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Abstract 

Viruses with circular single-stranded DNA (ssDNA) genomes are the smallest pathogens 

known to infect various organisms. Due to advances in high-throughput sequencing 

technologies, the diversity of circular replication associated protein encoding single-stranded 

(CRESS) DNA viruses is beginning to unravel. Viral metagenomic studies have 

demonstrated that animal faecal matter harbours a high viral diversity and therefore can 

potentially be used to explore viruses within ecosystems. Faecal matter may contain viruses 

shed by the infected animal or those that are associated with its diet and the environment. 

Besides capturing the viral diversity, faecal sampling is a non-invasive to the animal hence 

can be used easily for viral surveillance in ecosystems.  

A limited amount of work has been done on CRESS DNA viruses circulating in the Pacific 

Islands of Tonga. Prior to this study, only six species of CRESS DNA viruses had been 

identified. As part of a continuing effort to determine the diversity of CRESS DNA viruses, I 

sampled Pteropus tonganus faeces. P. tonganus, also known as the Pacific flying fox, is the 

most widespread bat species in the Pacific and is the only bat species found in the Tongan 

archipelago. Pacific flying foxes roost in trees and are frugivores.  

This thesis research was carried out to identify CRESS DNA viruses that are associated with 

Pacific flying fox faeces in Tonga. Faecal samples were collected from four P. tonganus 

roosting sites (Ha’ateiho (‘Atele), Lapaha (Takuilau), Ha’avakatolo and Kolovai) located in 

Tongatapu the main island of Tonga in 2014 and 2015. A next-generation sequencing 

informed approach was used to recover complete CRESS DNA viral genomes. In total, five 

novel cycloviruses (three species), 25 novel gemycircularviruses (13 species), 17 unclassified 

novel CRESS DNA viruses (15 species), a putative multicomponent virus (three cognate 

molecules) and two circular DNA molecules, were recovered. A number of viruses were 

identified in more than one sampling site in Tonga, suggesting these viruses have a broad 

distribution across the island amongst the Pacific flying fox colonies. Several species were 

identified in both 2014 and 2015 suggesting these viruses are persistently associated with 

faecal matter of Pacific flying foxes.  The data obtained from this study has significantly 

expanded the knowledge of CRESS DNA viruses that are circulating in Tonga.  
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1.1 Classification of viruses 

Viruses are documented to be one of the most abundant biological entities on Earth with 

members which are able to infect all the three domains of life and are found in all types of 

environments (Breitbart & Rohwer, 2005; Edwards & Rohwer, 2005; King et al., 2012). The 

continued expansion of knowledge on viruses has shown that they have played an important 

role in the evolution of life, from introducing new functions into the genomes of various 

organisms to facilitating gene transfer and controlling microbial populations (Forterre & 

Prangishvili, 2009; Rohwer et al., 2009; Suttle, 2007). With the rapid discovery of novel 

viruses, largely attributed to viral metagenomics studies, it has become evident that very little 

is known about the breadth of viral diversity present on Earth (Edwards & Rohwer, 2005).  

In order to place the viruses which are explored in this thesis into the larger context of all 

viruses, it is important to understand how viruses are classified. The Baltimore classification 

(Baltimore, 1971), broadly classifies viruses into seven groups based on their genome type i.e 

RNA or DNA genomes that are either single or double stranded, the polarity of the single 

stranded nucleic acid genomes and their mode of replication (King et al., 2012). The seven 

groups of viruses include double-stranded DNA (dsDNA) viruses, single-stranded DNA 

(ssDNA) viruses, dsRNA viruses, positive-sense (+)ssRNA viruses, negative-sense (-)ssRNA 

viruses, retro-transcribing ssRNA-RT viruses and retro-transcribing dsDNA-RT viruses 

(King et al., 2012) (Table 1.1).  

The international committee for virus taxonomy (ICTV) was then established to assess the 

virus taxonomy in the context of the Baltimore system, based on current knowledge of virus 

diversity and classification (King et al., 2012). The taxonomic classification of viruses 

expands to include several characteristics such as virion structure and whether the virions are 

enveloped or not, the genome types, genome organisation, host range, tissue tropism and the 

mechanism of viral replication (King et al., 2012). Following this, each group were 

simplified into order, family, genus and species.  

 

http://www.ictvonline.org/virusTaxonomy.asp
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Table 1.1: Overview of the Baltimore classification of viruses, including genome type, 

mRNA synthesis and an example from each group. 

Group Genome type mRNA synthesis Examples 

I dsDNA 
 
+/-dsDNA             +mRNA Adenoviruses 

II ssDNA 
 
+ssDNA             +/-dsDNA               +mRNA Circoviruses 

III dsRNA 
 
+/-dsRNA             +mRNA Reoviruses 

IV (+)ssRNA 
 
+ssRNA            -ssRNA               +mRNA Togaviruses 

V (-)ssRNA 
 
-ssRNA             +mRNA Rhabdoviruses 

VI ssRNA-RT 
 
+ssRNA           -ssDNA            +/-dsDNA           +mRNA   Retroviruses 

VII dsDNA-RT 
 
+/-dsDNA           +ssRNA             -ssDNA               +/-dsDNA              +mRNA Hepadnaviruses 

 

1.2 Diversity and classification of single-stranded DNA viruses 

Knowledge of ssDNA viral diversity has increased significantly in the last decade. This has 

been attributed partly to advances in molecular techniques and sequencing technologies. Viral 

metagenomics has also enabled the discovery of novel ssDNA viruses in a wide range of 

plants, animals, fungi, bacteria, and environmental samples.  

SsDNA viruses are classified into nine families i.e. Inoviridae and Microviridae whose 

members infect prokaryotes, Anelloviridae, Bidnaviridae, Circoviridae, Geminiviridae, 

Nanoviridae and Parvoviridae  whose members infect eukaryotes and Spiraviridae  whose 

members infect archaea (Table 1.2) (Adams & Carstens, 2012; King et al., 2012; Mochizuki 

et al., 2012). Most of the families of ssDNA viruses are encapsidated in icosahedral virions 

except for inoviruses which consist of viruses with a filamentous or rod-shaped morphology, 

spiraviruses with coil shaped particle and geminiviruses with twinned icosahedral particles 

(King et al., 2012) (Table 1.2). The majority of the members of ssDNA viral families have 

circular DNA genomes with the exception of Parvoviridae and Bidnaviridae families which 

have linear ssDNA genomes (King et al., 2012) (Table 1.2). The continued discovery of 

novel ssDNA viruses indicates that their diversity has been grossly underestimated and it is 

expected that classification will continue to change with the discovery of additional novel 

ssDNA viruses. An example of such change has been shown by the proposal to create the 

new family Genomoviridae for the proposed genus gemycircularvirus (see Genomoviridae 

proposal at ICTV).  

http://talk.ictvonline.org/files/proposals/taxonomy_proposals_fungal1/m/fung04/5727.aspx
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Table 1.2: Overview of the accepted nine families of single-stranded DNA viruses according 

to the ICTV.  

Host organisms ssDNA virus families Capsid morphology DNA genome Genome size (kb) 
Host organism  
genome structure 

Bacteria  Inoviridae Filamentous or rod-shaped Circular 4.5 - 12.4 Monopartite 

 
Microviridae Isosahedral Circular 4.4 - 5.3 Monopartite 

Animals Anelloviridae  Isosahedral Circular 2.8 - 3.9 Monopartite 

 
Circoviridae * Isosahedral Circular 1.7 - 2.3 Monopartite 

Animals and insects Parvoviridae Isosahedral Linear 4 - 6.3 Monopartite 

Insects Bidnaviridae Isosahedral Linear 13 Multipartite 

Plants Geminiviridae Twinned isosahedral Circular 2.7 - 5.4 Monopartite and bipartite 

 
Nanoviridae Icosahedral Circular 6.4 - 8 Multipartite 

Archaea Spiraviridae Coil shaped Circular 24.8 Monopartite 

* Identified in this study 

1.2.1 Prokaryote infecting ssDNA viruses 

1.2.1.1 Inoviridae  

Members of the Inoviridae family contain a circular, positive sense ssDNA genome with a 

genome size of 4.5 - 12.4 kilobases (kb) and all members are known to infect prokaryotes 

(King et al., 2012). This family is divided into two genera, Inovirus and Plectrovirus. 

Members of the Inovirus genus (e.g. Enterobacteria phage, Pseudomonas phage, Vibrio 

phage and Xanthomonas phage) infects gram-negative and gram-positive bacteria (King et 

al., 2012). Members of the Plectrovirus genus (e.g. Acholeplasma phage and Spiroplasma 

phage) are known to infect mycoplasma (King et al., 2012). Many environmental sampling 

methods have detected inoviruses. For example, inoviruses have been recovered from 

alkaline hot spring, soil, fermented foods, raw sewage, lagoon wastewater and Arctic sea ice 

(Alhamlan et al., 2013; Cantalupo et al., 2011; Park et al., 2011; Swanson et al., 2009; Yu et 

al., 2006; Yu et al., 2014). Furthermore, inoviruses have also been detected in pharyngeal and 

rectal swabs of insectivorous bats (Wu et al., 2012; Wu et al., 2015). 

1.2.1.2 Microviridae 

The Microviridae family are non-enveloped with small icosahedral morphology with circular 

ssDNA genomes (King et al., 2012). Members are divided into one genus, Microvirus, and 

one sub-family, Gokushovirinae (King et al., 2012). The genus Microvirus exclusively 

infects Enterobacteria spp (King et al., 2012). Members of the sub-family Gokushovirinae 

are known to infect obligate intracellular parasites such as Chlamydia spp., Bdellovibrio spp. 

and Spiroplasma spp. (Brentlinger et al., 2002). The virion morphology, genome 
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organization, genome identities and host lifestyle of the members of the sub-family 

Gokushovirinae are different from the members of Microvirus (King et al., 2012). 

Microvirus-like sequences have been detected in a variety of samples including marine 

environments, soil, lakes, peatlands, dragonflies, human, turkey, methane seep sediments and 

bats (Bryson et al., 2015; Labonte & Suttle, 2013; Li et al., 2010b; Minot et al., 2011; 

Quaiser et al., 2015; Reavy et al., 2015; Rosario et al., 2012a; Roux et al., 2012; Tucker et 

al., 2011; Zhong et al., 2015; Zsak et al., 2011). Specifically, the microvirus phages 

identified in bats were recovered from their faeces and were associated with the food they eat 

(Li et al., 2010b). 

1.2.2 Eukaryote infecting ssDNA viruses 

1.2.2.1 Anelloviridae  

Anelloviridae family consist of small non-enveloped viruses that infect a wide range of 

mammalian species (Biagini et al., 2006). Their genomes are negative-sense circular ssDNA 

that have an untranslated region (UTR) and at least two major open reading frames (ORFs) 

(Biagini et al., 2006; Rosario et al., 2012b). Currently there are nine genera assigned to the 

Anelloviridae family (King et al., 2012). The genus Gyrovirus was originally from another 

ssDNA family but has recently been assigned as a genus within the Anelloviridae family (see 

Gyrovirus proposal at ICTV). Members of the Anelloviridae family have been recovered 

from various mammalian and reptiles tissues (Biagini et al., 2007; Bouzari & Salmanizadeh, 

2015; Burian et al., 2011; Cibulski et al., 2014; Huang et al., 2010; Ng et al., 2009; Ng et al., 

2011b; Ninomiya et al., 2009; Nishiyama et al., 2014; Okamoto, 2009; Young et al., 2015). 

Currently, there are no reports of annelloviruses in bat faeces, the only Annellovirus detected 

in bats was from organs of Brazilian free-tailed bats (Cibulski et al., 2014).  

1.2.2.2 Bidnaviridae 

The newly assigned family Bidnaviridae has only one genus, Bidensovirus, which houses a 

species Bombyx mori bidensovirus (BmBDV) that was recently moved from the family 

Parvoviridae (Adams & Carstens, 2012). BmBDV is known to cause diseases in the 

silkworm Bombyx mori by infecting the columnar cells of the midgut epithelium where the 

results can be fatal (Hu et al., 2013). BmBDV is a non-enveloped spherical virus with linear 

segmented ssDNA of 6.5 kb (DNA1, VD1) and 6 kb (DNA2, VD2) (Hu et al., 2013). The 

two DNA molecules are packaged in two different capsids and the replication mechanism of 

http://talk.ictvonline.org/files/proposals/animal_dna_viruses_and_retroviruses/m/animal_dna_ec_approved/5470.aspx
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BmBDV is yet to be uncovered (Hu et al., 2013). BmBDV encodes a putative protein-primed 

DNA polymerase (Hu et al., 2013). Note that this family has only been found to infect insect 

cells but has not been identified in any environmental samples such as faecal matter.  

1.2.2.3 Circoviridae 

Members of the family Circoviridae are found to infect various animals. The members of this 

family have an ambisense genome organization consisting of ~1.7 - 2.3 kb and their virions 

have icosahedral structure (King et al., 2012). The family Circoviridae currently have one 

genus i.e. Circovirus, however, there is also an additional genus that has been recently 

proposed which is the cyclovirus (see cyclovirus proposal at ICTV). The majority of 

circoviruses have been found to be infecting a wide range of avian species, fish and a few 

mammals (Allan & Ellis, 2000; He et al., 2013; Kapoor et al., 2012; Lorincz et al., 2011; 

Todd, 2004; Wu et al., 2012; Wu et al., 2015). Cycloviruses on the other hand have been 

recovered from various mammals and insect samples (Dayaram et al., 2013b; Ge et al., 2011; 

Li et al., 2011; Li et al., 2010b; Lima et al., 2015; Padilla-Rodriguez et al., 2013; Phan et al., 

2014; Rosario et al., 2012a; Rosario et al., 2011; Smits et al., 2013; van Doorn et al., 2013; 

Victoria et al., 2009; Wu et al., 2015). In particular, circoviruses and cycloviruses have been 

detected in bat samples including pharyngeal and rectal swabs, muscle, stomach contents and 

faeces (Ge et al., 2011; He et al., 2013; Li et al., 2010a; Li et al., 2011; Lima et al., 2015; Wu 

et al., 2012; Wu et al., 2015).  

1.2.2.4 Geminiviridae 

Geminiviruses are plant infecting viruses that have circular ssDNA genomes ranging in size 

from ~2.7 - 5.4 kb and the genomes are encapsidated in twinned icosahedral shaped particles 

or geminate virions (King et al., 2012). Members in this family are currently classified into 

seven genera, as reviewed in (King et al., 2012; Varsani et al., 2014a; Varsani et al., 2014b). 

The majority of geminiviruses have monopartite genomes which consist of one circular 

ssDNA component. Members of the Begomovirus genus on the other hand can either be 

monopartite (a single component) or bipartite (two components known as DNA-A and DNA-

B) genomes (Briddon et al., 2010; Brown et al., 2015). Furthermore, some begomoviruses 

are often associated with satellite DNA molecules known as alphasatellites and betasatellites, 

with betasatellites being significant in inducing pathogenicity of begomoviruses (Nawaz-Ul-

Rehman et al., 2010). Geminiviruses are transmitted by whitefly, leafhoppers and tree 

http://talk.ictvonline.org/files/proposals/animal_dna_viruses_and_retroviruses/m/animal_dna_ec_approved/5469.aspx
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hoppers (King et al., 2012). A large number of geminiviruses have been identified in 

numerous plants (Brown et al., 2015; Fauquet et al., 2003; King et al., 2012; Muhire et al., 

2014; Varsani et al., 2014a; Varsani et al., 2014b). To date, members of this family have 

never been identified in bat faeces. 

1.2.2.5 Nanoviridae 

The family Nanoviridae consist of plant infecting viruses that have multi-partite or multi-

component circular ssDNA genomes (6-8 segments), each ~1 kb (King et al., 2012). 

Nanovirus and Babuvirus are the two genera in this family, both are vectored by aphids and 

are known to infect dicotyledonous and monocotyledonous plants, respectively (Mandal, 

2010). In nanoviruses and babuviruses, the circular ssDNA molecules each encode a single 

ORF and each DNA molecule is packaged into separate icosahedral particles. Within the 

genomes of all the components of nanoviruses and babuviruses, there are two common 

regions that are common across the integral components and they are the common region 

stem-loop (CR-SL) and the common region major (CR-M) (Figure 1.1). To date, eight and 

three assigned species of nanoviruses and babuviruses, respectively, have been identified in 

various plants (Abraham et al., 2012; Burns et al., 1995; Chu & Helms, 1988; Grigoras et al., 

2014; Grigoras et al., 2010a; Grigoras et al., 2009; Katul et al., 1998; Kumari et al., 2010; 

Mandal et al., 2013; Sano et al., 1998; Sharman et al., 2008). Like the geminiviruses, 

members of the nanoviruses have never been identified in any environmental sampling. As 

some bat species are frugivores, there is potential for plant infecting viruses to be present in 

their faeces. 
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Figure 1.1: An illustration of the genome organization of representative viruses from the 
Geminiviridae, Nanoviridae, Circoviridae and proposed Genomoviridae families. Members 
of the Nanoviridae family have common regions and the components are known as DNA-R 
(encoding replication associated protein), DNA-S (encoding capsid protein), DNA-M 
(encoding movement protein), DNA-C (encoding cycle link protein), DNA-N (encoding 
nuclear shuttle protein) and  DNA-U1, U2, U3 and U4 (encoding ORFs of unknown 
function).   
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1.2.2.6 Parvoviridae  

Members of the family Parvoviridae have small isometric particles that encapsidate linear 

ssDNA genomes of approximately 4 - 6 kb (Tattersall, 2006). Parvoviruses infect a wide 

range of hosts and hence are divided into two sub-families: the Parvovirinae which infect 

vertebrates and Densovirinae containing viruses which infect arthropods (Cotmore et al., 

2014). The sub-family Parvovirinae contain eight genera and the sub-family Densovirinae 

has five genera (Cotmore et al., 2014). Few members of parvoviruses are accountable for 

many pathogenic diseases in animals and humans (Allander & Andersson, 2012; Delwart & 

Jones, 2014; Steinel et al., 2001). Interestingly, studies on bat faecal and anal swab samples 

reported viral sequences related to those in two sub-families of Parvoviridae (Ge et al., 2012; 

Wu et al., 2015).  

1.2.3 Archaea infecting ssDNA viruses 

1.2.3.1 Spiraviridae 

The family Spiraviridae has recently been established and has one genus, Spiravirus. The 

only assigned species to the Spiravirus is the Aeropyrum coil-shaped virus (ACV). The 

genomic properties and morphology of ACV together with its exceptionally large genome 

size of 24.8 kb makes it a unique virus amongst all ssDNA viruses (Mochizuki et al., 2012). 

ACV has been isolated from an environmental sample of the hyperthermophilic archaea 

Aeropyrum pernix that was collected from Yamagawa hot spring of 104 °C in Japan 

(Mochizuki et al., 2010). It is noteworthy that ACV is the only archaea infecting virus with a 

circular ssDNA genome (Mochizuki et al., 2012). It has a linear, hollow coil-shaped and non-

enveloped particle structure formed from a coiling fibre, which consists of two intertwining 

halves of a single circular nucleoprotein (Mochizuki et al., 2012). There are no reports of 

ACV from any other environmental sample.  

1.2.4 The proposed family Genomoviridae 

The proposed family of Genomoviridae has one proposed genus named gemycircularvirus. 

Members of the proposed genus gemycircularvirus have ~2 kb circular ssDNA genomes 

which are ambisense encoding a capsid protein (CP) in the virion sense and a replication-

associated protein (Rep) in the complementary sense. The Reps of gemycircularviruses share 

similarities with Reps of some geminiviruses and mycovirus-like sequences (Kraberger et al., 
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2015). Of all the previously identified putative gemycirularviruses, only Sclerotinia 

sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) has been associated with a 

known host, Sclerotinia sclerotiorum, inducing hypovirulence (Yu et al., 2010). Interestingly, 

SsHADV-1 is the only ssDNA known to infect fungi (Jiang et al., 2013). Numerous 

metagenomics studies of different environmental samples, various animal tissues and plants 

have identified sequences that share similarities with SsHADV-1 (see Genomoviridae 

proposal at ICTV). To date, there has been no gemycircularvirus identified in bat faeces, 

however, three species have been found in pharyngeal and rectal swabs of insectivores bats 

(Wu et al., 2015). 

1.3 Circular replication associated protein encoding ssDNA viruses  

All ssDNA viruses with circular genomes that encode a well conserved replication-associated 

protein (Rep) are also refer to as circular Rep-encoding ssDNA (CRESS DNA) viruses 

(Rosario et al., 2012a). The three well established families that are part of the CRESS DNA 

viruses are Circoviridae, Geminiviridae and Nanoviridae (Figure 1.1). The proposed family 

Genomoviridae is also part of CRESS DNA viruses (Figure 1.1). In addition to these are 

varieties of CRESS DNA viruses which have been identified from various sources that have 

not been assigned to specific taxons. Various genome organisations have been noted for these 

(Rosario et al., 2012b) and these are summarised in Figure 1.2. 

