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Abstract 

 

Distributed ledger technology (DLT) has generated tremendous interest due to its popular 

application to Bitcoin and other cryptocurrencies. Despite its enormous potential business 

benefits and even greater hype, DLT never attracted significant investment and its widespread 

implementation failed to occur. One of the most recognised reasons is the lack of an integration 

framework for integrating DLT-based systems with centralised or non-DLT information 

technology (IT) systems.  

This research endeavours to fill this gap by designing a DLT interoperability framework (DIF). 

This framework is based on the interoperability principles derived from integrated DLT-based 

solutions and modern organisations' integration needs and practices. DIF enables organisations 

to design interoperability architecture and integrated solutions for enterprise implementation. 

Based on the DIF, this research also developed and instantiated a Hyperledger Fabric DLT 

solution prototype (HDSP) on Amazon Web Services (AWS) for the manuka honey supply 

chain (MHSC) use case.  

The research utilised design science research (DSR) methodology to develop the DIF and 

HDSP. Iterative artefact evaluations were undertaken using formative (ex-ante), summative 

(ex-post), maturity model for enterprise interoperability (MMEI), IT professional evaluation, 

and artefact instantiation and demonstration techniques suggested in the DSR. The DIF, HDSP 

and their evaluation provide a pathway for organisations to design and implement integrated 

DLT-based solutions. The knowledge generated and utilised in this research provides a robust 

theoretical foundation for building and implementing such integrated solutions.   

  



iii 

 

Acknowledgements 

 

I am extremely thankful to the members of my supervisory team for their guidance, support, 

and timely advice. Steve kept me updated about research events and activities and introduced 

me to the right people. His frequent invitations to his home café for extended discussions and 

delicious meals served by his wife, Paula, provided enough food for thought to avoid possible 

research pitfalls, take an optimal approach, and make the best decisions. My primary 

supervisor, Constantine, provided critical feedback and gave me complete ownership of the 

research, so I was ultimately responsible for its outcomes. His relentless focus on improving 

my research communication, presentation, and attention to detail are lifelong learning lessons 

I will never forget. I appreciate these more than I can say. 

Thank you also to our administration staff, especially Susan. Your ever helping attitude and 

smiling faces kept us moving; I hope you can always provide such great support. 

My family is my source of inspiration. Thoughts of my son, Anish, and my daughter, Nandini, 

encourage me to do better every moment. My wife, Bharati, is a source of immense strength 

for me, and writing this Ph.D. would not have been possible without her. The courage she 

demonstrated during the COVID-19 pandemic was unparalleled, and she did exceptionally well 

in taking care of our children, family matters, and her own health. Also, despite her age, love, 

and attachment to me, my mother always gave me the wings and free will to do whatever I 

wanted. I am fortunate to have such great family support and inspiration in my life. Thank you, 

God! 

Overall, the Ph.D. has been an enjoyable journey for me. After a long time, returning to 

academic life was like living one’s young student life again, and I think I lived it. Raja, Irina, 

Saman, Laura, Daniel, regular birthday parties, movie time in the department, frequent 

presentation sessions, barbeques, potlucks, and time spent with research colleagues took the 

Ph.D. pressure away. This research has made me more humble, respectful, valuing friends and 

people around me, and given me much more than I could have ever expected! 

  



iv 

 

Table of Contents 

 

Abstract ...................................................................................................................................... ii 

Acknowledgements .................................................................................................................. iii 

Table of Contents ...................................................................................................................... iv 

List of Abbreviations ............................................................................................................... vii 

List of Figures ............................................................................................................................ x 

List of Tables ............................................................................................................................ xi 

Chapter 1: Research Introduction .............................................................................................. 1 

1.1 Distributed Ledger Technology (DLT) Integration Challenges ....................................... 1 

1.2 Research Motivation ........................................................................................................ 2 

1.3 Research Goal .................................................................................................................. 3 

1.4 Research Questions .......................................................................................................... 3 

1.5 Research Objectives ......................................................................................................... 3 

1.6 Research Significance ...................................................................................................... 3 

1.7 Thesis Summary ............................................................................................................... 4 

 

Chapter 2: Literature Review ..................................................................................................... 6 

2.1 Interoperability and its Significance ................................................................................ 7 

2.2 Contemporary Interoperability Approach ........................................................................ 7 

2.2.1 SOA Integration Approach ........................................................................................ 8 

2.2.2 API Gateway and Microservices based Integration .................................................. 8 

2.2.3 Event-Driven Integration Approach .......................................................................... 9 

2.3 Characteristics and Categorisation of DLT ...................................................................... 9 

2.4 Motivation to Improve DLT Interoperability ................................................................. 11 

2.5 DLT Interoperability Challenges ................................................................................... 12 

2.6 Interoperability Solutions from Literature ..................................................................... 12 

2.7 Research Gap.................................................................................................................. 15 

2.8 Replicating and Extending the Interoperability Principles ............................................ 16 

 

Chapter 3: Design Science Research (DSR) Methodology ..................................................... 19 

3.1 IS Research and Design Science .................................................................................... 20 



v 

 

3.2 Design Science Research Contributions ........................................................................ 22 

3.3 Research Methodology ................................................................................................... 23 

3.4 Guidelines for Design Science Research ....................................................................... 25 

3.5 DSR Knowledge Contribution and Consumption .......................................................... 28 

 

Chapter 4: Distributed Ledger Technology Interoperability Framework (DIF) ...................... 31 

4.1 Interoperability Framework and its Components ........................................................... 31 

4.1.1 Enterprise Participating DLT Network Nodes Component ..................................... 33 

4.1.2 DLT Gateways Layer Component ........................................................................... 34 

4.1.3 DLT Metadata Component ...................................................................................... 35 

4.1.4 In-Flow Broker Component..................................................................................... 35 

4.1.5 Message Service Layer Component ........................................................................ 36 

4.1.6 Out-Flow Broker Component .................................................................................. 37 

4.2 Foundational Principles for DIF ..................................................................................... 38 

4.3 Integration Architectures based on DIF ......................................................................... 40 

4.3.1 Interoperability Architecture using API Gateways, ESB, and Service Mesh ......... 40 

4.3.2 Event-driven Distributed Architecture .................................................................... 43 

4.3.3 Generic Interoperability Architecture ...................................................................... 46 

 

Chapter 5: Hyperledger Fabric DLT Solution Prototype (HDSP) ........................................... 49 

5.1 HDSP Architecture and Solution Design ....................................................................... 50 

5.1.1 Solution Architecture ............................................................................................... 50 

5.1.2 Transaction and Data Flow ...................................................................................... 53 

