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Abstract

This paper studies the speci�cation and testing of two main architectural features.

We consider restricted forms of instruction pipelining and parallel memory models

present in the SPARC speci�cation. The feasibility of using an automatic tool, the

concurrency work bench, has been demonstrated.
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1 Introduction

Formal speci�cation is the writing of the requirements of a system at a su�ciently

abstract level. To gain con�dence that a given speci�cation meets the needs of an user,

tests on it can be performed. If the outcomes agree with the expected behaviour, one

can assume that the given speci�cation expresses what is necessary. A particular form of

testing is the construction of an implementation and verifying that the implementation

satis�es the speci�cation. However it not always possible to construct an implementation

or verify that it satis�es the speci�cation. In such cases one may construct tests using

other formalisms
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Formal speci�cation and veri�cation of computer hardware has been shown to be fea-

sible. [GB89] describes the speci�cation and construction of an SECD machine using HOL

[Gor85], while [Coh88] describes the veri�cation of the Viper architecture. Concurrency

aspects of hardware has also been veri�ed in HOL [LD90] where a multiprocessor cache

protocol is considered.

In this paper we describe our experience in specifying certain aspects of an architec-

ture and formal testing of the speci�cation. The architecture we consider is the SPARC

[Spa91] and the speci�cation language we use is CCS [Mil89]. CCS belongs to a class

of formalisms called process algebras, which are used to describe the observational be-

haviour of concurrent systems. They have been used to specify and verify many systems

including communication protocols [Par87, LM87]. A prototype implementation called

the Concurrency Work Bench (CWB) to help the speci�er test the speci�cations exists

[CPS89, CPS93]. The main reason for choosing the CWB over the HOL system is that

CWB performs all the analysis automatically, while the HOL system is a proof assistant.

This is not to conclude that HOL cannot be used, rather that as a �rst step in the spec-

i�cation and testing process the CWB is easier to use than HOL. The CWB is only one

of the speci�cation/validation environments. Implementations of LOTOS [BB89, vVD89]

which is based on CCS exist and have been used to specify/verify system [vS89]. We

choose the CWB mainly because it was available.

The SPARC architecture was chosen as it is relatively new architecture and addresses

some of the issues in multiprocessor systems (the memory model) and supports pipelin-

ing whose de�nition is a�ects the programming model. The SPARC de�nition does not

recommend any implementation, rather it de�nes a class of implementations. Hence it is

crucial to design an implementation and verify that it satis�es the given speci�cation.

In the next section we present a brief summary of CCS and the CWBwhile in sections 3

and 4 we describe the features and simpli�cations of the architecture, the speci�cation of
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the architecture in CCS and the tests performed on it.

2 Overview of CCS and CWB

In this section we present a brief summary of the concepts and notation used in this

paper. The reader is referred to [Mil89] and [CPS89] for details. A set of atomic actions

(�) with a bijection � on it such that for all a2 �, a = a is assumed. A special action �

which indicates synchronisation is used. The syntactic structure of processes is given by

the following rules.

P := 0 ��P P j P P + P P nH P[�] X rec X:P

0 is a process which can exhibit no further action, ��P can exhibit � and then behave

as P. (P jQ) is the parallel composition of P and Q, (P + Q) represents non-deterministic

choice. (P nH) hides all actions speci�ed in H, P[�] relabels all actions in P by � and

X and (rec X:P) is used to de�ne recursive processes. A recursive process can also be

written as (X = P) which permits the speci�cation of a system using a set of equations.

An operational semantics for the processes based on labelled transition system is de�ned

[Mil89].

The principal semantic relation is the notion of (strong) bisimulation [Par81]. Intu-

itively, P is bisimilar to Q means that every behaviour of P(Q) can be simulated by Q(P).

Other semantic relations such as weak bisimulation which is similar to strong bisimulation

except that the action � is internalised, traces which is the automata theoretic character-

isation, testing etc. can be de�ned [Mil89, Hen88]. [vG90] presents a comparative study

of various semantics relations.

