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Abstract

Pattern matching is a fundamental part of many computer programs. Accelerating this process using
Graphics Processing Units (GPUs) is thus greatly advantageous for many applications such as intrusion
detection systems. This research investigates the implementation of pattern matching on these massively
parallel processing units. The second area of research is implementation efficiency and performance ad-
vantages introduced by GPU acceleration of this family of algorithms.
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1 Introduction

This paper discusses the utilisation of programmable pipeline Graphics Processing Units (here on referred
to as GPUs) for high speed pattern matching. The first question that should be asked is why acceler-
ate pattern matching? Pattern matching is a fundamental part of many computer programs widely used
in databasing, search engines and most heavily in computer security. Just some of the major algorithms
that use pattern matching include search algorithms, indexing algorithms, genetic engineering algorithms
and signature matching algorithms used in computer firewalls and virus scanners. In all these applica-
tions pattern matching is responsible for a large percentage of the computational load even though it is
mathematically and algorithmically fairly simple. Increasing the speed of pattern matching could therefore
improve performance in many areas of computer science. The fundamental questions this paper addresses
are can and should GPUs be utilised to improve pattern matching speeds? Being able to offload simple
numerical processing to a specialised companion processor obviously is a great boon as this frees more
resources on our general purpose processor for other important tasks. However if this offloading reduces
performance this may not be desirable.

In the 1980’s there began a trend to include Floating Point Units(FPUs) alongside a CPU, this changed
the face of computer science. Suddenly it was possible to preform precision mathematics needed for sim-
ulations, computer aided design and even accounting in far shorter periods of time. This changed the way
people saw and interacted with computers. During the last 5 years there has been seen a similar trend. The
inclusion of massively parallel companion processors known as GPUs. GPUs have traditionally been used
to render 3D environments for computer gaming and medical science. They have now been harnessed not
only to produce photo-realistic virtual environments but as fully functional companion processors capable
of complex logic and high throughput. The increase in processing power these devices deliver will likely
produce a revolution similar to that of the FPU. Many scientific problems will suddenly become solvable
and many more programs will leap into the realm of real time user interaction. In this paper there is a
detailed examination of the technical challenges and opportunities these devices offer computer scientists
and computer users through their applications in pattern matching. Because of the large volume of field
specific terms it is highly recommended that before continuing you read the glossary of terms.



2 Glossary

GPU - Graphics Processing Unit.

GPGPU - General Purpose Graphics Processing Unit. This refers both to GPUs capable of executing
general purpose code and the writing of such code.

SIMT - Single Instruction Multiple Thread. SIMT can be compared to the much more common SIMD.
However with the extended ability to preform divergent branches.

CUDA - Compute Unified Device Architecture.

Grid - CUDA execution commands process a so called grid of data. A grid consists of a three dimen-
sional array blocks which in turn consist of a three dimensional array of threads. This abstraction
makes some geometric operations more intuitive. In string matching these higher dimensions can be
ignored.

Warp - A Warp is blocks of threads that execute physically in parallel on a multiprocessor. This definition
can be expanded on by the Nvidia Compute PTX ISA 1.2 manual[6] ”Individual threads composing
a SIMT warp start together at the same program address . . . A warp executes one common instruction
at a time, . . . If threads of a warp diverge via a data-dependent conditional branch, the warp serially
executes each branch path taken, disabling threads that are not on that path, and when all paths
complete, the threads converge back to the same execution path.”

Host - The main computer holding a GPU.

Device - A GPU.

NIDS - Network Intrusion Detection System.

Kernel - A GPU program. Kernels are loaded onto the GPU from the host computer. A kernel is a block
of code that will be executed by a group of threads in parallel.

Needle - A string to be found.

Haystack - A large string possibly containing one or more needles.



3 GPU basics

3.1 Traditional GPU programming pipeline

Before the development of specialised frameworks for general purpose graphics processing unit program-
ming all general purpose applications that were to be accelerated on the GPU had to be mapped into a
graphical context. These mappings where often over complicated and less than optimal. Several libraries
exist which act as wrappers around traditional graphics oriented GPU frameworks to ease the process of
developing GPGPU programs using traditional GPU hardware. A good example of this is the Sh shader
language[14]. Sh provides an interface to OpenGL[16] that is optimised for the production of non graphi-
cal code. This however does not increase the fundamental capacities of OpenGL instead simply making it
easier to use. Overheads introduced by less than optimal mappings of the problem domain have in the past
often limited execution speed so much that utilising the GPU resulted in slower overall execution. Another
limiting factor was the memory architecture of GPUs. In a traditional use nearly all memory transfers a
GPU would see ran in one direction moving data from host to device. Often with general purpose code
there are greater amounts of data moved in the opposite direction from the device to the host. As earlier
GPUs were unoptimised for traffic in this direction they severely limited performance of many algorithms.
It was clear that GPUs could be used to solve highly parallel problems but that the available APIs were
limiting their usefulness. An in depth investigation into GPGPU is available in [11].

3.1.1 Gather

Gather is a term used to describe the ability to read any memory location from within a GPU program.
The name is taken from the fact that such memory accesses are intended to gather data that is needed to
preform a calculation. Gather has been a feature of all major GPU programming frameworks as it is relied
upon heavily in the field of computer graphics.

3.1.2 Scatter

Scatter is the ability to write the results of a calculation to an arbitrary memory location. This has not been
present in traditional GPU programming frameworks as the destination to be written to is always previously
known in graphics processing. Without the ability to scatter data many algorithms are greatly limited in
implementation and yet more completely unimplementable.

3.2 CUDA

Compute Unified Device Architecture is a programming framework developed by Nvidia that allows their
8000+ series of GPUs to be programmed directly inside standard C programs while utilising the same C
syntax. CUDA allows nearly all the functionality available in C. Programs executed on CUDA devices
have total freedom to gather and scatter data as needed. They may also perform calculations using any C
operators along with pointer arithmetic and most other normal programming functionality.

This is accomplished with the use of several language extensions and a preprocessor. The preprocessor
strips out the code intended for execution on the GPU and compiles it separately from the main body of the
program. At runtime the code destined to be executed on the CUDA device is transferred into the instruction
units of the device by way of a special operating system driver. CUDA thus provides an abstraction layer
between the programmer and the GPU specific instructions sets. This allows the production of code that



is portable between various Nvidia graphics devices. Nvidia intends to keep the CUDA programming API
over the next generations of its GPUs extending it when needed but maintaining backwards compatibility.
It has already been proven that CUDA can offer extreme processing power in many problem domains. For
example cryptographic hashing [17][12] , complex graphing [8] and DNA sequencing [13]. However little
attention has been paid to GPU acceleration of string matching using CUDA only one paper previously
being published [10].

3.3 CUDA Execution
CUDA executes code using a SIMT approach. This is similar to traditional SIMD execution in that the
instruction load unit only has to load one instruction for a large number of elements to be processed. In the
case of SIMD the elements are data words. In SIMT the elements are threads. This is to say that all threads
must be executing the same instruction at the same time. Logically in purely mathematical operations all
active threads should wish to execute the same instruction at the same time. However when conditional
logic is implemented this is no longer true. Some threads many need to follow one execution path while
others follow another. This is called thread divergence. To deal with this CUDA serialises operations. One
code path will be executed before the other. In the case of the code in Figure 3.1 a divergent condition is
met at line 3. Threads in which the data element at data[tid] is greater than ten will be executed first while
threads in which the data element at data[tid] is ten or smaller will be placed in a stall condition. Once the
active threads have executed line 4 the stalled threads will be woken and will execute line 6. All threads
then wake and continue to execute in parallel. Threads being in a stalled condition waste processing power
and reduce the performance of CUDA code. In string matching it is difficult to avoid divergent operations.

1 g l o b a l void d i v e r g e K e r n e l ( i n t ∗ d a t a ) {
2 i n t t i d = ( b l o c k I d x . x ∗blockDim . x ) + t h r e a d I d x . x ;
3 i f ( d a t a [ t i d ] > 10)
4 d a t a [ t i d ] = d a t a [ t i d ] + 1 ;
5 e l s e
6 d a t a [ t i d ] = d a t a [ t i d ] − 1 ;
7 re turn

Figure 3.1: A kernel that produces thread divergence

3.4 CUDA memory layout
CUDA puts the programmer very close to the metal with regard to memory access. There is no operating
system memory management and no memory swapping. A heap is managed using the functions cudaMal-
loc and cudaFree. Due to the limited stack system of CUDA these functions can only be called from the
host computer not from code executing on the GPU. There are several different types of memory exposed,
these are visualised in Figure 3.2 and detailed below.

• Registers - CUDA provides 8192 32bit registers for general purpose use. These registers must be
divided up between all executing threads. As a CUDA thread device can have 768 threads in the
execution state at once this gives us 10 registers per thread if we wish to utilise the device at maximum
efficiency. In CUDA revision 1.2 the number of general purpose registers was raised to 16,384 and
the maximum executing thread count was raised to 1024. Newer CUDA devices can therefore expend
16 registers per thread while still operating at peak efficiency.

• Global - this memory can be read to and written to from any thread. It is off-chip and contained in
several ICs mounted on the GPU board. It is anywhere between 128MB and 4GB in size depending
on the device in question.

• Texture - Texture memory is a wrapper around global memory. It is read only on the device but write-
able from then host. Texture memory enables an 8KB cache and hardware interpolation on the block



of global memory it wraps. This cache is only effective when reading clustered blocks of memory.
Interpolation is performed on dedicated hardware called Raster Operation Processors (ROPs). Due
to this dedicated hardware there is little performance penalty involved in multi-sampling operations
from texture memory.

• Shared - Shared memory can be read and written by all threads. It is 32KB in size and has a 8KB
cache. Shared memory is intended to be a mechanism for message passing and semaphore. The
CUDA compiler will reserve sections of this memory for internal use when required.

• Constant - Constant memory is a 64KB block of memory with an 8KB cache designed to hold
operation constants. As the name implies constant memory is read only from the GPU context and
accessible from all threads. Only the host may write into constant memory and only between kernel
executions.

Figure 3.2: Block diagram of CUDA memory lay-
out

The most important thing to note is the lack of a cache
system comparable to that of a recent x86 CPU. Modern
desktop x86 processors have between 512KB and 12MB
of fast on-chip cache. Because of this they can execute
complex algorithms that deal with large numbers of items
without being hampered by memory bandwidth. This is
not the case for CUDA programs. Any accesses to CUDA
global memory introduce a large latency and result in
lower performance. Many programmers utilising CUDA
have turned to using shared memory as a user managed
cache in an attempt to mitigate this [15].