5.1.3 HDSP Solution Characteristics ................................................................................ 55 

5.2 Business Use Case and DLT Platform Selection ........................................................... 57 

5.2.1 Supply Chain Use Case Selection ........................................................................... 58 

5.2.2 Distributed Ledger Technology Platform Selection ................................................ 60 

5.3 Hyperledger Fabric for HDSP Development ................................................................. 62 

5.3.1 Hyperledger Fabric Components ............................................................................. 62 

5.3.2 HDSP Nodes Interactions ........................................................................................ 65 

5.4 HDSP Based Knowledge Contribution .......................................................................... 66 

5.4.1 API Driven Architecture .......................................................................................... 67 

5.4.2 Data Design ............................................................................................................. 68 

5.4.3 Smart Contract (Chaincode) Design ........................................................................ 69 

5.4.4 Deployment and Operational Aspects ..................................................................... 71 



vi 

 

 

Chapter 6: Framework and Solution Prototype Evaluation ..................................................... 73 

6.1 Artefact Evaluation Methods ......................................................................................... 73 

6.2 DIF Formative and Summative Evaluation .................................................................... 75 

6.2.1 Summative Evaluation ............................................................................................. 76 

6.2.2 Maturity Model for Enterprise Interoperability (MMEI) ........................................ 77 

6.3 DIF Evaluation by IT Professionals ............................................................................... 80 

6.4 DIF Validation by Instantiating Solution Prototype ...................................................... 81 

6.5 Evaluation to Assess HDSP Design Options ................................................................. 82 

6.6 HDSP Formative and Summative Evaluation ................................................................ 84 

6.6.1 HDSP Formative Evaluation ................................................................................... 85 

6.6.2 HDSP Summative Evaluation ................................................................................. 85 

6.7 HDSP Demonstration and Test Cases Execution ........................................................... 87 

6.8 How much Evaluation is Enough? ................................................................................. 88 

6.9 Summary of Artefact Evaluation.................................................................................... 89 

 

Chapter 7: Research Summary ................................................................................................. 92 

7.1 Research Problem and its Significance .......................................................................... 92 

7.2 Research Contribution .................................................................................................... 94 

7.3 DIF and HDSP Evaluation ............................................................................................. 95 

7.4 Knowledge Contribution ................................................................................................ 96 

7.5 Research Limitations ...................................................................................................... 97 

7.6 Suggestions for Future Research .................................................................................... 98 

7.6.1 Interoperability Framework Instantiation ................................................................ 98 

7.6.2 Cross-DLT Interoperability ..................................................................................... 99 

7.6.3 Decentralised Applications Interoperability ............................................................ 99 

 

References .............................................................................................................................. 101 

Appendix A ............................................................................................................................ 112 

Appendix B ............................................................................................................................ 113 

 

  



vii 

 

List of Abbreviations 

 

AI Artificial Intelligence 

AK Apache Kafka 

AP Availability Partition 

API Application Programming Interface 

AWS Amazon Web Services 

BC Blockchain 

BFT Byzantine Fault-Tolerant  

CA Consistency Availability 

CAP Consistency Availability Partition 

CC Chaincode 

CFT Crash Fault Tolerance 

CI Continuous Integration 

CPU Central Processing Unit 

CRM Customer Relationship Management 

DAG 

DApps 

Direct Acyclic Graph 

Distributed Applications 

DEM Design Evaluation Methods 

DIF Distributed ledger technology (DLT) Interoperability Framework 

DLT Distributed Ledger Technology 

DSR Design science research 

DSRM Design science research methodology 

EAI 

EC2 

Enterprise Application Integration 

Elastic Compute Cloud 

ECM Enterprise Content Management 

EDA Event-driven distributed architecture 

ERP Enterprise Resource Planning 

ESB Enterprise service bus 

FSC Food Supply Chain 

GIA Generic Interoperability Architecture 

HDSP Hyperledger Fabric DLT solution prototype  



viii 

 

HF Hyperledger Fabric 

HTTP Hypertext Transfer Protocol 

HTTPS Hypertext Transfer Protocol Secured 

IAAES 
Interoperability Architecture using API Gateways, ESB and Service 

Mesh 

IBM International Business Machine Corporation 

IEEE 

ID 

Institution of Electrical and Electronics Engineers 

Identity 

IOT Internet of Things 

IP Internet Protocol 

IPC Interprocess communication  

IS Information Systems 

IT Information Technology 

JSON Java Script Object Notation 

MH Manuka Honey 

MHSC Manuka Honey Supply Chain 

MIS Management Information System 

MMEI Maturity model for enterprise interoperability 

MOM Message-Oriented Middleware  

MQ Message Queue 

MQTT Message Queue Telemetry Transport 

MSL Messaging Service Layer  

MSP Membership Service Provider 

NFC Near Field Communication 

PBFT Practical Byzantine Fault Tolerance 

PHP Hypertext Preprocessor  

RDBMS Relational Database Management System 

REST Representational State Transfer 

RFID Radio Frequency Identification 

RPC Remote Procedure Call 

SAML Security Assertion Markup Language  

SC Smart Contract 

SDK Software Development Kit 



ix 

 

SFTP Secured File Transfer Protocol 

SOA Service Oriented Architecture 

SOAP Simple Object Access Protocol 

SQL Structure Query Language 

TB Tera bytes 

TCP Transmission Control Protocol 

TLS Transport Layer Security 

UI User Interface 

XML Extensible Markup Language 

YAML Yet Another Markup Language 

  



x 

 

List of Figures 

 

Figure 3.1. Organisational design and information systems design activities……………….21 

 

Figure 3.2. Design science research contribution framework………………………………..22 

 

Figure 3.3. Design science research methodology process model...…………………………24 

 

Figure 3.4. An integrated perspective on knowledge production, contribution, and utilization 

to IS DSR…………………………………………………………………………………….29 

 

Figure 4.1. The distributed ledger technology interoperability framework (DIF) and its 

interacting components……………………………………………………………………….32 

 

Figure 4.2. Integration architecture, based on DIF, enabling interoperability among DLT and 

non-DLT systems using API gateways, ESB, and Service Mesh (Service Control Plane)……41 

 

Figure 4.3. Apache Kafka DLT interoperability Architecture displays the integration of an 

organisation’s multi-DLT network with its centralised IT systems……………………………...44 

 

Figure 4.4. Generic interoperability architecture……..............................................................47 

 

Figure 5.1. Solution Architecture displaying the end-to-end message flow of transactions…..50 

 

Figure 5.2. Solution Architecture of the HDSP technical prototype instantiation…………….52 

 

Figure 5.3. Transactions flow from the external devices or systems to HF Ledger, MongoDB 

database and customer user interface. ………………………………………………………..54 

 

Figure 5.4. The major software components implemented in the HDSP……………………...55 

 

Figure 5.5. The components of the Hyperledger Fabric 1.4 developed for the HDSP…….......63 

 

Figure 5.6. Order of transactions to achieve the consensus to commit the transaction to the 

ledger…………………………………………………………………………………………65 

 

Figure 6.1. The cyclic formative and summative evaluation process for the DIF……………..75 