Some of these semantic relations can be described logically using the modal �-calculus

[HM85, Lar88, Sti89b, Sti89a]. We use the modal �-calculus to verify that the speci-

�cations satisfy certain logical properties. The set of formulae includes action indexed

modalities for possibility h�i , universality [�] , negation : and recursion (minimal
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�xed point �X: and maximal �xed point �X: .) Formulae can also be combined using

the propositional connectives of conjunction, disjunction etc.

Informally a process can satisfy h�i  if it can exhibit the action � and evolve to a

process which can satisfy  . [�] is de�ned to be :(h�i: ) and thus can be interpreted

to mean that any � move will necessarily lead to a process which can satisfy  . Modalities

which ignore � moves are also de�ned. For example, the formula hh�ii can be satis�ed

by a process which after a �nite number of � moves can exhibit �. The minimal �xed

point corresponds to in�nite disjunction, while the maximal �xed point is the dual of the

minimal �xed point and corresponds to in�nite conjunction. Intuitively, the minimal �xed

point can be interpreted as a liveness property. If, for example, the proposition (P0 or

P1 or : : :or Pn : : :) were satis�ed in the nth step, then we can assume that P0 to Pn�1

were not satis�ed. Therefore, for the property to be satis�ed, there should be some n such

that Pn is true. By a similar argument the maximal �xed point can be interpreted to be

a safety requirement as a proposition of the form (P0 and P1 and : : :and Pn : : : ) to be

satis�ed all of Pi must be satis�ed.

The CWB is an automatic tool which helps in the analysis of concurrent systems

expressed in CCS. The CWB consists of three main components. The �rst component

handles the user interface where user can de�ne processes and formulae. The user can

also issue various other commands to study the behaviour of the speci�ed system. The

command bi binds an identi�er to a process (or an agent) and can be used to de�ne

recursion. For example, bi X P represents the CCS process `recX:P' or (X = P). The

command bsi binds an identi�er to a set of actions and is useful when de�ning restrictions

while the command bpi binds an identi�er to a proposition. The CWB uses t as the ascii

translation of � , while 'a is used instead of a. The second layer performs certain semantic

transformations. While this layer performs a crucial task, the user is completely shielded

from it. This makes the tool easier to use than more complex systems. The third layer
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P = insert�P1 B = insert�remove �B
P1 = insert�P2 + remove�P B2 = (B j B)
P2 = remove�P1

Figure 1: CCS Example

provides the commands for analysing the speci�cation. Having de�ned agents and modal

formulae, the CWB can perform automatic analysis to check if two agents are weakly

bisimilar (eq), strongly bisimilar (strongeq), trace equivalence (mayeq), trace preorders

(maypre). The CWB can also verify if an agent satis�es a logical speci�cation (cp). There

are other features including examining all behaviours, �nding deadlocks etc. which are

useful when developing the speci�cations.

In the next section we present a small example to give a 
avour of CCS and the CWB.

The expert reader can skip this section and proceed to section 3.

2.1 Example

Consider a bu�er of size two which is initially empty. After performing two inserts, remove

is the only possible operation on the bu�er. If the bu�er is empty, only an insertion can be

performed. There are two ways to specify the system. The �rst is to explicitly enumerate

the reachable states. As we have not imposed any ordering on insertions and deletions,

one could also specify the system as a parallel composition of two one element bu�ers.

The CCS speci�cation is shown in �gure 1.

The CWB speci�cation of the two systems is presented in �gure 2.

One may now wish to verify that the two systems P and B2 are equivalent. This can

be achieved by the command eq B2 P. In this case the CWB returns true. As P and B

are not equivalent, the command eq P B returns false. However, any behaviour exhibited

by a one bu�er can be exhibited by a two bu�er. This can be checked on the CWB using

the command maypre B P which yields true. In other words, every trace exhibited by B
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bi P

insert.P1

bi P1

insert.P2 + remove.P

bi P2

remove.P1

bi B

insert.remove.B

bi B2

(B | B)

Figure 2: Speci�cation Using the CWB Syntax

can be exhibited by P.