The bandwidth from host to device memory imposes
a hard performance cap on any solution that can be de-
veloped. Host to device speeds can range from 400MB/s
to 2GB/s. These transfer rates are significantly faster than
the throughput of storage devices and most networks links
and as such should not be a limiting factor in tests. In
the future it can be expected that the available bandwidth
between CPU and GPU will advance faster than storage
devices. As such it is unlikely that this will ever become
a limiting factor for small systems. In large server archi-
tectures data throughput can reach multiple gigabytes per second. In this case multiple devices could be
utilised in order to process this volume of traffic.

3.5 The CUDA stack

CUDA has a limited stack architecture which is due to the need to know the stack size at compilation
time for memory and register allocation purposes. CUDA unrolls function calls in a manner similar to
loop unrolling. This results in a CUDA kernel which encompasses the complete possible map of execution
paths. Because of this, recursive algorithms cannot be implemented using function calls as is general
practise. This can effect some areas of string matching such as regular expression matching.

3.6 The CUDA heap

The heap implemented in CUDA is limited in a similar manner as the stack. As memory usage must be
known by the CUDA driver before a kernel can be executed. Dynamic memory allocation in the GPU
memory space is only possible on the host. Allowing kernels to allocate memory from within the GPU
would mean that the CUDA driver would not be able to correctly determine positions to place the stack.
This means that we must be able to determine the memory usage of any string matching solution developed
to run on CUDA before the actual CUDA execution begins.



3.7 Kernel launch overhead
CUDA suffers from overheads involved in copying data and program instructions from system to device
memory. All CUDA enabled GPUs are connected to their host system by the PCI express bus. Because
of this architecture memory copies between the host and device memory incur a latency overhead. This
latency makes small memory transfers overly costly as they significantly degrade the available bandwidth.
Bus latency also makes CUDA processing of very small datasets not worthwhile. It became important to
find out how much launch overhead was involved and how it scaled as this could potentially cripple CUDA
for security applications. If kernel launches occupy a large percentage of the available host processor or
GPU time, low latency stream processing such as that required for firewall applications could be hindered.
To test the impact of launch overhead a program was produced that executed many, short, busy work
kernels. The kernel is shown in Figure 3.3 This kernel accepts a pointer to an integer and a number
of additions to preform. This way the the same number of operations can be performed using different
numbers of kernel launches. Since CUDA 1.1 there has been support for CUDA atomic operations. These
make sure that threads do not enter a race condition while accessing shared data elements, see [5] for more
details. The test kernel uses the CUDA atomic operation atomicAdd to ensure that all additions happen
without any race conditions.

g l o b a l void addOne ( i n t ∗ da ta , char numToSum ) {

f o r ( i n t i =0 ; i < numToSum ; i ++)
atomicAdd ( da t a , 1 ) ;

re turn ;
}

Figure 3.3: Launch overhead test code

Figure 3.4 shows that with each ten fold increase in kernel launches there is a significant but not pro-
hibitive jump in execution time. Minimising the number of launches involved in a matching operation
will increase throughput. Unfortunately watchdog timers whose function is to kill unresponsive graphics
kernels, are built into all major operating systems. In Windows XP and Windows Vista CUDA kernels
are allowed 5 seconds execution time while Windows 7 reduces this execution window to 2 seconds. As
a kernel that takes 1 second to execute on a powerful GPU may take several times longer on a less pow-
erful GPU a large margin must be left in order to ensure successful execution is possible on a majority of
hardware configurations. Kernel execution time limits can be avoided by installing a GPU dedicated to
run CUDA programs. At the current time it is still very uncommon in consumer machines to have a GPU
dedicated to executing CUDA programs. This is not an issue for code intended to run on servers in which
specific hardware considerations can be required.



3.8 GPU explicit matching vs GPU filtering

Figure 3.4: Graph of number of launches versus
total duration

There are two possible approaches to performing string
matching on GPUs. Either moving the entire process
of string matching onto the GPU leaving the CPU com-
pletely free or using the GPU as a filtering device to pro-
duce a subset of the haystack which we must then search
on the CPU. The latter approach provides two key bene-
fits. Firstly there is no need to copy the full text of the
needles that are to be searched for onto the device thereby
consuming bandwidth and increasing device memory re-
quirements. Secondly the size of the device kernel in-
volved in filtering operations should be significantly lower
leading to higher performance. Using the GPU to preform
explicit matching introduces some problems. In mission
critical operations the lack of ECC bit error correction
may not be acceptable. It is possible that calculations
preformed on the GPU hardware could be adversely affected by outside sources of information such as
radiation sources. In the case of explicit matching the GPU may confirm a match that does not truly exist.
In the case of filtering it is possible for the GPU to miss a match but it is not possible to cause a false
detection as a CPU check verifies each match.



4 String matching work division

The problem of string matching can be split into parallel segments in several different ways each, having
specific advantages and disadvantages.

4.1 Thread per needle

Figure 4.1: A
separate thread
per needle.

The most obvious way to distribute the workload is to match one needle on each pro-
cessor against the entire haystack. This has the advantage of being easily extended to
work with data streams. A data stream can be buffered into a memory block, then when
a set number of bytes have been collected processed, at once by the matching engine.
The buffer can be small thus introducing little latency. Unfortunately a thread per needle
approach introduces much redundant calculation. This is brought about by the fact that if
matching a haystack against two needles ”form” and ”formidable” it is logically obvious
that if a position does not contain the first needle it cannot contain the second. Since each
needle is being matched in a separate logical thread this information cannot be shared in
an efficient manner. Prefix tables could be constructed to help handle this problem.

Because all threads iterate over the haystack separately if one thread gains a lead over
another memory access patterns will become very poor. One thread may be reading a
completely separate part of the haystack to another thread in the CUDA grid. Because
of the limited caching mechanisms available most bytes from the haystack will generate
a cache miss and have to be read from memory. The cycles lost while waiting for memory operations will
significantly impact performance. It is also important to note that some threads may have significantly
higher execution times than their peers. If a thread is processing a needle that consists of characters that
occur frequently in the haystack it will tend to take more cycles to process and thus finish later. This means
the peer threads must wait in a stalled condition for the slower threads to finish executing. This results in a
poor utilisation of the available resources.

4.2 Haystack blocking

Figure 4.2: Haystack cut into large contiguous blocks.

A second method of distributing the work load is to split the haystack into blocks and use existing
string matching systems such as finite state machines. However to be efficient the haystack must be large.
There is little point in parallel workload distribution if the haystack is only a few hundred bytes in size.
This means that data needs to be buffered into larger blocks before being processed. Filling these buffers
thus introduces some latency and makes this method less suited to streaming data.

In practise blocks must overlap. When dividing a data stream into blocks for matching J-1 (where



J is the length of the longest needle) bytes at the trailing end of the block cannot be fully checked as
if a signature exists beginning in one of these positions the matching algorithm will run out of haystack
before the match is confirmed. If the size of a block passed to the matching algorithm is small then a
higher percentage of the data will need to be passed to the algorithm in the next block. This creates a
trade off between solution efficiency and solution latency. As the size of the data blocks is increased the
efficiency rises. However additional latency is added as the block requires more time to be filled before
being processed.

4.3 Interlaced blocking

Figure 4.3: Haystack interlaced processing.

Block interlacing is a specialisation of the block method as used in [1]. This increases the level of
thread cooperation and when tuned can produce more efficient memory access patterns. Unfortunately
this means that all threads must complete before a definitive match can be produced. If these threads
exist in the same block then this overhead will be hidden as all threads in a CUDA block finish execution
simultaneously. Unfortunately the logic required to share relevant data between threads along with the
increased frequency of memory accesses associated are detrimental to performance. The logic required to
implement an interlaced block approach is difficult to understand and large. This makes interlaced blocks
a poor candidate for high performance GPU execution.

4.4 Thread per position
Another approach to dividing the string matching job into parallel sections is having many threads all
executing identical matching algorithms but each processing a different byte offset in the haystack. One
advantage of this technique is that threads that execute at the same time will read overlapping portions of
the haystack allowing cache mechanisms to operate effectively. This approach however disallows the use
of a rolling hash function [3], in hash based search algorithms as each thread operates at only one start
position and does not iterate through the haystack. As each thread starts it can check to see if a thread with
a smaller offset has found a match. In the case that this is true the thread can be terminated immediately
thus avoiding wasteful processing of the haystack at positions after the match.



5 Overview of string matching
algorithms

The major families of string matching algorithms along with specific details of their implementations which
require special consideration for GPGPU implementation are now discussed.

5.1 Naïve search
pre-calculation time matching time
no preprocessing Θ((n−m+1)m)

The naive search is known by many names such as ”brute force string matching” and ”exhaustive
matching”. This method scales in a linear manner with haystack length and produces a worst case matching
time of n*m. Since there is no need for pre-computation this algorithm is often used when a result of a
less precise method needs to be verified. Naı̈ve matching is algorithmically very simple. Because of the
algorithmic simplicity resources used per thread will be small leading to efficient utilisation of CUDA
hardware.

5.2 Finite state machines
pre-calculation time matching time
Θ(m|Σ|) Θ(n)

Finite state machines operate by moving between a set of states in a highly connected graph that rep-
resents the needle space. CUDA has a limited stack and heap system. This is because during kernel
executions blocks of global (heap) memory are used to store local variables. Implementing finite state
machines is thus somewhat complicated. There are two options for building a state graph for traversal on
GPU. The first option is to create a state machine using GPU executed code utilising a user managed heap
stored in a preallocated block of memory. The second option is to build the state machine on the host and
then copy this memory structure into GPU global memory. The second option leads to smaller simpler
kernels. To simplify the operation of moving a finite state machine on to the GPU C structs, which are
supported by the CUDA framework, can be used to model the nodes of the graph structure. An in depth
investigation into parallel, finite state machine, string matching is presented in [1].

5.3 Boyer-Moore

pre-calculation time matching time
Θ(m+ |Σ|) O(n)

The Boyer-Moore algorithm is the de-facto standard for string matching. The algorithm first constructs
lookup tables for the needles it is required to find. These tables store the optimal jumps that can be per-
formed when a mismatch occurs in the matching process. However, when implemented using the CUDA
API the Boyer-Moore algorithm suffers from some problems. The large number of memory lookups and
highly branching logic will impact performance. The lack of efficient thread co-operation causes large



amounts of data to be checked more than once or checked superfluously. These redundant operations scale
with the number of needles in a linear manner.