 

Figure 6.2. Iterative formative and summative assessment undertaken for the HDSP…….... 85 

  



xi 

 

List of Tables 

 

Table 2.1. The table provides a comparative analysis of DLT interoperability solutions 

suggested in the literature…………………………………………………………………….15 

 

Table 5.1. The evaluation of five DLT platforms used to select a suitable one, Hyperledger 

Fabric, for the MHSC use case………………………………………………………………..61 

 

Table 6.1. Mapping the maturity levels for the EDA, IAAES, and GIA interoperability 

solutions, respectively…………..............................................................................................78 

 

Table 6.2. Mapping of the maturity levels of the Interoperability Framework by three 

professional participants, covering three significant interoperability barriers and four major 

concerns for each barrier……………………………………………………………………...81 

 

Table 6.3. Sample RESTful input message from the producer, in JSON format……………...84 

 

Table 6.4. Transaction execution time for the HF networks three peers, honey producer, 

distributor, and retailer nodes…………………………………………………………………88 

  



1 

 

Chapter 1: Research Introduction 

 

Distributed Ledger Technology (DLT) is a decentralised data and transaction management 

technology enabling companies and consumers to exchange and store data without traditional 

intermediaries. Distributed ledger technology runs on a set of machines with computational 

and storage resources called network peers, nodes, or participants. These nodes are not trusted 

individually but instead trusted as a group due to their diversity and numbers [1]. The 

distributed ledger technology research and implementation outcomes hint at their potential 

benefit for many economic, governmental, and service sectors. DLT demonstrated the ability 

to design and develop modern transparent, secure and reliable business capable systems [2]. 

The DLT-based solutions development and implementation have solved real-world problems, 

improved business processes, and eliminated inefficiencies and waste [3] [4] [5]. High profile 

co-operations, such as the collaboration between IBM  and Walmart to improve supply chain 

process stimulated DLT usage among enterprises [6]. Solutions have been developed in almost 

all human aspects of life, such as health care, finance, education, supply chain management, 

governance, auditing and others [7]. Gartner predicted the mass adoption of this technology 

after climbing out of the initial phase of the trough of disillusionment [8].   

This chapter presents the enterprises’ DLT systems integration challenges, research motivation, 

goals, questions and objectives and its significance for organisations and future research.   

  

1.1 Distributed Ledger Technology (DLT) Integration Challenges 

The DLT systems implemented by the organisations are standalone and isolated, leading to the 

emergence of asset, process, and data silos, limiting the potential business benefits from these 

solutions [9]. There is a lack of accepted architecture, design patterns, and implementation 

models to integrate DLT system and associated business data with centralised (non-DLT) 

systems and vice-versa [10]. The absence of integration of these two types of systems is 

obstructing the value proposition of DLT for enterprises [11].   

DLT interoperability solution approaches, suggested  by Belchior et al. [7], fall into two major 

categories:  

(1) interoperability among different BCs/DLTs (inter-DLT integration), including 

integration between DApps (distributed applications) based on DLT platforms; and  
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(2) interoperability between DLT systems and centralised enterprise IT (non-DLT) 

systems.  

This research will focus on integrating DLT systems with centralised non-DLT systems. 

Researchers, universities and organisations are working to integrate different DLT platforms 

(inter-DLT) such as Hyperledger Fabric, Ethereum, Corda [7]. However, those solutions are 

not mature, and their integration benefits are not well established. Lafourcase et al. [13] 

suggested that it is not technically feasible to integrate multiple DLT/BC networks. Similarly, 

Macheel [12] and Lafourcase et al. [13] were sceptical about inter-DLT integration benefits, 

solution viability and implementation feasibility. For this reason, the integration of different 

DLT platforms is kept outside the scope of this research.   

 

1.2 Research Motivation 

This research is motivated to address the lack of an end-to-end solution for DLT 

interoperability problem explained in Section 1.1. This research is inspired to realise the 

maximum benefits of DLT solutions by following a novel approach to solve DLT 

interoperability challenges with the below considerations in mind:  

1. Enterprise Centric Solution: Past research has been focused on technological aspects 

such as interoperability architecture, integration technology, protocols, and tools, with 

little emphasis on an enterprise requirements [13] [14]. From an organisational 

perspective, there has been a lack of focus on DLT systems integration with centralised 

non-DLT systems to augment the business capabilities of an enterprise. . 

2. End-to-end Solution: Instead of a stand-alone, technical, or architectural level 

solution, enterprises expect a comprehensive interoperability solution, instantiable at 

the lowest technical level but also capable of enabling architecture, integration patterns, 

and design at the enterprise IT ecosystem level. This research develops a DLT 

interoperability framework (DIF) to enable enterprises to architect and design an 

integrated solution at the enterprise level.  

3. Implementable Solution: This research focuses on technically feasible business 

solutions by architecting, designing, and building a viable solution to integrate 

centralised IT systems with DLT-based solutions.   
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1.3 Research Goal 

This research aims to provide an integration framework to enable organisations to architect and 

design an interoperable IT ecosystem. The research proposes an enterprise framework, DIF, to 

design interoperable architecture to integrate DLT-based solutions with centralised systems.  

 

1.4 Research Questions 

Q1: What is the interoperability framework model to enable enterprise systems 

integration of DLT and non-DLT systems?  

Q2:  Does the design and implementation of the interoperability framework based DLT 

solution is practically viable and technically feasible?  

 

1.5 Research Objectives 

The objectives of this research were to: 

• establish the interoperability principles; 

•  design the DLT interoperability framework (DIF) based on principles; 

• validate the DIF by:  

o designing architecture and integration patterns for the prevalent integration 

design, architecture styles, and tools that modern enterprises use;  

o designing, developing, and instantiating the HF based solution prototype 

integrated with centralised (non-DLT) technology, tools, databases, and 

systems; and  

• undertaking the iterative evaluation of the developed DIF, and the Hyperledger Fabric 

1.4 (HF) DLT solution prototype (HDSP). 

 

1.6 Research Significance  

The artefacts developed in this research provide an end-to-end interoperability framework for 

enterprises to: 

• design interoperability architecture for enterprise IT systems 

• build and instantiate interoperable DLT-based solution for a business use case 
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Based on the interoperability framework, this research has developed interoperability 

architecture templates for enterprises’ reference. The design and instantiation of DLT solution 

based on the framework provides a pathway for enterprises to develop and implement the 

integrated solution in their organisation.  

 

1.7 Thesis Summary 

The remainder of this is structured as follows: 

• Chapter 2 presents the research's literature review and explains the significance and 

challenges of integrating DLT solutions. Interoperability is defined, and contemporary 

integration tools and design patterns popular in enterprises are discussed. Available 

interoperability solutions are discussed, their shortcomings and the research gap this 

study partially addresses are identified. The replicating and extension methods to 

develop interoperability principles based on the integrated DLT solution are also 

discussed.  