CRESS DNA viruses replicate through a mechanism known as rolling circle replication 

(RCR) (Gutierrez, 1999; Hanley-Bowdoin et al., 1999; Stenlund, 2003; Timchenko et al., 

1999) as summarised in (Figure 1.3) and as reviewed in Gutierrez (1999) and Rosario et al. 

(2012b). Firstly, the ssDNA genome undergoes a conversion from single-stranded to a 

double-stranded replicative form using the host factors. In the initiation stage, the Rep is 

responsible for initiating replication by recognising and binding to the replicative form close 

to the origin of replication (ori) leading to a partial melt in the dsDNA strand (Gutierrez, 

1999). The Rep then nicks a specific recognition of the conserved nonanucleotide sequence 

(Hafner et al., 1997). The nick creates a primer for leading-strand synthesis on the 3’-OH 

overhangs which then are identified by the host polymerases (Gutierrez, 1999). The 5’ end is 

still covalently attached to the Rep and the elongation stage then proceeds. Through 

replication of the circular molecule, the template ssDNA strand is replaced by the newly 

synthesised ssDNA strand. Lastly, during the termination stage the Rep facilitates the joining 

of the newly synthesized ssDNA strand while the template strand is released and the RCR 

http://talk.ictvonline.org/files/proposals/taxonomy_proposals_fungal1/m/fung04/5727.aspx
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cycle is completed (Hafner et al., 1997; Laufs et al., 1995). It is important to note that the 

overview of RCR is from experimental data collected from studies on the replication of 

geminiviruses (Gutierrez, 1999; Hanley-Bowdoin et al., 1999) and nanoviruses (Hafner et al., 

1997; Timchenko et al., 1999). 

rep

Unknown

cp

ORFs Colour Key

 

Figure 1.2: An illustration showing the eight different genome organisation of CRESS DNA 

molecules. Each illustration shows single or multiple ORFs, ambisense or unisense genome 

arrangement and the positioning of the stem-loop. The arrows represent the direction of the 

ORFs showing whether they read towards the stem-loop, away from the stem-loop, clockwise 

or anti-clockwise. Modified from Rosario et al. (2012b). 
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Figure 1.3: An cartoon illustration summarising rolling circle replication (RCR) of CRESS 
DNA viruses, as modified from Rosario et al. (2012b). Upon entering the host cell nucleus, 
ssDNA is converted to dsDNA replicative form by the host polymerases (step 1). The RCR 
process is then preceded beginning with initiation (step 2) followed by elongation (step 3 and 
4) and ending with termination (Step 5).  
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dsDNA by the host polymerases

2. Rep is expressed and binds 
to the ssDNA introducing a nick 
at the ori. The nick creates a 
primer for leading-strand 
synthesis on the 3’-OH 
overhangs by the host 
polymerases 

4. Original virion strand is displaced  
by a newly synthesized virion strand 

3. Rep remains at the nicked end while 
the new virion strand is synthesized 

5. Original virion stand is released 
and the replication cycle restarts
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1.4 Evolution of CRESS DNA viruses 

1.4.1 Mutation rates 

In general, it has been assumed that RNA viruses evolve at a fast rate compared to DNA 

viruses due to the fact that they are relying on the low fidelity RNA polymerases for 

replication (Domingo, 1994; Duffy et al., 2008; Hanley-Bowdoin et al., 1999; Rojas et al., 

2005). The estimation of nucleotide substitution rate has been used to show that RNA viruses 

evolve faster than DNA viruses. However, numerous studies have shown that CRESS DNA 

viruses have relatively high mutation rates and are evolving at rates similar to RNA viruses 

(De Bruyn et al., 2012; Duffy & Holmes, 2008; Duffy et al., 2008; Firth et al., 2009; Ge et 

al., 2007; Grigoras et al., 2010b; Harkins et al., 2009; Kraberger et al., 2013; Shackelton et 

al., 2005). The overall substitution rates for nearly all RNA viruses fall in the range of 10
-2

 to 

10
-5

 nucleotide substitution per site, per year (subs/site/year), with most RNA viruses having 

rates within one order of magnitude of 1 x 10
-3

 subs/site/year (Duffy et al., 2008). Studies of 

ssDNA viruses have shown high substitution rates, for example Porcine circoviruses type 2 

have an estimated nucleotide substitution rate of 1.2 x 10
-3

 subs/site/year (Firth et al., 2009), 

nanovirus Faba bean necrotic yellows virus (FBNYV) have 1.78 x 10
-3

 subs/site/year 

(Grigoras et al., 2010b) and begomovirus Tomato yellow leaf curl virus with an estimated 

mean rate of 2.88 x 10
-4

 subs/site/year for the full genome (Duffy & Holmes, 2008).  

1.4.2 Recombination  

Recombination facilitates rapid exploitation of sequence space and thus diversity. 

Recombination is the swapping of genetic material from one virus genome/component to 

another when both co-infect the same cell. See Martin et al. (2011a) for a comprehensive 

review of recombination in eukaryotic ssDNA viruses. Evidence of genetic recombination 

have been identified in various CRESS DNA viruses including circoviruses (Csagola et al., 

2006; Heath et al., 2004; Julian et al., 2013; Stenzel et al., 2014), geminiviruses (Amin et al., 

2006; Kraberger et al., 2013; Martin et al., 2011b; Owor et al., 2007; Padidam et al., 1999; 

Saunders et al., 2002; Varsani et al., 2009a; Varsani et al., 2009b) and nanoviruses (Grigoras 

et al., 2014; Hu et al., 2007; Hughes, 2004; Islam et al., 2010; Savory & Ramakrishnan, 

2014; Stainton et al., 2015a; Stainton et al., 2012). Evidence of recombination has been 

found in some CRESS DNA viruses, except nanoviruses, to mostly occur at the interface 

between the CP and the short intergenic region (SIR) and also at the long intergenic region 

(LIR) near the v-ori with lower rates of recombination within the encoding ORFs (Lefeuvre 
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et al., 2009). Targeted studies are required to determine the exact mechanism of 

recombination but one mechanism that is thought to occur is the displacement of a replicating 

strand. This is due to the disruption between the replication enzyme complexes and 

transcription causing premature displacement followed by reattachment to a different 

template strand resulting in a recombinant genome (Martin et al., 2011a).  

1.4.3 Reassortment 

Multi-component viruses such as nanoviruses and geminiviruses are also able to increase 

their genetic diversity through reassortment also known as pseudo-recombination. 

Reassortment is the swapping of whole components within species. The separately packaged 

components are required to be present in one cell in order for reassortment to occur. Evidence 

of reassortment has been identified in a number of studies of geminiviruses (Chen et al., 

2009; Idris & Brown, 2004; Pita et al., 2001) and nanoviruses (Grigoras et al., 2014; Hu et 

al., 2007; Savory & Ramakrishnan, 2014; Stainton et al., 2015a; Stainton et al., 2012; Yu et 

al., 2012). In order to detect reassortment events it is preferable that either full genomes or at 

least more than one component from an isolate is available.   

1.5 Approaches to identifying novel CRESS DNA viruses 

Viral metagenomics is an unbiased approach for identifying viral nucleic acid sequences in 

various biological samples without ‘a priori’ knowledge of the viral types present (Delwart, 

2007; Edwards & Rohwer, 2005). Combined with rolling circle amplification (RCA) using 

Phi29 DNA polymerase for enrichment of circular DNA molecules, metagenomic approaches 

have been used in identifying circular CRESS DNA viruses from a range of sample types. 

Circular DNA genomes have been identified using metagenomics analysis which share 

similarities to the Reps encoded by members of Circoviridae, Geminiviridae and 

Nanoviridae, however, these do not fall within these taxons and therefore represent novel and 

diverse CRESS DNA viruses.  

There are conserved motifs in the Reps of all CRESS DNA viruses (Figure 1.4) and these are 

essential for viral replication through RCR (Rosario et al., 2012b). These conserved motifs 

are divided into two main categories based on roles, the RCR motifs I, II and III and 

superfamily 3 (SF3) helicase motifs known as Walker-A, Walker-B and Motif C, as reviewed 

in Rosario et al. (2012b) (Figure 1.4). The three RCR motifs are thought to be involved in 

recognition and nicking of the DNA for replication as reviewed in Rosario et al. (2012b). 
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Additionally, a conserved motif known as geminivirus Rep sequence (GRS) domain which is 

located downstream of RCR motif II has been identified in geminiviruses and 

gemycircularviruses (Kraberger et al., 2015; Nash et al., 2011; Rosario et al., 2012b).  
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Figure 1.4: A summary of the conserved RCR and SF3 helicase motifs in the replication associated proteins (Reps) of CRESS DNA viruses and 

alphasatellite, as modified from Rosario et al. (2012b).  The conserved residues are shaded, uppercase letters are residues that frequently 

appeared in the analysed sequences and lowercase letters are less frequent residues. If more than four residues were observed in a given position 

then the letter ‘U’ or ‘x’ will be used instead of individual amino acids. ‘U’ represents bulky hydrophobic amino acids and ‘x’ for any type. The 

amino acid numbers that positioned below each motif are derived from representative species of each group, starting from geminivirus to 

alphasatellite are represented by tomato golden mosaic virus (NC_001507), sewage associated gemycircularvirus-3 (KJ547643), porcine 

circovirus 1 (NC_001792), PK5222 cyclovirus (GQ404846), Faba bean necrotic yellows virus (NC_003560) and Ageratum conyzoides 

alphasatellite. Adapted from  (Rosario et al., 2012b). 
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1.6 Next-generation sequencing platforms 

Next-generation sequencing (NGS) or high-throughput sequencing has been used in various 

studies (Metzker, 2010). Specifically, NGS represent a sequence independent sequencing 

technique that allows for sequencing of DNA templates without ‘a priori’ knowledge of a 

DNA sequence (Metzker, 2010). The introduction of NGS technology has made large-scale 

metagenomics analysis more cost effective and importantly, a large number of sequence 

reads can be generated in a short amount of time (Adams et al., 2009; Shendure & Ji, 2008).  

The NGS platforms that are most frequently used in metagenomics studies are Roche 454GS 

FLX and GS Junior, Illumina HiSeq and MiSeq, SOLiD and Ion Torrent. In addition to this 

single molecule sequencing platforms such as nanopore and PacBio are bound to play a 

significant role in future metagenomics. Each platform is different in terms of the chemistry, 

however, all but PacBio and Nanopore require the preparation of a fragmented DNA library 

(Shendure & Ji, 2008). Each platform has its own strengths and weaknesses and with constant 

improvements over the past decade, there is no doubt that sequencing technology will 

continue to advance for the better.  

1.6.1 Roche 454 platform 

The Roche 454 system was one of the first NGS platforms. The system relies on the fact that 

a library of small DNA fragments are ligated to specific adapters that allows for the binding 

of DNA fragment to specific beads, as reviewed in Ansorge (2009), Metzker (2010), 

Shendure and Ji (2008) and van Dijk et al. (2014). Specifically, the DNA fragments that have 

been ligated to oligo adapters are released into an oil emulsion where they bind to 

complementary sequences on the surface of the beads. The beads with the bound DNA 

fragments together with reagents for PCR amplification are individually captured in oil 

emulsion capsules that are subjected to PCR temperature cycling to amplify each DNA 

template. After emulsion PCR, the emulsion capsules are broken and the beads are treated 

with denaturant to wash away untethered nucleic acid leaving the beads for a hybridization-

based enrichment. Primers for sequencing are then added which hybridise to the adapter at a 

specific position and orientation. Pre-incubation of the beads with polymerase and single-

stranded binding protein is followed by these being deposited into a 454 microfabricated 

array of picoliter wells, with only one bead per well. Added to the well are immobilized 

enzymes such as ATP sulfurylase and luciferase that are required for pyrosequencing. A 
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single species of labelled nucleotide is added at a time to each well and if incorporation is 

successful, the pyrophosphate is then released which generate a light signal that is monitored 

live by a fiber-optic bundle. Roche 454 is capable of generating large reads with a maximum 

of ~1000 nts in a short period of time. However, the limitation of this platform is that the 

reagents are costly and have high insertion and deletion error rates in homopolymers repeats 

of identical bases (AAA or CCC) (Ansorge, 2009; Metzker, 2010; Shendure & Ji, 2008).  

1.6.2 Illumina platform 

Illumina system employs clonal or bridge amplification for DNA template preparation and 

sequencing by synthesis (SBS), as reviewed in Anandhakumar et al. (2015), Ansorge (2009), 

Buermans and den Dunnen (2014), Reuter et al. (2015) and Shendure and Ji (2008). The 

DNA library consists of about 300 bp with each end having ligated oligo adapters. The DNA 

fragments are initially denatured from dsDNA into individual ssDNA molecules before being 

loaded onto the flow-cells. Once entering the flow-cell, one end of the oligo adapters is fixed 

to a complementary adapter on the inside surface of the flow cells. A polymerase creates a 

complement of the hybridized fragment then the double-stranded (ds) molecule is denatured 

and the original strand is washed away. Bridge amplification is then proceeded via isothermal 

amplification process, where each ssDNA fragment that is fixed at one end to the surface 

creates a bridge by hybridising the other free end to the complementary adapter on the 

surface forming a ds bridge. The ds bridge is then denatured using formamide forming two 

ssDNA molecules that are attached to the surface of the flow cell and the process is repeated. 

The adapters on the surface of the support are acting as forward and reverse primers for PCR 

amplification and after a few cycles, clusters of approximately 1000 copies of ssDNA 

fragments are created at the surface of the flow-cells. The SBS then occur with the addition 

of a reaction mixture that contains primers, reversible terminator nucleotides for the four 

bases each fluorescently labelled with a different dye and a DNA polymerase. After 

incorporation into the ssDNA strand by the DNA polymerase, two chemical bonds are 

removed from the reversible terminator nucleotide causing the fluorescent label to detach or 

cleave off from the nucleotide base. The releasing of the fluorophore from the nucleotide 

base causes a burst of light that is captured specifically to each four bases. Illumina is 

currently the most widely used NGS platform in metagenomics studies and it is the NGS 

platform that was used in this study. Illumina sequencing platform is cost effective and has a 

low error rate with an average raw error rates of 1-1.5% and high raw base accuracy of 
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>99.5% (Shendure & Ji, 2008). Depending on the Illumina model, the resulting single pair-

end reads range from 2 x 100 bp to 2 x 300 bp. These read lengths, however, are much 

smaller compared to the Roche 454 platform (Buermans & den Dunnen, 2014; Metzker, 

2010; Shendure & Ji, 2008). 

1.6.3 SOLiD platform 

In the SOLiD system, template DNA fragments, primers and PCR reaction components are 

amplified on microbeads by oil emulsion PCR to obtain clonal populations of the DNA 

templates. The recovered beads with the attached clonally amplified DNA fragments are then 

fixed covalently to the surface of a glass slide. Universal primers are then added which are 

complementary to the anchor adapter sequence. Following the annealing of the primer, a set 

of unique fluorophore-tagged probes is added. The fluorescently tagged probes contain 16 

possible di-nucleotides sequences with combinations of two bases and first two positions are 

complementary to the recognition site. DNA ligase ligates the probe that is complementary to 

the universal primer. Following ligation, fluorescence images of all the DNA templates are 

captured and cleavage of the dye with silver ions follows leaving a reactive 5’ phosphate 

group and the cycle is repeated, see (Anandhakumar et al., 2015; Shendure & Ji, 2008; van 

Dijk et al., 2014) for review. Note that SOLiD system sequences each DNA template twice in 

two separate cycles to provide high error correction rate and quality sequencing (Abbasian et 

al., 2015; Anandhakumar et al., 2015; Liu et al., 2012; Metzker, 2010). However, the 

disadvantages of the SOLiD system include long run times and read length of up to 85 bp 

which is very short in comparison with other NSG platforms (Abbasian et al., 2015; Liu et 

al., 2012; Metzker, 2010; Shendure & Ji, 2008). 

1.6.4 Ion torrent 

Ion torrent sequencing platform is quite similar to Roche 454 except that it contains hydrogen 

ions (H
+
) that are released when two nucleotides are incorporated which it is detected using 

an ion sensor, as reviewed in Buermans and den Dunnen (2014), Anandhakumar et al. (2015) 

and Reuter et al. (2015). Specifically, ion torrent contains a semiconductor chip that has 

millions of microwells that can decode the DNA sequence by measuring pH changes that are 

induced by the release of H
+
 upon incorporation of nucleotides onto the new complementary 

DNA strand (Rothberg et al., 2011). The pH changes are detected by an ion sensor at the 

bottom of the microwell which is then converted into a voltage signal that works accordingly 
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to the type and number of nucleotide incorporated (Rothberg et al., 2011). DNA sequencing 

in ion torrent starts with a sample of DNA that is fragmented followed by each fragment 

attaching to its own bead and copied until it covers the whole bead. The beads with the 

attached DNA fragments are incubated in microwells (one bead per well) together with DNA 

polymerase and two type of nucleotides. The DNA polymerase adds complementary 

nucleotide  complementary to the template strand which then followed by releasing of a H
+
 

that activates the ion sensor which converts the voltage signal into base sequences. At the end 

of each cycle, the remaining nucleotides are washed off before the next cycle begins. Note 

that multiple nucleotides will be added in a single cycle if there are repeated bases in the 

template strand meaning that the voltage signal will be stronger depending on the number of 

H
+ 

released. Ion torrent is affordable and the read length can be up to 200-400 bp. The run 

time is 4-8 hrs making sequencing faster compared to other sequencing platforms 

(Anandhakumar et al., 2015; Buermans & den Dunnen, 2014; Liu et al., 2012). However, 

insertions and deletions errors usually occur and also high error rates of homopolymer repeats 

due to addition of multiple nucleotides (Anandhakumar et al., 2015; Liu et al., 2012; 

Rothberg et al., 2011). 

1.6.5 Nanopore technology 

The most significant progress seen in the evolution of NGS platforms is the emerging single-

molecule sequencing approach known as nanopore technology, as reviewed in Bayley (2015) 

and Reuter et al. (2015). The principle of nanopore sequencing is based on the transition of 

DNA or single nucleotides through a small channel, with each sequencing flow well consists 

of many independent micro-wells (Wang et al., 2014). Each micro-well is surrounded by a 

synthetic bilayer of nanopores. The need for a library preparation which is a crucial step in 

other NGS platforms is not required in nanopore technology, with sequencing can be carried 

out with or without shearing of DNA. However, adapters are required, with one adapter 

binding to a motor enzyme and a molecular tether and the other adapter consist of a hairpin 

oligonucleotide that is bound to a second motor protein. During sequencing, the changes in 

the induced electrical current are measured as a molecular motor protein passes the DNA 

strand through the nanopores. The first marketed nanopore technology device released by 

Oxford Nanopore Technologies is the so called MinION (Loman & Watson, 2015). MinION 

is relatively small and works off USB- port. The nanopore technology is portable, and is able 

to generate large read length relatively fast (Bayley, 2015; Reuter et al., 2015), with a single 
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run generating approximately 16,000 total reads in 18 hr with a maximum read lengths of 

>60 kb (Ashton et al., 2015). Unfortunately the error rates of the MinION nanopore 

sequencer are quite high and also high run failure rate; with substitution having error rates of 

5.1%, deletion rates of 7.8% and 4.9% error rates of insertion (Jain et al., 2015). The main 

approach that is being championed to deal with these high error rates is resequencing of the 

DNA using Nanopore sequencing data in conjunction with Illumina data.  

1.6.6 PacBio platform  

Pacific Biosciences (PacBio) platform is another leading NGS platform using a molecule 

sequencing approach (Buermans & den Dunnen, 2014; Niedringhaus et al., 2011; Reuter et 

al., 2015). It works by directly measuring DNA polymerase that incorporated fluorescent 

labelled nucleotides onto a complementary sequencing template. This sequencing platform 

contains highly parallel zero-mode waveguide (ZMW) nanostructures arrays that are packed 

onto a surface of specialised foundation that maintain optical confocal (Niedringhaus et al., 

2011). The DNA polymerases are loaded to the bottom of each ZMW where they can process 

the four phospholinked nucleotides that are fluorescently labelled (Niedringhaus et al., 2011). 

The PacBio instrument can consecutively sequence both the sense and antisense strand of a 

dsDNA fragment by ligating hairpin loops to the ends of the fragments. The main advantages 

of using this technology for sequencing is that the amplification of sequencing fragments is 

not required, the time taken for sequencing is short and the ability to sequence long reads of 

up to 3000 bases (Coupland et al., 2012; Niedringhaus et al., 2011). Moreover, it can used for 

direct sequencing of small DNA molecules without standard library preparation implying that 

1 ng of DNA is sufficient for generating reasonable sequence data (Coupland et al., 2012). 

However, limitations include the inefficient loading of DNA polymerase in ZMWs, 

polymerase degrade in ZMWs, low single-pass accuracy of sequencing and instrument is 

relatively expensive (Niedringhaus et al., 2011). 