5.4 Rabin-Karp
pre-calculation time matching time
Θ(m) Θ(n+m)

The Rabin-Karp algorithm is a hash based string match first proposed in [9]. Hashing reduces the
amount of logical operations that must be performed at the expense of increasing the number of purely
numerical operations. This is a benefit to implementation on GPU as branch divergence can be avoided.
The hash used in Rabin-Karp algorithm is of a special variety called a rolling hash [3]. The hash of
each needle is computed only once and then stored. The haystack is examined and hashed one byte at a
time. This hash once computed is compared against the needle hashes that were determined in the pre-
calculation stage. If a needle is present in the text the matching hash will be found. On occasion incorrect
hash collisions can be experienced as two different strings may produce the same hashed value. For this
reason when a match is detected a brute force confirmation match is then calculated to assure a correct
determination. Incorrect hash collisions are very rare and as such the overhead of exhaustive matches
being computed superfluously is minimal. Hash based matching appears the most promising for extension
onto GPU.

5.5 Bloom filter
pre-calculation time matching time
Θ(m) Θ(n+m)

Bloom filters or ”k-fold bitstate hashing” are a special application of hashing first proposed in [4].
Bloom filters are used to represent a very large number of possible states, using a much smaller amount of
memory, at the cost of potential false positives due to hash collisions. For the problem of string matching
false positives are acceptable as a second test can be preformed on positive results. As such the Bloom
filter is used to reduce the number of positions in the haystack that have to be exhaustively tested. This was
implemented in appendix A for evaluation.

Details of the implementation are now discussed. Before scanning of the haystack commences a hash
of each needle that is to be found must be calculated. An array of bits is allocated and bits at the positions
produced by hashing the needles are set true. This is a simple Bloom filter utilising a single hash function
(k=1). Multiple hash functions can be used to set multiple bits for each needle if false collisions prove
frequent. This would however require more instructions to be preformed per byte of data. Because GPUs
have large amounts of memory available we can avoid the cost of computing multiple hashes by using a
large hash table consisting of between 128MB and 4GB of memory. For the calculations that follow the
Bloom filter is assumed to use 134217757 bits. If it is assumed that the output from the hash function that
is chosen and the strings that are to be hashed are distributed randomly it follows that the probability of a
hash collision is calculated using the standard equation for calculating the probability of a false positive in
a Bloom filter:

q = 1− (1− (1/m))nk

• q - is the probability that a position in the Bloom filter is set true (a hash collision).

• n - is the number of elements that have been added to the Bloom filter.

• m - is the number of bits used to implement a Bloom filter.

• k - is the number of hash functions that as stated before will be set to 1.

If there are 512 needles placed in the Bloom filter then:
q = 1− (1− (1/134217757))512 = 0.00000381468917966118088732668137



If there are 51,200 needles placed in the filter then:
q = 1− (1− (1/134217757))51200 = 0.00038139689526637362994462451492

This means in practise that large sections of the text can be eliminated as candidate positions. Under
perfect conditions, with 512 needles in the Bloom filter exhaustive tests need to be preformed on less
than 0.00038% of the possible positions in the haystack. False positive rates will increase as the number
of needles that are to be tested for are increased. The impact on performance is small for applications
with moderate numbers of needles, for example virus databases and NIDS packet signature databases. In
real world conditions higher levels of hash collisions can be expected as many datasets dealt with contain
limited alphabets or uneven character distributions. These conditions will affect the ability of the hash
function to map the data into a uniformly distributed space. Due to the implementation of the Boolean
type in C being stored in a byte instead of a single bit the space needed to store a Bloom filter of 100bits
in CUDA is in fact 100bytes. This could be avoided by using a C struct with custom defined offsets in
order to pack eight Booleans into a single byte. Bit-bashing approaches often lower performance due to the
overhead involved in unpackaging the individual bits. As memory is plentiful on modern GPUs bit-bashing
should therefore be avoided in CUDA Bloom filter implementations.

5.6 Precision considerations
GPUs have traditionally used 32bit words in their operations. While the range of 0 to 4,294,967,296 af-
forded by 32bit words is more than sufficient for most applications the intermediate stages of multiplicative
hash calculation can require higher precision. The obvious solution is to use a type with a larger range,
such as a long int, however the performance penalty for double precision calculations on CUDA hardware
is high. Double precision operations on current generation CUDA devices take approximately five times
longer than single precision operations. This limits the size of the hash table that can be worked with using
a multiplicative hash. More complex hashes based on bitshifts and random number tables are possible but
not covered in this paper.



6 Computer security

Computer security is a fairly recent field. With the widespread adoption of Internet communications it has
become necessary to ensure the security of computers from external tampering. This is a largely automated
task generally involving scanning the computer against a database of known threats. A more proactive
approach can be taken in scanning network traffic during transit for threats. There are therefore two quite
separate problems under the name of computer security so called on-line security and off-line security. In
the case of on-line security, for example firewall applications, it is important to minimise the amount of
latency added to the system by security processing. On-line security can be further broken down into secu-
rity that is enforced at a personal computer and security that is enforced at a network boundary. Processing
the traffic of an entire network requires a large amount of processing power making it an ideal candidate
for GPU acceleration. Off-line security also has areas that could benefit from GPU acceleration most no-
tably personal virus scanning. Virus scanning has long been the bane of personal computer users as it can
easily bring all but the most powerful systems to a shuddering halt. Most of the computational workload
of computer security applications is simple string matching and therefore stands as a good candidate for
GPU acceleration. If it is possible to replace dedicated hardware solutions such as those used for network
intrusion detection with inexpensive consumer equipment large quantities of money could be saved. If
GPU acceleration can be applied to virus scanning on personal computers solutions can be delivered that
impact computer users much less than their traditional counterparts. For these reasons utilising GPUs in
pattern matching applications could be very beneficial.

6.1 Security data matching specifics
Data matching in computer security is broken down into three major categories. Blacklist matching, hash
matching and regular expression matching.

6.1.1 Blacklist matching

This is using string matching to detect keywords or byte patterns that should trigger some kind of security
event. Events can be, for example rejecting a packet, alerting an administrator or running a decontamination
procedure on a file. Blacklist matching is an optimal candidate for the use of GPU accelerated pattern
matching. Black list matching is used primarily in network intrusion detection systems, data loss prevention
systems, firewalling and many forms of virus scanning.

6.1.2 Hash matching

Many virus scanners employ hash matching. This is the process of creating a hash of each file on the system
and comparing the result with a list of known bad files. Because the entire file is considered this is not a
granular approach. A virus that attaches itself onto another file will not be found by this matching method.
In most cases a standard cryptographic hash such as MD5 will be utilised for this matching application.
These hash functions can be accelerated by GPU utilisation as shown in [17] but are outside the scope of
this paper.

6.1.3 Regular expression matching

Regular expressions are a system to allow flexible string queries of a document. Regular expressions consist
of strings of characters connected by wildcards. These wildcard positions may match various characters.



Regular expressions are typically used to match short blocks of characters. Having short needles to match
reduces the efficiency of hash based string matching as collisions become more likely. Due to this regular
expression matching is not a good candidate for GPU acceleration.



7 Performance evaluation

To evaluate the key factors CUDA acceleration of pattern matching CUDA implementations of the naı̈ve
search algorithm, Boyer-Moore algorithm and a novel Bloom filter algorithm were produced. Performance
tests were conducted on the matching solutions. During these tests several different machines with various
GPUs were used to determine the scalability of each solution. Due to the high throughput of these solu-
tions files could not be read from harddisk as needed because the harddisk quickly became a performance
bottleneck. To overcome this the test programs read a complete file into system memory before starting the
process. The time taken to read the file into memory is not factored into the reported performance. Figure
7.1 shows the key attributes of the GPUs used in testing. A tabulated view of this information is available
in appendix B.

7.1 Needles

Figure 7.1: Key attributes of test hardware

Needles used in testing are taken from the project Guten-
berg edition of the King James Bible. The project Guten-
berg Bible is 4.97MB in size and contains 5,213,926 char-
acters. The needle strings were randomly selected by a C#
program, the source for which is published in Appendix
C. The methodology for choosing the needles was simple.
For each needle required a random offset position is gen-
erated. The program then navigates to the offset position
in a byte stream of the project Gutenberg Bible. A second
random integer L is generated where L is of set R with a
range of 512 ≤ L ≥ 32. This is taken to be the length of
the needle. The L bytes from the offset are read and then
stored into the signatures file. The alphabet size of the
project Gutenberg Bible was calculated using the tool in
Appendix D. In total 89 different characters are used with
frequencies roughly as to be expected for English text [2].

7.2 Haystack

For testing the implementations a haystack was chosen that did not contain any of the needles selected. The
file used was a compressed video stream 740MB in size. This file has an alphabet of 256 characters, the
maximum number possible. A full listing of the characters that appear, along with their frequencies, was
calculated using the tool provided in Appendix D is available in Appendix E. The haystack was chosen to
produce optimal performance in preliminary tests.

7.3 Bloom filter implementation

A Bloom filter implementation proved to be the matching algorithm with the highest throughput; speeds
of between 224Mbit/s and 1000Mbit/s were produced during testing. These figures represent a speedup of
more than 20 times compared to the same solution being run on CPU as shown in Figure 7.2. This method
of matching uses the GPU for parts of the matching operation to which it is best suited, generating hashes of
the data at each position and some simple checking. The CPU is used to confirm matches that are detected



on the GPU. This allows the amount of logic implemented in the GPU kernel to be somewhat smaller. This
in turn means that the GPU can be utilised in an efficient manner. With more complex algorithms such
as the Boyer-Moore algorithm the number of registers available for local variables is exhausted and the
choice must be made to either use much slower global memory to store our variables or under utilise the
GPU processors to allow enough space for the larger kernel. Using a Bloom filter approach also greatly
reduces the number of accesses to main memory. The Bloom filter implementation when scanning large
binary files can often process 512KB without the need for any exhaustive tests to be performed. This
results in a low CPU utilisation and high throughput. For testing a Bloom filter size of roughly 128MB was
chosen. The key reason being making the solution fit on any foreseeable test device. This was judged to
be the best compromise between minimising the number of hash collisions and device compatibility. The
performance of the Bloom filter solution during testing is shown in Figure 7.2. A tabulated data for these
tests is provided in Appendix G.

7.3.1 Effect of cores

Figure 7.2: Bloom filter performance.

The factor that influences the performance of the Bloom
filter solution most is the number of CUDA cores avail-
able. Each core can process one thread at any one time.
This means as we increase the number of cores we in-
crease the number of threads that can be executing at one
time. An increase in available cores provides a linear
near one to one mapping with each extra core (clocked at
1.5GHz) comes approximately 1MB/s extra performance.