• Chapter 3 briefly explains the implemented DSRM (DSR methodology) process model, 

DSR guidelines, and research suggestions followed to meet the research objective. The 

contribution of the research, both in terms of prescriptive and descriptive knowledge, 

is explained. 

• Chapter 4 explains the Artefact-1 of this research, DLT interoperability framework 

(DIF), its components, integration layers, and the multiple DLT network nodes. The 

interoperability principles are explained, which are derived from the integrated 

solutions in the literature. Integration architectures are designed based on modern 

technology tools, integration patterns, and methods commonly used in enterprises.  

• Chapter 5 explains the design, development, and instantiation of the Hyperledger Fabric 

1.4 DLT solution prototype (HDSP), Artefact-2 of this research, to validate the DIF. 

This artefact, the HDSP, is developed using the Hyperledger Fabric 1.4 (HF) platform 

for the MHSC use case. The solution architecture, network node interactions, 

transaction handling, and message and data flow enabling the interoperable solution are 

all explained. As a contribution to knowledge, the software practices, data design, smart 

contract (SC), and deployment and operational practices learned during the 

development and instantiation of the HDSP are detailed.  
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• Chapter 6 explains the DSR evaluation strategy adopted and evaluation methods used 

to evaluate the DIF and the HDSP. Artefacts use formative and summative evaluation 

methods, artefact instantiation and maturity model for enterprise interoperability 

(MMEI) techniques for evaluation in an iterative manner. In addition, the HDSP uses 

solution demonstration, and DIF uses professional evaluations by using MMEI to 

evaluate the final research product, the DIF.  

• Chapter 7 summarises the research contribution by designing the DIF based on 

interoperability principles. The Hyperledger Fabric DLT solution prototype (HDSP) is 

developed based on the DIF to demonstrate the integration of DLT solution with 

centralised systems. The design science research (DSR) methodology and the 

evaluation methods suggested in DSR are utilised to create the research artefacts and 

validate them. The knowledge developed during the research contributes to the DSR 

knowledge base and the research community. The future research suggestions based on 

the artefacts and knowledge generated in this research are discussed. 
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Chapter 2: Literature Review  

 

This chapter undertakes the literature review to identify the research gap to address the DLT 

systems integration challenges. The literature review emphasise the significance of integrated 

IT systems for enterprises. The interoperability architecture, design patterns, and tools 

currently used by modern enterprises to integrate centralised IT systems are reviewed and 

analysed. Different types of DLTs are studied, and the enterprise challenge to establish the 

interoperability between DLT solutions with current IT systems is examined. The research gap 

is recognised by analysing the integrated DLT solutions identified in the literature review. 

Internet made the most significant technological breakthrough connecting computers and 

servers, allowing shared services, computing, and increased storage capacity. This 

interconnectivity triggered a shift from single machine computing to distributed and 

interconnected processing [15]. The service oriented architecture (SOA) enabled the system 

components to break down into services, and integrate them to provide business processes and 

customer solutions [16]. The event-driven architecture (EDA), distributed computing, and 

Microservice architecture (MA) allowed the rapid development of small-sized (micro) and 

medium-sized (macro) functional services [17] [18]. However, integrating these services to 

create business solutions and processes is challenging [19]. This interoperability challenge of 

increased complexity, several services and disparate technologies and platforms compound 

with the introduction of new promising technologies, such as DLT, into the organisational IT 

landscape [11]. 

This chapter engages with the literature from research and practice to explain the overall 

interoperability landscape, relevant integration approaches, and research gap in enabling to 

address DLT integration problem. The following section, Section 2.1, defines interoperability 

and explains its significance for enterprises. Section 2.2 discussed organisations' contemporary 

interoperability tools, and integration patterns to address current integration needs. The 

evolution of DLT, and its technical capability and types, are discussed in Section 2.3. 

Interoperability has always been a challenge for organisations, and was augmented with the 

introduction of new technology such as DLT. The significance of DLT interoperability and its 

integration challenges are explained in Sections 2.4 and 2.5 respectively. Organisations, 

universities, and research institutes have developed solutions to address DLT integration 

challenges, as summarised in Section 2.6. The analysis of these discussed interoperability 
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solutions helped identify the research gap in meeting DLT interoperability requirements of 

modern organisations, as explained in Section 2.7. Lastly, Section 2.8 describes the replication 

and extension methods used to establish the DIF interoperability principles based on discussed 

DLT-integrated solutions. 

 

2.1 Interoperability and its Significance 

The IEEE (Institute of Electrical and Electronics Engineering) defines interoperability as “the 

ability of two or more systems or their components to exchange information or to use the 

information that has been exchanged.” Pillai et al. [20] suggested that cross-communication 

among the systems does not intend to make immediate state changes to another system and 

instead triggers functionalities or services on the other system expected to operate within its 

network to realise the state change. Over the last three or four decades, technology has become 

a key driver for enterprises seeking to help their business optimise and grow [21]. Technology 

systems are supposed to create an interoperable network enabling multiple systems or 

components to integrate and reuse the distributed business processing capabilities spread across 

multiple systems.  

Enterprise systems are often heterogeneous and composed of diverse operating systems, 

devices, protocols, and technology platforms [22]. Modern enterprise architecture converges 

towards distributed architecture with heterogeneous systems spread across multiple 

geographical boundaries [22]. Despite platform, data, programming languages and execution 

differences of systems, interoperability synergises among these distributed capabilities to 

enhance and create new business processes [23]. Integrating these diverse distributed 

applications is a prerequisite for enterprises wanting to improve their business competitiveness 

[24]. Such interoperable systems must be governed, designed, and deployed to meet business 

processing requirements. IT system architecture, design, and infrastructure is supposed to be 

in line with an organisation’s business vision, and designed, developed, and integrated 

according to the strategic view of Enterprise Architecture [25]. 

 

2.2 Contemporary Interoperability Approach  

Interoperability is crucial for a business capable, collaborative, and integrated IT ecosystem 

that can produce efficient and risk-averse business outcomes [26]. Interoperability is a business 
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case enabling lower business operational costs, better customer experience and service, and 

faster availability of information [27]. Enterprises invest significantly in solution integration 

by designing integration architecture and design patterns to integrate their distributed system 

capabilities [28] [29]. The following three subsections explain the contemporary integration 

methods and techniques widely used by modern organisations, which are utilised in this 

research to design the DIF based interoperability architectures. 

 

2.2.1 SOA Integration Approach 

Today’s enterprise systems are distributed and built using service oriented architecture (SOA) 

[16]. This approach enables the composition of multiple fine-grained services into a coarse-

grained one—the composing service results in more complex and functional ones than their 

standalone constituent services. A popular architectural style is to string together the services 

to design and develop business processes, IT services, and customer solutions [30].  