1.7 Discovery of novel CRESS DNA viruses  

Viral metagenomic approaches using NGS have led to the discovery of novel circular ssDNA 

viral genomes that share some similarity to the known families Geminiviridae, Nanoviridae, 

Circoviridae, and the recently proposed family Genomoviridae. Before viral metagenomic 

studies became technologically feasible in the last decade, only a few studies were able to 

identify CRESS DNA viruses. Since then, with cost effective metagenomics sequencing 
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platforms, there has been an explosion of interest in CRESS DNA viruses. Metagenomic 

studies have enabled the identification of novel CRESS DNA viruses in various 

environmental samples including faecal matter, air, invertebrates, sewage, soil and water. 

Environmental sampling enables the exploration of greater viral sequence space, revealing a 

complex array of viruses that are interacting with the environment. Metagenomic studies 

have shown that the viral diversity of CRESS DNA viruses is grossly underestimated. 

1.7.1 CRESS DNA viruses identified from environmental samples 

1.7.1.1 Faecal matter 

Sampling faecal matter of animals not only allows for the identification of viruses that are 

associated with the animal itself and their diet but also those infecting organisms such as 

bacteria, fungi and invertebrates that are present in the faecal matters at time of sampling 

(Delwart & Li, 2012). Faecal sampling is also non-invasive to the animal hence it can be 

easily used for viral surveillance in ecosystems. Novel CRESS DNA viruses have been 

identified in various metagenomics studies of faecal matter sampled from humans 

(Castrignano et al., 2013; Garigliany et al., 2014; Li et al., 2010a; Ng et al., 2015; Phan et al., 

2015; Victoria et al., 2009) and various animals (Blinkova et al., 2010; Cheung et al., 2015; 

Cheung et al., 2014a; b; Cheung et al., 2013; Garigliany et al., 2014; Ge et al., 2011; Ge et 

al., 2012; Hanna et al., 2015; Hansen et al., 2015; Kim et al., 2012; Li et al., 2010a; Li et al., 

2010b; Li et al., 2015; Lima et al., 2015; Ng et al., 2014; Phan et al., 2011; Reuter et al., 

2014; Sachsenroder et al., 2014; Sachsenroder et al., 2012; Sasaki et al., 2015; Shan et al., 

2011; Sikorski et al., 2013; van den Brand et al., 2012; van Doorn et al., 2013; Woo et al., 

2014; Zhang et al., 2014). In particular, novel CRESS DNA viruses have been identified in 

faeces of various bat species from a number of countries (Ge et al., 2011; Ge et al., 2012; Li 

et al., 2010a; Lima et al., 2015). Whether the CRESS DNA viruses recovered from bat faeces 

contains viruses shed by the infected bat or those that are associated with its diet and the 

environment, remains unknown. 

1.7.1.2 Air  

Airborne viruses that cause diseases have continued to be a key research focus however, the 

diversity of CRESS DNA viruses circulating in the air in general still remains unknown. To 

date, the only metagenomics study that have successfully identified CRESS DNA viruses in 

air samples, was collected from three different types of land use in Korea, a residential 
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district, a forest and an industrial complex (Whon et al., 2012). Using a Roche 454 platform, 

the resulting sequences identified were mostly CRESS DNA viruses with geminivirus-like 

and gemycircularvirus-like sequences being the most abundant (Whon et al., 2012). The main 

challenges of carrying out metagenomic studies of airborne viruses is the low concentration 

of viral particles in the air and lack of standardised air sampling protocols (Behzad et al., 

2015; Womack et al., 2010).  

1.7.1.3 Aquatic environments 

CRESS DNA viruses have been identified in various aquatic environments, both marine and 

fresh water. A study that sampled the coastal waters of British Columbia, the Gulf of Mexico 

and Saanich Inlet identified a large number of highly divergent marine CRESS DNA viruses 

(Labonte & Suttle, 2013). CRESS DNA viruses have been identified from Antarctic, Arctic 

freshwater and other freshwater lakes (de Cárcer et al., 2015; Lopez-Bueno et al., 2009; Roux 

et al., 2012; Zawar-Reza et al., 2014; Zhong et al., 2015). Moreover, CRESS DNA viruses 

have also been identified in reclaimed water, ballast water, rainwater, lagoon wastewater and 

perennial ponds (Alhamlan et al., 2013; Fancello et al., 2013; Kim et al., 2015; Rosario et al., 

2009; Whon et al., 2012).  

1.7.1.4 Invertebrates 

Eukaryotic CRESS DNA viruses initially known to only infect plants and animals but since 

2011, various metagenomics studies have also identified these viruses in numerous terrestrial 

and aquatic invertebrates. CRESS DNA viruses have been identified to be associated with 

odonata (both adults and larvae) which are top-end insect predators and thus may accumulate 

CRESS DNA viruses from insect prey, (Dayaram et al., 2014; Dayaram et al., 2013b; 

Dayaram et al., 2015b; Rosario et al., 2012a; Rosario et al., 2011; Rosario et al., 2013). 

Various CRESS DNA viruses have also being identified in other insects including 

mosquitoes, whiteflies, ticks and cockroaches (Garigliany et al., 2015; Ng et al., 2011a; Ng et 

al., 2011c; Padilla-Rodriguez et al., 2013; Xia et al., 2015). Recent studies have explored the 

diversity of CRESS DNA viruses in a variety of aquatic invertebrates, predominantly 

crustaceans (Rosario et al., 2015) and also in Daphnia spp., marine copepods, Florida 

estuarine mollusc species, shrimp and Forbes sea star (Dayaram et al., 2015a; Dayaram et al., 

2013a; Dunlap et al., 2013; Fahsbender et al., 2015; Hewson et al., 2013; Ng et al., 2013). 
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1.7.1.5 Sewage  

Sampling both treated and untreated sewage systems is an ideal way of studying the diversity 

of viruses such as those that infect the environmental microbes which are associated with 

faecal matters and those that infect humans (Blinkova et al., 2009; Cantalupo et al., 2011; Ng 

et al., 2012; Parsley et al., 2010; Phan et al., 2015; Symonds et al., 2009; Tamaki et al., 

2012). CRESS DNA viruses have been identified in untreated sewage samples and sewage 

oxidation pond (Blinkova et al., 2009; Cantalupo et al., 2011; Kraberger et al., 2015; Ng et 

al., 2012; Phan et al., 2015).  

1.7.1.6 Soil and sediments 

The knowledge on the viruses circulating in soil is rather limited. A study on soil from rice 

paddy in Korea (Kim et al., 2008) identified novel CRESS DNA viruses and recently 

reported that agricultural soil contain diverse CRESS DNA viruses (Reavy et al., 2015). 

Sequence reads obtaining from deep-sea sediments were related to some members of CRESS 

DNA viruses but distinct from those in marines and freshwaters environments (Yoshida et 

al., 2013).  

1.8 Aims and objectives of this thesis research 

1.8.1 Knowledge of viruses circulating in the Tongan archipelago 

Previous studies on viruses in Tonga have been biased toward agricultural pathogens of 

economically important crops (Davis et al., 2006; Davis & Ruabete, 2010; Kenyon et al., 

2008; Pearson & Pone, 1988; Stainton et al., 2015a; Stainton et al., 2012; Stainton et al., 

2015b). Others have mainly focused on viruses associated with human health (Chen & 

Maguire, 1990; Gubler et al., 1978; Han et al., 2014; Nelson et al., 2014; Ushijima et al., 

1990; Wainwright et al., 1986). Very little is known about the diversity of CRESS DNA 

viruses circulating in Tonga and to date only a handful of these have been identified. These 

include a nanovirus (Banana bunchy top virus) (Rosario et al., 2012a; Stainton et al., 2015a; 

Stainton et al., 2016) which infects bananas, a cyclovirus (Dragonfly cyclovirus - 1) 

recovered from Diplacodes bipunctata, Pantala flavescens, Tholymis tillarga (Rosario & 

Breitbart, 2011; Rosario et al., 2012a), two gemycircularviruses (Poaceae-associated 

gemycircularvirus - 1 recovered from Brachiaria deflexa and Saccharum hybrid (Male et al., 

2015; Rosario et al., 2012a) and two unclassified CRESS DNA viruses (Dragonfly 
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circularisvirus from P. flavescens and Dragonfly orbiculatusvirus from D. bipunctata) 

(Rosario et al., 2012a).  

As part of this master thesis research, a viral metagenomics study was undertaken on the 

faecal matter of Pacific flying fox (Pteropus tonganus) with an aim to identify novel CRESS 

DNA viruses. Sampling animal faecal matter is non-invasive and previous studies have 

demonstrated that sampling animal faecal matter, including those of bats, contains a high 

diversity of viruses. To date, nothing is known about viruses associated with bats in the South 

Pacific. Bats, mammals of the order Chiroptera, in general are recognized as natural hosts and 

perhaps reservoirs of a large variety of both RNA and DNA viruses (~200 viruses of 27 

families) (Calisher et al., 2006), some of these viruses are responsible for emerging infectious 

diseases (Moratelli & Calisher, 2015; Smith & Wang, 2013). Zoonotic viruses like Ebola, 

Marburg, Nipah, Hendra, Rabies and coronaviruses have all been detected in bats (Brook & 

Dobson, 2015; Calisher et al., 2006; Han et al., 2015; Omatsu et al., 2007; Plowright et al., 

2015; Wong et al., 2007).  

1.8.2 Bats as reservoir hosts of viruses 

It has been speculated that bats have a high capacity for acting as reservoir hosts for zoonotic 

diseases (Brook & Dobson, 2015; Calisher et al., 2006; Dobson, 2005). Reasons for this 

include bat specific tendencies/ecology such as, the social nature of bats with many 

individuals roosting together, long lifespans (with one species of bat living up to 35years), 

and potentially early co-speciation of bats and some zoonotic viruses as both have ancient 

evolutionary origins as reviewed in Calisher et al. (2006). Flight is also important in the 

spread of viruses, with many species able to fly long distances and potentially spread viruses 

between bat species (Calisher et al., 2006). Flying also limits the amount of food bats can 

ingest at one time, therefore bats chew fruit to extract the high energy nutrients and discard 

the heavy partially digested fruit. These feeding habits of bats may also play a role in viral 

outbreaks (Dobson, 2005). The discarded fruits, which contain bat saliva, have been observed 

in the vicinity of a number of viral outbreaks (Chua et al., 2002). Bats are often found in 

close proximity to humans and are also hunted and eaten in some regions as bush meat 

(Kamins et al., 2011; Struebig et al., 2007). Deforestation causes bat colonies to migrate 

closer to areas populated by humans in search of food and roosting sites as well as human 

mining in caves, increased the potential contact between bats and humans(Smith & Wang, 

2013). Transmission events from bats to humans and other animals is generally via direct 
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contact through bites, handling or being eaten and indirect contacts in the form of aerosol, 

urine or faeces (Baker et al., 2013; Han et al., 2015; Smith & Wang, 2013; Wu et al., 2015).  

1.8.2.1 Pacific flying fox (Pteropus tonganus) 

The bat species Pteropus tonganus (Family: Pteropodidae) also known as Pacific flying foxes 

of the genus Pteropus are frugivores found on small tropical islands (Pierson & Rainey, 

1992). P. tonganus is the most widespread flying fox in the Pacific and are widely distributed 

throughout the South Pacific islands including Papua New Guinea, Solomon Islands, 

Vanuatu, New Caledonia, Fiji, Samoa, American Samoa, Niue, Cook Islands and Tonga 

(Pierson & Rainey, 1992). Few observations reported that flying foxes can fly between 

islands depending on the availability of food (McConkey & Drake, 2007; McConkey et al., 

2004; Pierson & Rainey, 1992; Rinke, 1991). There are many other species in the genus 

Pteropus, however, P. tonganus is the only species found in the Kingdom of Tonga (Miller & 

Wilson, 1997).  

P. tonganus can live for ~30 years and they roost on trees as shown in Figure 1.5. They 

commonly feed on fruits, leaves and nectar for which they play a crucial role in pollination 

and seed dispersal (Banack, 1998; Nelson et al., 2005; Pierson & Rainey, 1992). Pacific 

flying foxes were once considered agricultural pests because they feed on economically 

important fruits (Wiles & Payne, 1986). Interestingly, the damage caused to fruit crops by 

flying foxes resulted in the intentional introduction of avian cholera into Samoa to eradicate 

bats and various other birds (Spennemann & Gary, 2002).  

In Tonga, Pacific flying foxes hold cultural values and are protected by the Tongan royal 

family from human exploitation but in other Pacific islands they can be freely hunted (Wiles 

& Fujita, 1992; Wiles & Payne, 1986). In some Pacific islands, Pacific flying foxes are 

considered an important traditional food and are commonly consumed (Wiles & Payne, 

1986). However, although flying foxes are not a traditional food and are protected in Tonga, 

there are still incidences of bats being killed and eaten for bush meat which increases the risk 

of encountering diseases from bats. The majority of the roosting sites of P.tonganus in Tonga 

are located within the villages where they are protected and only few roosting sites are 

located in the push areas. Pacific flying foxes are found in groups with thousands of bats 

roosting together, with numbers likely higher in Tonga due to their protected status. This 
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A 

gregarious lifestyle of Pacific flying foxes could potentially amplify viruses in natural 

settings.  

Bats are natural hosts for a wide range of viruses and to date, no baseline analyses of the 

ssDNA viruses of Pacific flying foxes faeces in Tonga has been carried out. As Tonga is my 

home country, I was interested in the continuing effort of expanding the diversity of CRESS 

DNA viruses in Tonga. 

 

 

 

 

 

 

 

 

 

Figure 1.5: Two Pacific flying foxes roosting in a tree (A), part of a larger roosting site 

located at Lapaha (Takuilau) in Tongatapu, Tonga (B). 
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1.8.3 Specific aims of this study 

Using a viral metagenomics approach, this study aimed to  

1. Identify CRESS DNA viruses associated with P. tonganus  faecal matter 

2. Determine whether there are differences in CRESS DNA viral assemblages at four P. 

tonganus  roosting sites on Tongatapu, the main island of Tonga 

3. Determine whether any CRESS DNA viruses are persistently associated with P. 

tonganus  faeces 

4. Given that P. tonganus  are frugivores, identify putative plant-infecting viruses 

circulating in Tonga via faecal sampling 
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2.1 Abstract 

Viral metagenomic studies have demonstrated that animal faeces can be a good sampling 

source for exploring viral diversity associated with the host and its environment. As part of a 

continuing effort to identify novel circular replication-associated protein encoding single-

stranded (CRESS) DNA viruses circulating in the Tongan archipelago, coupled with the fact 

that bats are a reservoir species of a large number of viruses, I used a metagenomic approach 

to investigate the CRESS DNA virus diversity in Pacific flying fox (Pteropus tonganus) 

faeces. Faecal matter from four roosting sites located in Ha’avakatolo, Kolovai, Ha’ateiho 

(‘Atele) and Lapaha (Takuilau) on Tongatapu Island was collected in April 2014 and January 

2015. From these samples I identified five novel cycloviruses representing three putative 

species, 25 gemycircularviruses representing at least 14 putative species, 17 other CRESS 

DNA viruses (15 putative species), two circular DNA molecules and a putative novel multi-

component virus for which I have identified three cognate molecules. This study 

demonstrates that there exists a large diversity of CRESS DNA viruses in Pacific flying fox 

faeces.  
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2.2 Introduction 

Viral metagenomic studies using next generation sequencing have shown that small circular 

single-stranded DNA (ssDNA) viruses are ubiquitous in nature. A large number of viruses 

have been identified that share some similarity to proteins encoded by eukaryote-infecting 

ssDNA viruses in the Circoviridae, Geminiviridae and Nanoviridae families. Members of the 

genus Circovirus in the Circoviridae family have small genomes of ~2kb and are known to 

infect various birds, mammals and fish (King et al., 2011; Lorincz et al., 2011). The majority 

of circovirus infections do not appear to cause obvious disease symptoms, however, Porcine 

circovirus -2 and Beak and feather disease virus (BFDV) cause post weaning multisystemic 

wasting syndrome and psittacine beak and feather disease, respectively (Morozov et al., 

1998; Ritchie et al., 1989). Members of the Geminiviridae and Nanoviridae families infect 

plants causing major crop losses throughout the world and are vectored by aphids, 

leafhoppers, plant hoppers, tree hoppers and whiteflies (King et al., 2011). Most members of 

the Geminiviridae family have ~2.5 - 3kb monopartite genomes, however, some members of 

the Begomovirus genus have bipartite genomes made up of two components (each ~2.5kb) 

(King et al., 2011; Varsani et al., 2014b). Monopartite begomoviruses are often associated 

with satellite DNA molecules known as alphasatellites and betasatellites, which can affect 

pathogenicity and symptomology in the host (Zhou, 2013). Members of the Nanoviridae 

family have multi-component (6-8) genomes, each component is ~1kb and encodes a single 

protein and each component is packaged into an individual virion (King et al., 2011). 

Circoviruses, nanoviruses, geminiviruses and their associated alphasatellites molecules, all 

encode a replication-associated protein (Rep) which is essential for initiating rolling circle 

replication (RCR). Conserved motifs within the Rep are important domains for CRESS 

viruses and molecules to replicate through RCR (Rosario et al., 2012c). These conserved 

motifs are divided into two main categories based on their roles, the RCR motifs I, II and III 

and the superfamily 3 (SF3) helicase motifs known as Walker-A, Walker-B and motif C as 

reviewed in Rosario et al. (2012c). Additionally, a conserved motif known as geminivirus 

Rep sequence (GRS) which is located downstream of RCR motif II has been identified in 

geminiviruses (Nash et al., 2011). Over the last decade, a large number of novel eukaryotic 

circular Rep-encoding ssDNA (CRESS DNA) viruses and molecules have been identified 

whose Reps contain the conserved RCR and SF3 helicase motifs (similar to those of 

circoviruses, geminiviruses and nanoviruses). The eukaryotic CRESS DNA viruses have been 
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identified in various environmental samples, including sea water, deep-sea vents and marine 

organisms, soil, aquifers, fresh water lakes, Antarctic lakes and ponds, hot springs, 

wastewater and near surface atmosphere (Breitbart et al., 2015; Dayaram et al., 2015a; 

Diemer & Stedman, 2012; Dunlap et al., 2013; Fahsbender et al., 2015; Hewson et al., 

2013a; Hewson et al., 2013b; Kim et al., 2008; Kraberger et al., 2015a; Labonte & Suttle, 

2013; Ng et al., 2012; Ng et al., 2013; Phan et al., 2015; Reavy et al., 2015; Rosario et al., 

2009; Rosario et al., 2015; Roux et al., 2013; Roux et al., 2012; Smith et al., 2013; Soffer et 

al., 2014; Whon et al., 2012; Yoshida et al., 2013; Zawar-Reza et al., 2014). Additionally, 

CRESS DNA viruses have been identified from various insects and plant material (Basso et 

al., 2015; Dayaram et al., 2014; Dayaram et al., 2012; Dayaram et al., 2013; Dayaram et al., 

2015b; Du et al., 2014; Garigliany et al., 2015; Kraberger et al., 2015b; Male et al., 2015; Ng 

et al., 2011; Padilla-Rodriguez et al., 2013; Pham et al., 2013; Rosario et al., 2012a; Rosario 

et al., 2011).  

Since faecal samples reflect the presence of viruses associated with a given organism, their 

diet and/or its surrounding environment, it has proved to be a useful non-invasive approach 

for surveying CRESS DNA viruses in an ecosystem. Faecal samples from various animals 

has revealed a large diversity of CRESS DNA viruses (Blinkova et al., 2010; Breitbart et al., 

2015; Castrignano et al., 2013; Cheung et al., 2014a; b; Cheung et al., 2013; Cheung et al., 

2015; Conceicao-Neto et al., 2015; Delwart & Li, 2012; Ge et al., 2012; Hansen et al., 2015; 

He et al., 2013; Kim et al., 2012; Kraberger et al., 2015a; Li et al., 2015a; Li et al., 2010a; Li 

et al., 2010b; Li et al., 2011; Li et al., 2015b; Lima et al., 2015; Ng et al., 2014; Ng et al., 

2012; Phan et al., 2015; Reuter et al., 2014; Sachsenroder et al., 2012; Sasaki et al., 2015; 

Shan et al., 2011; Sikorski et al., 2013a; Sikorski et al., 2013b; van den Brand et al., 2012; 

Varsani et al., 2014a; Varsani et al., 2015; Woo et al., 2014; Wu et al., 2012; Wu et al., 

2015; Zhang et al., 2014).  

The majority of these novel eukaryotic CRESS DNA viruses cannot be classified within the 

existing viral taxonomy frame work of Circoviridae, Geminiviridae and Nanoviridae due to 

the fact that they are highly diverse, have different genome organisations and most important 

of all, their hosts are unknown. Nonetheless, groupings within these novel CRESS DNA 

viruses are beginning to emerge as viral databases are being populated with more sequence 

data. Of these, the two notable ones are the groups cyclovirus proposed by Li et al. (2010b) 

and gemycircularvirus proposed by Rosario et al. (2012a).  
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Li et al. (2010b) proposed a genus cyclovirus within the Circoviridae family to accommodate 

cycloviruses which encode two major ORFs, Rep and capsid protein (CP), in an ambisense 

organisation. The Reps of cycloviruses are most closely related to those of circoviruses. 