7.3.2 Effect of clock speed

Cores that are clocked faster can execute more instruc-
tions per second. This boosts the performance of the
matching algorithms. One core clocked operating at
2GHz provides the same throughput as two cores operat-
ing at 1GHz. All current CUDA enabled GPUs use clock
speeds between 1.242GHz and 1.5Ghz. Utilising Nvidia’s
performance software it is possible to override the fac-
tory set clock speed of CUDA enabled cards. Figure 7.3
shows the throughput of the Bloom filter matching imple-
mentation running on the 9800GT GPU at various clock
speeds. This graph shows that the relationship between
clock speed and throughput in this case appears to be lin-
ear.

7.3.3 Scaling up

The test results show that on average each core clocked
1MHz can process 700Bytes of the haystack per second.
While available test GPUs managed at best 115MB/s, using the data gathered from the testing it is possible
to estimate the performance of higher performance CUDA devices. At the time of writing the most powerful
GPU produced by Nvidia is the GeForce GTX 295. This has 480 Cores that run at a clock speed of
1.242GHz. The performance can be estimated by the equation: Bytes/s =Cores∗Clockspeed(MHz)∗700

Figure 7.3: Throughput as a function of clock
speed.

This leads to an estimated performance of 398MB/s
for the GeForce GTX 295. This is significantly higher
that the bandwidth available on a 1Gbit/s network link. It
is possible to place four of these cards in one computer
for a combined throughput of 1592MB/s which is signif-
icantly higher than the bandwidth of a 10Gbit/s network
link. Nvidia produces a line of ”desktop supercomputers”



under the Tesla brand name. These contain four dedicated
CUDA GPUs and are used primarily as a replacement for
existing supercomputers. One of these machines could,
using this solution potentially perform all NIDS opera-
tions for a large corporate internet connection.

7.3.4 Performance degradation

Several factors can influence the performance of this im-
plementation. The foremost factor being limited alphabet
size. This will cause many more collisions than a larger alphabet and thus more false candidate positions.
As such searching in plain text documents is less efficient than searching in binary documents.

7.4 Brute force

A brute force matching algorithm as is shown in Appendix F. This proved to be very slow at matching even
when executed on GPU. The maximum speed achieved during testing was 0.884636MB/s which makes
this solution unsuitable for any real world application. It does however produce some important data about
string matching on CUDA.

It can be demonstrated that this algorithm is highly memory bound by calculating the number of cycles
required to process each bit of the haystack at different clock speeds. To do this the following equation is
used.

c = (1000000/((m/p)/s))/8

• c - is the number of processor cycles needed per bit of the haystack.

• m - is the number of Megabytes per second produced in a test.

• p - is the number processors(cores) on the test device.

• s - is the clock speed of the processors in Mhz.

When the brute force solution is executed on a Geforce 9800GT at 1375MHz the throughput achieved
is 0.884636MB/s thus the number of cycles per bit can be shown to be:

c = (1000000/((0.884636/112)/1375))/8 = 20752

When the brute force solution is executed on a Geforce 9800GT at 1100MHz the throughput achieved
is 0.871492MB/s thus the number of cycles per bit can be shown to be:

c = (1000000/((0.871492/112)/1100))/8 = 16852

While in the second case the GPU is operating at a lower speed and producing a lower throughput it
is in fact nearly one quarter more efficient. This shows that a large amount of time is being lost as the
GPU waits for data to be retrieved from main memory. When the brute force algorithm is executed on a
Geforce 9800M GS and compared to the results from execution on the Geforce 9800GT from above the
memory dependency becomes even more apparent. As shown in Figure 7.1 The Geforce 9800M GS has
nearly twice the memory throughput of the Geforce 9800GT. The Geforce 9800M GS produced a matching
throughput of 0.794MB/s it can therefore be shown that the number of cycles per bit is:

c = (1000000/((0.794/64)/1325))/8 = 12732

Using the data produced by the brute force solution it can be concluded that any solution that wishes to
efficiently utilize a GPU for string matching must avoid memory throughput dependency.



7.5 Boyer-Moore
The Boyer-Moore kernel implemented uses the thread per needle approach of work division. Essentially the
process consists of running one Boyer-Moore matching algorithm for each needle. This solution produces
a speed of around 1.5MB/s. While this throughput is not high it is significantly better than that of the
brute force solution however, this algorithm suffers some memory dependency, as shown below utilising
the equations presented in the previous section. When the brute force solution is executed on a Geforce

9800GT at 1375MHz the throughput achieved is 1.562143MB/s thus the number of cycles per bit can be
shown to be:

c = (1000000/((1.562143/112)/1375))/8 = 11752

When the brute force solution is executed on a Geforce 9800GT at 1100MHz the throughput achieved
is 1.382687MB/s thus the number of cycles per bit can be shown to be:

c = (1000000/((1.382687/112)/1100))/8 = 10622

The ability of the algorithm to skip over bits where matches cannot occur increases the performance
with regard to the naı̈ve solution shown earlier. Two main factors limit the performance of this algorithm.
Firstly in cases where there are more processors available than there are needles we will leave part of the
CUDA un-utilised. Secondly the intrinsically branching nature of the logic involved in the Boyer-Moore
algorithm. The Boyer-Moore kernel produced 1.36968e+07 serialisations per 64KB block of haystack
compared to 9.09543e+06 serialisations per 64KB block of haystack for the naı̈ve solution. This means
that a large amount of time was spent with threads in a stalled state. Because of this the throughput was
significantly lower than the Bloom filter implementation.



8 Conclusions

Using the data presented in this paper it can be concluded that GPU acceleration of pattern matching can
greatly increase the throughput of standard computers with respect to virus scanning and network intrusion
detection. With the inclusion of a powerful graphics processing unit a desktop PC is quite capable of
processing a 1000Mbit/s network link. This should provide significant financial savings over the use of
complex dedicated systems. The maintainability and expandability of such a system should also be much
greater than that of dedicated hardware. The utilisation of a CUDA enabled GPU leaves the CPU of the host
system free for other activities. GPU acceleration could be applied to desktop anti-virus solutions to reduce
the performance impact of background scanning operations. When used in a NDIS or firewall situation the
offloading of matching work to the GPU could allow other services to be hosted on the same computer thus
reducing overall cost further. This research also shows that a further use of GPU string matching may be
data ranking algorithms for large search engines and databases. Due to the large amounts of memory and
processing power available using GPGPU devices it is possible to analyse very large amounts of data much
faster than has previously been possible on consumer hardware. The massive growth in GPU power can be
expected to continue into the near future providing greater opportunities for utilisation in this field.

8.1 Future work
A lot more time can be spent tuning algorithms and increasing the performance of string matching on
CUDA. Examples include working on more effective memory access patterns and caching mechanisms.
Extending the solutions this paper has described to use real streaming packet data and performing a second
evaluation would help to further prove the conclusions of this paper. In October of 2009 Nvidia released
the specifications of their next generation GPU. This system is called Fermi[7]. Fermi improves on a lot
of points that have previously hampered CUDA applications, for example dissimilar kernels can now be
scheduled to execute in parallel which allows greater flexibility in application data flow. Along with this
cache systems have been radically improved by introducing a large level 2 cache which should significantly
increase pattern matching performance. However possibly the most important advance is full C++ support
including dynamic memory allocation. More research is required to learn how to best leverage these
exciting new architectural improvements to improve the performance of GPU pattern matching.
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A GPU and CPU bloom filter

# i n c l u d e < s t d l i b . h>
# i n c l u d e <s t d i o . h>
# i n c l u d e < s t r i n g . h>
# i n c l u d e <math . h>
# i n c l u d e <i o s t r e a m>
# i n c l u d e <f s t r e a m>
# i n c l u d e <v e c t o r>

# i n c l u d e < c u t i l i n l i n e . h>

# d e f i n e BYTES 65536
# d e f i n e NOTFOUND 100000
# d e f i n e PRIME BASE 31
# d e f i n e PRIME MOD 134217757
# d e f i n e MAXSIGLENGTH 32768
# d e f i n e MAXSIGS 32768

u s i n g namespace s t d ;

boo l d i f f e r e n t L e n g t h s [MAXSIGS] = { f a l s e } ;
c o n s t a n t char d cand [BYTES ] ;

h o s t i n t hhash ( char∗ s , i n t s S i z e )
{

unsigned i n t r e t = 0 ;

f o r ( i n t i = 0 ; i < s S i z e ; i ++)
{

r e t = r e t ∗PRIME BASE + s [ i ] ;
r e t %= PRIME MOD ; / / don ’ t o v e r f l o w

}
re turn r e t ;

}

void hosthashAndCheck ( i n t ∗ found , char∗ c a n d i d a t e , boo l ∗ h a s h T a b l e ) {
f o r ( i n t i =0 ; i<BYTES−12 ; i ++){

i f ( h a s h T a b l e [ hhash (& c a n d i d a t e [ i ] , 1 2 ) ] ) {
found [ 0 ] = i ;
break ;

}
}



}

g l o b a l void
hashAndCheck ( i n t ∗ found , char∗ c a n d i d a t e , boo l ∗ h a s h T a b l e )
{

i n t t i d = ( b l o c k I d x . x ∗blockDim . x ) + t h r e a d I d x . x ;

/ / HASH#########
unsigned i n t r e t =0 ;

f o r ( i n t i = 0 ; i < 1 2 ; i ++)
{

r e t = r e t ∗PRIME BASE + d cand [ t i d + i ] ;
r e t %= PRIME MOD ; / / don ’ t o v e r f l o w

}

/ / #############

i f ( h a s h T a b l e [ r e t ] )
a tomicMin ( found , t i d ) ;

}

s t r u c t s i g n a t u r e { / / S i mp le s t r u c t u r e t o s t o r e a s t r i n g w i t h a l e n g t h
char∗ d a t a ;
s h o r t l e n g t h ;

} ;

i n t c o n f i r m ( i n t p o s i t i o n , char∗ l i n e , s t r u c t s i g n a t u r e ∗ s i g s , i n t
numSigs ) {

f o r ( i n t j = 0 ; j<numSigs ; j ++){
i n t foundC = 0 ;
whi le ( foundC < s i g s [ j ] . l e n g t h && s i g s [ j ] . d a t a [ foundC ]

== l i n e [ p o s i t i o n +foundC ] )
foundC ++;

i f ( foundC == s i g s [ j ] . l e n g t h )
re turn j ;