We now present two small examples of modal formulae. The �rst property we consider

is that after two inserts a remove must be performed. This can be restated as after two

inserts it is not possible to perform any action but remove. This is described in the modal

�-calculus as < insert >< insert > [�remove]F , i.e., it is possible to perform two inserts

and then no action other than remove is possible.

The second property will use the maximal �xed point construct. If it possible to insert

into a bu�er, then it is always possible to perform the insertion followed by a remove. It

is intuitively obvious that the property is true. To translate the above property into a

formula modal �-formula, we notice that the property is always true. Hence it indicates

that we have to use the maximal �x-point. Given that, the formula can be written in the

CWB syntax as follows.

bpi Prop max(X: (CanInsert => CanIR)&[�]X)

bpi CanInsert < insert > T

bpi CanIR < insert >< remove > T

The validity of the property can be veri�ed by the commands cp P Prop, cp B Prop
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and cp B2 Prop all of which return true. This concludes our brief introduction to the

CWB. A more detailed example can be found in [CPS93][pages 58-66].

In the next two sections we describe the speci�cation and the testing performed. The

two main features of the SPARC architecture that involves parallelism are instruction

pipelining and a memory model that supports multiprocessor operations. In this paper

we consider both these aspects. For the sake of readability we use the CCS syntax for

all elements except the minimal and maximal �xed point. All speci�cations in the CWB

syntax are available from the author. Section 3 describes the modelling of instruction

pipelining and the delayed instruction while section 4 describes the memory pipelining

model. While both the models specify pipelining, the e�ects are di�erent with instruction

pipelining being simpler than the memory model.

3 A Simpli�ed Instruction Pipelining in SPARC

While instruction pipelining is not very new, the design of an architecture where the

instruction pipelining is visible at the program level is relatively modern. It has been

made popular mainly by the RISC architectures. We only provide a brief explanation of

this feature. The reader is referred to [Spa91] for more details.

In addition to the program counter (PC) the SPARC has an nPC which points to the

next instruction. It is usually PC+4 except in the case of branch instructions. The SPARC

provides two types of branch instructions, viz., normal branch and annulled branches.

After executing the normal branch instruction, the instruction pointed to by the nPC is

executed. In the case of annulled instructions the instruction pointed to by nPC is not

executed. A simpli�ed view is explained using the following table.
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PC Instruction

8 Non-branch

12 Branch to 40 (execute delay)

16 Non-branch

: : : : : :

40 Instruction

The instruction sequence executed will be 8, 12, 16, 40 : : : . If the instruction at

address 12 annulled the delayed instruction, the sequence will be 8, 12, 40 : : : . The formal

speci�cation and testing is de�ned in the next section.

3.1 Speci�cation of Delayed Instructions

Towards modelling the instruction pipeline, we make the following simpli�cations. In

this work we do not consider the complete generality of the SPARC branch instructions.

We assume that a branch instruction is denoted by the action branch. As annulling of

delayed instruction can depend on whether a transfer of control occurs, an internal choice

of � or signal annul is used. As modelling value passing results in an in�nite (or very

large) space process we also do not model di�erent addresses and hence branching to

di�erent locations.