However, unlike circoviruses, the cp of cycloviruses is present in the virion sense and the rep 

is on the complementary sense. Cycloviruses also contain a long intergenic region (LIR) 

between the start codons and either no IR or a shorter IR than circoviruses between the stop 

codons of the Rep and the CP (Delwart & Li, 2012; Rosario et al., 2012c). Cycloviruses have 

mainly been identified to be associated with bats, wild animal faeces, farm animals meat 

products, insects, human cerebrospinal fluid, respiratory secretion, serum and faeces, rodent 

intestinal content and equine nasal secretions (Dayaram et al., 2013; Garigliany et al., 2014; 

Ge et al., 2011; Li et al., 2015a; Li et al., 2010a; Li et al., 2010b; Li et al., 2011; Lima et al., 

2015; Padilla-Rodriguez et al., 2013; Phan et al., 2014; Phan et al., 2015; Rosario et al., 

2012a; Rosario et al., 2011; Sasaki et al., 2015; Sato et al., 2015; Smits et al., 2013; Tan et 

al., 2013; Wu et al., 2015; Zhang et al., 2014). 

The group gemycircularvirus was proposed by Rosario et al. (2012a) and these viruses have 

~2.2 kb ambisense genomes encoding a cp in the virion sense and a rep in the complementary 

sense. The Reps of gemycircularviruses are most similar to those of geminiviruses and have a 

GRS domain (Dayaram et al., 2012). Of all the identified gemycircularviruses, only 

Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) has been 

associated with a known host, Sclerotinia sclerotiorum, inducing hypovirulence (Yu et al., 

2010). Gemycircularviruses have been recovered from various animal faeces, cattle and rat 

serum, bird buccal and cloacal swab, bat pharyngeal and anal swab, human faeces, blood, 

cervix and cerebrospinal fluid, treated and raw sewage, insects, river sediments and plant 

material (Conceicao-Neto et al., 2015; Dayaram et al., 2012; Dayaram et al., 2015b; Du et 

al., 2014; Hanna et al., 2015; Kraberger et al., 2015a; Kraberger et al., 2015b; Kraberger et 

al., 2013; Lamberto et al., 2014; Li et al., 2015b; Male et al., 2015; Ng et al., 2014; Ng et al., 

2011; Phan et al., 2015; Rosario et al., 2012a; Sikorski et al., 2013b; van den Brand et al., 

2012; Wu et al., 2015).  

Very little is known about CRESS DNA viruses circulating in the Tongan archipelago and to 

date only a handful of these have been identified. These include a nanovirus (Banana bunchy 

top virus) (Stainton et al., 2012; Stainton et al., 2016; Stainton et al., 2015), a cyclovirus 

(Dragonfly cyclovirus - 1), two gemycircularviruses (Dragonfly associated circular virus – 3 
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and Poaceae associated gemycircularvirus - 1) (Male et al., 2015; Rosario et al., 2012b) and 

two unclassified CRESS DNA viruses (Dragonfly circularisvirus and Dragonfly 

orbiculatusvirus) (Rosario et al., 2012a; Rosario et al., 2011). Hence I decided to explore the 

diversity of CRESS associated with Pacific flying foxes (Pteropus tonganus) faecal matter as 

part of this study. Pacific flying foxes are fruit-eating bats and found throughout the Pacific. 

It is the only bat species found in the Tongan archipelago (Miller & Wilson, 1997). Pacific 

flying foxes roost in trees and can live up to 30 years. They feed on fruits, leaves and nectar 

and play a crucial role in pollination and seed dispersal (Banack, 1998; Nelson et al., 2005; 

Pierson & Rainey, 1992).  

Bats are recognised as natural hosts and perhaps reservoirs of a large diversity of both RNA 

and DNA viruses (~200 viruses of 27 families) (Calisher et al., 2006), some of these viruses 

are responsible for emerging infectious and zoonotic viruses (Brook & Dobson, 2015; 

Calisher et al., 2006; Han et al., 2015; Moratelli & Calisher, 2015; Omatsu et al., 2007; 

Plowright et al., 2015; Smith & Wang, 2013; Wong et al., 2007). Thus it is not surprising that 

a significant number of CRESS DNA viruses including circoviruses (n=8), cyloviruses 

(n=18), gemycircularviruses (n=3), and unclassified viruses (n=22) have been previously 

recovered from bats (Table 2.1).  

In this study, I report the identification of five cycloviruses, 25 gemycircularviruses, 17 

unclassified CRESS DNA viruses, two circular DNA molecules and a putative novel multi-

component virus from the faeces of Pacific flying fox roosting in Tongatapu, the main island 

of the Tongan archipelago.  



 

 

        Table 2.1: A summary of all CRESS DNA viruses previously identified associated with bats. 

CRESS DNA grouping Accession Description Country Bat species Bat diet Isolation source Reference 

Cyclovirus JF938079 YN-BtCV-2 China Myotis spp. Fruit and insects Faeces Ge et al., 2011 
 JF938080 YN-BtCV-3 China Myotis spp. Fruit and insects Faeces Ge et al., 2011 
 JF938081 YN-BtCV-4 China Myotis spp. Fruit and insects Faeces Ge et al., 2011 
 JF938082 YN-BtCV-5 China Myotis spp. Fruit and insects Faeces Ge et al., 2011 
 JN377566 Cyclovirus ZS China Myotis spp. Fruit and insects Faeces Ge et al., 2011 
 HM228874 GF-4c USA Antrozous pallidus  Insects Faeces Li et al., 2010a 
 HQ738637 BaCyV-1 USA Tadarida brasiliensis Insects Muscle Li et al., 2011 
 KJ641710 BtMbly-CyV/GS2013 China Myotis blythii Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641712 BtRp-CyV-3/GD2012 China Rhinolophus pusillus Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641714 BtRp-CyV-14/GD2012 China Rhinolophus pusillus Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641715 BtRp-CyV-52/GD2012 China Rhinolophus pusillus Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641717 BtMspp.-CyV/GD2012 China Myotis spp. Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641720 BtTp-CyV-2/GX2012 China Tylonycteris pachypus Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641728 BtPa-CV-2/NX2013 China Plecotus auritus Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641734 BtVS-CyV/SC2013 China Vespertilio superans Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641740 BtRf-CyV-24/YN2010 China Rhinolophus ferrumequinum Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KM382269 Bat cyclovirus POA/2012/II Brazil Molossus molossus, Tadarida brasiliensis Insects Faeces Lima et al.,2015 
 KM382270 Bat cyclovirus POA/2012/VI Brazil Molossus molossus, Tadarida brasiliensis Insects Faeces Lima et al.,2015 

Circovirus JQ814849 RfCV-1 China Rhinolophus ferrumequinum Insects Pharyngeal & rectal swabs Wu et al., 2012 
 JX863737 BtCV XOR1 Myanmar Rhinolophus ferrumequinum Insects Stomach contents He et al., 2013 
 KC339249 BtCV XOR7 Myanmar Rhinolophus ferrumequinum Insects Stomach contents He et al., 2013 
 KJ641711 BtMr-CV/GD2012 China Myotis ricketti Fish & water beetles Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641716 BtPspp.-CV/GD2012 China Pipistrellus sp. Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641723 BtRs-CV/HuB2013 China Rhinolophus sinicus Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641724 BtRa-CV/JS2013 China Rhinolophus affinis Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641727 BtPa-CV-1/NX2013 China Plecotus auritus Insects Pharyngeal & rectal swabs Wu et al.,2015 

Gemycircularvirus KJ641719 BtMf-CV-23/GD2012 China Miniopterus fuliginosus Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641726 BtRf-CV-8/NM2013 China Rhinolophus ferrumequinum Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641737 BtRh-CV-6/Tibet2013 China Rhinolophus hipposideros Insects Pharyngeal & rectal swabs Wu et al.,2015 

Unclassified JF938078 YN-BtCV-1 China Myotis spp. Fruit and insects Faeces Ge et al., 2011 
 JN377562 Bat circovirus ZS - 00036  China Myotis spp. Fruit and insects Faeces Ge et al., 2011 
 JN377580 Bat circovirus ZS - 00813 China Myotis spp. Fruit and insects Faeces Ge et al., 2011 
 JN857329 BTCV-SC703  China Insectivorous bat Insects  Faeces Ge et al., 2012 
 KJ641713 BtRp-CV-6/GD2012 China Rhinolophus pusillus Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641718 BtMf-CV-1/GD2012 China Miniopterus fuliginosus Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641721 BtTp-CV-3/GX2012 China Tylonycteris pachypus Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641722 BtMf-CV/HeN2013 China Miniopterus fuliginosus Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641725 BtRf-CV-1/NM2013 China Rhinolophus ferrumequinum Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641729 BtPa-CV-3/NX2013 China Plecotus auritus Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641730 BtMl-CV/QH2013 China Murina leucogaster Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641731 BtRp-CV/SD2013 China Rhinolophus pusillus Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641732 BtRf-CV/SX2013 China Rhinolophus ferrumequinum Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641733 BtMf-CV/SAX2011 China Miniopterus fuliginosus Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641735 BtRh-CV-1/Tibet2013 China Rhinolophus hipposideros Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641736 BtRh-CV-5/Tibet2013 China Rhinolophus hipposideros Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641738 BtRh-CV-7/Tibet2013 China Rhinolophus hipposideros Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641739 BtRf-CV-1/YN2010 China Rhinolophus ferrumequinum Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641741 BtRf-CV-61/YN2010 China Rhinolophus ferrumequinum Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KJ641742 BtRf-CV-62/YN2010 China Rhinolophus ferrumequinum Insects Pharyngeal & rectal swabs Wu et al.,2015 
 KM382271 Bat circovirus POA/2012/I Brazil Molossus molossus, Tadarida brasiliensis Insects Faeces Lima et al.,2015 
 KM382272 Bat circovirus POA/2012/V Brazil Molossus molossus, Tadarida brasiliensis Insects Faeces Lima et al.,2015 

   5
5
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2.3 Materials and methods 

2.3.1 Sample collection and viral DNA isolation 

Fresh faecal samples of P. tonganus were collected from four bat roosting sites (Ha’ateiho 

(‘Atele), Lapaha (Takuilau), Ha’avakatolo and Kolovai) located on the main Island 

(Tongatapu) of the pacific archipelago of Tonga in April 2014 and January 2015 (Figure 2.1). 

Samples were stored at -20°C prior to processing. Samples (~5-10 g) were subsequently 

thawed, resuspended in 45 ml of SM Buffer (50 mM Tris·HCl, 10 mM MgSO4, 0.1 M NaCl, 

pH 7.5) by vigorous shaking. The homogenates from each sample were filtered sequentially 

through 0.45 μm and 0.2 μm syringe filters. The filtrate was precipitated overnight with 15% 

(w/v) PEG 8000 at 4°C and centrifuged at 14,800g for 10 min. The pellet was resuspended in 

1 ml of SM buffer and 200 μl of this was used for viral nucleic acid extraction using the High 

Pure Viral Nucleic Acid Kit (Roche Diagnostics, USA). Circular viral DNA was enriched by 

rolling circle amplification using TempliPhi (GE Healthcare, USA).  

  



57 
 

 

Figure 2.1: A. Pacific flying fox faeces sampling sites on Tongatapu Island, Tonga. B. 
Summary of viruses recovered from various sites and sampling periods. Numbers in filled 
coloured circles indicate the number of isolates of the CRESS DNA virus / molecules from 
each site.  
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2.3.2 Sequencing and recovery of complete viral genomes  

The enriched DNA was sequenced at Beijing Genomics Institute (Hong Kong) on an Illumina 

HiSeq 2000 sequencer (Illumina, USA). The paired-end reads were de novo assembled using 

ABySS 1.5.2. with a k-mer setting of 64 (Simpson et al., 2009) and the resulting >500 nt 

contigs were analysed using BLASTx (Altschul et al., 1990) against a viral protein database.  

For contigs with hits to proteins encoded by CRESS DNA viruses, abutting primers (Table 

2.2) were designed to recover the complete circular DNA molecules by polymerase chain 

reaction (PCR) using KAPA Hotstart HiFi DNA polymerase (Kapa Biosystems, USA). The 

resulting PCR amplicons were gel purified, ligated into pJET1.2 plasmid vector (Thermo 

Fisher Scientific, USA), and the recombinant plasmids were Sanger sequenced using primer 

walking at Macrogen Inc. (Korea). The Sanger sequence reads were assembled using DNA 

Baser V4 (Heracle Biosoft S.R.L. Romania).  

2.3.3 Sequence analyses  

Putative CP and Rep ORFs were identified using ORF Finder coupled with BLASTx 

(Altschul et al., 1990) analysis. Pairwise similarity comparisons of nucleotide and protein 

sequences were carried out using SDT v1.2 (Muhire et al., 2014). Sequences of cycloviruses 

and gemycircularviruses were downloaded from GenBank on the 1
st
 of October 2015. The 

Reps and CPs encoded by these together with those from viral genomes identified in this 

study were aligned using PROMALS3D (Pie et al., 2008). These alignments were used to 

infer maximum-likelihood phylogenetic trees using PHYML (Guindon et al., 2010) and best 

fit substitution models determined using ProtTest (Abascal et al., 2005) (cycloviruses – Rep: 

LG+I+G, CP: Blosum62+G+F; gemycircularviruses – Rep: LG+G+I, CP: LG+G+I) with 

approximate likelihood branch support (aLRT). Branches with less than 80% support were 

collapsed.  

  

http://www.ncbi.nlm.nih.gov/gorf/gorf.html


59 

 

Table 2.2: Sequences of forward and reverse back-to-back primers used to recover complete 

genomes of CRESS DNA viruses and circular DNA molecules in this study. 

Sequence ID Forward Reverse 

PfffaCyV-1 5'-GGTACTGATGACCAAAATCGCGACTAC-3' 5'-CTTTGCTCCTTCCAGGTGAGCCCTAC-3' 

PfffaCyV-2 5'-CTCGAGAAATGGTGGGAGGAAGTGG-3' 5'-CCGTATTAAACCGTATAGCTCGTCCG-3' 

PfffaCyV-3 5'-GAGAGCGAGACTTTAAGACCGAAGTG-3' 5'-CACTTCCATGAGCGATTCGTATGTACTG-3' 

PfffaGmV-1 5'-CTGGCGTTGGAGATGTGTATGTCTATG-3' 5'-GCTTTCCATCCGTAGAAGTGTAGAATCC-3' 

PfffaGmV-2 5'-GTCATATCTACTGCATTGGGCTAGTCTCG-3' 5'-GTCCTAGGGAACGAGCCCACAAG-3' 

PfffaGmV-3 5'-GAAGTACAAGCATTGGCATGCCATGG-3' 5'-CGAATGGAGCCATCGTCATTCCC-3' 

PfffaGmV-4 5'-CGGAGGCTAAGTATGCTGTCTTCGAC-3' 5'-GCGCATCACGCAGGAGAAGCTTG-3' 

PfffaGmV-5 5'-CCTGACTTTGATTGGATGGAGGGC-3' 5'-CCGTGCGTTATTGGGGTAAGAGTCC-3' 

PfffaGmV-6 5'-GATTACGTGGCCAAGCATGCAGGC-3' 5'-CCAGCCTCGTTGAGGTTTAGCTCG-3' 

PfffaGmV-7 5'-CACGACATCGATTGGGACTGGATG-3' 5'-GTGTAGTGGGTCTTCCCTTGGATCC-3' 

PfffaGmV-8 5'-GCACTCCAGCGCAAGCTTATGACTAC-3' 5'-GGCCAATAGGCTTGATGTTTGGGTGC-3' 

PfffaGmV-9 5'-GTCTCCTCACTACTTTTCGTGCCAG-3' 5'-CGGTGACCTCAACGAAATCGCAAG-3' 

PfffaGmV-10 5'-GTACTCTACAAGGAGCCTGCACTCTAC-3' 5'-CTTCAGCTGAAATTGAGCCTGACATCCC-3' 

PfffaGmV-11* 5'-CCAAGTACAAGCGGAAGTACAAGGCC-3' 5'-CCTTGTACCGGTTGGCTTGCTTGG-3' 

PfffaGmV-11** 5’-GACTTGTCACCGAGCGAAGTTACATGG-3’ 5’-GTAGCGCGGATCCGAATTGCTCAAC-3’ 

PfffaGmV-12 5'-CTGAATGCATCATCGGAAGAGAGGATC-3' 5'-CTGCAAGTTCAGCAAGATGGTTGACC-3' 

PfffaGmV-13 5'-GAGAATGTATCGTGGGAAGAGAGCTAC-3' 5'-CTTGAAGGCCAGATAGGAGGTCCAC-3' 

PfffaGmV-14 5'-CCAAGTACAAGCGGAAGTACAAGGCC-3' 5'-CCTTGTACCGGTTGGCTTGCTTGG-3' 

PfffaCV-1 5'-CGAAAGCTGACCTGCAGGCTAATCG-3' 5'-CACCCTCAAAGTGAGCTGCTTCAAAGC-3' 

PfffaCV-2 5'-CGAGCCGTTAACACCACTCGAGTTTC-3' 5'-CTCGAATTCAATGGCGACGTGAACATG-3' 

PfffaCV-3 5'-CACACCACACCTACAGGGGTTCG-3' 5'-CCGCATTCTCCAACCTCCTTCCC-3' 

PfffaCV-4 5'-CTGAAACGAAAGGAGGCAACTCTATCATCC-3' 5'-CTTCAAACGACCAGCGATCGGCC-3' 

PfffaCV-5 5'-CGTATTGTTGCAAAGACGATGGACCGAG-3' 5'-CAACATTGCGTACCCATAACTTCCGC-3' 

PfffaCV-6 5'-GATATGTGGACCTCCTGGTATAGG-3' 5'-CAAACGCCACAGGGCTCACTTAAAC-3' 

PfffaCV-7 5'-GATGATGACACCGTGGCTGGAGCTG-3' 5'-GTACAGTTCTCGTCCACGTTTTCCAC-3' 

PfffaCV-8 5'-CTGGTGGGACGGATACGAGTATCAAC-3' 5'-GTGCCGCGTTGCTTATAGAAGATGG-3' 

PfffaCV-9 5'-GACTGCTGGAAATGCCCATTTTCCAAGG-3' 5'-CTGTACCAGTTCCTCCACTCATAGTTG-3' 

PfffaCV-10 5'-GACACATTCAGGAGACGTTGGAACCTG-3' 5'-CGAGTATTGTTGCTTGGCCGATACGC-3' 

PfffaCV-11 5'-CTTTCGCCGACTATGTTTCCGAAGTTCC-3' 5'-GTGTACTGTCATCGGGGTTGTTAAGTG-3' 

PfffaCV-12 5'-CTTATTGTGCGCTGCGATATTCGGAATG-3' 5'-GCACACAACAGCGTGAATGTGAAG-3' 

PfffaCV-13 5'-GAAGACTCTCTGAGCCAGTCATCATCG-3' 5'-CGAGCTGCTTTCCACAGTAGTCAAGG-3' 

PfffaCV-14 5'-CGTCCGGATACATTGATTTCAGCCAATCG-3' 5'-GATAACAATATCTGGCCGTGTCGTTTCTGTC-3' 

PfffaCV-15 5'-CTCTCGCAACAAGAGGATGGTATGGAAAC-3' 5'-GTGCTCTAGGACCTCCACCCATTC-3' 

PfffaCM-1 5'-CGAGAAATGCAGCGAGACGTAC-3' 5'-GCGATGTCTCTCATGGGTGCCTTC-3' 

PfffaCM-2 5'-CGTATTGTTGCAAAGACGATGGACCGAG-3' 5'-CAACATTGCGTACCCATAACTTCCGC-3' 

PfffaMCV-1 (DNA-R) 5'-GAAACATCTCCAAGGCTACTGCTACTTC-3' 5'-GTACCTTCTTCACCGATTTCTCTTGCCAC-3' 

PfffaMCV-1 (DNA-S) 5'-GATACTATTCAGGGTACAATCGCTGCC-3' 5'-GGAATACTTTACCTCAGGGCGTGG-3' 

PfffaMCV-1 (DNA-U1) 5'-CCTCCACATTTGACCGATCTTTACGATG-33 5'-GGGAACTTGATTGGAAGGGCACAG-3’ 

             * Primer pair used to recover isolates Tbat_A_103746, Tbat_I_103746, Tbat_H_103746 
             ** Primer pair used to recover isolates Tbat_A_103909, Tbat_I_103909, Tbat_H_103909 
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2.4 Results and Discussion  

2.4.1 Recovery and characterisation of novel CRESS DNA viruses and DNA molecules 

in Pacific flying fox faeces  

I sampled viral genomes from Pacific flying fox faeces from four roosting sites situated on 