}

re turn −1;
}

/ / / / / / / / / / / / / / / / / / / / / / / /
/ / Program e n t r y p o i n t
/ / / / / / / / / / / / / / / / / / / / / / / /



i n t
main ( i n t argc , char ∗∗ a rgv )
{

dim3 t h r e a d s ( 5 1 2 , 1 , 1 ) ;
dim3 g r i d ( 128 , 1 , 1 ) ;

boo l ∗ h h a s h T a b l e ;

h h a s h T a b l e = ( boo l ∗ ) ma l l oc (PRIME MOD ∗ s i z e o f ( boo l ) ) ;
memset ( h ha sh Tab l e , 0 ,PRIME MOD ∗ s i z e o f ( boo l ) ) ;

char∗ l i n e = ( char ∗ ) ma l lo c ( s i z e o f ( char ) ∗ MAXSIGLENGTH) ;
i n t numLoaded =0;
i f s t r e a m m y f i l e ( ” c :\\ s i g n a t u r e s . t x t ” , i o s : : b i n a r y ) ;

s t r u c t s i g n a t u r e ∗ s i g n a t u r e s = ( s t r u c t s i g n a t u r e ∗ ) ma l l oc (
MAXSIGS ∗ s i z e o f ( s t r u c t s i g n a t u r e ) ) ;

i n t h a s h C o l l i s i o n s =0;
/ / ######## LOAD THE SIGS ########
i f ( m y f i l e . i s o p e n ( ) )
{

i n t p o s i t i o n =0;
whi le ( m y f i l e . good ( ) && numLoaded < MAXSIGS)
{

i f ( m y f i l e . r e a d ( l i n e , 2 ) . e o f ( ) )
break ;

s h o r t l eng thToRead = ( ( ( unsigned char ) l i n e [ 1 ] )
<< 8) + ( ( unsigned char ) l i n e [ 0 ] ) ;

m y f i l e . r e a d ( l i n e , l eng thToRead ) ;

s i g n a t u r e s [ numLoaded ] . l e n g t h = leng thToRead ;
s i g n a t u r e s [ numLoaded ] . d a t a = ( char ∗ ) ma l l oc (

s i z e o f ( char ) ∗ l eng thToRead ) ;

memcpy ( s i g n a t u r e s [ numLoaded ] . da t a , l i n e ,
l eng thToRead ) ;

d i f f e r e n t L e n g t h s [ l eng thToRead ] = t r u e ;
numLoaded ++;

}
m y f i l e . c l o s e ( ) ;

} e l s e {
p r i n t f ( ”No S i g n a t u r e s F i l e \n ” ) ;
e x i t ( 0 ) ;

}

s h o r t ∗ h l e n g t h T a b l e = ( s h o r t ∗ ) ma l lo c ( s i z e o f ( s h o r t ) ∗MAXSIGS) ;
i n t r e a l L e n g t h s = 0 ;



/ / ###### PRODUCE SIG LENGTHS ARRAY #####

f o r ( i n t i =0 ; i<MAXSIGS; i ++){
i f ( d i f f e r e n t L e n g t h s [ i ] )

h l e n g t h T a b l e [ r e a l L e n g t h s ++]= i ;
}

/ / ###### PUT HASHES IN TABLE ##########
f o r ( i n t i =0 ; i<numLoaded ; i ++){

i n t hash = hhash ( s i g n a t u r e s [ i ] . da t a , 1 2 ) ;
i f ( h h a s h T a b l e [ hash ] )

h a s h C o l l i s i o n s ++;
h h a s h T a b l e [ hash ] = t r u e ;

}
/ / #################

p r i n t f ( ” Hash C o l l i s i o n s : %d\n ” , h a s h C o l l i s i o n s ) ;

/ / CPU
/ / char ∗ c a n d i d a t e = ( char ∗ ) ma l l oc ( BYTES ) ;

/ / GPU
char∗ c a n d i d a t e ;

i n t s i z e = 0 ;
FILE ∗ f = fopen ( ” c :\\ i n p u t . t x t ” , ” rb ” ) ;

i f ( f == NULL)
{

p r i n t f ( ” I n p u t F i l e Not Found\n ” ) ;
e x i t ( 1 ) ;

}

f s e e k ( f , 0 , SEEK END) ;
i n t f i l e L e n g t h = f t e l l ( f ) ;

f s e e k ( f , 0 , SEEK SET ) ;
char∗ f i l e B u f f e r = ( char ∗ ) ma l lo c ( f i l e L e n g t h ∗ s i z e o f ( char ) ) ;

i f ( f r e a d ( f i l e B u f f e r , 1 , f i l e L e n g t h , f ) != f i l e L e n g t h )
{

p r i n t f ( ” I n p u t F i l e Load E r r o r \n ” ) ;
e x i t ( 1 ) ;

}

p r i n t f ( ” F i l e Loaded\n ” ) ;

i n t c u r r e n t O f f s e t =0 ;

c u d a S e t D e v i c e ( cu tGe tMaxGf lopsDev ice Id ( ) ) ;



unsigned i n t t i m e r = 0 ;
c u t i l C h e c k E r r o r ( c u t C r e a t e T i m e r ( &t i m e r ) ) ;
c u t i l C h e c k E r r o r ( c u t S t a r t T i m e r ( t i m e r ) ) ;

s i z e = BYTES ;

boo l ∗ d h a s h T a b l e ;
c u t i l S a f e C a l l ( cudaMal loc ( ( void ∗∗ ) &d ha sh Tab l e , PRIME MOD ∗

s i z e o f ( boo l ) ) ) ;
c u t i l S a f e C a l l ( cudaMemcpy ( d ha sh Tab l e , h ha sh Tab l e , PRIME MOD

∗ s i z e o f ( boo l ) , cudaMemcpyHostToDevice ) ) ;

i n t ∗ d f o u nd ;
c u t i l S a f e C a l l ( cudaMal loc ( ( void ∗∗ ) &d found , s i z e o f ( i n t ) ) ) ;

i n t ∗ found = ( i n t ∗ ) ma l l oc ( s i z e o f ( i n t ) ) ;
∗ found = NOTFOUND;

cudaMemcpy ( d found , found , s i z e o f ( i n t ) , cudaMemcpyHostToDevice
) ;

boo l ∗ h o d a t a = ( boo l ∗ ) ma l lo c ( s i z e o f ( boo l ) ∗BYTES) ;

long t o t a l R e a d = 0 ;
i n t numFound =1;

whi le ( s i z e ==BYTES) {

i f ( ( f i l e L e n g t h−c u r r e n t O f f s e t )> BYTES)
s i z e = BYTES ;

e l s e
s i z e = ( f i l e L e n g t h−c u r r e n t O f f s e t ) ;

c a n d i d a t e = &f i l e B u f f e r [ c u r r e n t O f f s e t ] ;

c u r r e n t O f f s e t +=BYTES ;

/∗ / / CPU TEST
memcpy ( c a n d i d a t e ,& f i l e B u f f e r [ c u r r e n t O f f s e t ] , s i z e ) ;
hos thashAndCheck ( found , c a n d i d a t e , h h a s h T a b l e ) ;
∗ /

/ / GPU TEST
cudaMemcpyToSymbol ( d cand , c a n d i d a t e , s i z e ∗ s i z e o f (

char ) , 0 , cudaMemcpyHostToDevice ) ;
hashAndCheck<<< g r i d , t h r e a d s >>>(d found , d cand ,

d h a s h T a b l e ) ;

c u d a T h r e a d S y n c h r o n i z e ( ) ;



/ / GPU TEST
c u t i l S a f e C a l l ( cudaMemcpy ( found , d found , s i z e o f ( i n t ) ,

cudaMemcpyDeviceToHost ) ) ;

i f (∗ found !=NOTFOUND) {

i n t sigNum= c o n f i r m (∗ found , c a n d i d a t e , s i g n a t u r e s
, numLoaded ) ;

i f ( sigNum != −1){
numFound ++;

}

c u r r e n t O f f s e t −= ( ( BYTES−found [ 0 ] ) −1) ;

} e l s e {

c u r r e n t O f f s e t −= h l e n g t h T a b l e [ r e a l L e n g t h s −1];

}
∗ found =NOTFOUND;

cudaMemcpy ( d found , found , s i z e o f ( i n t ) ,
cudaMemcpyHostToDevice ) ;

}

p r i n t f ( ”\n\nNumber found :%d\n ”,−−numFound ) ;

p r i n t f ( ” P r o c e s s i n g t ime : %f ( ms ) \n ” , cu tGe tT imerVa lue ( t i m e r )
) ;

p r i n t f ( ”MB/ s : %f \n ” , ( ( ( ( double ) f i l e L e n g t h / (
cu tGe tT imerVa lue ( t i m e r ) / 1000) ) / 1 0 2 4 ) / 1 0 2 4 ) ) ;

c u t i l C h e c k E r r o r ( c u t D e l e t e T i m e r ( t i m e r ) ) ;

f r e e ( f i l e B u f f e r ) ;

c u d a F r e e ( d h a s h T a b l e ) ;
c u d a T h r e a d E x i t ( ) ;

c u t i l E x i t ( a rgc , a rgv ) ;
}



B GPU Key Data



C Alphabet Calc

u s i n g System ;
u s i n g System . C o l l e c t i o n s . G e n e r i c ;
u s i n g System . Linq ;
u s i n g System . Text ;
u s i n g System . IO ;

namespace A l p h a b e t C a l c
{

c l a s s Program
{

s t a t i c vo id Main ( s t r i n g [ ] a r g s )
{

F i l e S t r e a m f i l e = new F i l e S t r e a m ( ” i n p u t . t x t ” , Fi leMode .
Open , F i l e A c c e s s . Read ) ;

i n t [ ] c o u n t s = new i n t [ 2 5 7 ] ;

whi le ( f i l e . CanRead )
{

i n t t h e B y t e = f i l e . ReadByte ( ) ;
i f ( t h e B y t e < 0)

break ;
c o u n t s [ t h e B y t e ] + + ;

}

i n t a l p h a b e t S i z e =0;

f o r ( i n t i = 0 ; i < c o u n t s . Length ; i ++)
{

i f ( c o u n t s [ i ] != 0 )
{

Conso le . Wr i t e ( ( char ) i + ” ” ) ;
Conso le . W r i t e L i n e ( c o u n t s [ i ] ) ;
a l p h a b e t S i z e ++;

}
}

Conso le . W r i t e L i n e ( ” A l p h a b e t S i z e : ” + a l p h a b e t S i z e ) ;