Service oriented architecture based distributed services and solutions are loosely coupled, and 

implement the “separation of concern” principle [31]. Message queuing techniques enable 

service capabilities to integrate explicitly, using products such as message-oriented middleware 

(MOM) and enterprise service bus (ESB), as extensions [25]. Enterprise service bus (ESB) 

applies modern operating system design concepts to integrate independent running services on 

separate, distributed, and disparate networks [32]. ESB has enabled commodity services such 

as data transformation, message transformation, intelligent routing, and database access to 

integrate with business services. Enterprise service bus has been established as a common 

purpose, flexible to adopt in projects and scalable beyond the limitations of hub-and-spoke 

broker enterprise integrators [32].  

 

2.2.2 API Gateway and Microservices based Integration  

As distributed systems are becoming the norm, there is a proliferation of microservices being 

built and deployed in IT systems and applications [33]. Microservices offer cross-platform 

compatibility by exposing their business capabilities via API RESTful or SOAP-based web 

services. The API Gateway and Service Mesh enables interoperability among these services 

[34]. API gateway is a single-entry point for all the system services and addresses some 

significant common concerns such as security, caching, monitoring, and message throttling 

[35].  
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Microservices rapidly emerge as a trendy service implementation design and development 

pattern in Cloud and large IT environments to improve system integration and scalability [36]. 

However, this increases the complexity of service communications, library management, and 

operational aspects of the network function logic (e.g. service routing) with the application 

code [35]. Service mesh and tools such as Istio are considered acceptable solutions to address 

these concerns, reducing the complexity of managing services and operational challenges such 

as traffic routing, service discovery, visibility, and failure handling [37].  

 

2.2.3 Event-Driven Integration Approach  

An event can be a user action, a trigger within a system, or an action caused by a system 

interface. In event-driven integration, the event will transfer the event-state and deliver it to the 

systems interested or subscribed to the event, and consumed by various systems, and 

applications [18]. An event is an asynchronous process that delivers the event-state message to 

the receiver, triggering event processing by the receiving service. Event-driven integration can 

work independently or coexist with API-driven integration to enable more agile, capable, and 

faster integration with distributed systems [38]. 

Event-driven architecture (EDA) is a model and software architecture for application and 

system design. Blue-chip organisations (established, stable and well-recognised organisations) 

have widely adopted EDA, as it offers minimal coupling of services and is a good option for 

modern distributed application architecture [39]. Apache Kafka (AK) is the most widely 

implemented EDA tool for implementing event-driven architecture in enterprises, and provides 

an asynchronous protocol to connect system components, sub-components and programs [40]. 

Apache Kafka is based on a distributed architecture, providing storage, availability, and linear 

scale-out [40], and can run hundreds of terabytes of production topics, against which the users 

can define queries and execute them using an SQL interface [41].  

 

2.3 Characteristics and Categorisation of DLT  

In 2008, an author assuming the name of Satoshi Nakamoto proposed innovative distributed 

ledger technology (Blockchain is a type of DLT) [42]. This technology frees the book and 

record-keeping from the centralised, authoritative setup, to a distributed, shared setup, 

prompting a significant mind-shift in business processing [43]. A distributed ledger is a digital 

database, updated and held by all the participants of a large or medium network, independent 
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of each other [1]. This ledger functions without a central authority, and broadcasts and manages 

transactions, events, and data. Every node or participant on the network agrees to abide by a 

process to reach a transaction consensus. The distributed ledger is updated, and the network 

nodes update the copy of their ledger [5]. Thus, the distributed ledger liberates the network 

nodes or unknown participants from the lack of individual trust issues by establishing collective 

trust and building transparent systems. 

Principally, DLT is based on globally distributed ledgers and connected through a peer-to-peer 

network to verify, approve, and store transactions. The technology that controls the distributed 

ledger manages the network's transactions chronologically, signs them cryptographically, and 

makes transactions immutable and accessible to all the network participants [44]. The ledger 

copies are distributed across the network, and transactions or events cannot be entered into the 

ledger unless the consensus criteria are met. However, data are immutable once entered and 

cannot be changed or deleted [45]. Distributed ledger and data immutability improve trust 

amongst non-trusted network participants; the cryptographic signature of records ensures 

transaction and data security.  

Distributed systems must be Byzantine fault-tolerant (BFT) to protect networks from malicious 

nodes [46]. DLT executes a consensus algorithm to generate agreement on a ledger state in the 

presence of Byzantine faults. Consensus algorithms are a critical aspect of DLT, because they 

define the behaviour of network nodes, the security assumptions, and the interaction of each 

node [47]. Therefore, they affect how DLT peers interact and function; for example, in 

Bitcoin’s PoW (proof-of-work), nodes have to calculate a cryptographic challenge, competing 

with each other to validate transactions [48]. Another DLT, Tendermint, performs BFT state 

machine replication for deterministic state machines, supporting fewer than one-third of faulty 

participants [49]. In the widely used Hyperledger Fabric, a private DLT network platform, a 

BFT consensus algorithm allows higher transaction throughput than PoW [50]. This capability 

enables a subset of nodes (called “endorser peers”) to endorse and execute transactions using 

a weaker consensus mechanism [51]. 

Apart from differences in the consensus mechanism, DLT networks can be considered public 

(permissionless) or private (permissioned). A permissionless network does not require trusted 

and verified participants to access the network ledger [52]; Ethereum and Bitcoins are examples 

of popular public DLT networks. Permissioned DLTs use a technical platform on which users 

are verified and trusted and thus can be held responsible or accountable according to a DLT 
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network governance model, and are therefore suitable for governmental and enterprise needs 

[53]. Hyperledger Fabric, Tendermint, Quorum, Multichain, and Corda, are instances of 

permissioned DLTs. Most enterprises will participate in a permissioned DLT network [2]. This 

research is centred around enterprise requirements and focuses on permissioned types of 

networks.  

 

2.4 Motivation to Improve DLT Interoperability 

Modern organisations use every opportunity to leverage IT systems to improve their business 

performance and reduce costs by managing operational risks. Before investing in and 

implementing new technology such as DLT, enterprises consider the architecture, solution 

design, implementation instances, and operational risks [54]. In addition, organisations also 

evaluate the integration capability of the new technology (e.g. DLT) with the prevalent IT 

technologies to assess its ability to synergise their overall IT capabilities [55].  

Enterprises face numerous challenges in designing, developing, and instantiating DLT 

solutions, including, but not limited to, interoperability, security, scalability, legal issues, and 

data privacy [56]. Research work by Kumar et al. [2], Andoni et al. [57], Rodríguez-Espíndola 

et al. [58], and Patki et al. [59] suggested that the lack of standard DLT interoperability 

solutions is one of the main reasons for the lack of broader enterprise adoption of DLT. The 

authors' reasons were that DLT will neither run in isolation, nor replace operationalised 

solutions in the foreseeable future. DLT systems have to be integrated with centralised IT (non-

DLT) systems to synergise the capabilities of these two types of systems. This integration will 

augment an organisation's IT capability, empowering it to improve and build new business 

processes and capabilities. This requirement makes interoperability a prerequisite for any 

enterprise considering implementing a DLT solution. 