Tongatapu Island of the Tongan archipelago (Figure 2.1). Through a next-generation 

sequencing informed approach, I identified 601 of the 1119 de novo assembled contigs which 

were >500nts that had viral sequence-like BLAST hits. For the purpose of this study, I 

concentrated on contigs that had hits to eukaryotic CRESS DNA viral sequences for complete 

characterisation. Using abutting primers (Table 2.2) that were designed to recover individual 

CRESS DNA molecules based on the viral-like contigs, I amplified, cloned and Sanger 

sequenced 48 circular molecules that encode a Rep and an additional large open reading 

frame (ORF) which putatively encodes a CP (Figure 2.2). I also recovered two circular DNA 

molecules, one that encodes a bacterial Rep-like element and the other encodes CP-like 

element. These may be ‘subgenomic’ molecules or part of a multi-component viruses or 

possibly non-viral mobile genetic elements. Finally, I also recovered a small Rep-encoding 

molecule (1159 nts), that is similar in size to the multi-component nanovirus Rep encoding 

molecules. A similarity search of the non-coding region of this molecule in the bat faeces 

contigs database revealed two additional molecules with high nucleotide identity (>95%; 

Figure 2.3) for which I designed abutting primers and recovered these molecules (Table 2.2).  
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Figure 2.2: Genome organisations of the cycloviruses, gemycircularviruses, circular DNA 

molecules and unclassified CRESS DNA viruses recovered from Pacific flying fox faeces. 

rep: replication associated protein gene; cp: capsid protein gene. 
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Figure 2.3: Genome organisations of the three components of Pacific flying fox faeces associated multi-component virus-1(PfffaMCV-1) 

including two common regions. 
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The CRESS DNA viruses (n=48) I recovered include cycloviruses (n=5; 3 species), 

gemycircularviruses (n=25; 14 species), unclassified viruses (n=17) and a putative multi-

component virus (3 components identified) (Figures 2.1-2.3, Table 2.3). Approximately 40% 

of the CRESS DNA viruses were recovered from the Ha’avakatolo Pacific flying fox roosting 

site (Figure 2.1), ~30% Ha’ateiho (’Atele) and two each from Kolovai and Lapaha (Takuilau) 

(Table 2.3). Interestingly, I would have expected the Kolovai Pacific flying fox roosting 

colony to have a similar assemblage of viruses as Ha’avakatolo given their close proximity, 

however, although one viral species (PfffaGmV-11) was present in both Kolovai and 

Ha’avakatolo, the other viral species identified in Kolovai (PfffaMCV-1) was not found in 

Ha’avakatolo or in fact in any of the other sites. Instead Ha’avakatolo and Ha’ateiho which 

are geographically more distant share six of the same virus species. Also of note, in three 

cases the viruses sampled in 2014 were also identified in 2015 suggesting that these viruses 

may be persistently associated with Pacific flying fox faecal matter. Furthermore, six viruses 

were found at two or more sampling sites in 2015 suggesting that these viruses are possibly 

common in Pacific flying fox roosting colonies. It is unknown whether the Pacific flying 

foxes in Tonga move between roosting sites or roost at specific colonies through their 

lifetime. 
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Table 2.3: Summary of all the viruses and DNA molecules recovered from Pacific flying fox 

faeces in this study. 

GenBank 
Accession # Isolate 

Sampling site 
in Tonga Name 

Lengths 
(nts) 

Sampling 
year 

Genetic 
code 

KT732785 Tbat_H_103699 Ha’avakatolo Pacific flying fox associated cyclovirus-1 1923 2015 Standard 

KT732786 Tbat_H_88317 Ha’avakatolo Pacific flying fox associated cyclovirus-2 1916 2015 Standard 

KT732787 Tbat_K_103923 Kolovai Pacific flying fox associated cyclovirus-3 1838 2015 Standard 

KT732788 Tbat_H_103923 Ha’avakatolo Pacific flying fox associated cyclovirus-3 1838 2015 Standard 

KT732789 Tbat_A_103923 Ha’ateiho (’Atele) Pacific flying fox associated cyclovirus-3 1838 2015 Standard 

KT732820 Tbat_A_1180 Ha’ateiho (’Atele) Pacific flying fox faeces associated circular DNA virus-1 2254 2015 Standard 

KT732821 Tbat_H_1180 Ha’avakatolo Pacific flying fox faeces associated circular DNA virus-1 2254 2015 Standard 

KT732829 Tbat_A_103763 Ha’ateiho (’Atele) Pacific flying fox faeces associated circular DNA virus-2 2538 2015 Standard 

KT732831 Tbat_H_103763 Ha’avakatolo Pacific flying fox faeces associated circular DNA virus-2 2538 2015 Standard 

KT732818 Tbat_38855 4 sites combined Pacific flying fox faeces associated circular DNA virus-3 2214 2014 Standard 

KT732819 TBAT_29894 4 sites combined Pacific flying fox faeces associated circular DNA virus-4 1757 2014 Standard 

KT732822 Tbat_H_25288 Ha’avakatolo Pacific flying fox faeces associated circular DNA virus-5 2694 2015 Standard 

KT732823 Tbat_H_77994 Ha’avakatolo Pacific flying fox faeces associated circular DNA virus-6 1963 2015 Standard 

KT732824 Tbat_H_85975 Ha’avakatolo Pacific flying fox faeces associated circular DNA virus-7 2722 2015 Standard 

KT732825 Tbat_H_103163 Ha’avakatolo Pacific flying fox faeces associated circular DNA virus-8 2004 2015 Standard 

KT732784 Tbat_A_77299 Ha’ateiho (’Atele) Pacific flying fox faeces associated circular DNA virus-9 2707 2015 Ciliate 

KT732827 Tbat_A_16877 Ha’ateiho (’Atele) Pacific flying fox faeces associated circular DNA virus-10 2522 2015 Standard 

KT732828 Tbat_H_102636 Ha’avakatolo Pacific flying fox faeces associated circular DNA virus-11 1947 2015 Standard 

KT732830 Tbat_H_65519 Ha’avakatolo Pacific flying fox faeces associated circular DNA virus-12 2655 2015 Standard 

KT732832 Tbat_A_103819 Ha’ateiho (’Atele) Pacific flying fox faeces associated circular DNA virus-13 2630 2015 Standard 

KT732833 Tbat_5606 4 sites combined Pacific flying fox faeces associated circular DNA virus-14 2732 2014 Standard 

KT732834 Tbat_3598 4 sites combined Pacific flying fox faeces associated circular DNA virus-15 2571 2014 Standard 

KT732790 Tbat_A_103952 Ha’ateiho (’Atele) Pacific flying fox faeces associated gemycircularvirus-1 2233 2015 Standard 

KT732791 Tbat_H_103952 Ha’avakatolo Pacific flying fox faeces associated gemycircularvirus-1 2233 2015 Standard 

KT732792 Tbat_103791 4 sites combined Pacific flying fox faeces associated gemycircularvirus-2 2250 2014 Standard 

KT732793 Tbat_A_103791 Ha’ateiho (’Atele) Pacific flying fox faeces associated gemycircularvirus-2 2250 2015 Standard 

KT732794 Tbat_H_103958 Ha’avakatolo Pacific flying fox faeces associated gemycircularvirus-3 2209 2015 Standard 

KT732795 TBAT_21383 4 sites combined Pacific flying fox faeces associated gemycircularvirus-4 2140 2014 Standard 

KT732796 Tbat_H_103639 Ha’avakatolo Pacific flying fox faeces associated gemycircularvirus-4 2145 2015 Standard 

KT732797 Tbat_A_103852 Ha’ateiho (’Atele) Pacific flying fox faeces associated gemycircularvirus-5 2172 2015 Standard 

KT732798 Tbat_A_103779 Ha’ateiho (’Atele) Pacific flying fox faeces associated gemycircularvirus-6 2220 2015 Standard 

KT732799 Tbat_H_103779 Ha’avakatolo Pacific flying fox faeces associated gemycircularvirus-6 2219 2015 Standard 

KT732800 Tbat_H_103921 Ha’avakatolo Pacific flying fox faeces associated gemycircularvirus-7 2217 2015 Standard 

KT732801 Tbat_12377 4 sites combined Pacific flying fox faeces associated gemycircularvirus-8 2205 2014 Standard 

KT732802 Tbat_H_12377 Ha’avakatolo Pacific flying fox faeces associated gemycircularvirus-8 2205 2015 Standard 

KT732803 Tbat_103951 4 sites combined Pacific flying fox faeces associated gemycircularvirus-9 2230 2014 Standard 

KT732804 Tbat_45285 4 sites combined Pacific flying fox faeces associated gemycircularvirus-10 2191 2014 Standard 

KT732805 Tbat_47364 4 sites combined Pacific flying fox faeces associated gemycircularvirus-10 2189 2014 Standard 

KT732807 Tbat_A_103746 Ha’ateiho (’Atele) Pacific flying fox faeces associated gemycircularvirus-11 2155 2015 Standard 

KT732808 Tbat_A_103909 Ha’ateiho (’Atele) Pacific flying fox faeces associated gemycircularvirus-11 2159 2015 Standard 

KT732809 Tbat_H_103746 Ha’avakatolo Pacific flying fox faeces associated gemycircularvirus-11 2155 2015 Standard 

KT732810 Tbat_H_103909 Ha’avakatolo Pacific flying fox faeces associated gemycircularvirus-11 2156 2015 Standard 

KT732811 Tbat_L_103746 Lapaha (Takuilau) Pacific flying fox faeces associated gemycircularvirus-11 2156 2015 Standard 

KT732812 Tbat_L_103909 Lapaha (Takuilau) Pacific flying fox faeces associated gemycircularvirus-11 2159 2015 Standard 

KT732813 Tbat_A_64418 Ha’ateiho (’Atele) Pacific flying fox faeces associated gemycircularvirus-12 2310 2015 Standard 

KT732814 Tbat_H_103806 Ha’avakatolo Pacific flying fox faeces associated gemycircularvirus-13 2250 2015 Standard 

KT732806 Tbat_31579 4 sites combined Pacific flying fox faeces associated gemycircularvirus-14 2185 2014 Standard 

KT732815 Tbat_K_12099_CP Kolovai Pacific flying fox associated multicomponent virus-1 1163 2015 Standard 

KT732816 Tbat_K_12099_Rep Kolovai Pacific flying fox associated multicomponent virus-1 1159 2015 Standard 

KT732817 Tbat_K_12099_unk Kolovai Pacific flying fox associated multicomponent virus-1 1143 2015 Standard 

KT732783 Tbat_H_67299 Ha’avakatolo Pacific flying fox faeces associated circular DNA molecule-1 1957 2015 Standard 

KT732826 Tbat_A_25288 Ha’ateiho (’Atele) Pacific flying fox faeces associated circular DNA molecule-2 2255 2015 Standard 
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2.4.2 Cycloviruses  

Five cyclovirus genomes (KT732785 - KT732789) were recovered in this study from Pacific 

flying fox faeces. Based on the proposed guidelines of 80% full genome pairwise identity 

species cut-off (see cyclovirus proposal at ICTV), I have classified these five cycloviruses 

into three putative species, which have been tentatively named Pacific flying fox faeces-

associated cyclovirus (PfffaCyV) 1 to 3; PfffaCyV-1 (n=1), PfffaCyV-2 (n=1) and PfffaCyV-

3 (n=3) (Figure 2.1B, 2.2; Table 2.3). The long intergenic region (LIR) of PfffaCyV contains 

the putative origin of replication (ori) with the conserved nonanucleotide motif 

(TAGTATTAC) at the apex of a stem-loop structure. All the PffaCyVs appear to have 

putative spliced Reps similar to those found in a subset of cycloviruses (GenBank accession 

#s: AB937980 - AB937987, GQ404857 - GQ404858, HQ738634 - HQ738635, JX185424, 

JX569794, KC771281, KF031465 - KF031471, KM392284 - KM392289; Table 2.4). 

Analysis of the nucleotide pairwise identities of the cyclovirus sequences from this study 

together with those available in GenBank using SDT v1.2 (Muhire et al., 2014) revealed that 

there is ~47% diversity within the entire cyclovirus group (n=109). The genome sequences of 

the three PfffaCyV-3s (KT732787 - KT732789) share >99% identity. The genomes of 

PfffaCyV-2 (KT732786) and PfffaCyV-1 (KT732785) share 79% and ~60% pairwise identity 

respectively with those of PfffaCyV-3s. Genome-wide percentage pairwise identities of 

cycloviruses generated using SDT v1.2 (Muhire et al., 2014) are provided in Supplementary 

Data 2.1. The Reps and CPs of PfffaCyV-1 and PfffaCyV-2 share 75% and 67% pairwise 

amino acid identity, respectively. The PfffaCyV-1 and PfffaCyV-2 Reps share ~47% amino 

acid identity with those of PfffaCyV-3s. The maximum-likelihood phylogenetic trees of the 

cyclovirus Rep and CP amino acid sequences (Figure 2.4) show that the PfffaCyV-3 Reps 

and CPs are most closely related to those of Human cyclovirus VS5700009 (KC771281), 

recovered from blood serum and cerebrospinal fluid of patients with unexplained paraplegia 

in Malawi (Smits et al., 2013). PfffaCyV-3 Reps and CPs share ~90% and 56% amino acid 

identity respectively to those of Human cyclovirus VS5700009. PfffaCyV-3s share 78% 

genome-wide identity with that of Human cyclovirus VS5700009. It is also worth noting that 

PfffaCyV-3 was recovered from three Pacific flying fox roosting sites in 2015 (Figure 2.1) 

indicating that this virus is commonly circulating in these colonies in Tongatapu. 

  

http://talk.ictvonline.org/files/proposals/animal_dna_viruses_and_retroviruses/m/animal_dna_ec_approved/5469.aspx
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The Reps of PfffaCyV-1, -2 and -3 contain all motifs that are conserved in other cycloviruses 

as reviewed in Rosario et al. (2012c) with the exceptions of motif III [YCx/SK] where 

PfffaCyV-1 and PfffaCyV-2 contain a H residue instead of the conserved K, and a L residue 

instead of C (Table 2.5). 



 

 

    Table 2.4: Summary of all known cycloviruses as of 1
st
 October 2015.  

Genbank Accession Cycloviruses description Acronyms Country Isolation source Common name Sample type References 

AB937980 Cyclovirus ZM32 ZM32 Zambia Mastomys natalensis  African rat Faeces Sasaki et al., 2015 

AB937981 Cyclovirus ZM01 ZM01 Zambia Crocidura hirta  Lesser red musk shrew Faeces Sasaki et al., 2015 

AB937982 Cyclovirus ZM36a ZM36a Zambia Crocidura hirta  Lesser red musk shrew Faeces Sasaki et al., 2015 

AB937983 Cyclovirus ZM38 ZM38 Zambia Crocidura hirta  Lesser red musk shrew Faeces Sasaki et al., 2015 

AB937984 Cyclovirus ZM41 ZM41 Zambia Crocidura hirta  Lesser red musk shrew Faeces Sasaki et al., 2015 

AB937985 Cyclovirus ZM50a ZM50a Zambia Crocidura hirta  Lesser red musk shrew Faeces Sasaki et al., 2015 

AB937986 Cyclovirus ZM54 ZM54 Zambia Crocidura hirta  Lesser red musk shrew Faeces Sasaki et al., 2015 

AB937987 Cyclovirus ZM62 ZM62 Zambia Crocidura hirta  Lesser red musk shrew Faeces Sasaki et al., 2015 

GQ404844 Cyclovirus PK5006 PK5006 Pakistan Homo sapiens Human  Faeces Li et al., 2010b 

GQ404845 Cyclovirus PK5034 PK5034 Pakistan Homo sapiens Human  Faeces Li et al., 2010b 

GQ404846 Cyclovirus PK5222 PK5222 Pakistan Homo sapiens Human  Faeces Li et al., 2010b 

GQ404847 Cyclovirus PK5510 PK5510 Pakistan Homo sapiens Human  Faeces Li et al., 2010b 

GQ404848 Cyclovirus PK6197 PK6197 Pakistan Homo sapiens Human  Faeces Li et al., 2010b 

GQ404849 Cyclovirus Chimp11 Chimp11 Central Africa  Pan troglodytes African chimpanzee Faeces Li et al., 2010b 

GQ404850 Cyclovirus Chimp12 Chimp12 Central Africa  Pan troglodytes African chimpanzee Faeces Li et al., 2010b 

GQ404854 Cyclovirus NG12 NG12 Nigeria Homo sapiens Human  Faeces Li et al., 2010b 

GQ404855 Cyclovirus NG14 NG14 Nigeria Homo sapiens Human  Faeces Li et al., 2010b 

GQ404857 Cyclovirus TN25 TN25 Tunisia Homo sapiens Human  Faeces Li et al., 2010b 

GQ404858 Cyclovirus TN18 TN18 Tunisia Homo sapiens Human  Faeces Li et al., 2010b 

HM228874 Bat cyclovirus GF-4c GF-4c USA Antrozous pallidus  Bat Faeces Li et al., 2010a 

HQ638049 Dragonfly cyclovirus 1 DfCyV-1 Tonga Tholymis tillarga Dragonfly Abdomen Rosario et al., 2011 

HQ638050 Dragonfly cyclovirus 1 DfCyV-1 Tonga Tholymis tillarga Dragonfly Abdomen Rosario et al., 2011 

HQ638051 Dragonfly cyclovirus 1 DfCyV-1 Tonga Tholymis tillarga Dragonfly Abdomen Rosario et al., 2011 

HQ638052 Dragonfly cyclovirus 1 DfCyV-1 Tonga Pantala flavescens Dragonfly Abdomen Rosario et al., 2011 

HQ638053 Dragonfly cyclovirus 1 DfCyV-1 Tonga Diplacodes bipunctata Dragonfly Abdomen Rosario et al., 2011 

HQ638054 Dragonfly cyclovirus 1 DfCyV-1 Tonga Diplacodes bipunctata Dragonfly Abdomen Rosario et al., 2011 

HQ638055 Dragonfly cyclovirus 1 DfCyV-1 Tonga Pantala flavescens Dragonfly Abdomen Rosario et al., 2011 

HQ638056 Dragonfly cyclovirus 1 DfCyV-1 Tonga Pantala flavescens Dragonfly Abdomen Rosario et al., 2011 

HQ638057 Dragonfly cyclovirus 1 DfCyV-1 Tonga Tholymis tillarga Dragonfly Abdomen Rosario et al., 2011 

HQ638058 Dragonfly cyclovirus 1 DfCyV-1 Tonga Pantala flavescens Dragonfly Abdomen Rosario et al., 2011 

HQ638059 Dragonfly cyclovirus 1 DfCyV-1 Tonga Pantala flavescens Dragonfly Abdomen Rosario et al., 2011 

HQ638060 Dragonfly cyclovirus 1 DfCyV-1 Tonga Diplacodes bipunctata Dragonfly Abdomen Rosario et al., 2011 

HQ638061 Dragonfly cyclovirus 1 DfCyV-1 Tonga Diplacodes bipunctata Dragonfly Abdomen Rosario et al., 2011 

HQ638062 Dragonfly cyclovirus 1 DfCyV-1 Tonga Diplacodes bipunctata Dragonfly Abdomen Rosario et al., 2011 

HQ638063 Dragonfly cyclovirus 1 DfCyV-1 Tonga Diplacodes bipunctata Dragonfly Abdomen Rosario et al., 2011 

HQ638064 Dragonfly cyclovirus 1 DfCyV-1 Tonga Diplacodes bipunctata Dragonfly Abdomen Rosario et al., 2011 
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Genbank Accession Cycloviruses description Acronyms Country Isolation source Common name Sample type References 

HQ638065 Dragonfly cyclovirus 1 DfCyV-1 Tonga Pantala flavescens Dragonfly Abdomen Rosario et al., 2011 

HQ638066 Dragonfly cyclovirus 1 DfCyV-1 Tonga Pantala flavescens Dragonfly Abdomen Rosario et al., 2011 

HQ638067 Dragonfly cyclovirus 1 DfCyV-1 Tonga Pantala flavescens Dragonfly Abdomen Rosario et al., 2011 

HQ638068 Dragonfly cyclovirus 1 DfCyV-1 Tonga Diplacodes bipunctata Dragonfly Abdomen Rosario et al., 2011 

HQ638069 Dragonfly cyclovirus 1 DfCyV-1 Tonga Tholymis tillarga Dragonfly Abdomen Rosario et al., 2011 

HQ738634 Cyclovirus PKbeef23 PKbeef23 Pakistan Bos taurus Cow Muscle Li et al., 2011 

HQ738635 Cyclovirus  PKgoat21 PKgoat21 Pakistan Bos taurus Cow Muscle Li et al., 2011 

HQ738636 Cyclovirus  PKgoat11 PKgoat11 Pakistan Capra aegagrus hircus Goat Muscle Li et al., 2011 

HQ738637 Cyclovirus  CyCV-TB CyCV-TB USA Tadarida brasiliensis Bat Muscle Li et al., 2011 