}
}

}



D Signature builder

u s i n g System ;
u s i n g System . C o l l e c t i o n s . G e n e r i c ;
u s i n g System . Linq ;
u s i n g System . Text ;
u s i n g System . IO ;

namespace S i g B u i l d
{

c l a s s Program
{

s t a t i c vo id Main ( s t r i n g [ ] a r g s )
{

F i l e S t r e a m f i l e = new F i l e S t r e a m ( ” i n p u t . t x t ” , Fi leMode .
Open , F i l e A c c e s s . Read ) ;

F i l e S t r e a m f i l e O u t = new F i l e S t r e a m ( ” s i g n a t u r e s . t x t ” ,
Fi leMode . Crea t e , F i l e A c c e s s . Wr i t e ) ;

b y t e [ ] b u f f y = new b y t e [ i n t . P a r s e ( a r g s [ 2 ] ) ] ;
Random random = new Random ( ) ;

f o r ( i n t i = 0 ; i < i n t . P a r s e ( a r g s [ 0 ] ) ; i ++) {
s h o r t s i g L e n g t h =0;
whi le ( s i g L e n g t h < i n t . P a r s e ( a r g s [ 1 ] ) )

s i g L e n g t h = ( s h o r t ) random . Next ( i n t . P a r s e ( a r g s [ 2 ] ) )
;

f i l e . Seek ( random . Next ( ) , S e e k O r i g i n . Begin ) ;
whi le ( f i l e . Read ( buf fy , 0 , s i g L e n g t h ) != s i g L e n g t h )
{

f i l e . Seek ( random . Next ( ) , S e e k O r i g i n . Begin ) ;
}

f i l e O u t . Wr i t e ( System . B i t C o n v e r t e r . Ge tBy tes ( s i g L e n g t h ) ,
0 , 2 ) ;

f i l e O u t . Wr i t e ( buf fy , 0 , s i g L e n g t h ) ;

}
f i l e . C lose ( ) ;
f i l e O u t . C lose ( ) ;

}
}

}



E Distribution of alphabet in
haystack

This is a listing of each character and the number of times it occured in the test haystack. If the character
has a displayable mapping in the ASCII character set it is represented by that character if not it is replaced
with ?. If the character is undisplayable only the count for the character appears.

3284199

? 2986584

? 2896749

? 3118674

? 2897301

? 2946930

? 3139198

2893710

2992466

2885248

3010642

? 2795635

? 3083136

2959386

? 2764846

3198016

? 2948543

? 2934993

? 3002487

? 2727603

3016193

2933543

? 2814425

? 2936792

? 2954311

? 2913823

? 2807946

? 2979024

? 2886925

? 2722944

? 3117463

? 3264192

2896183

! 2913613

" 2949020



\# 2941019

$ 2993971

% 2981321

\& 2795734

’ 2891656

( 2912938

) 3014302

* 3088502

+ 2961476

, 2909269

- 2870291

. 2972928

/ 3063484

0 3082520

1 2820742

2 2918471

3 2874584

4 2807854

5 2776617

6 2979568

7 2930615

8 3013033

9 2859265

: 2927039

; 2758888

< 3171712

= 3059690

> 3259399

? 3169241

@ 2908803

A 2843601

B 2879010

C 2895797

D 2936147

E 2918245

F 2856730

G 3009721

H 2967638

I 2955821

J 3008723

K 2957598

L 2911721

M 2856795

N 2955249

O 3108394

P 2951457

Q 2959451

R 2936114

S 3062238

T 3108241

U 3265097

V 2972525

W 3191458

X 2861618



Y 2866192

Z 2918901

[ 2934834

\ 3018704

] 2936868

^ 3100832

_ 3162007

‘ 2933757

a 2916034

b 2867573

c 2868833

d 2959086

e 2939212

f 2814810

g 2983399

h 2743648

i 2888054

j 2968886

k 2811952

l 2943805

m 2996842

n 2915983

o 3071039

p 3078620

q 2871551

r 2954237

s 2964034

t 2924401

u 2871581

v 2796344

w 3008904

x 3180447

y 3053673

z 3113504

{ 3198674

| 3092795

} 3331331

~ 3091363

3302656

? 2994280

? 3015346

? 2970456

? 2921947

? 2979489

? 2860493

? 2910681

? 3063912

? 2892541

? 2851616

? 2942365

? 2966202

? 2796548

? 2830244

? 2852082



? 3192019

? 2867558

? 2956834

? 2964433

? 2961692

? 2956475

? 3111694

? 2930244

? 3096108

? 2820229

? 2888381

? 2773707

? 2929764

? 2979506

? 2960075

? 3084505

? 3154289

2851335

2853700

2889584

2914456

2931572

2984880

2948832

3166492

2997644

2981806

3271874

3199390

2842077

2967216

2969999

3186157

2835658

2889644

2902762

2922897

2811549

2993326

2999454

3046588

2923332

3060246

2869232

3023390

3076786

3261203

3156834

3221303

3046459

3052748

2961505

3079907

2807469



2986554

2752795

3036993

2849433

2979417

3004262

3081000

2805550

2852378

2995101

3158158

2758637

2876073

2982616

3088226

2870973

3211325

2820543

2967942

2871100

2975041

2904969

3086982

2977578

2954738

3239095

3224524

3200977

3133333

2954836

2954367

2944518

3146194

2844342

3147757

2885926

3180008

3123570

2999355

2903523

3004956

3024126

3398233

3251620

3047793

3128153

3029918

3123077

3242359

3103413

3436849

3112192

3106694

3254789



3397830

3118463

3268128

3296010

3683456

Alphabet Size:256



F GPU brute force

# i n c l u d e < s t d l i b . h>
# i n c l u d e <s t d i o . h>
# i n c l u d e < s t r i n g . h>
# i n c l u d e <math . h>
# i n c l u d e <i o s t r e a m>
# i n c l u d e <f s t r e a m>
# i n c l u d e <v e c t o r>
# i n c l u d e < c u t i l i n l i n e . h>

# d e f i n e BYTES 65536
# d e f i n e NOTFOUND 100000
# d e f i n e MAXSIGLENGTH 32768
# d e f i n e MAXSIGS 32768

u s i n g namespace s t d ;

boo l d i f f e r e n t L e n g t h s [MAXSIGS] = { f a l s e } ;
c o n s t a n t char d cand [BYTES ] ;

s t r u c t s i g n a t u r e { / / S i mp le s t r u c t u r e t o s t o r e a s t r i n g w i t h a l e n g t h
char d a t a [ 5 1 2 ] ;
s h o r t l e n g t h ;

} ;

g l o b a l void
check ( i n t ∗ dfound , char∗ c a n d i d a t e , s t r u c t s i g n a t u r e ∗ s i g s , i n t

numSigs )
{

i n t t i d = ( b l o c k I d x . x ∗blockDim . x ) + t h r e a d I d x . x ;
i f ( dfound [0]< t i d )

re turn ;

f o r ( i n t j = 0 ; j<numSigs ; j ++){
s h o r t foundC = 0 ;
i f ( ( s i g s [ j ] . l e n g t h + t i d )<BYTES) {

i n t l e n g t h = s i g s [ j ] . l e n g t h ;
whi le ( foundC < l e n g t h && t i d +foundC <BYTES ) {

i n t d a t a b y t e = s i g s [ j ] . d a t a [ foundC ] ;
i n t compbyte = d cand [ t i d +foundC ] ;
i f ( d a t a b y t e != compbyte )

break ;



foundC ++;

}
i f ( foundC == s i g s [ j ] . l e n g t h )

atomicMin ( dfound , t i d ) ;
}

}
re turn ;

}

i n t c o n f i r m ( i n t p o s i t i o n , char∗ l i n e , s t r u c t s i g n a t u r e ∗ s i g s , i n t
numSigs ) {

f o r ( i n t j = 0 ; j<numSigs ; j ++){
i n t foundC = 0 ;
whi le ( foundC < s i g s [ j ] . l e n g t h && s i g s [ j ] . d a t a [ foundC ]

== l i n e [ p o s i t i o n +foundC ] )
foundC ++;

i f ( foundC == s i g s [ j ] . l e n g t h )
re turn j ;

}
re turn −1;

}

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / Program e n t r y p o i n t
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
i n t
main ( i n t argc , char ∗∗ a rgv )
{

dim3 t h r e a d s ( 5 1 2 , 1 , 1 ) ;
dim3 g r i d ( 128 , 1 , 1 ) ;

boo l ∗ h h a s h T a b l e ;

h h a s h T a b l e = ( boo l ∗ ) ma l l oc (PRIME MOD ∗ s i z e o f ( boo l ) ) ;
memset ( h ha sh Tab l e , 0 ,PRIME MOD ∗ s i z e o f ( boo l ) ) ;

char∗ l i n e = ( char ∗ ) ma l lo c ( s i z e o f ( char ) ∗ MAXSIGLENGTH) ;
i n t numLoaded =0;
i f s t r e a m m y f i l e ( ” c :\\ s i g n a t u r e s . t x t ” , i o s : : b i n a r y ) ;

s t r u c t s i g n a t u r e ∗ s i g n a t u r e s = ( s t r u c t s i g n a t u r e ∗ ) ma l l oc (
MAXSIGS ∗ s i z e o f ( s t r u c t s i g n a t u r e ) ) ;

i n t h a s h C o l l i s i o n s =0;
/ / ########## LOAD THE SIGS #########
i f ( m y f i l e . i s o p e n ( ) )
{

i n t p o s i t i o n =0;
whi le ( m y f i l e . good ( ) && numLoaded < MAXSIGS)
{



i f ( m y f i l e . r e a d ( l i n e , 2 ) . e o f ( ) )
break ;

s h o r t l eng thToRead = ( ( ( unsigned char ) l i n e [ 1 ] )
<< 8) + ( ( unsigned char ) l i n e [ 0 ] ) ;

m y f i l e . r e a d ( l i n e , l eng thToRead ) ;

s i g n a t u r e s [ numLoaded ] . l e n g t h = leng thToRead ;
memcpy ( s i g n a t u r e s [ numLoaded ] . da t a , l i n e ,

l eng thToRead ) ;
d i f f e r e n t L e n g t h s [ l eng thToRead ] = t r u e ;
numLoaded ++;

}
m y f i l e . c l o s e ( ) ;

} e l s e {
p r i n t f ( ”No S i g n a t u r e s F i l e \n ” ) ;
e x i t ( 0 ) ;