The main focus of DLT adoption is to include the business-critical core functionality in DLT, 

which directly helps enable trust and transparency amongst network participants [9]. The 

enterprise trend is to create a minimal DLT functional ecosystem with few relevant participants 

[60]. This tendency and the large variety of DLT platforms have resulted in niche, 

heterogeneous DLT networks with different consensus management and data processing 

methods, resulting in siloed business capability, along with prevalent asset and data silos [61]. 

Today’s enterprises operate in a highly competitive environment where business efficiency and 

process optimisation are critical aspects, adversely impacted by systems and applications that 
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work in silos. A business will invest in new technologies only if stakeholders see the synergy 

between the impending technology and their implemented IT capabilities. To that end, 

seamless integration among these systems and applications is an essential capability sought by 

enterprises [62]. This interoperability will empower enterprises to leverage new, diverse, and 

disparate technologies, distributed data, and enable infrastructure ability for business benefits  

[63].  

 

2.5 DLT Interoperability Challenges  

Enterprises are interested in designing and implementing production-grade, practical, and 

manageable DLT solutions [64]. The variety of DLT technologies makes it challenging to 

categorize DLTs and their interoperability solutions, as there are no accepted DLT 

interoperability standards [65]. The possible benefits and operational feasibility of 

interoperability amongst various DLT platforms (inter-DLT) are not well established and not 

discussed in this research. Organisations are expected to integrate DLT solutions with 

centralised IT systems to acquire the knowledge, experience in designing, developing, and 

implementing the integrated DLT systems. Even if an enterprise is part of numerous DLT 

networks (and most likely they will be), they will visualise the benefits of integrating the 

business capability and data from these multiple DLT networks with their prevalent IT 

capability. Providing this interoperability capability can be a steppingstone to encourage 

organisations to adopt multi-DLT solutions; this research is focused on this crucial aspect. 

Based on Belchior et al.’s research [7], two significant levels of interoperability can be 

established: (1) among different BCs/DLTs (including between the DApps (distributed 

applications using DLT platforms); and (2) between DLT systems and centralised enterprise 

IT (non-DLT) systems. Modern enterprises predominantly use centralised IT systems [8]. 

Therefore, this research focuses on interoperability from an enterprise perspective and is 

dedicated to integrating DLT systems with centralised (non-DLT) systems. 

 

2.6 Interoperability Solutions from Literature  

The interoperability solution of BC with contemporary technologies (artificial intelligence [AI] 

and 3D printing) was suggested by Rodriguez-Espindola et al. [66] for a humanitarian supply 

chain. Their research investigated the challenges faced in the 2007 flood disaster in Mexico to 
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identify a potential solution for effectively supplying relief food, and designed a framework to 

achieve workable integrated solutions. The authors argued that combining these three 

technologies using the integration framework can positively affect a humanitarian supply 

chain. The integration of BC with robotics and AI was discussed by Lopes et al. [67], but 

without elaborating on the proposed solutions, methods, or framework. Chavali et al. [68] 

discussed AI and BC integration and explained a decentralised AI framework and AI service 

collaboration model. The flow of secure, extensive, and accurate data from BC drives the AI 

systems providing transformational value to enterprises.  

The integration of BC with IoT (internet of things) was discussed in detail by Reyna et al. [58] 

and Panarello et al. [69], and predicted that the integration between these two modern 

technologies would revolutionise IT solutions by integrating the IoT devices with current 

systems and BC/DLT solutions. Blockchain may enhance the IoT solution by providing trusted 

and secured shared services and making information traceable and reliable. Transparent and 

open data sources will remain immutable over time, enhancing IoT security. In areas such as 

smart cars and smart cities, disseminating trusted and reliable data will encourage new users 

and participants to join the ecosystem. Three integration approaches were discussed by Reyna 

et al. [58]:  

(1) IoT device to IoT device;  

(2) IoT to BC; and  

(3) a hybrid approach, in which only partial data and interaction were executed in BC, while 

the remainder were shared directly among the IoT devices.  

Their discussion focused on a literature review of IoT and BC interoperability solutions and 

the possible benefits and risks of integration. However, they did not provide the technology 

solutions, frameworks, methods or similar artefacts needed to address the core interoperability 

challenges.  

The integration of BC with a MIS (management information system) to integrate Web 2.0 

(client-server based application) with Web 3.0 (decentralised BC-based systems) by using 

Ethereum was explained by Chan et al. [70]. Consortium or private BC nodes were set up on 

the Ethereum platform utilising the Web3.js (a library that defines the format to exchange data 

with Ethereum) API, and Geth (Go Ethereum client). The BC data accessible from web 

applications help store the key records on the BC, offering data transparency and immutability, 

and functioning as the single source of truth. A framework to integrate traditional Web 2.0 
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based applications with BC-based Web 3.0 based systems was also illustrated. The web 

application was programmed to interact and communicate with an Ethereum node using 

interprocess communication (IPC) or HTTP. There was no direct interaction between BC and 

the application; the exchange executed with an Ethereum node, which interacted with the other 

nodes in BC. The integration solution suggested, however, had significant shortcomings:  

• it did not suggest the technical or architecture design of the solution implemented;  

• the Ethereum client Geth needed to be installed on all the BC nodes;   

• the integration framework was based on Ethereum, so for other BC technologies, the 

framework would be irrelevant; 

• framework principles, fundamental rules and constraints that would help decide the 

business situations in which the framework could be applied were not suggested; and 

• the solution focused on web integration; however, BC would add significant value in 

integrating the back-end processes that support the core business capability [71].  

The interoperability of BC with a healthcare application was explained by Zhang et al. [10]. 

Their research focused on maintaining ongoing changes while managing integration 

complexity, minimising data storage, addressing security concerns, and tracking health 

variations among a large population. This research used a health DApps (distributed 

application) to address the interoperability challenges when the DApps is changed and 

functionality is extended. The solution used four software design patterns to decouple the 

interaction and improve application scalability, sharing resources more efficiently to help 

improve the overall design and functionality, and make applications more modular and easier 

to maintain. The study used public BC to create an interoperable environment using BC's 

immutable and verifiable characteristics, which cannot be achieved with centralised systems 

[10]. Their research is specific to the health care domain, and no framework or methods were 

suggested as applicable among other domains and BC technologies. Furthermore, the solution 

offered was for the public BC, which is unrelated to the enterprise environment. 

The summary of the comparative analysis of the solutions discussed in this section, indicating 

their strength and weakness, are summarised in Table 2.1.  
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Interoperability Solution Technical 

implementation 

Solution 

Design 

Enterprise 

Interoperability 

Solution by Rodriguez-Espindola et al. 