HQ738643 Cyclovirus  NGchicken8 NGchicken8 Nigeria Gallus gallus Chicken Muscle Li et al., 2011 

HQ738644 Cyclovirus  NGchicken15 NGchicken15 Nigeria Gallus gallus Chicken Muscle Li et al., 2011 

JF938079 Bat circovirus ZS/China/2011* YN-BtCV-2 China  Myotis spp. Bat Faeces  Ge et al., 2011 

JF938080 Bat circovirus ZS/China/2011* YN-BtCV-3 China  Myotis spp. Bat Faeces Ge et al., 2011 

JF938081 Bat circovirus ZS/China/2011* YN-BtCV-4 China  Myotis spp. Bat Faeces Ge et al., 2011 

JF938082 Bat circovirus ZS/China/2011* YN-BtCV-5 China  Myotis spp. Bat Faeces Ge et al., 2011 

JN377566 Bat circovirus ZS/Yunnan-China/2009* Cyclovirus ZS China  Myotis spp. Bat Faeces Ge et al., 2011 

JX185419 Dragonfly cyclovirus 1 DfCyV-1 Tonga Pantala flavescens Dragonfly Abdomen Rosario et al., 2012a 

JX185420 Dragonfly cyclovirus 1 DfCyV-1 Tonga Pantala flavescens Dragonfly Abdomen Rosario et al., 2012a 

JX185421 Dragonfly cyclovirus 1 DfCyV-1 Tonga Pantala flavescens Dragonfly Abdomen Rosario et al., 2012a 

JX185422 Dragonfly cyclovirus 2 DfCyV-2 USA Pantala flavescens Dragonfly Abdomen Rosario et al., 2012a 

JX185423 Dragonfly cyclovirus 2 DfCyV-2 USA Anax junius Dragonfly Abdomen Rosario et al., 2012a 

JX185424 Dragonfly cyclovirus 3 DfCyV-3 USA Erythemis simplicicollis Dragonfly Abdomen Rosario et al., 2012a 

JX185425 Dragonfly cyclovirus 4 DfCyV-4 Bulgaria Somatochlora meridionalis Dragonfly Abdomen Rosario et al., 2012a 

JX185426 Dragonfly cyclovirus 5 DfCyV-5 Puerto Rico Erythrodiplax umbrata Dragonfly Abdomen Rosario et al., 2012a 

JX185427 Dragonfly cyclovirus 5 DfCyV-5 Puerto Rico Erythrodiplax umbrata Dragonfly Abdomen Rosario et al., 2012a 

JX569794 Florida woods cockroach-associated cyclovirus FWCasCyV-1 USA Eurycotis floridana  Florida wood cockroach Abdomen Padilla-Rodriguez et al., 2013 

KC512916 Dragonfly cyclovirus 4 DfCyV-4 USA Aeshna multicolor Dragonfly Abdomen Dayaram et al., 2013 

KC512917 Dragonfly cyclovirus 4 DfCyV-4 USA Aeshna multicolor Dragonfly Abdomen Dayaram et al., 2013 

KC512918 Dragonfly cyclovirus 6 DfCyV-6 USA Aeshna multicolor Dragonfly Abdomen Dayaram et al., 2013 

KC512919 Dragonfly cyclovirus 7 DfCyV-7 New Zealand Xanthocnemis zealandica Dragonfly Abdomen Dayaram et al., 2013 

KC512920 Dragonfly cyclovirus 8 DfCyV-8 Australia Orthetrum sabina Dragonfly Abdomen Dayaram et al., 2013 

KC771281 Human cyclovirus VS5700009 VS5700009 Malawi Homo sapiens Human  Blood serum Smits et al., 2013 

KF031465 Cyclovirus VN hcf1 hcf1 Vietnam Homo sapiens Human  Cerebrospinal fluid Tan et al., 2013 

KF031466 Cyclovirus VN hcf2 hcf2 Vietnam Homo sapiens Human  Cerebrospinal fluid Tan et al., 2013 

KF031467 Cyclovirus VN hcf3 hcf3 Vietnam Homo sapiens Human  Cerebrospinal fluid Tan et al., 2013 

KF031468 Cyclovirus VN hcf4 hcf4 Vietnam Homo sapiens Human  Cerebrospinal fluid Tan et al., 2013 

KF031469 Cyclovirus VN hcf5 hcf5 Vietnam Homo sapiens Human  Cerebrospinal fluid Tan et al., 2013 

KF031470 Cyclovirus VN ps1 ps1 Vietnam Sus scrofa  Wild pig Faeces Tan et al., 2013 
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Genbank Accession Cycloviruses description Acronyms Country Isolation source Common name Sample type References 

KF031471 Cyclovirus VN cs1 cs1 Vietnam Gallus gallus  Chicken  Faeces Tan et al., 2013 

KF726984 Human cyclovirus 7078A 7078A Chile Homo sapiens Human  Respiratory secretion Phan et al., 2014 

KF726985 Human cyclovirus 7081A 7081A Chile Homo sapiens Human  Respiratory secretion Phan et al., 2014 

KF726986 Human cyclovirus 5841A 5841A Chile Homo sapiens Human  Respiratory secretion Phan et al., 2014 

KF726987 Human cyclovirus 7046A 7046A Chile Homo sapiens Human  Respiratory secretion Phan et al., 2014 

KJ641710 Bat circovirus* BtMbly-CyV China Myotis blythii Insects Pharyngeal & rectal swabs Wu et al.,2015 

KJ641712 Bat circovirus* BtRp-CyV-3 China Rhinolophus pusillus Insects Pharyngeal & rectal swabs Wu et al.,2015 

KJ641714 Bat circovirus* BtRp-CyV-14 China Rhinolophus pusillus Insects Pharyngeal & rectal swabs Wu et al.,2015 

KJ641715 Bat circovirus* BtRp-CyV-52 China Rhinolophus pusillus Insects Pharyngeal & rectal swabs Wu et al.,2015 

KJ641717 Bat circovirus* BtMspp.-CyV China Myotis spp. Insects Pharyngeal & rectal swabs Wu et al.,2015 

KJ641720 Bat circovirus* BtTp-CyV-2 China Tylonycteris pachypus Insects Pharyngeal & rectal swabs Wu et al.,2015 

KJ641728 Bat circovirus* BtPa-CV-2/ China Plecotus auritus Insects Pharyngeal & rectal swabs Wu et al.,2015 

KJ641734 Bat circovirus* BtVS-CyV China Vespertilio superans Insects Pharyngeal & rectal swabs Wu et al.,2015 

KJ641740 Bat circovirus* BtRf-CyV-24 China Rhinolophus ferrumequinum Insects Pharyngeal & rectal swabs Wu et al.,2015 

KJ831064 Cyclovirus SL-108277 SL_108277 Sri Lanka Homo sapiens Human  Cerebrospinal fluid Phan et al., 2015 

KM017740 Feline cyclovirus Feline USA Felis catus  Cat Faeces Zhang et al., 2014 

KM382269 Bat circovirus POA/2012/II BatCV_POA_2012_II Southern Brazil  Molossus molossus, Tadarida brasiliensis Bat Faeces Lima et al., 2015 

KM382270 Bat circovirus POA/2012/VI BatCV_POA_2012_VI Southern Brazil  Molossus molossus, Tadarida brasiliensis Bat Faeces Lima et al., 2015 

KM392284 Swine cyclovirus SC_CGS96 SC_CGS96 Cameroon Sus scrofa  Wild pig Faeces Garigliany et al., 2014 

KM392285 Swine cyclovirus SC_CGS88 SC_CGS88 Cameroon Sus scrofa  Wild pig Faeces Garigliany et al., 2014 

KM392286 Swine cyclovirus SC_CGS77 SC_CGS77 Cameroon Sus scrofa  Wild pig Faeces Garigliany et al., 2014 

KM392287 Human cyclovirus VN-like HC_CGS288 HC_CGS288 Madagascar Homo sapiens Human  Faeces Garigliany et al., 2014 

KM392288 Human cyclovirus VN-like HC_CGS202 HC_CGS202 Madagascar Homo sapiens Human  Faeces Garigliany et al., 2014 

KM392289 Human cyclovirus VN-like HC_CGS104 HC_CGS104 Madagascar Homo sapiens Human  Faeces Garigliany et al., 2014 

KP151567 Cyclovirus NI-204 NI_204 Nicaragua Homo sapiens Human  Faeces Phan et al., 2015 

KR902499 Cyclovirus Equ1 Equ1 USA Equus caballus  Horse Nasal secretions  Li et al., 2015 

LC018134 Cyclovirus TsCyV-1 TsCyV-1 Japan Callosciurus erythraeus thaiwanensis Taiwan squirrels Stomach contents Sato et al., 2015 

KT732785 Pacific flying fox associated cyclovirus-1 PfffaCyV-1 Tonga Pteropus tonganus Bat Faeces This study 

KT732786 Pacific flying fox associated cyclovirus-2 PfffaCyV-2 Tonga Pteropus tonganus Bat Faeces This study 

KT732787 Pacific flying fox associated cyclovirus-3 PfffaCyV-3 Tonga Pteropus tonganus Bat Faeces This study 

KT732788 Pacific flying fox associated cyclovirus-3 PfffaCyV-3 Tonga Pteropus tonganus Bat Faeces This study 

KT732789 Pacific flying fox associated cyclovirus-3 PfffaCyV-3 Tonga Pteropus tonganus Bat Faeces This study 
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Figure 2.4: See next page for figure legend 
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Figure 2.4: Maximum-likelihood phylogenetic trees of the Rep and CP amino acid sequences 

of cycloviruses recovered from this study together with those available in GenBank. 

Branches with <80% aLRT support have been collapsed. Coloured accession numbers and 

viral names represent the isolation source and the coloured bat cartoons represent global 

sampling locations. 



 

 

Table 2.5: Conserved motifs identified in the Reps of cycloviruses, gemycircularviruses, unclassified CRESS DNA viruses and the multi-

component virus identified in this study.  

 
 

 
 

RCR motifs 
 

SH3 helicase motifs 

Viral grouping Accession # Sequence ID Genome type* I II III GRS motif Walker-A Walker-B Motif C 

Cycloviruses KT732785 PfffaCyV-1 
II 

VFTLNN KHLQG YLPH 

 

GAPGVGKS IIDDF ITSN 

 KT732786 PfffaCyV-2 
II 

VFTLNN KHLQG YLPH 

 

GTPGVGKS IIDDY ITTN 

 KT732787 PfffaCyV-3 
II 

CWTLNN KHLQG YCSK 

 

GATGLGKS VVIDEF ITSN 

 KT732788 PfffaCyV-3 
II 

CWTLNN KHLQG YCSK 

 

GATGLGKS VIDDF ITSN 

 KT732789 PfffaCyV-3 
II 

CWTLNN KHLQG YCSK 

 

GATGLGKS VIDDF ITSN 

Gemycircularviruses KT732790 PfffaGmV-1 
II 

LLTYSQ THLHA YAIK RRFDVEGFHPNIQPCG GETRLGKT VLDDI WLMN 

 KT732791 PfffaGmV-1 
II 

LLTYSQ THLHA YAIK RRFDVEGFHPNIQPCG GETRLGKT VLDDI WLMN 

 KT732792 PfffaGmV-2 
II 

LFTYSQ THLHV YAIK KIFDCEGRHPNVSASR GKSRTGKT VFDDI WLSN 

 KT732793 PfffaGmV-2 
II 

LFTYSQ THLHV YAVK KIFDCEGRHPNVSASR GKSRTGKT VFDDI WLSN 

 KT732794 PfffaGmV-3 
II 

LLTYAQ THLHV YATK DYFDVEGHHPNIVPSR GPSRLGKT VFDDM WLAN 

 KT732795 PfffaGmV-4 
II 

LLTYPQ THLHA YAIK DFFDVGGHHPNIAPSR GPSRLGKT VFDDM WLAN 

 KT732796 PfffaGmV-4 
II 

LLTYPQ THLHA YAIK DFFDVGGHHPNIAPSR GPSRLGKT VFDDM WLAN 

 KT732797 PfffaGmV-5 
II 

LVTYPQ LHLHV YAIK NIFDVDGRHPNRAPSK GGTRTGKT VFDDI WVCN 

 KT732798 PfffaGmV-6 
II 

MLTYPT PHIHV YVAK ATFKIGTRVPNIRVRR GATRLGKT IFDDM FICN 

 KT732799 PfffaGmV-6 
II 

MLTYPT PHIHV YVAK ATFKIGTRVPNIRVRR GATRLGKT IFDDM FICN 

 KT732800 PfffaGmV-7 
II 

MVTFVR PHYHA YVGK KTFQVAGRSPNIRVRR GGSRFGKT VFNDM WTCN 

 KT732801 PfffaGmV-8 
II 

LFTYSQ IHFHV YAIK RVFDVGGKHPNIKPIG GPYGCGKT IFDDW WLCN 

 KT732802 PfffaGmV-8 
II 

LFTYAQ IHYHV YAIK RIFDVGGKHPNIKPIG GPYGCGKT IFDDW WLCN 

 KT732803 PfffaGmV-9 
II 

LFTYSQ IHFHV YAIK RVFDVGGKHPNIQPIG GPYGCGKT IFDDW WLCN 

 KT732804 PfffaGmV-10 
II 

LLTYAH FHFHV YATK DVFDVDGYHPNIEPSR GPTRLGKT IMDDI WCYN 

 KT732805 PfffaGmV-10 
II 

LLTYAH FHFHV YATK DVFDVDGYHPNIEPSR GPTRLGKT IMDDI WCSN 

 KT732814 PfffaGmV-13 
II 

LLTYAQ IHLHV YAIK GIFDVGGRHPNVVASW GESRLGKT VFDDM WGSN 

 KT732812 PfffaGmV-11 
II 

ILTYSQ IHLHV YAIK DVFDVGGYPPNIAKCG GDTRLGKT VFDDI WLSN 

 KT732807 PfffaGmV-11 
II 

LITYSQ IHLHV YAIK DVFDVGGCHPNIAKCG GDTRLGKT VFDDI WLSN 

 KT732809 PfffaGmV-11 
II 

LITYSQ IHLHV YAIK DVFDVGGCHPNIAKCG GDTRLGKT VFDDI WLSN 

 KT732810 PfffaGmV-11 
II 

FITYSQ IHLHV YAIK DVFDVGGCHPNIAKCG GDTRLGKT VFDDI WLSN 

 KT732808 PfffaGmV-11 
II 

LITYSQ IHLHV YAIK DVFDVGGCHPNIAKCG GDTRLGKT VFDDI WLSN 

 KT732811 PfffaGmV-11 
II 

LLTYSQ IHLHV YAIK DVFDVGGCHPNIAKCG GDTRLGKT VFDDI WLSN 

 KT732813 PfffaGmV-12 
II 

LLTYAQ IHLHA YAIK RTFDVEGYHPNISPSR GPSRMGKT VFDDF WLSN 

 KT732806 PfffaGmV-14 
II 

LLTYSQ LHLHV YAIK DVFDVGGHHPNIAKCG GDTRLGKT VFDDI WLSN 

Unclassified CRESS DNA viruses KT732820 PfffaCV-1 V 
CFTNFN LHAQG YCTK  GASGLGKS LFDDF ITSN 

 KT732821 PfffaCV-1 
V 

CFTNFN LHAQG YCTK  GASGLGKS LFDDF ITSN 

 KT732829 PfffaCV-2 
I 

LLTYPQ EHVHV YCRK  GPSGLGKS DIDDL FTSC 

 KT732831 PfffaCV-2 
I 

LLTYPQ EHVHV YCRK  GPSGLGKS DIDDL FTSC 
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RCR motifs 
 

SH3 helicase motifs 

Viral grouping Accession # Sequence ID Genome type* I II III GRS motif Walker-A Walker-B Motif C 

 KT732818 PfffaCV-3 
II 

VFTLNN PHLQG YCSK   - IFDFS CFAN 

 KT732819 PfffaCV-4 
I 

CFTLNN PHHQG YCTK  GPPGTGKS VIDEL VTSN 

 KT732822 PfffaCV-5 
IV 

VFTIFV LHWQG YCTK  GTPGTGKS IVDDW FTSN 

 KT732823 PfffaCV-6 
V 

CFTAFA KHIQG YCKK  GPSFGIGKD ISDFD VTSN 

 KT732824 PfffaCV-7 
II 

KFTHFK  -  -  GPPGTGKT ILDEF ICSN 

 KT732825 PfffaCV-8 
II 

CFTVNN KHLQGF YCKK  GYPGSGKS IIDDF ITSN 

 KT732784 PfffaCV-9 
V 

LITAHF  - YCTK  GAPGVGKS VIDDF VTSN 

 KT732827 PfffaCV-10 
II 

VWTSFK LHWQG YCQK  GTPGTGKS IFDDF FTSN 

 KT732828 PfffaCV-11 
V 

CFTLNN FHLQR  -   - ISDDG AGSN 

 KT732830 PfffaCV-12 
V 

FLTYPH LHIHA YVKK 

 

GPSGWGKT ILDDL LVGN 

 KT732832 PfffaCV-13 
V 

CFTLNN PHIQG YCGK  GLTGTGKS VLDDF ITSN 

 KT732833 PfffaCV-14 
I 

FLTYPQ KHLHV YVCK  GPPNVGKT RWDDE ILSN 

 KT732834 PfffaCV-15 
I 

ILTFPQ PHLHV YVTK  GPRNLGKT YSDDY ILSN 

Multicomponent CRESS DNA virus KT732816 PfffaMCV-1 (DNA-R) 
VI 

CYTVNN IHLQG YCKK  GPTGTGKS LIEDF VTSN 

* based Rosario et al. 2012b 
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2.4.3 Gemycircularviruses  

From the Pacific flying fox faeces samples, I recovered 25 CRESS DNA viral sequences 

which are most closely related to gemycircularviruses. These 25 novel gemycircularviruses 

are grouped into 14 putative species (sharing <78% pairwise identity) as proposed in 

Kraberger et al. (2015a) and Sikorski et al. (2013b) and I have tentatively named as Pacific 

flying fox faeces-associated gemycircularviruses (PfffaGmV) 1 - 14 (PfffaGmV-1, n=2; 

PfffaGmV-2, n=2; PfffaGmV-3, n=1; PfffaGmV-4, n=2; PfffaGmV-5, n=1; PfffaGmV-6, 

n=2; PfffaGmV-7, n=1; PfffaGmV-8, n=2; PfffaGmV-9, n=1; PfffaGmV-10, n=2; 

PfffaGmV-11, n=6; PfffaGmV-12, n=1; PfffaGmV-13, n=1; PfffaGmV-14, n=1). The 25 

PfffaGmVs encode putative functional Reps expressed from a putative spliced Rep transcript 

(Figure 2.2). A spliced Rep and a RepA are common features seen in some geminiviruses 

(Bernardo et al., 2013; Varsani et al., 2014b; Wright et al., 1997), where each transcript is 

thought to be essential for replication and infection (Dekker et al., 1991; Liu et al., 1998; 

Wright et al., 1997).  

Among the gemycircularviruses there is ~48% diversity and the 14 PfffaGmV species from 

this study share <75% genome-wide pairwise identity to other gemycircularviruses. Two 

putative species of gemycircularviruses have previously been recovered from grasses 

(Brachiaria deflexa and Saccharum hybrid) and an adult dragonfly (P. flavescens) from 

Tonga (Male et al., 2015; Rosario et al., 2012a) (Figure 2.5; Table 2.6). These share low 

similarity to the PfffaGmVs from this study, sharing between 56-61% genome-wide identity. 

Genome-wide percentage pairwise identities of gemycircularviruses generated using SDT 

v1.2 (Muhire et al., 2014) are provided in Supplementary Data 2.2. 

The Rep of PfffaGmV-1 shares 79-84% pairwise identity to those of sewage associated 

gemycircularvirus-5 (KJ547635), human genital associated circular DNA virus-1 (KJ413144) 

and Meles meles faecal virus (JN704610) and the Rep of PfffaGmV-5 shares 83% pairwise 

identity with Hypericum japonicum associated circular DNA virus (KF413620). The Reps of 

PfffaGmVs, except PfffaGmV-1, recovered from this study share low percentage identity 

with those of other known gemycircularvirus Reps. The CPs of gemycircularviruses are 

overall more diverse than the Reps (Figure 2.5). Apart from the 25 gemycircularviruses 

identified in this study (Figure 2.5; Table 2.6), the only other gemycircularviruses recovered 

from bat so far are from pharyngeal and rectal swabs of an insectivorous bat (Rhinolophus 

ferrumequinum) from China (Wu et al., 2015). A number of the Reps of gemycircularviruses 
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from bats cluster together. The Reps of PfffaGmV-2 and -5 cluster in a well-supported clade 

which contains sequences from a number of different sources: animals, plants, fungi, river 

and sewage. All Reps of PfffaGmVs have the GRS domain in addition to the conserved RCR 

and SF3 motifs. These are similar to those found in other gemycircularviruses (Table 2.5).  