We model the PC and the nPC as bu�ers of size 1. As PC and nPC represent a

pipeline, elements are inserted into nPC (insert) and removed from PC (0remove) with

getfromnpc used to transfer an instruction from nPC to PC. The processor (CPU) fetches

an instruction from the PC and indicates to the environment that it did so via the ac-

tion fetch, performs a decode and continues or treats the instruction as a branch. The

unit handling control transfer instructions either executes the next (and hence delay) in-

struction or signals an annulment (signal annul), removes the next instruction (does not

execute it) and continues. Note that we need the actions fetch and signal annul to indi-

8



PC = getfromnpc � remove � PC

NPC = insert � getfromnpc �NPC

CPU = remove � fetch � decode � (� � branch � Continue+ � � CPU)

Branch = branch � (� � continue �Branch + � � signal annul � annul �Branch)

Continue = continue � CPU + annul � remove � fetch � CPU

Sys = (PC j NPC j CPU j Branch)n
fannul continue remove branch getfromnpcg

Figure 3: SPARC Processor-1

cate the behaviour of the system to the environment. Otherwise the system will collapse

to an in�nite sequence of � moves.

The CCS speci�cation used in the CWB is given in �gure 3. Sometimes, it is useful

to construct a diagrammatic representation of the a CCS speci�cation. The �nite state

representation of the process CPU and Continue (the states are indicated in the diagram)

is given in �gure 4. While the diagram may help clarify the behaviour, we do not present

them for the sake of brevity.

It is also possible to model the pipelining by a process (called Pipeline) which is FIFO

bu�er of size 2 [Mil89] as shown in �gure 5. This is similar to the example considered

earlier.

One can check that the de�nitions involving the process Pipeline or the process PC in

conjunction with the process NPC are equivalent. That is, Sys and New Sys are weakly

bisimilar. They are not strongly bisimilar due to the synchronisation between PC and

NPC.

The intuitive property the system should satisfy is that after a signal annul and a

fetch, the action decode cannot be exhibited. This is because the processor has to discard

the instruction just fetched simulating annulling. This can be expressed in the modal-�-

calculus as shown in �gure 6.
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remove fetch

decode

�

�

branch

continue

annul

remove

fetch

CPU

Continue

Figure 4: State Diagram

Pipeline = insert � P1

P1 = insert � Full + remove � Pipeline

Full = remove � P1

NewSys = (Pipeline j CPU j Branch)n
fannul continue remove branchg

Figure 5: Pipeline as a Bu�er

Delay = max(X:(Poss => Required)&[�]X)

Poss =< signal annul ><< fetch >> T

Required =< signal annul ><< fetch >> [decode]F

Figure 6: Modal Formula for Delayed Instruction
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The intuitive explanation of the formula is as follows. If it is possible to exhibit

signal annul followed by fetch (i.e., the formula Poss), the required behaviour must be

observed, i.e., cannot exhibit the action decode. The formula Required speci�es this by

[decode]F which requires that decode is impossible. Note that we use the maximal �xed

point operator as the speci�cation Delay is a safety property; i.e., has to be satis�ed by

every execution. The CWB veri�es that the process Sys satis�es the formula Delay.

In this work we do not consider di�erent types of instructions and assume that there

is one action which represents an instruction. The di�erence between a control transfer

instruction (annulling or executing the delay) is modelled as an internal choice. This

concludes our discussion of instruction pipelining. In the next section we consider the two

main memory models supported by the SPARC architecture.

4 A Simpli�ed SPARC Memory Model

The de�nition of the SPARC memory model is applicable to both uniprocessor and shared

memory multiprocessors. The memory model relates the semantics of the memory oper-

ations as issued by a processor and the semantics of the operations as executed by a

memory unit. In other words, the model speci�es the semantics of data load and store

and the relation between the order in which a processor issues the the instructions and the

order in which a central memory executes them. It also de�nes how instruction fetches

are synchronised with memory operations.