}

s h o r t ∗ h l e n g t h T a b l e = ( s h o r t ∗ ) ma l lo c ( s i z e o f ( s h o r t ) ∗MAXSIGS) ;
i n t r e a l L e n g t h s = 0 ;
/ / ###### PRODUCE SIG LENGTHS ARRAY ######

f o r ( i n t i =0 ; i<MAXSIGS; i ++){
i f ( d i f f e r e n t L e n g t h s [ i ] )

h l e n g t h T a b l e [ r e a l L e n g t h s ++]= i ;
}

char∗ c a n d i d a t e ;

i n t s i z e = 0 ;
FILE ∗ f = fopen ( ” c :\\ i n p u t . t x t ” , ” rb ” ) ;

i f ( f == NULL)
{

p r i n t f ( ” I n p u t F i l e Not Found\n ” ) ;
e x i t ( 1 ) ;

}

f s e e k ( f , 0 , SEEK END) ;
i n t f i l e L e n g t h = f t e l l ( f ) ;

f s e e k ( f , 0 , SEEK SET ) ;
char∗ f i l e B u f f e r = ( char ∗ ) ma l lo c ( f i l e L e n g t h ∗ s i z e o f ( char ) ) ;

i f ( f r e a d ( f i l e B u f f e r , 1 , f i l e L e n g t h , f ) != f i l e L e n g t h )
{

p r i n t f ( ” I n p u t F i l e Load E r r o r \n ” ) ;
e x i t ( 1 ) ;



}

p r i n t f ( ” F i l e Loaded\n ” ) ;

i n t c u r r e n t O f f s e t =0 ;

c u d a S e t D e v i c e ( cu tGe tMaxGf lopsDev ice Id ( ) ) ;

unsigned i n t t i m e r = 0 ;
c u t i l C h e c k E r r o r ( c u t C r e a t e T i m e r ( &t i m e r ) ) ;
c u t i l C h e c k E r r o r ( c u t S t a r t T i m e r ( t i m e r ) ) ;

s i z e = BYTES ;

i n t ∗ d f o u nd ;
c u t i l S a f e C a l l ( cudaMal loc ( ( void ∗∗ ) &d found , s i z e o f ( i n t ) ) ) ;

i n t ∗ found = ( i n t ∗ ) ma l l oc ( s i z e o f ( i n t ) ) ;
∗ found = NOTFOUND;

cudaMemcpy ( d found , found , s i z e o f ( i n t ) , cudaMemcpyHostToDevice
) ;

s t r u c t s i g n a t u r e ∗ d S i g s ;
c u t i l S a f e C a l l ( cudaMal loc ( ( void ∗∗ ) &d S i g s , numLoaded ∗

s i z e o f ( s t r u c t s i g n a t u r e ) ) ) ;
c u t i l S a f e C a l l ( cudaMemcpy ( d S i g s , s i g n a t u r e s , numLoaded ∗

s i z e o f ( s t r u c t s i g n a t u r e ) , cudaMemcpyHostToDevice ) ) ;

boo l ∗ h o d a t a = ( boo l ∗ ) ma l lo c ( s i z e o f ( boo l ) ∗BYTES) ;

long t o t a l R e a d = 0 ;
i n t numFound =1;

whi le ( s i z e ==BYTES) {

i f ( ( f i l e L e n g t h−c u r r e n t O f f s e t )> BYTES)
s i z e = BYTES ;

e l s e
s i z e = ( f i l e L e n g t h−c u r r e n t O f f s e t ) ;

c a n d i d a t e = &f i l e B u f f e r [ c u r r e n t O f f s e t ] ;
c u r r e n t O f f s e t +=BYTES ;

cudaMemcpyToSymbol ( d cand , c a n d i d a t e , s i z e ∗ s i z e o f (
char ) , 0 , cudaMemcpyHostToDevice ) ;

check<<< g r i d , t h r e a d s >>>(d found , d cand , d S i g s ,
numLoaded ) ;

c u d a T h r e a d S y n c h r o n i z e ( ) ;

c u t i l S a f e C a l l ( cudaMemcpy ( found , d found , s i z e o f ( i n t ) ,
cudaMemcpyDeviceToHost ) ) ;



c u d a G e t L a s t E r r o r ( ) ;

i f (∗ found !=NOTFOUND) {

i n t sigNum= c o n f i r m (∗ found , c a n d i d a t e , s i g n a t u r e s
, numLoaded ) ;

i f ( sigNum != −1){
numFound ++;

}

c u r r e n t O f f s e t −= ( ( BYTES−found [ 0 ] ) −1) ;

} e l s e {

c u r r e n t O f f s e t −= h l e n g t h T a b l e [ r e a l L e n g t h s −1];

}
p r i n t f ( ”%d\n ” , c u r r e n t O f f s e t ) ;

∗ found =NOTFOUND;

cudaMemcpy ( d found , found , s i z e o f ( i n t ) ,
cudaMemcpyHostToDevice ) ;

}

p r i n t f ( ”\n\nNumber found :%d\n ”,−−numFound ) ;
p r i n t f ( ” P r o c e s s i n g t ime : %f ( ms ) \n ” , cu tGe tT imerVa lue ( t i m e r )

) ;
p r i n t f ( ”MB/ s : %f \n ” , ( ( ( ( double ) f i l e L e n g t h / (

cu tGe tT imerVa lue ( t i m e r ) / 1000) ) / 1 0 2 4 ) / 1 0 2 4 ) ) ;
c u t i l C h e c k E r r o r ( c u t D e l e t e T i m e r ( t i m e r ) ) ;

f r e e ( f i l e B u f f e r ) ;

c u d a F r e e ( d S i g s ) ;
c u d a T h r e a d E x i t ( ) ;
c u t i l E x i t ( a rgc , a rgv ) ;

}



G Bloom filter test data



H Boyer-Moore
Implementation

# i n c l u d e < s t d l i b . h>
# i n c l u d e <s t d i o . h>
# i n c l u d e < s t r i n g . h>
# i n c l u d e <math . h>
# i n c l u d e <i o s t r e a m>
# i n c l u d e <f s t r e a m>
# i n c l u d e <v e c t o r>
# i n c l u d e < c u t i l i n l i n e . h>

# d e f i n e BYTES 65536
# d e f i n e NOTFOUND 100000
# d e f i n e MAXSIGLENGTH 32768
# d e f i n e MAXSIGS 32768

u s i n g namespace s t d ;

boo l d i f f e r e n t L e n g t h s [MAXSIGS] = { f a l s e } ;
c o n s t a n t char d cand [BYTES ] ;

s t r u c t s i g n a t u r e { / / S i mp le s t r u c t u r e t o s t o r e a s t r i n g w i t h a l e n g t h
char d a t a [ 5 1 2 ] ;
s h o r t l e n g t h ;

} ;

h o s t void preBmBc ( char ∗x , i n t m, i n t bmBc [ ] ) { / / i n t bmBc [ ] ) {
i n t i ;

f o r ( i = 0 ; i < 256 ; ++ i )
bmBc [ i ] = m;

f o r ( i = 0 ; i < m − 1 ; ++ i )
bmBc [ x [ i ] ] = m − i − 1 ;

}

h o s t void s u f f i x e s ( char ∗x , i n t m, i n t ∗ s u f f ) {
i n t f , g , i ;

s u f f [m − 1] = m;
g = m − 1 ;



f o r ( i = m − 2 ; i >= 0 ; −− i ) {
i f ( i > g && s u f f [ i + m − 1 − f ] < i − g )

s u f f [ i ] = s u f f [ i + m − 1 − f ] ;
e l s e {

i f ( i < g )
g = i ;

f = i ;
whi le ( g >= 0 && x [ g ] == x [ g + m − 1 − f ] )
−−g ;

s u f f [ i ] = f − g ;
}

}
}

h o s t void preBmGs ( char ∗x , i n t m, i n t bmGs [ ] ) { / / i n t bmGs [ ] ) {
i n t i , j , s u f f [ 5 1 2 ] ;

s u f f i x e s ( x , m, s u f f ) ;

f o r ( i = 0 ; i < m; ++ i )
bmGs [ i ] = m;

j = 0 ;
f o r ( i = m − 1 ; i >= 0 ; −− i )

i f ( s u f f [ i ] == i + 1)
f o r ( ; j < m − 1 − i ; ++ j )

i f ( bmGs [ j ] == m)
bmGs [ j ] = m − 1 − i ;

f o r ( i = 0 ; i <= m − 2 ; ++ i )
bmGs [m − 1 − s u f f [ i ] ] = m − 1 − i ;

}

h o s t void precompKerne l ( s t r u c t s i g n a t u r e ∗ s i g s , i n t ∗ t ab l eHeap ,
i n t numSigs ) {

f o r ( i n t i =0 ; i<numSigs ; i ++){

i n t m = s i g s [ i ] . l e n g t h ;

i n t ∗ bmGs = &t a b l e H e a p [ i ∗1 0 2 4 ] ;
i n t ∗ bmBc = &t a b l e H e a p [ ( i ∗1024) + 5 1 2 ] ; / / [ 2 5 6 ] ;

/ / P r e p r o c e s s i n g
preBmGs ( s i g s [ i ] . da t a , m, bmGs ) ;
preBmBc ( s i g s [ i ] . da t a , m, bmBc ) ;

}

}



g l o b a l void
t e s t K e r n e l ( i n t ∗ dfound , i n t numSigna tu res , s t r u c t s i g n a t u r e ∗ s i g s , i n t
∗ t a b l e H e a p )

{

/ / a c c e s s t h r e a d i d
unsigned i n t t i d = ( b l o c k I d x . x ∗blockDim . x ) + t h r e a d I d x . x ;

i f ( t i d >= n u m S i g n a t u r e s | | dfound [ 0 ] < NOTFOUND)
re turn ;

char∗ x= s i g s [ t i d ] . d a t a ;
i n t m = s i g s [ t i d ] . l e n g t h ;
i n t n = BYTES ;
char∗ y = d cand ;

i n t i , j ;

i n t ∗ bmGs = &t a b l e H e a p [ t i d ∗1 0 2 4 ] ;
i n t ∗ bmBc = &t a b l e H e a p [ ( t i d ∗1024) + 5 1 2 ] ;

/ / preBmGs ( s i g s [ t i d ] . data , m, bmGs ) ;
/ / preBmBc ( s i g s [ t i d ] . data , m, bmBc ) ;

/ / S e a r c h i n g
j = 0 ;
whi le ( j <= n − m) {

f o r ( i = m − 1 ; i >= 0 && x [ i ] == y [ i + j ] ; −− i ) ;
i f ( i < 0) {

atomicMin ( dfound , j ) ;
re turn ;

}
e l s e {

i f ( bmGs [ i ] > bmBc [ y [ i + j ] ] − m + 1 + i )
j += bmGs [ i ] ;

e l s e
j +=bmBc [ y [ i + j ] ] − m + 1 + i ;