It is evident that gemycircularviruses are highly prevalent in nature and have been recovered 

from environmental, animal, insect and human samples from Brazil, Canada, China, 

Germany, Ghana, Nepal, Netherlands, New Zealand, Portugal, South Africa, Sri Lanka, 

Tonga, USA and Vietnam (Table 2.6). However, other than SsHADV-1 which confers 

hypovirulence in S. sclerotiorum (Yu et al., 2010), it is unknown whether 

gemycircularviruses are pathogenic. Furthermore, for all but one gemycircularvirus the hosts 

are unknown but it is thought that they are probably associated with fungi based on Rep-like 

sequences that have been identified in fungal genomes (Liu et al., 2011; Yu et al., 2010).  



 

 

Table 2.6: Summary of all known gemycircularviruses as of 1
st
 October 2015.  

Genbank  
Accession # Gemycircularviruses description Acronyms Country Isolation source Common Name Sample type Reference  

GQ365709 Sclerotinia sclerotiorum hypovirulence associated DNA virus 1 SsHADV-1 China Sclerotinia sclerotiorum Sclerotinia sclerotiorum Mycelial samples Yu et al., 2010 

HQ335086 Mosquito VEM virus SDBVL G MVemV USA Culex erythrothorax Mosquito Mosquito samples  Ng et al., 2011 

JN704610 Meles meles fecal virus  MmFV Netherlands Meles meles European badger Rectal swab van den Brand et al., 2012 

JQ412057 Cassava associated circular DNA virus CasCV Ghana Manihot esculenta Cassava Faeces Dayaram et al., 2012 

JX185428 Dragonfly-associated circular virus 3 DfasCV-3  Tonga Pantala flavescens Dragonfly Abdomen Rosario et al., 2012a 

JX185429 Dragonfly-associated circular virus 2 DfasCV-2 USA Erythemis simplicicollis Dragonfly Abdomen Rosario et al., 2012a 

JX185430 Dragonfly-associated circular virus 1 DfasCV-1 USA Miathyria marcella Dragonfly Abdomen Rosario et al., 2012a 

KF268025 Sclerotinia sclerotiorum hypovirulence associated DNA virus 1 SsHADV-1 New Zealand River Sediments - River Sediments Kraberger et al., 2013 

KF268026 Sclerotinia sclerotiorum hypovirulence associated DNA virus 1  SsHADV-1 New Zealand River Sediments - River Sediments Kraberger et al., 2013 

KF268027 Sclerotinia sclerotiorum hypovirulence associated DNA virus 1 SsHADV-1 New Zealand River Sediments - River Sediments Kraberger et al., 2013 

KF268028 Sclerotinia sclerotiorum hypovirulence associated DNA virus 1 SsHADV-1 New Zealand River Sediments - River Sediments Kraberger et al., 2013 

KF371630 Faecal-associated gemycircularvirus 12 FaGmV-12 New Zealand Struthio camelus  Ostrich  Faeces Sikorski et al., 2013b 

KF371631 Faecal-associated gemycircularvirus 11 FaGmV-11 New Zealand Oryctolagus cuniculus  Rabbit Faeces Sikorski et al., 2013b 

KF371632 Faecal-associated gemycircularvirus 10 FaGmV-10 New Zealand Sturnus vulgaris   European starling Faeces Sikorski et al., 2013b 

KF371633 Faecal-associated gemycircularvirus 9 FaGmV-9 New Zealand Turdus merula  Blackbird Faeces Sikorski et al., 2013b 

KF371634 Faecal-associated gemycircularvirus 8 FaGmV-8 New Zealand Petroica traversi  Chatham Island black robin Faeces Sikorski et al., 2013b 

KF371635 Faecal-associated gemycircularvirus 7 FaGmV-7 New Zealand Anas platyrhynchos  Mallard duck Faeces Sikorski et al., 2013b 

KF371636 Faecal-associated gemycircularvirus 6 FaGmV-6 New Zealand Gerygone albofrontata  Chatham Island warbler Faeces Sikorski et al., 2013b 

KF371637 Faecal-associated gemycircularvirus 5 FaGmV-5 New Zealand Gerygone albofrontata   Chatham Island warbler Faeces Sikorski et al., 2013b 

KF371638 Faecal-associated gemycircularvirus 4 FaGmV-4 New Zealand Arctocephalus forsteri  New Zealand fur seal Faeces Sikorski et al., 2013b 

KF371639 Faecal-associated gemycircularvirus 3 FaGmV-3 New Zealand Gerygone albofrontata  Chatham Island warbler Faeces Sikorski et al., 2013b 

KF371640 Faecal-associated gemycircularvirus 2 FaGmV-2 New Zealand Sus scrofa   Domestic pig Faeces Sikorski et al., 2013b 

KF371641 Faecal-associated gemycircularvirus 1c FaGmV-1c New Zealand Turdus merula  Blackbird Faeces Sikorski et al., 2013b 

KF371642 Faecal-associated gemycircularvirus 1b FaGmV-1b New Zealand Turdus merula  Blackbird Faeces Sikorski et al., 2013b 

KF371643 Faecal-associated gemycircularvirus 1a FaGmV-1a New Zealand Ovis aries  Sheep Faeces Sikorski et al., 2013b 

KF413620 Hypericum japonicum associated circular DNA virus HJasCV Viet Nam Hypericum japonicum Hypericum Leaf Du et al., 2014 

KJ413144 Human genital-associated circular DNA virus-1 HuGaGmC349 South Africa Homo sapiens  Human Cervical sample unpublished 

KJ547634 Sewage-associated gemycircularvirus-4  SaGmV-4 New Zealand Sewage oxidation pond - Swage Kraberger et al., 2015a 

KJ547635 Sewage-associated gemycircularvirus-5  SaGmV-5 New Zealand Sewage oxidation pond - Swage Kraberger et al., 2015a 

KJ547636 Sewage-associated gemycircularvirus-6 SaGmV-6 New Zealand Sewage oxidation pond - Swage Kraberger et al., 2015a 

KJ547637 Sewage-associated gemycircularvirus-7a SaGmV-7a New Zealand Sewage oxidation pond - Swage Kraberger et al., 2015a 

KJ547638 Sewage-associated gemycircularvirus-8  SaGmV-8 New Zealand Sewage oxidation pond - Swage Kraberger et al., 2015a 

KJ547639 Sewage-associated gemycircularvirus-9  SaGmV-9 New Zealand Sewage oxidation pond - Swage Kraberger et al., 2015a 

KJ547640 Sewage-associated gemycircularvirus-7b  SaGmV-7b New Zealand Sewage oxidation pond - Swage Kraberger et al., 2015a 

KJ547641 Sewage-associated gemycircularvirus-11  SaGmV-11 New Zealand Sewage oxidation pond - Swage Kraberger et al., 2015a 
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Genbank  
Accession # Gemycircularviruses description Acronyms Country Isolation source Common Name Sample type Reference  

KJ547642 Sewage-associated gemycircularvirus-2 SaGmV-2 New Zealand Sewage oxidation pond - Swage Kraberger et al., 2015a 

KJ547643 Sewage-associated gemycircularvirus-3  SaGmV-3 New Zealand Sewage oxidation pond - Swage Kraberger et al., 2015a 

KJ547644 Sewage-associated gemycircularvirus-10a SaGmV-10a New Zealand Sewage oxidation pond - Swage Kraberger et al., 2015a 

KJ547645 Sewage-associated gemycircularvirus-10b  SaGmV-10b New Zealand Sewage oxidation pond - Swage Kraberger et al., 2015a 

KJ641719 Bat gemycircularvirus 23 GD2012 BtMf-CV-23 GD2012 China Miniopterus fuliginosus Bat Pharyngeal & rectal swabs Wu et al., 2015 

KJ641726 Bat gemycircularvirus 8 NM2013 BtRf-CV-8 NM2013 China Rhinolophus ferrumequinum Bat Pharyngeal & rectal swabs Wu et al., 2015 

KJ641737 Bat gemycircularvirus Tibet2013 BtRh-CV-6 Tibet2013 China Rhinolophus hipposideros Bat Pharyngeal & rectal swabs Wu et al., 2015 

KJ938717 Caribou feces-associated gemycircularvirus FaGmV-13 Canada Rangifer tarandus Caribou Faeces Ng et al., 2014 

KM510192 Bromus-associated circular DNA virus 3  BasCV-3 New Zealand Bromus hordeaceus Soft brome / Bull grass Leaf Kraberger et al., 2015b 

KM598382 Sclerotinia sclerotiorum hypovirulence associated DNA virus 1  SsHADV-1 USA Ischnura ramburii Damselfly Abdomen Dayaram et al., 2015b 

KM598383 Sclerotinia sclerotiorum hypovirulence associated DNA virus 1 SsHADV-1 USA Erythemis simplicicollis Dragonfly Abdomen Dayaram et al., 2015b 

KM598384 Sclerotinia sclerotiorum hypovirulence associated DNA virus 1 SsHADV-1 USA Pantala hymenaea Dragonfly Abdomen Dayaram et al., 2015b 

KM598385 Odonata associated gemycircularvirus-1 OdaGmV-1 USA Ischnura posita Damselfly Abdomen Dayaram et al., 2015b 

KM598386 Odonata associated gemycircularvirus-1 OdaGmV-1 USA Pantala hymenaea Dragonfly Abdomen Dayaram et al., 2015b 

KM598387 Odonata associated gemycircularvirus-2  OdaGmV-2 USA Aeshna multicolor Dragonfly Abdomen Dayaram et al., 2015b 

KM598388 Odonata associated gemycircularvirus-2  OdaGmV-2 USA Libellula saturata Dragonfly Abdomen Dayaram et al., 2015b 

KM821747 Sewage-associated gemycircularvirus-1  SaGmV-1 New Zealand Sewage oxidation pond - Swage Kraberger et al., 2015a 

KP133075 Gemycircularvirus SL1 GemyCV-SL1 Sri Lanka Homo sapiens  Human Cerebrospinal fluid Phan et al., 2015 

KP133076 Gemycircularvirus SL2 GemyCV-SL2 Sri Lanka Homo sapiens  Human Cerebrospinal fluid Phan et al., 2015 

KP133077 Gemycircularvirus SL3 GemyCV-SL3 Sri Lanka Homo sapiens  Human Cerebrospinal fluid Phan et al., 2015 

KP133078 Gemycircularvirus BZ1 GemyCV-BZ1 Brazil Homo sapiens  Human Faeces Phan et al., 2015 

KP133079 Gemycircularvirus BZ2 GemyCV-BZ2 Brazil Homo sapiens  Human Faeces Phan et al., 2015 

KP133080 Gemycircularvirus NP GemyCV-NP Nepal Untreated sewage - Sewage Phan et al., 2015 

KP263543 Badger faeces-associated gemycircularvirus BafaGM588 Portugal Meles meles European badger Faeces Conceicao-Neto et al., 2015 

KP263544 Mongoose feces-associated gemycircularvirus a  MoFaGmV181a Portugal Herpestes ichneumon Egyptian mongoose Faeces Conceicao-Neto et al., 2015 

KP263545 Mongoose feces-associated gemycircularvirus b MoFaGmV160b Portugal Herpestes ichneumon Egyptian mongoose Faeces Conceicao-Neto et al., 2015 

KP263546 Mongoose feces-associated gemycircularvirus c MoFaGmV541c Portugal Herpestes ichneumon Egyptian mongoose Faeces Conceicao-Neto et al., 2015 

KP263547 Mongoose feces-associated gemycircularvirus d  MoFaGmV478d Portugal Herpestes ichneumon Egyptian mongoose Faeces Conceicao-Neto et al., 2015 

KR912221   Gemycircularvirus gemy-ch-rat1 Gemy-ch-rat1 China Rattus norvegicus Rat Blood Li et al., 2015b 

KT253577 Poaceae associated gemycircularvirus-1 PaGmV-1 Tonga Brachiaria deflexa Signalgrass Leaf Male et al., 2015  

KT253578 Poaceae associated gemycircularvirus-1 PaGmV-1 Tonga Brachiaria deflexa Signalgrass Leaf Male et al., 2015  

KT253579 Poaceae associated gemycircularvirus-1 PaGmV-1 Tonga Saccharum hybrid Sugarcane Leaf Male et al., 2015  

KT309029 Poecile atricapillus GI tract-associated gemycircularvirus  Gitract USA Poecile atricapillus  Black-capped chickadee Buccal and cloacal swab Hanna et al., 2015  

LK931483 HCBI8.215 virus HCBI8_215 Germany Bos taurus Cow Healthy cow’s blood serum Lamberto et al., 2014 

LK931484 HCBI9.212 virus HCBI9_212 Germany Bos taurus Cow Healthy cow’s blood serum Lamberto et al., 2014 

LK931485 MSSI2.225 virus  MSSI2_225 Germany Homo sapiens  Human Multiple sclerosis patient’s Lamberto et al., 2014 

KT732790 Pacific flying fox faeces associated gemycircularvirus-1 PfffaGmV-1 Tonga Pteropus tonganus Bat Faeces  This study 

KT732791 Pacific flying fox faeces associated gemycircularvirus-1 PfffaGmV-1 Tonga Pteropus tonganus Bat Faeces  This study 
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Genbank  
Accession # Gemycircularviruses description Acronyms Country Isolation source Common Name Sample type Reference  

KT732792 Pacific flying fox faeces associated gemycircularvirus-2 PfffaGmV-2 Tonga Pteropus tonganus Bat Faeces  This study 

KT732793 Pacific flying fox faeces associated gemycircularvirus-2 PfffaGmV-2 Tonga Pteropus tonganus Bat Faeces  This study 

KT732794 Pacific flying fox faeces associated gemycircularvirus-3 PfffaGmV-3 Tonga Pteropus tonganus Bat Faeces  This study 

KT732795 Pacific flying fox faeces associated gemycircularvirus-4 PfffaGmV-4 Tonga Pteropus tonganus Bat Faeces  This study 

KT732796 Pacific flying fox faeces associated gemycircularvirus-4 PfffaGmV-4 Tonga Pteropus tonganus Bat Faeces  This study 

KT732797 Pacific flying fox faeces associated gemycircularvirus-5 PfffaGmV-5 Tonga Pteropus tonganus Bat Faeces  This study 

KT732798 Pacific flying fox faeces associated gemycircularvirus-6 PfffaGmV-6 Tonga Pteropus tonganus Bat Faeces  This study 

KT732799 Pacific flying fox faeces associated gemycircularvirus-6 PfffaGmV-6 Tonga Pteropus tonganus Bat Faeces  This study 

KT732800 Pacific flying fox faeces associated gemycircularvirus-7 PfffaGmV-7 Tonga Pteropus tonganus Bat Faeces  This study 

KT732801 Pacific flying fox faeces associated gemycircularvirus-8 PfffaGmV-8 Tonga Pteropus tonganus Bat Faeces  This study 

KT732802 Pacific flying fox faeces associated gemycircularvirus-8 PfffaGmV-8 Tonga Pteropus tonganus Bat Faeces  This study 

KT732803 Pacific flying fox faeces associated gemycircularvirus-9 PfffaGmV-9 Tonga Pteropus tonganus Bat Faeces  This study 

KT732804 Pacific flying fox faeces associated gemycircularvirus-10 PfffaGmV-10 Tonga Pteropus tonganus Bat Faeces  This study 

KT732805 Pacific flying fox faeces associated gemycircularvirus-10 PfffaGmV-10 Tonga Pteropus tonganus Bat Faeces  This study 

KT732807 Pacific flying fox faeces associated gemycircularvirus-11 PfffaGmV-11 Tonga Pteropus tonganus Bat Faeces  This study 

KT732808 Pacific flying fox faeces associated gemycircularvirus-11 PfffaGmV-11 Tonga Pteropus tonganus Bat Faeces  This study 

KT732809 Pacific flying fox faeces associated gemycircularvirus-11 PfffaGmV-11 Tonga Pteropus tonganus Bat Faeces  This study 

KT732810 Pacific flying fox faeces associated gemycircularvirus-11 PfffaGmV-11 Tonga Pteropus tonganus Bat Faeces  This study 

KT732811 Pacific flying fox faeces associated gemycircularvirus-11 PfffaGmV-11 Tonga Pteropus tonganus Bat Faeces  This study 

KT732812 Pacific flying fox faeces associated gemycircularvirus-11 PfffaGmV-11 Tonga Pteropus tonganus Bat Faeces  This study 

KT732813 Pacific flying fox faeces associated gemycircularvirus-12 PfffaGmV-12 Tonga Pteropus tonganus Bat Faeces  This study 

KT732814 Pacific flying fox faeces associated gemycircularvirus-13 PfffaGmV-13 Tonga Pteropus tonganus Bat Faeces  This study 

KT732806 Pacific flying fox faeces associated gemycircularvirus-14 PfffaGmV-14 Tonga Pteropus tonganus Bat Faeces  This study 
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Figure 2.5: Maximum-likelihood phylogenetic trees of the Rep and CP of 

gemycircularviruses, and gemycircularvirus-like sequences recovered from this study 

together with those available in GenBank. Branches with <80% aLRT support have been 

collapsed. Coloured accession numbers and viral names represent the isolation source and the 

coloured bat cartoons represent the global sampling locations. 
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2.4.4 Unclassified CRESS DNA viruses  

I identified 17 circular molecules which are putative novel CRESS DNA viruses, these share 

very low levels of sequence similarity to other known CRESS DNA viruses (Table 2.7). I 

grouped these into 15 species based on their Reps sharing less than 75% pairwise amino acid 

identity and I tentatively named these as Pacific flying fox faeces-associated circular DNA 

virus (PfffaCV) - 1 through 15. The CRESS DNA viral-like sequences range in size from 

1757 nts to 2732 nts and all contain two large ORFs that encode a Rep and a putative CP 

(Figure 2.2). The putative CPs were identified based on similarities of these ORFs to known 

CRESS DNA viruses (Table 2.7) and the presence of basic residues on the N-terminus 

portion of the ORF (Rosario et al., 2012c). PfffaCV-1, PfffaCV-6, PfffaCV-11, PfffaCV-12 

and PfffaCV-15 contain unidirectional ORFs, whereas PfffaCV-2, PfffaCV-3, PfffaCV-4, 

PfffaCV-5, PfffaCV-7, PfffaCV-8, PfffaCV-9, PfffaCV-10, PfffaCV-13 and PfffaCV-14 

have bidirectionally transcribed ORFs (Figure 2.2). Based on the genome type classification 

proposed by Rosario et al. (2012c), the 17 PfffaCVs represent four genome types namely 

type I (n=5), II (n=4), IV (n=1) and V (n=7) (Table 2.5).  



 

Table 2.7: Summary of the BLASTp hits of the putative Rep, CP and unknown proteins encoded by the unclassified CRESS DNA viruses, 

putative multi-component and circular molecules recovered in this study.  
 

