 
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• The safety margin ranged from 1.07 to 2.50, with an average safety factor 

of 1.60. 

 

• Bolts with lower mean diameter often had greater safety margins, 

demonstrating that larger diameter bolts are the points of most likely 

elastic failure. 
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Chapter 7  
 

Concluding remarks 
 

 

This thesis examined the influence of initial stand spacing and breed on the stem 

geometry, outerwood MOE and vertical distribution of MOE of 17-year-old Pinus 

radiata. The dynamic modulus of elasticity of outerwood and two metre bolts up the 

stem were scrutinized and related to initial stand spacing and breed. Using measured 

mechanical properties of the trees, critical buckling height and allometric scaling 

relationships were also examined. Critical MOE as a predictor of actual MOE for 

outerwood and vertical bolts was assessed. An experimental plot was used that 

incorporated five breed/cutting treatments (850, 870, 268, three-year-old cuttings and 

one-year-old cuttings). The plot integrated ten levels of initial stand spacing ranging 

from 209 to 2551 stems ha-1.  

 

 

Stem geometry 

 

Initial stand spacing had very pronounced influences on the physical characteristics of 

the trees assessed (Chapter 3). Stem diameter, crown height and stem slenderness 

were all highly correlated with spacing. Tree height was not affected by spacing or 

breed. Breed had a marginally significant influence on diameter and stem slenderness. 

Branch index was highly correlated with stem diameter and showed marked 

differences between breeds, in which 80% of the variation in branch diameter was 

explained. Spacing had little apparent impact on internode length, whereas, breed had 

a substantial influence on it. The long internode breed, the 870 series, displayed 

significantly longer internode lengths than the other breed/cutting treatments. After 

correction had been made for tree diameter, BIX exhibited a significant positive 

relationship with mean internode length which when included in the model increased 

the r2 from 0.80 to 0.90. Tree diameter and mean internode length accounted for the 

effects of spacing and breed on BIX.  
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Influence of initial stand spacing and breed on MOE 

 
The main body of this thesis was the examination of the influence that initial stand 

spacing and breed had on MOE (Chapters 4 and 5). When analysing outerwood MOE 

(Chapter 4), MOE was found to scale positively with stand spacing. The effect of 

propagation method on MOE showed that physiologically aged cuttings displayed 

improved MOE over seedlings, with cuttings of greater maturation status exhibiting 

higher MOE values. Relative gains in MOE between the highest and lowest stand 

spacings was 39%, in which the majority of this increase (33%) occurred with 

increasing stocking between 209 and 835 stems ha-1. The gains in MOE attributable to 

breed were lower, however substantial differences existed between the five 

breed/cutting treatments. The three-year-old cuttings were stiffer than the one-year-

old cuttings, seedlings from the 870, 268 and 850 breeds by 15, 17, 22 and 27%, 

respectively. Stem slenderness and green crown height were found to have direct 

influences on MOE, explaining 53% of the variance in MOE. The breeding series 

used within this study were not bred for improved wood properties such as stiffness, 

and as such, the examination of high stiffness material at a range of stand spacings as 

those used in this trial would have been most interesting. 

 

The assessment of MOE using a resonance tool (Chapter 5) also found that MOE 

scaled positively with stand spacing. An examination of bolt MOE found that the 

lowest two metres of the tree were significantly weaker than the bolts immediately 

above. Bolts two and three were approximately 30% stiffer than bolt one. After MOE 

had reached its maximum up the stem at approximately bolt three, a gentle decline in 

MOE occurred to the top of the stem. Stand spacing significant (P<0.0001) influenced 

MOE up the stem. A peaked trend of MOE was evident at 1457 and 2551 stems ha-1, 

however, this became more of a plateauing trend with decreasing stocking. The 

variation in MOE within trees was considerable (58%) at higher stockings, but less 

pronounced (36%) at 635 stems ha-1 and below. Bolt slenderness was the significant 

factor impacting on the MOE of individual bolts. 
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Critical buckling height and critical MOE 

 
Chapter 6 examined the critical buckling height and allometric scaling relationships 

for the destructively sampled trees. Regression of critical buckling height against 

diameter yielded a scaling exponent of 0.55, which was lower than the scaling 

exponent of 0.67 predicted with constant density-specific stiffness. The relationship 

between stem slenderness and MOE was significant suggesting that stem slenderness 

may be an important factor in stiffness development.  

 

 

Areas that further research could examine  

 
Whilst the impact that spacing has on MOE has been clearly demonstrated in this 

study, the examination of high stiffness clones over comparative stockings would be 

most interesting and provide added valuable information. 

 

As the region in which this trial was located has been identified as one of the poorest 

regions in New Zealand for the growth of plantation forests, the examination of MOE 

in mature trees across a range of sites would be most beneficial. The differences in 

MOE over a range of stockings at sites of greater quality may be even greater than 

those found within this study. 

 

Whilst this study may have touched on management implications for MOE, further 

research is required in order to better understand mechanisms for MOE development 

and how they are related to management decisions. Research examining the following 

topics is recommended: 

a) Determine the influence of tree sway on MOE. 

b) Determine the influence of weed control and soil nutrition on wood 

properties, including MOE. 

c) Determine the impact that green canopy has on MOE. 

d) The examination of wood properties including tracheid length and 

microfibril angle up the stem at different spacings.  

e) Assessment of the outerwood up the stem over a number of years to assess 

MOE development. 
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f) An economic evaluation of how changes in stand spacing and thus MOE 

impact stand value. 

g) The development of a ring level model of stiffness. 
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