}

}
}



g l o b a l void
check ( i n t ∗ dfound , char∗ c a n d i d a t e , s t r u c t s i g n a t u r e ∗ s i g s , i n t

numSigs )
{

i n t t i d = ( b l o c k I d x . x ∗blockDim . x ) + t h r e a d I d x . x ;
i f ( dfound [0]< t i d )

re turn ;

f o r ( i n t j = 0 ; j<numSigs ; j ++){
s h o r t foundC = 0 ;
i f ( ( s i g s [ j ] . l e n g t h + t i d )<BYTES) {

i n t l e n g t h = s i g s [ j ] . l e n g t h ;
whi le ( foundC < l e n g t h && t i d +foundC <BYTES ) {

i n t d a t a b y t e = s i g s [ j ] . d a t a [ foundC ] ;
i n t compbyte = d cand [ t i d +foundC ] ;
i f ( d a t a b y t e != compbyte )

break ;
foundC ++;

}
i f ( foundC == s i g s [ j ] . l e n g t h )

atomicMin ( dfound , t i d ) ;
}

}
re turn ;

}

i n t c o n f i r m ( i n t p o s i t i o n , char∗ l i n e , s t r u c t s i g n a t u r e ∗ s i g s , i n t
numSigs ) {

f o r ( i n t j = 0 ; j<numSigs ; j ++){
i n t foundC = 0 ;
whi le ( foundC < s i g s [ j ] . l e n g t h && s i g s [ j ] . d a t a [ foundC ]

== l i n e [ p o s i t i o n +foundC ] )
foundC ++;

i f ( foundC == s i g s [ j ] . l e n g t h )
re turn j ;

}
re turn −1;

}



/ / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / Program e n t r y p o i n t
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / /
i n t
main ( i n t argc , char ∗∗ a rgv )
{

dim3 g r i d ( 1 , 1 , 1 ) ;

boo l ∗ h h a s h T a b l e ;

char∗ l i n e = ( char ∗ ) ma l lo c ( s i z e o f ( char ) ∗ MAXSIGLENGTH) ;
i n t numLoaded =0;
i f s t r e a m m y f i l e ( ” c :\\ s i g n a t u r e s . t x t ” , i o s : : b i n a r y ) ;

s t r u c t s i g n a t u r e ∗ s i g n a t u r e s = ( s t r u c t s i g n a t u r e ∗ ) ma l l oc (
MAXSIGS ∗ s i z e o f ( s t r u c t s i g n a t u r e ) ) ;

i n t h a s h C o l l i s i o n s =0;
/ / ###### LOAD THE SIGS #######
i f ( m y f i l e . i s o p e n ( ) )
{

i n t p o s i t i o n =0;
whi le ( m y f i l e . good ( ) && numLoaded < MAXSIGS)
{

i f ( m y f i l e . r e a d ( l i n e , 2 ) . e o f ( ) )
break ;

s h o r t l eng thToRead = ( ( ( unsigned char ) l i n e [ 1 ] )
<< 8) + ( ( unsigned char ) l i n e [ 0 ] ) ;

m y f i l e . r e a d ( l i n e , l eng thToRead ) ;

s i g n a t u r e s [ numLoaded ] . l e n g t h = leng thToRead ;
memcpy ( s i g n a t u r e s [ numLoaded ] . da t a , l i n e ,

l eng thToRead ) ;
d i f f e r e n t L e n g t h s [ l eng thToRead ] = t r u e ;
numLoaded ++;

}
m y f i l e . c l o s e ( ) ;

} e l s e {
p r i n t f ( ”No S i g n a t u r e s F i l e \n ” ) ;
e x i t ( 0 ) ;

}

dim3 t h r e a d s ( numLoaded , 1 , 1 ) ;

s h o r t ∗ h l e n g t h T a b l e = ( s h o r t ∗ ) ma l lo c ( s i z e o f ( s h o r t ) ∗MAXSIGS) ;
i n t r e a l L e n g t h s = 0 ;
/ / ##### PRODUCE SIG LENGTHS ARRAY #####



f o r ( i n t i =0 ; i<MAXSIGS; i ++){
i f ( d i f f e r e n t L e n g t h s [ i ] )

h l e n g t h T a b l e [ r e a l L e n g t h s ++]= i ;
}

char∗ c a n d i d a t e ;

i n t s i z e = 0 ;
FILE ∗ f = fopen ( ” c :\\ i n p u t . t x t ” , ” rb ” ) ;

i f ( f == NULL)
{

p r i n t f ( ” I n p u t F i l e Not Found\n ” ) ;
e x i t ( 1 ) ;

}

f s e e k ( f , 0 , SEEK END) ;
i n t f i l e L e n g t h = f t e l l ( f ) ;

f s e e k ( f , 0 , SEEK SET ) ;
char∗ f i l e B u f f e r = ( char ∗ ) ma l lo c ( f i l e L e n g t h ∗ s i z e o f ( char ) ) ;

i f ( f r e a d ( f i l e B u f f e r , 1 , f i l e L e n g t h , f ) != f i l e L e n g t h )
{

p r i n t f ( ” I n p u t F i l e Load E r r o r \n ” ) ;
e x i t ( 1 ) ;

}

p r i n t f ( ” F i l e Loaded\n ” ) ;

i n t c u r r e n t O f f s e t =0 ;

c u d a S e t D e v i c e ( cu tGe tMaxGf lopsDev ice Id ( ) ) ;

unsigned i n t t i m e r = 0 ;
c u t i l C h e c k E r r o r ( c u t C r e a t e T i m e r ( &t i m e r ) ) ;
c u t i l C h e c k E r r o r ( c u t S t a r t T i m e r ( t i m e r ) ) ;

s i z e = BYTES ;

i n t ∗ d f o u nd ;
c u t i l S a f e C a l l ( cudaMal loc ( ( void ∗∗ ) &d found , s i z e o f ( i n t ) ) ) ;

i n t ∗ found = ( i n t ∗ ) ma l l oc ( s i z e o f ( i n t ) ) ;
∗ found = NOTFOUND;

cudaMemcpy ( d found , found , s i z e o f ( i n t ) , cudaMemcpyHostToDevice
) ;

s t r u c t s i g n a t u r e ∗ d S i g s ;



c u t i l S a f e C a l l ( cudaMal loc ( ( void ∗∗ ) &d S i g s , numLoaded ∗
s i z e o f ( s t r u c t s i g n a t u r e ) ) ) ;

c u t i l S a f e C a l l ( cudaMemcpy ( d S i g s , s i g n a t u r e s , numLoaded ∗
s i z e o f ( s t r u c t s i g n a t u r e ) , cudaMemcpyHostToDevice ) ) ;

/ / #### MAKE TABLES ####

i n t ∗ t a b l e H e a p = ( i n t ∗ ) ma l lo c ( s i z e o f ( i n t ) ∗1024∗numLoaded ) ;
memset ( t ab l eHeap , 0 , s i z e o f ( i n t ) ∗1024∗numLoaded ) ;

precompKerne l ( s i g n a t u r e s , t ab l eHeap , numLoaded ) ;

i n t ∗ d t a b l e H e a p ;
c u t i l S a f e C a l l ( cudaMal loc ( ( void ∗∗ ) &d t a b l e H e a p , s i z e o f ( i n t )
∗1024∗numLoaded ) ) ;

c u t i l S a f e C a l l ( cudaMemcpy ( d t a b l e H e a p , t ab l eHeap , s i z e o f ( i n t )
∗1024∗numLoaded , cudaMemcpyHostToDevice ) ) ;

/ / #####################

boo l ∗ h o d a t a = ( boo l ∗ ) ma l lo c ( s i z e o f ( boo l ) ∗BYTES) ;

long t o t a l R e a d = 0 ;
i n t numFound =1;

whi le ( s i z e ==BYTES) {

i f ( ( f i l e L e n g t h−c u r r e n t O f f s e t )> BYTES)
s i z e = BYTES ;

e l s e
s i z e = ( f i l e L e n g t h−c u r r e n t O f f s e t ) ;

c a n d i d a t e = &f i l e B u f f e r [ c u r r e n t O f f s e t ] ;
c u r r e n t O f f s e t +=BYTES ;

cudaMemcpyToSymbol ( d cand , c a n d i d a t e , s i z e ∗ s i z e o f (
char ) , 0 , cudaMemcpyHostToDevice ) ;

/ / check<<< gr id , t h r e a d s >>>(d found , d cand , d S i g s ,
numLoaded ) ;

t e s t K e r n e l <<< g r i d , t h r e a d s >>>(d found , numLoaded ,
d S i g s , d t a b l e H e a p ) ;

c u d a T h r e a d S y n c h r o n i z e ( ) ;

c u t i l S a f e C a l l ( cudaMemcpy ( found , d found , s i z e o f ( i n t ) ,
cudaMemcpyDeviceToHost ) ) ;

c u d a G e t L a s t E r r o r ( ) ;

i f (∗ found !=NOTFOUND) {



i n t sigNum= c o n f i r m (∗ found , c a n d i d a t e , s i g n a t u r e s
, numLoaded ) ;

i f ( sigNum != −1){
numFound ++;

}

c u r r e n t O f f s e t −= ( ( BYTES−found [ 0 ] ) −1) ;

} e l s e {

c u r r e n t O f f s e t −= h l e n g t h T a b l e [ r e a l L e n g t h s −1];

}
p r i n t f ( ”%d\n ” , c u r r e n t O f f s e t ) ;

∗ found =NOTFOUND;

cudaMemcpy ( d found , found , s i z e o f ( i n t ) ,
cudaMemcpyHostToDevice ) ;

}

p r i n t f ( ”\n\nNumber found :%d\n ”,−−numFound ) ;
p r i n t f ( ” P r o c e s s i n g t ime : %f ( ms ) \n ” , cu tGe tT imerVa lue ( t i m e r )

) ;
p r i n t f ( ”MB/ s : %f \n ” , ( ( ( ( double ) f i l e L e n g t h / (

cu tGe tT imerVa lue ( t i m e r ) / 1000) ) / 1 0 2 4 ) / 1 0 2 4 ) ) ;
c u t i l C h e c k E r r o r ( c u t D e l e t e T i m e r ( t i m e r ) ) ;

f r e e ( f i l e B u f f e r ) ;

c u d a F r e e ( d S i g s ) ;
c u d a T h r e a d E x i t ( ) ;

c u t i l E x i t ( a rgc , a rgv ) ;
}

A tree has be planted to offset the power used during the production of this paper.
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