In this work we consider a simpli�ed model of the total store ordering (TSO) and the

partial store ordering (PSO). Both these models only specify the behaviour observed by

the software and hence is a good candidate to be modelled on the CWB. For the purposes

of the model, a processor consists of a unit which issues loads and stores to the processor's

memory port. This order is called the processor's issuing order. The memory executes the

instructions of all the processors in an order called the memory order. The TSO model
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guarantees that the sequence of operations executed by the memory is identical to one

issued by a processor. Hence as far as the processor is concerned, the memory is a FIFO

structure. In the PSO model the order in which the memory executes the operations

could be di�erent from the order in which a processor issued them. Hence the bu�er is not

guaranteed to be a FIFO structure. It is possible to maintain a relationship between the

issuing order and the execution order using the stbar instruction. stbar instruction ensures

that any memory operation issued by a processor before a stbar are executed before the

operations issued after the stbar. Hence the stbar instruction partitions the processors

issuing sequence into non-FIFO classes but the partition themselves are ordered. Consider

for example a single processor issuing the instructions i1,i2,i3. In the TSO model, the

memory will necessarily execute i1 followed by i2 followed by i3. However, in the the PSO

model the memory could execute i2 followed by i3 followed by i1. If the sequence were

i1, i2, stbar i3, the memory could execute i1 and i2 in any order but will execute i3 only

after i1 and i2. Hence a limited form of FIFO behaviour is exhibited. Clearly, i1, stbar,

i2, stbar, i3 will be executed in FIFO order. More details can be found in [Spa91][pages

59-68].

The formal speci�cation and testing is given below.

4.1 Memory Model

In order to make the automate the process of veri�cation, we consider a few more sim-

pli�cations. The modelling of values and addresses results in a large state space (which

makes automatic veri�cation extremely time consuming) due to which we do not con-

sider them. This restriction can be removed easily by representing addresses using non-

determinism. See [Mil89] where values are simulated by choice. Therefore, we also assume

that a load does not look at the bu�er to see if an appropriate store has been issued be-

fore. The the two cases of load returned without a memory operation and with a memory
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operation can also be modelled as non-deterministic choice of two processes. To simply

this exposition further we do not consider the flush instruction. Therefore, in this paper

we consider only the store, load and the stbar instructions.

If we were to consider a general speci�cation of the memory model, a in�nite state

space process is necessary. In other words, we have to assume an unbounded memory

system. As this is not practical we consider a �xed-�nite bu�er size. The system we

model consists of a store bu�er of size 3.

It appears to be very di�cult to specify the bu�er succinctly. The main reason seems

to be the lack of a general sequencing operator as in ACP [BK88]. Furthermore, the

behaviour of the bu�er requires it to be history sensitive, i.e., it has to `remember' the

items inserted into it before a stbar instruction was executed and to distinguish the various

instructions separated by stbars.

Our speci�cation is by enumeration, i.e., each possible state that the bu�er could be

in is explicitly listed. For example, Psstbl indicates a state where a load followed by a

stbar, followed by a store was issued. Thus it represents the minimal state machine. The

behavioral speci�cation implicitly removes the stb instructions when the last instruction

before the stbe is removed. For example, Psstbl evolves to Ps after the load instruction is

removed. We use the actions load insert, store insert and stb to indicate the interaction

between a processor and the bu�er while the actions 0load remove and 0store remove

indicate the removal of the items from the bu�er by the single-ported memory. The

complete speci�cation of 3 element bu�er in the PSO model is given by POBuff in

�gures 7 and 8.

Once again we enumerate each state the bu�er can be in and hence is minimal. As in

the PSO case the stb instruction is removed implicitly. The speci�cation of the sequential

bu�er of size 3 is presented in �gures 9 and 10.