Accession # 
 Query ORFs Virus Accession # 

% Pairwise 
Identity E Value 

Query 
coverage Isolation source Country 

KT732820 &  PfffaCV-1 CP - - - - - - - 

KT732821  Rep Bat circovirus BtRp-CV KJ641731 33% 2x10-45 84% Bat pharyngeal and anal swab China 

KT732829 & PfffaCV-2 CP Avon-Heathcote Estuary associated circular virus-25 KM874355 27% 9x10-13 50% Austrovenus stutchburyi New Zealand 

KT732831 
 

Rep Odonata-associated circular virus-7 KM598390 34% 5x10-45 85% Libellula quadrimaculata USA 

KT732818 PfffaCV-3 CP Cyanoramphus nest associated circular X DNA virus JX908739 31% 1x10-16 77% Cyanoramphus auriceps nest New Zealand 

  
Rep Cyanoramphus nest associated circular X DNA virus JX908739 44% 2x10-93 88% Cyanoramphus auriceps nest New Zealand 

KT732819 PfffaCV-4 CP Uncultured marine virus KR528558 39% 4x10-03 29% Saanich Inlet Canada 

  
Rep Dragonfly larvae associated circular virus-3 KF738876 44% 1x10-76 97% Procordulia grayi New Zealand 

KT732822 PfffaCV-5 CP - - - - - - - 

  
Rep Bat circovirus KJ641733 33% 1x10-21 97% Miniopterus fuliginosus China 

KT732823 PfffaCV-6 CP - - - - - - - 

  
Rep Odonata-associated circular virus-13 KM598396 40% 4x10-59 77% Libellula quadrimaculata USA 

KT732824 PfffaCV-7 CP - - - - - - - 

  Rep Uncultured marine virus  JX904523 33% 1x10-29 85% Saanich Inlet salt water Canada 

KT732825 PfffaCV-8 CP - - - - - - - 

  Rep Silurus glanis circovirus JQ011378 43% 8x10-62 94% Silurus glanis Hungary 

KT732784 PfffaCV-9 Unk1 - - - - - - - 

  Unk2 - - - - - - - 

  
Rep Bat circovirus BtMf-CV KJ641733 39% 9x10-43 74% Bat pharyngeal and rectal swab China 

KT732827 PfffaCV-10 CP Acheta domesticus volvovirus  KC543331 33% 5x10-33 77% Acheta domesticus  Canada 

  
Rep Acheta domesticus volvovirus  KC543331 41% 3x10-60 95% Acheta domesticus Canada 

KT732828 PfffaCV-11 CP Uncultured marine virus JX904457 29% 1x10-10 65% Saanich Inlet Canada 

  
Rep Rodent stool-associated circular virus  JF755403 40% 1x10-48 88% Microtus pennsylvanicus faeces USA 

KT732830 PfffaCV-12 CP - - - - - - - 

  Rep Avon-Heathcote Estuary associated circular virus 25 KM874357 29% 7x10--31 90% Benthic sediment New Zealand 

KT732832 PfffaCV-13 CP - - - - - - - 

  Rep Bat circovirus BtTp-CV KJ641721 38% 6x10-45 81% Bat pharyngeal and rectal swab China 

KT732833 PfffaCV-14 CP Sewage-associated circular DNA virus-26 KM874359 31% 8x10-16 58% Sewage oxidation pond New Zealand 

  
Rep Sewage-associated circular DNA virus-18 KM821753 35% 2x10-43 80% Sewage oxidation pond New Zealand 

KT732834 PfffaCV-15 CP Sewage-associated circular DNA virus-18 KM821753 39% 5x10-39 81% Sewage oxidation pond New Zealand 

  
Rep Sewage-associated circular DNA virus-18 KM821753 63% 1x10-168 100% Sewage oxidation pond New Zealand 

KT732815 PfffaMCV-1(DNA-S) CP Odonata-associated circular virus-11 KM598394 24% 2x10-08 68% Erythemis simplicicollis USA 

KT732816 PfffaMCV-1(DNA-R) Rep Circoviridae 19 LDMD-2013 KF133826 48% 3x10-86 96% Ocean water USA 

KT732817 PfffaMCV-1(DNA-U1) Unk1 - - - - - - - 

KT732783 PfffaCM-1 Rep * Xanthomonas axonopodis replication protein WP_017161479 69%% 0 98% Unknown Unknown 

KT732826 PfffaCM-2 CP Bat circovirus KJ641733 40% 2x10-45 73% Miniopterus fuliginosus China 

  Unk1 - - - - - - - 

          * = Replication protein 

 8
1
 



82 

 

The Reps and CPs encoded by PfffaCV-2, PfffaCV-12 and PfffaCV-13 are somewhat related 

to those of gemycircularviruses and geminiviruses and hence are included in the Rep and CP 

analyses with the gemycircularviruses (Figure 2.5). These gemycircularvirus-like sequences 

group with the Odonata-associated circular viruses (OdasCV-6, -7, -8 and -15; KM598389 - 

KM598391 and KM598398) (Dayaram et al., 2015b), Trifolium-associated circular DNA 

virus-1 (TasCV-1; KP005453) and Bromus-associated circular DNA viruses (BasCV-1, -2 

and -4; KM510189 - KM510191 and KP005454) (Kraberger et al., 2015b), Sewage-

associated circular DNA viruses (SaCV-1, -2, -3 and -4; KJ547620 and KJ547626 - 

KJ547628) (Kraberger et al., 2015a) and three other sewage-associated viruses (Baminivirus, 

Niminivirus and Nepavirus; JQ898331 - JQ898333) (Ng et al., 2012) (Figure 2.5). However, 

their genomes are slightly larger (~2500-2600 nts) compared to those of gemycircularviruses 

(~2000-2300 nts). A summary of the BLASTp analysis of the putative Rep and CPs of the 15 

novel species of unclassified CRESS DNA viruses are provided in Table 2.7.  

The conserved residues in most motifs of PfffaCV-1, -3, -4 and -8 Reps are similar to other 

circoviruses and cycloviruses (Table 2.5). Reps of PfffaCV -4, -5, -6, -8, -10, -14 and -15 

contain all the conserved motifs (Table 2.5) similar to other CRESS DNA viral families 

reviewed in Rosario et al. (2012c). However, motif II was not identified in PfffaCV-7 and -9, 

motif III was missing in PfffaCV-7 and -11, also PfffaCV-3 and -11 have no Walker-A motif 

(Table 2.5). Interestingly, Reps of PfffaCV-2, -12 and -13 are gemycircularvirus-like (Figure 

2.5) but they do not contain the GRS domain which is present in the Reps of other 

gemycircularviruses, however, PfffaCV-2 and -12 contain motif I which is similar to Reps of 

some gemycircularviruses (Table 2.5).  

2.4.5 Putative multi-component virus  

Three ssDNA molecules of 1143-1163 nts, each encoding a single ORF were recovered. One 

ORF encodes a Rep, the second a putative CP and the third ORF had no similarities with any 

sequences in GenBank. Interestingly, all three of these molecules have a 58 nt region which 

is 100% identical, labelled the common region stemloop (CRSL) (Figure 2.3). Additionally, 

the Rep and CP encoding molecules have a 162 nt common region, labelled common region 

major that is 100% identical (Figure 2.3). The CRSL (58 nt region) contains a highly 

conserved nonanucleotide motif (TAGTATTAC) across all components (Figure 2.3). Based 

on the knowledge of multi-component viruses in the Nanoviridae family and bipartite 

begomoviruses of the Geminiviridae family, a Rep encoded by one molecule can initiate 
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replication of cognate molecules by binding to their iterons and nicking the stemloop at the 

nonanucleotide motif, I postulate that these three components are part of a novel multi-

component virus. I have putatively named this novel multi-component virus as Pacific flying 

fox faeces-associated multi-component virus-1 (PfffaMCV-1). The PfffaMCV-1 Rep shares 

48% pairwise identity with the Rep of circoviridae 19 LDMD-2013 (KF133826) recovered 

from USA (McDaniel et al., 2014) (Table 2.7). The PfffaMCV-1 CP shares 24% pairwise 

identity with Odonata-associated circular virus-11 (KM598394) isolated from USA 

(Dayaram et al., 2015b) (Table 2.7). Following the nomenclature used for nanoviruses the 

three DNA components of PfffaMCV-1 have been named PfffaMCV-1 (DNA-R; Rep 

encoding), PfffaMCV-1 (DNA-S; CP encoding) and PfffaMCV-1 (DNA-U1; unknown 

ORF). I note that the common region major of PfffaMCV-1 (DNA-R and DNA-S) shares no 

similarities with the members of the Nanoviridae family. On the other hand, the 

nonanucleotide motif TAGTATTAC is similar to that of members of the Nanovirus genus of 

the Nanoviridae family and their associated Rep-encoding satellite molecules, and 

begomovirus-associated alphasatellites (Bell et al., 2002; Briddon et al., 2004; Briddon & 

Stanley, 2006; Horser et al., 2001; Katul et al., 1998; Mansoor et al., 1999; Saunders & 

Stanley, 1999; Wu et al., 1994; Zhou, 2013).  

The Rep of the putative multi-component virus (PfffaMCV-1) contains the conserved 

residues seen in the Reps motifs of eukaryotic CRESS DNA viruses. The RCR motif I is 

similar to that found in begomovirus-associated alphasatellites, the RCR motif II similar to 

those in begomovirus alphasatellites, circoviruses and cycloviruses, the RCR motif III is 

similar to those in begomovirus-associated alphasatellites, circoviruses, cycloviruses, 

geminiviruses and nanoviruses (Table 2.5). The Walker A, B and motif C are similar to those 

found in Reps of circoviruses and cycloviruses (Rosario et al., 2012c).  

2.4.6 Circular DNA molecules  

Two further novel circular DNA molecules were identified, both of which do not exhibit a 

Rep similar to that encoded by eukaryotic CRESS DNA viruses. I tentatively named these 

Pacific flying foxes faeces-associated circular molecule (PfffaCM)-1 and -2 each containing a 

genome size of 1957 nt and 2255 nt, respectively (Figure 2.2). BLASTx analysis shows that 

the ORF of PfffaCM-1 shares 69% pairwise identity (98% coverage) with a Xanthomonas 

axonopodis replication protein (WP_017161479; Table 2.7) that is associated with plasmid 

replication (pfam02486). Therefore it is highly likely that this molecule is associated with 



84 

 

prokaryotes and could possibly be a non-viral circular DNA mobile element. One of the large 

ORFs of PfffaCM-2 shares 40% (73% coverage) pairwise identity with the CP of a Bat 

circovirus (KJ641733) (Table 2.7) and hence this could be a subgenomic molecule or a 

component of a multi-component virus.  
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2.5 Concluding remarks  

Viral metagenomic studies have shown that animal faecal matter contains a high diversity of 

viruses and thus can be used to explore viral diversity in the environment. Through this viral 

metagenomics approach study of Pacific flying fox faeces from four roosting sites in Tonga 

in 2014 and 2015, I identified five cycloviruses, 25 gemycircularviruses, 17 unclassified 

CRESS DNA viruses, two circular DNA molecules and a putative novel multi-component 

virus with three cognate molecules.  

A number of viruses were identified in more than one sampling site in Tonga suggesting 

these viruses have a broad distribution across the island amongst the Pacific flying fox 

colonies. Several species were identified in both 2014 and 2015 suggesting these viruses are 

persistently associated with faecal matter of Pacific flying foxes. The presence of PfffaCyV 

isolates in a well-supported clade which also contains isolates from human and domestic 

animals suggests that these viruses may also be circulating in animals other than bats in 

Tonga. PfffaCyV-3s share high similarity (~77% genome-wide identity) with Human 

cyclovirus VS5700009 (KC771281) which was identified in patient with paraplegia of 

unknown aetiology in Malawi (Smits et al., 2013). Taking into consideration the observations 

by (Garigliany et al., 2014) and (Tan et al., 2013) where they found cyclovirus CyCN-VN in 

different geographical locations (Africa and Asia) and in humans and domestic animals, it is 

possible that the cycloviruses identified in Pacific flying foxes, and more so PfffaCyV-3 

which is most closely related to CyCN-VN, may be found associated with other animals in 

Tonga. 

In the Tongan archipelago, prior to this study only six CRESS-DNA virus species had been 

previously identified. The findings from this study contribute significantly to the knowledge 

of viruses circulating in Tonga and in supporting the current view that the diversity of 

CRESS DNA viruses is grossly underestimated. 
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3.1 Rationale behind this study 

As part of a continuing effort to explore the diversity of CRESS DNA viruses circulating in 

the Pacific region, this viral metagenomics thesis research project was undertaken to identify 

CRESS DNA viruses from faeces of Pacific flying foxes (P. tonganus). The faecal samples 

were collected from four roosting sites (Ha’ateiho (‘Atele), Lapaha (Takuilau), Ha’avakatolo 

and Kolovai) located in Tongatapu the main island of Tonga in 2014 and 2015. Various 

studies have demonstrated that viral metagenomics studies have shown a high abundance of 

CRESS DNA viruses in animal faecal matter. Animal faeces sampling is non-invasive and it 

may contain a wide range of viruses including those associated with the food they eat and the 

environment of the animal.  

The objective of this thesis research was to 1) identify CRESS DNA viruses associated with 

P. tonganus faecal matter; 2) determine whether there are differences in CRESS DNA viral 

assemblages at four P. tonganus roosting sites on Tongatapu; 3) determine whether any 

CRESS DNA viruses are persistently associated with P. tonganus faeces; 4) identify putative 

plant-infecting viruses circulating in Tonga via faecal sampling given that P. tonganus are 

frugivores.  

3.2 Diversity of CRESS DNA viruses in Tonga  

Very little is known about CRESS DNA viruses circulating in the Tongan archipelago and to 

date only a handful of these have been identified. Prior to this study, only six species of 

CRESS-DNA viruses had been previously identified. These include a nanovirus (Banana 

bunchy top virus) (Stainton et al., 2015; Stainton et al., 2012) infecting bananas, a cyclovirus 

(Dragonfly cyclovirus - 1) recovered from Diplacodes bipunctata, Pantala flavescens, 

Tholymis tillarga (Rosario & Breitbart, 2011; Rosario et al., 2012), two gemycircularviruses 

(Poaceae associated gemycircularvirus - 1 recovered from Brachiaria deflexa, Saccharum 

hybrid and Dragonfly associated circular virus 3 from P. flavescens) (Male et al., 2015; 

Rosario et al., 2012) and two unclassified CRESS DNA viruses (Dragonfly circularisvirus 

from P. flavescens and Dragonfly orbiculatusvirus from D. bipunctata) (Rosario et al., 2012) 

(Table 3.1).  



 

Table 3.1: A summary of all the CRESS DNA viruses that were previously identified in Tonga together with those recovered from this study. 

CRESS DNA virus type Description Acronyms Collection year Host Sample type References 

Nanoviruses  Banana bunchy top virus (n=77) BBTV 1989-2010 Musa spp Banana leaf Stainton et al., 2012, 2015  
& Karan et al., 1994   

Cycloviruses  Dragonfly cyclovirus 1 (n=24) DfCyV-1 2010 Tholymis tillarga, Diplacodes 
bipunctat, Pantala flavescens 

Dragonfly abdomen Rosario et al., 2011, 2012a 

 Pacific flying fox faeces associated cyclovirus-1 PfffaCyV-1 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying fox faeces associated cyclovirus-2 PfffaCyV-2 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying fox faeces associated cyclovirus-3 (n=3) PfffaCyV-3 2014-2015 Pteropus tonganus Bat faeces This study 

Gemycircularviruses Dragonfly-associated circular virus 3  DfasCV-3  2010 Pantala flavescens Dragonfly abdomen  Rosario et al., 2012a 

 Poaceae associated gemycircularvirus-1 (n=3) PaGmV-1 2014 Brachiaria deflexa, Saccharum hybrid Signalgrass Male et al., 2015  

 Pacific flying fox faeces associated gemycircularvirus-1 (n=2) PfffaGmV-1 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying fox faeces associated gemycircularvirus-2 (n=2) PfffaGmV-2 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying fox faeces associated gemycircularvirus-3 PfffaGmV-3 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying fox faeces associated gemycircularvirus-4 (n=2) PfffaGmV-4 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying fox faeces associated gemycircularvirus-5 PfffaGmV-5 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying fox faeces associated gemycircularvirus-6 (n=2) PfffaGmV-6 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying fox faeces associated gemycircularvirus-7 PfffaGmV-7 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying fox faeces associated gemycircularvirus-8 (n=2) PfffaGmV-8 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying fox faeces associated gemycircularvirus-9 PfffaGmV-9 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying fox faeces associated gemycircularvirus-10 (n=2) PfffaGmV-10 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying fox faeces associated gemycircularvirus-11 (n=6) PfffaGmV-11 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying fox faeces associated gemycircularvirus-12 PfffaGmV-12 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying fox faeces associated gemycircularvirus-13 PfffaGmV-13 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying fox faeces associated gemycircularvirus-14 PfffaGmV-14 2014-2015 Pteropus tonganus Bat faeces This study 

Unclassified CRESS DNA viruses Dragonfly circularisvirus DfCirV 2010 Pantala flavescens Dragonfly abdomen  Rosario et al., 2012a 

 Dragonfly orbiculatusvirus DfOrV 2010 Diplacodes bipunctata Dragonfly abdomen  Rosario et al., 2012a 

 Pacific flying foxes faeces asociated circular virus-1 (n=2) PfffaCV-1 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying foxes faeces asociated circular virus-2 (n=2) PfffaCV-2 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying foxes faeces asociated circular virus-3 PfffaCV-3 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying foxes faeces asociated circular virus-4 PfffaCV-4 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying foxes faeces asociated circular virus-5 PfffaCV-5 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying foxes faeces asociated circular virus-6 PfffaCV-6 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying foxes faeces asociated circular virus-7 PfffaCV-7 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying foxes faeces asociated circular virus-8 PfffaCV-8 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying foxes faeces asociated circular virus-9 PfffaCV-9 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying foxes faeces asociated circular virus-10 PfffaCV-10 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying foxes faeces asociated circular virus-11 PfffaCV-11 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying foxes faeces asociated circular virus-12 PfffaCV-12 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying foxes faeces asociated circular virus-13 PfffaCV-12 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying foxes faeces asociated circular virus-14 PfffaCV-12 2014-2015 Pteropus tonganus Bat faeces This study 

 Pacific flying foxes faeces asociated circular virus-15 PfffaCV-12 2014-2015 Pteropus tonganus Bat faeces This study 

Multi-component virus Pacific flying foxes faeces asociated multicomponent virus-1 PfffaMV-1 2014-2015 Pteropus tonganus Bat faeces This study 

   9
9
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3.3 Summary of the results 

The viral metagenomics study of Pacific flying fox faeces, where the faeces were sampled 

from four roosting sites in Tongatapu, identified five novel cycloviruses representing three 

putative species, 25 gemycircularviruses representing at least 14 putative species, 17 

unclassified CRESS DNA viruses representing 15 putative species and a putative novel 

multi-component virus with three cognate molecules (Table 3.1). Two circular DNA 

molecules were also identified in this study which may represent either defective genomes or 

individual components of multi-component genomes of CRESS DNA viruses. The data 

obtained from this study has significantly expanded the diversity of CRESS DNA viruses that 

are circulating in Tonga.  

This study shows that there are differences in CRESS DNA viral assemblages at the four P. 

tonganus roosting sites in Tongatapu. In total, 20 CRESS DNA viral species were recovered 

from the Ha’avakatolo Pacific flying fox roosting site, 13 from Ha’ateiho (’Atele) and two 

each from Kolovai and Lapaha (Takuilau). Given that Kolovai and Ha’avakatolo are 

neighbouring villages, it is surprising that the P. tonganus roosting colonies of these two 

villages only had one viral species in common. The other viral species identified in Kolovai 

(PfffaMCV-1) was not found in Ha’avakatolo or in fact in any of the other sites. However, 

although Ha’avakatolo and Ha’ateiho are geographically more distant, they share six of the 

same virus species.  

Several CRESS DNA viral species were identified in both 2014 and 2015 suggesting that 

these viruses are persistently associated with faecal matter of Pacific flying foxes. A number 

of viruses were also identified in more than one sampling site in 2015 suggesting these 

viruses have a broad distribution across the island amongst the Pacific flying fox colonies. 

These viruses are possibly common in Pacific flying fox roosting colonies but whether the 

Pacific flying foxes in Tonga move between roosting sites or roost at specific colonies 

through their lifetime remains unknown.  

PfffaCyV-3s share high similarity (~77% genome-wide identity) with the Human cyclovirus 

VS5700009 (KC771281) which was identified in a patient with paraplegia of unknown 

aetiology in Malawi (Smits et al., 2013). Taking into consideration the observations by 

Garigliany et al. (2014) and Cotmore et al. (2014) where they found cyclovirus CyCN-VN in 

different geographical locations (Africa and Asia) and in humans and domestic animals, it is 
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possible that the cycloviruses identified in Pacific flying foxes, and more so PfffaCyV-3 

which is most closely related to CyCN-VN, may be found associated with other animals in 

Tonga.  

Given that P. tonganus are frugivores, it was expected that a number of plant-infecting 

viruses that are associated with plants would be identified via faecal sampling. None of the 

viruses identified in this study are known plant-infecting viruses. Interestingly, a multi-

component virus (PfffaMV-1) recovered from this study share no similarities with the 

members of the Nanoviridae family, or with alphasatellite molecules associated with either 

members of Nanoviridae or Geminiviridae families. Currently all classified ssDNA multi-

component viruses are known to infect plants therefore PfffaMV-1 could be a putative plant-

infecting virus.   

3.4 Significance of this study and future directions 

Viral metagenomics can assist with a better understanding of viral ecology biogeography, 

revealing viral diversity and can be used for virus surveillance of emerging pathogens, as 

reviewed in Rosario and Breitbart (2011). Therefore, within a Tongan context perhaps 

identifying zoonotic viruses may be important and hence a viral metagenomics study of RNA 

and DNA viruses in the Pacific flying fox faeces may potentially be carried out in the future. 

Furthermore, given that insect vectors such as mosquitoes play such a crucial role in viral 

transmission to humans and animals, a metagenomic study of viruses in these vectors would 

be of public health importance. 

This study has paved the way for more targeted studies to be undertaken in Tonga. The viral 

sequences from this study can be used to design specific probes to identify whether these 

viruses are circulating in humans, wild animals and possibly plants. Overall, this study has 

identified unique viral sequences in the Tongan archipelago and provided a small snapshot of 

the CRESS DNA viral diversity associated with Pacific flying fox faeces. From an academic 

point of view, it would be ideal to undertake a viral metagenomics study of Pacific flying fox 

faeces throughout the Pacific in an attempt to 1) identify CRESS DNA viruses associated 

with their faeces; 2) identify whether any of these viruses are geographically limited; 3) 

identify viruses that are frequently associated with these bats across the Pacific; 4) carry out 

infectivity studies of these viruses. Without a doubt, it is evident that viral metagenomics 

studies of bat faecal matter will enable a rapid exploration of viral diversity.  
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