[66]  

No No Yes 

Solution by Lopes et al. [67] Yes No No 

Solution by Chavali et al. [68] No Yes Yes 

Solution by Reyna et al. [58] No Yes No 

Solution by Panarello et al. [69] No Yes No 

Solution by Chan et al. [70] No No Yes 

Solution by Zhang et al. [10] Yes No No 

 

Table 2.1. The table provides a comparative analysis of DLT interoperability solutions 

suggested in the literature. Each row in the table indicates the strength of the solution from 

technical implementation, Solution Design and Enterprise Interoperability perspectives.  

 

2.7 Research Gap  

Enterprises are cautious when considering implementing new technologies due to the risks 

these present to their day-to-day business operations discussed in Section 2.4. Therefore, any 

new technology, such as DLT, AI, Machine Learning, IoT, Cloud etc., will be monitored for a 

few years before being tested for proof of concept or solution feasibility in a limited and risk-

averse business context. During this phase, apart from factors such as security, scalability, and 

legal issues, the implementation will be closely monitored for its interoperability with prevalent 

systems. As discussed in Section 2.5, this integration is expected to augment the enterprise’s 

current IT solutions’ ability to create or significantly enhance business capability and 

processes. The success of such limited implementation will encourage enterprises to invest in 

broader implementation in other critical business areas of the organisation. As technology 

usage grows, enterprises start focussing on resolving other implementation challenges 

simultaneously, seeing the utility of technology for their business.  

Academic and professional literature has proposed inadequate solutions to address BC or DLT 

interoperability challenges, and many are analysed in terms of their interoperability capability 

in Section 2.6. Few research focuses on the BC solution's technical implementation without 

elaborating on how it can scale to a complex and highly heterogeneous enterprise systems 
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landscape. Furthermore, these solutions do not consider that enterprises are most likely to 

participate in multiple BC/DLT networks that limit the usability of their single-DLT based 

solutions. Some solutions are limited to a single DLT network [70], and some lack focus due 

to the lack of design rules or principles  [67] or the lack of insight into providing the 

implementation architecture of these solutions for the prevalent enterprise interoperability 

patterns [58] [69]. Although a few solutions offer an interoperability framework or architecture 

[66], most do not provide the association and synergy between a low-level technical solution 

and the suggested IT system architecture or framework [10]. This inadequacy results in a lack 

of coherent interoperability solutions for enterprises to seriously consider for experimentation 

and further implementation.  

There is a research gap relating to the pressing need for DLT solutions that are integrated, 

practical, and relevant to the enterprise’s business environment. Such solutions are supposed 

to demonstrate the feasibility of DLT-based systems at the technical level by integrating DLT 

solutions with modern technologies. This specific technical solution is expected to be based on 

an interoperability framework or integration model or architecture suitable to an enterprise’s 

complex and diverse IT ecosystem and technology landscape. The framework or model have 

to be linked to the organisation’s prevalent interoperability architecture, design patterns, tools, 

and implemented solutions. Such a framework would assist in providing the architecture and 

design visualisation based on modern enterprise tools, technology, architecture, and design 

patterns. The solution is supposed to be validated against implemented solutions to establish 

the framework’s usefulness for enterprises considering DLT implementation in their specific 

business context. This research aims to fill this gap by designing, developing, instantiating, and 

evaluating such a solution. 

 

2.8 Replicating and Extending the Interoperability Principles 

This research conceptualises and designs a DLT interoperability framework (DIF). The DIF is 

based on interoperability principles developed from the current research. These principles are 

replicated, extended, and derived from the integration principles and rules suggested explicitly 

or implicitly, based on the analysed DLT integrated solutions overviewed in Section 2.6 by 

[66], [67], [68], [58], [69], [70] and [10]. No single solution currently meets enterprises' 

comprehensive interoperability requirements, and the extant solutions have limited strengths 

and practical benefits. A few solutions have proposed integration design at technical and 
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programme levels [67], [70], and a few at design pattern and system component levels [68], 

[70]. Other solutions have suggested interoperability architecture at the IT ecosystem level 

[58], [10]. The solutions proposed in Section 2.6 have been implemented in many business 

domains due to their suitability to a business context, requirements, and unique challenges. In 

addition to currently available DLT platforms (e.g., HF, Ethereum, R3 Corda, Multichain), new 

platforms will eventually emerge to support future business needs. Such multi DLT-platform 

ecosystem sets the expectations that the interoperability framework have to be relevant and 

applicable to current and future multiple DLT technologies. Considering this requirement, the 

following paragraphs explain the techniques and methods used to extend and replicate the 

principles from the discussed DLT interoperability solutions outlined in Section 2.6. 

Tsang et al. [72] discussed six types of replications and extensions. The current research has 

utilised Conceptual Extension, in which the constructs of the solution design, architecture, and 

framework principles from the solutions suggested by Rodriguez-Espindola et al. [66] and 

Lopes et al. [67], are used to create an enterprise-centric principle. These solutions also 

demonstrate that only real-time data valuable to coordinate supply chain logistics with the 

decision-makers have to be included in DLT; centralised systems can process the rest. The 

solution suggested by Lopes et al. [67] advocated that the API connects with the external 

algorithm capabilities, replicated in the DIF. The solution by Chavali et al. [68] indicated the 

integration of BC and other systems using high-level APIs. The importance of the API layer in 

event triggering and data exchange in designing an interoperable solution was discussed in 

detail by Hewett et al. [22], He et al. [24], and Svetashova et al. [73].  

Beck [74] discussed the systematic extension, including the extension of solutions explained 

in previous studies. The strategy to extend the scope of earlier studies and replace the original 

study’s construct with one of the many constructs in the targeted research is used in the current 

research to increase the generalisation by modifying and extrapolating the original design. 

Research by Gadge et al. [34] discussed the principle of data management by embedded or IoT 

devices and cost-efficient operations. These principles are extended in the DIF to select the 

limited business data included in the ledger and IoT-enabled design. When documents or 

massive data are involved, only the digital signature is supposed to be stored in the ledger; the 

actual data can reside on centralised IT systems.  

Brown et al. [75] and Fuess [76] emphasised replication by extending the work of previous 

studies, and making changes in the attribute or active variables to increase the external validity 
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of the research effort (e.g., generalisability). Panarello et al. [69] and Chan et al. [70] covered 

the integration based on Cloud integration, APIs, and efficient data structures in BC. These are 

replicated and extended in the current research to increase the relevance and widespread use of 

framework principles for modern enterprises. The replication of web (front-end) integration of 

DLT is avoided so enterprises can focus on integrating core business logic to the back-end, and 

continue using the current front-end technology stack for their customer user experience. 