Now we describe the tests performed on the two speci�cations to gain con�dence
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POBuf = load insert � Pl + store insert � Ps

Pl = load insert � Pll + store insert � Pls + stb � Pstbl + load remove � POBuf

Ps = load insert � Pls + store insert � Pss + stb � Pstbs + store remove � POBuf

Pll = load insert � Plll + store insert � Plls + stb � Pstbll + load remove � Pl

Pss = load insert � Plss +store insert � Psss+
stb � Pstbss + store remove � Ps

Pls = load insert �Plls+ store insert �Plss+ stb �Pstbls+ load remove �Ps+ store remove �Pl

Pstbl = load remove � POBuf + load insert � Plstbl + store insert � Psstbl

Pstbs = store remove � POBuf + load insert � Plstbs + store insert � Psstbs

Figure 7: PSO-1

Plls = load remove � Pls + store remove � Pll

Plss = store remove � Pls + load remove � Pss

Plll = load remove � Pll

Psss = store remove � Pss

Pstbss = store remove � Pstbs

Pstbll = load remove � Pstbl

Plstbs = store remove � Pl

Psstbs = store remove � Ps

Plstbl = load remove � Pl

Psstbl = load remove � Ps

Pstbls = load remove � Pstbs + store remove � Pstbl

Figure 8: PSO-2
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SeqBuff = load insert � SeqBuffl + store insert � SeqBuffs

SeqBuffl = load remove � SeqBuff +store insert � SeqBuffsl
+load insert � SeqBuffll + stb � SeqBuffstbl

SeqBuffs = store remove � SeqBuff + store insert � SeqBuffss
+load insert � SeqBuffls + stb � SeqBuffstbs

SeqBuffsl = load remove � SeqBuffs +store insert � SeqBuffssl
+stb � SeqBuffstbsl + load insert � SeqBufflsl

SeqBuffls = store remove � SeqBuffl + store insert � SeqBuffsls
+stb � SeqBuffstbls + load insert � SeqBufflls

SeqBuffll = load remove � SeqBuffl +load insert � SeqBufflll
+store insert � SeqBuffsll + stb � SeqBuffstbll

SeqBuffss = store remove � SeqBuffs + load insert � SeqBufflss
+store insert � SeqBuffsss + stb � SeqBuffstbss

SeqBuffstbl = load remove � SeqBuff + load insert � SeqBufflstbl
+store insert � SeqBuffsstbl

SeqBuffstbs = store remove � SeqBuff + load insert � SeqBufflstbs
+store insert � SeqBuffsstbs

Figure 9: TSO-1
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SeqBufflll = load remove � SeqBuffll

SeqBuffsss = store remove � SeqBuffss

SeqBuffsll = load remove � SeqBuffsl

SeqBufflls = store remove � SeqBuffll

SeqBuffssl = load remove � SeqBuffss

SeqBufflsl = load remove � SeqBuffls

SeqBufflss = store remove � SeqBuffls

SeqBuffsls = store remove � SeqBuffsl

SeqBuffstbsl = load remove � SeqBuffstbs

SeqBuffstbll = load remove � SeqBuffstbl

SeqBuffstbls = store remove � SeqBuffstbl

SeqBuffstbss = store remove � SeqBuffstbs

SeqBufflstbs = store remove � SeqBuffl

SeqBufflstbl = load remove � SeqBuffl

SeqBuffsstbl = load remove � SeqBuffs

SeqBuffsstbs = store remove � SeqBuffs

Figure 10: TSO-2
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Producer1 = store � store insert � P11 + load � load insert � P11

P11 = stbar � stb � Producer1 + � � Producer1

Producer2 = store � store insert � P21 + load � load insert � P21

P21 = stb � Producer2 + � � Producer2

PSO = (Producer1 j POBuf) n fstb load insert store insertg

TSO = (Producer1 j SeqBuff) n fstb load insert store insertg

Figure 11: Speci�cation for Testing the Architecture

that our de�nition satis�es the requirements imposed on the two models. Towards that

we de�ne processes which generate a sequence of loads stores and stbar's. Again each

operation is split into two actions, one for the visible part and the other for the internal

synchronisation (e.g., load insert.) De�ne two environments TSO and PSO are systems

constructed using the TSO bu�er and the PSO bu�er respectively. The speci�cation of

the above is shown in �gure 11. The main di�erence between Producer1 and Producer2

is that in Producer2 the issuing of stbar instruction is not visible.

The CWB veri�es that PSO and TSO are not weakly bisimilar or even trace equivalent.

This is to be expected as in the PSOmodel the execution of stores and loads can be di�erent

from the issuing order. However TSO is less than in the trace preorder than PSO. Thus

every trace that can be exhibited by TSO can be exhibited by PSO. Therefore the

speci�cation of the sequential bu�er is not inconsistent with the partial order bu�er.

To ensure that the di�erence between TSO and PSO is indeed due to the stbar

instruction, we verify that PSO satis�es the modal-formula Cando in �gure 12 which

TSO cannot satisfy. The formula Cando states that after a load and a store, the memory

is able to execute the store operation. The dual of Cando is the formula Ordering which

requires that after a sequence of load and store actions it is not possible to execute a

store remove.
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Cando =<< load >><< store >><< store remove >> T

Ordering =<< load >><< store >> [[store remove]]F

STBF = max(X: (LoadPossible [�load]X) &[�]X)

LoadPossible = (<< load >><< stbar >><< store >> [[store remove]]F

Figure 12: Modal Formulae Distinguishing TSO and PSO

PSO also satis�es the requirement that stbar ensures issuing order as it will satisfy

the formula STBF in �gure 12. The intuitive meaning of STBF is that if a stbar is

issued after a load and before a store, it is not possible to execute the store operation.

As this is a safety requirement, we use the maximal �xed point operator. To understand

this more formally, we consider two main possibilities; viz., it is possible to perform a

load followed by stbar and store or it is not. If it is not possible to perform the speci�ed

sequence all subsequent behaviours continue to satisfy STBF . Otherwise performing the

sequence of actions will result in arriving at a state where it is not possible to perform

store remove. This is stated by the formula LoadPossible. In other words, STBF is of

the form max(X: (P j Q) [�]X) where the formula corresponding to P states if a load

and store are separated by stbar then store remove cannot be observed and the formula

corresponding to Q states that if load is not possible the formula STBF is satis�ed in the

future.

The above tests distinguished POBuff and SeqBuff . We now identify conditions

under which the two systems are equivalent. The �rst condition we consider is a processes

which separates every load/store with a stbar instruction. By the de�nition of the e�ect

of stbar on the PSO model, it is clear that the PSO model collapses to the TSO model.

We also show that executing the stbar instruction in the TSO model has no e�ect. The

speci�cation of these tests are presented in �gure 13.

SeqProd ensures that after every load or store a stbar is issued. This process does not
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SeqProd = load � load insert � stbar � stb � SeqProd+
store � store insert � stbar � stb � SeqProd

Sys1 = (SeqBuff j SeqProd)n
fstb load insert store insertg

Sys2 = (POBuf j SeqProd)n
fstb load insert store insertg

Sys3 = (Producer2 j SeqBuff)n
fstb load insert store insertg

SProd = load � load insert � SProd+ store � store insert � SProd

Sys4 = (SProd j SeqBuff)n
fstbar stb load insert store insertg

Figure 13: Equivalence Testing

use the non-ordered access of the PSO-store. Thus Sys1 and Sys2 are weakly bisimilar,

i.e., the underlying memory model is of no consequence for SeqProd.

Sys3 and Sys4 are trace equivalent thus showing that stbar is a no-op in the TSO-store

model. Sys3 and Sys4 are not bisimilar due to the presence of stb in the bu�ers. Note

that Producer2 was essential as otherwise the observational actions become di�erent.

5 Lessons Learned

In this paper we have shown the feasibility of specifying and testing concurrent aspects

of an architecture. The type of analysis performed on the various speci�cations has been

inspired by both the informal description of the various features and the formal description

(using �rst order logic) given in the SPARC manual [Spa91]. The principal observational

properties have been veri�ed here. In verifying the system we have generated formulae

which we believe were relevant.

The CWB has the capability of generating formulae which distinguish non-equivalent

processes. The command dfobs of processes P and Q generates a formula ignoring � which
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is satis�ed by P and not by Q. Similarly the command dfstr generates a formula where

the � actions are accounted from which is satis�ed by P and not by Q while the command

dfmay generates a trace exhibited by one but not the other.

The command dfstr TSO PSO generates the formula

< store >< t >< t >< load >< t > [load remove]F

while the command dfobs PSO TSO generates the formula

<< load >> [[store]] [[load]] [[load]] << store remove >>

These formulae capture the non-FIFO behaviour of the PSO model while requiring the

FIFO behaviour of TSO model. Similarly, the command dfmay PSO TSO generates the

string store; load; load remove which can be performed by PSO but not by TSO. We

have some con�dence in our speci�cations as the CWB agrees with our observations. The

CWB does not generate formulae involving �x points because a �nite formula su�ces to

distinguish two processes.

As the SPARC architecture is speci�ed formally, it may be possible to prove some

completeness result. However such a result is beyond the scope of this paper. We hope

that one will be prove that all properties speci�ed by the �rst order logic speci�cation has

been covered by the modal-� calculus speci�cations.

Using a completely automatic tool has its limitations. Features such as the TSO and

PSO bu�ers had to be enumerated and hence were not elegant speci�cations. It also

makes it di�cult to generate a bu�er of size n + 1 from a bu�er of size n. Consider, for

example, �gure 14 where a PSO bu�er of size two is speci�ed. It is easy to check that

Two is less than POBuf in the trace preorder-order. However, it is di�cult to see how

Two can be expanded to obtain POBuf . As POBuf can be perceived to be an extension

of Two one may assume that Two in parallel conjunction with another process (subject

to appropriate synchronisations) can be used to obtain POBuf . The CWB supports a

feature for equation solving which, initially, appears to be attractive. Given processes A,
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T = si � Ts + li � Tl

Ts = si � Tss+ li � Tls+ stb � Tsts

T l = si � Tls+ li � Tll+ stb � Tstl

Tss = sr � Ts

T ll = lr � Tl

Tstl = lr � T

Tsts = sr � T

Tls = sr � Tl + lr � Ts

Two = T [store insert=si; load insert=li;
load remove=lr; store remove=sr]

Figure 14: PSO Bu�er

B and a synchronisation set L the system �nds an X such that ((A j X) nL) is bisimilar

to B. This feature turn out not to be useful as (Two j X nL) � POBuf cannot be solved

easily. Clearly the set L cannot be empty as interaction between Two and the unknown

X is essential. As the equation solving system requires the user to specify L, the above

equation cannot be solved.

In this paper, we have modelled a small system. As most of the algorithms to check

bisimilarity, trace equivalence etc. are exponential [KS90], an automatic veri�er cannot be

used for large systems. But this technique is useful in studying synchronisation patterns

in small systems and performing compositional veri�cation semi-automatically.

The SPARC manual [Spa91] provides a formal de�nition of the memory models. As

the speci�cation is logical rather than behavioural, our speci�cation can be considered

an behavioural representation of the model. However, one needs a system where the

behavioural representation can be veri�ed against the logical speci�cation. We believe

that a system like HOL would be very useful. The technique to specify CCS in HOL has

been described in [CIN91]. It remains to be seen if this technique can be adapted for our
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system.

Other features such as the flush and ldstub instructions can be added to the basic

speci�cation described here. Modelling the flush instruction requires the speci�cation of

an instruction load and associated bu�ers which behave similar to the PSO model. The

dstub blocks the processor and can be modelled by requiring a handshake (synchronisa-

tion) between the memory and the processor. All these features can be modelled indi-

vidually; however a combined speci�cation appears to be too large to run on the CWB.

This indicates that a prototype implementation while satisfactory for small examples, is

not su�cient for large examples. In conclusion, our work shows that the CWB is useful

in studying synchronisation in the initial phases of design.
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