Hyman et al. [77] separated three types of research operations subsumed under replication. The 

DIF used the first type of replication that builds upon, extends, and validates under changing 

circumstances, the suggestions and findings of previous studies. The interoperability principles 

of the DIF have avoided the implementation challenges (i.e., scalability, tight coupling, and 

duplicated resources) faced by Zhang et al. [10] to implement the DASH (Distributed App for 

Smart Health) system. The principle of storing hashing or signatures, and selective business 

data in BC ledgers avoids the storage capacity challenge faced by Reyna et al. [58]. The 

significance of providing Cloud-enabled interoperable solutions is explained in research by 

Hewett et al. [22], Belchior et al. [7], Nguyen et al. [78] and Besancon et al. [79].   
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Chapter 3: Design Science Research (DSR) Methodology 

 

This chapter explains the research activities undertaken based on the design science research 

methodology (DSRM) and the criteria used to categorise the research that falls under design 

science research (DSR). This research followed the seven core guidelines and fundamental 

principles of DSR suggested by Hevner et al. [80]. A knowledge contribution framework is 

utilised to demonstrate the usage of the knowledge base and this research’s contribution to the 

knowledge base.  

Enterprises design, develop and operationalise information systems (IS) to establish business 

capabilities and processes by developing business solutions, work systems, and business 

processes. Information systems researchers are responsible for acquiring and extending 

knowledge to help enterprises develop and enhance IT systems for business growth and cost-

effective operations. Behavioural science and design science are two distinct but 

complementary paradigms used to acquire and further such knowledge in IS [80]. The 

behavioural science paradigm is rooted in natural science research methods and endeavours to 

explain and predict human and organisational phenomena. This paradigm enables practitioners 

and researchers to understand the people, organisational, and their technological interactions 

to enhance business operations and management by improving the efficiency and effectiveness 

of the organisation [81]. 

The design science paradigm is a problem-solving paradigm rooted in engineering and the 

science of artificial (built by humans, instead of nature) [82]. It pursues innovations to define 

and establish practices, ideas, products, solutions, and technology capabilities, to promote 

design and analysis, implement and utilise an IS in an organisational context. The artefacts 

created by design science follow natural laws and behavioural science theories and rely on the 

extant predominant kernel theories [83]. Ever-changing and demanding business capability 

requirements expect creative advances in solution domains when the available approach is 

insufficient or needs enhancement to meet the needs of a new or changed business and 

technology context. As new technology capabilities such as DLT emerge, design science is 

applied to current and new business areas to improve business processes and operations in ways 

previously beyond the IT ambit's imagination [84].  

This chapter explains the research methodology, guidelines, and steps followed to meet the 

research objectives (Section 1.5). The following section describes the importance of 
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information system (IS) research for organisations and the contribution of DSR towards that. 

Section 3.2 classifies the study into four quadrants and categorises the studies that fall under 

DSR. The following section explains the DSR methodology and the steps this research 

followed based on that methodology. Section 3.4 sets out the seven DSR guidelines followed 

in this research. The last section discusses the knowledge contribution this research has made 

to the DSR knowledge base. 

 

3.1 IS Research and Design Science 

Organisations are large, complex, purposeful, and artificially composed of structures, people, 

work systems, and technologies working together to pull enterprises in the desired direction 

[85]. These components require a close alignment between the business strategy, goals, and 

organisation processes with the IS strategy, tools, technology, and IT infrastructure [80]. Figure 

3.1 presents the required alignment and illustrates the transition of business strategy to 

organisation infrastructure and IT strategy to create effective IS solutions and support 

infrastructure. This interplay between business strategy, organisation infrastructure, IT 

strategy, and IS infrastructure must be addressed in IS research [80]. As the role and influence 

of technology in enabling business strategy and organisations’ infrastructure will grow, this 

interplay is becoming particularly critical. Therefore, IS researchers are expected to endeavour 

to allow IT strategies to experiment and invest in new technology solutions and IT 

infrastructure. This will enable enterprises to use cutting-edge technologies such as DLT, IoT, 

AI and similar to explore, engage in, and design new structures to align the IT roadmap with 

their business strategies.  

Enabling an organisation to implement its business strategy by solving real-world problems is 

the crux of design science and is achieved by producing artefacts or final DSR products [86]. 

In addition to the final product or artefact, DSR is also concerned with the research process, 

methodology, and activities followed to reach the outcome [87]. Design science research 

undertakes an artefact validation and evaluation to justify the artefact’s ability to address a 

stated problem efficiently and effectively [88]. The artefact or product is evaluated iteratively 

to provide feedback to understand the problem better and improve the artefact and design 

process to help solve the problem efficiently [89]. The design science researcher runs this build 

and evaluate cycle multiple times in a loop to evolve and improve on the design artefact and 

design process. Two design processes: 
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• build (including design) artefact, and  

• evaluate artefact  

and four design artefacts of: 

• constructs (symbols and vocabulary),  

• models (representations and abstractions, e.g., DIF),  

• methods (practises and algorithms), and  

• instantiations (prototype and implemented systems, e.g., HDSP) 

are an integral part of DSR [90]. 

 

Figure 3.1. Organisational design and information systems design activities. It illustrates the 

alignments between business and IT strategy and organisational and IS infrastructure. 

Reprinted from [80].  

This research modelled a DLT interoperability framework (DIF), representing the integration 

framework, and instantiated the HDSP to validate the DIF. The DIF helped understand the 

problem and suggested a solution by representing the correlation between critical aspects of a 

problem and its solution components. The instantiation of the HDSP demonstrated that the DIF 

can be practically implemented in a working IT system to address the interoperability 

challenge. Based on the DIF, this instantiation of the HDSP shows the feasibility of both the 

design process and designed artefacts to solve the problem. The design science research also 

demonstrates the solutions' suitability by undertaking a concrete assessment to validate that the 

DIF meets its intended objectives.  
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3.2 Design Science Research Contributions 

Not all studies and activities producing artefacts or products can be classified as DSR 

contributions. Gregor et al. [91] created a 2x2 matrix and defined rules to categorise the studies; 

see Figure 3.2 presents the research activity contexts and three types of DSR contributions. 

From high to low, the horizontal axis indicates the maturity of the problem context. The vertical 

axis, from high to low, represents the present maturity of artefacts as a possible solution starting 

point for research.  

 

Figure 3.2. Design science research contribution framework. It represents the matrix of 

potential DSR contributions and research activities context. The artefacts of this research, DIF 

and HDSP, fall under the Improvement category. Adapted from [91].  

The 2x2 matrix in Figure 3.2 focuses on the research project's knowledge starting point (i.e., 

maturity) to better understand the project’s objectives and expected research contribution. The 

research that falls into Improvement, Invention and Exaptation is categorised as a DSR study. 

These three quadrants, and the Routine Design (non-DSR study) quadrant, are explained next.  

Improvement: This quadrant accommodates a solution resulting in more efficient and 

effective processes, products, technologies, services, or ideas [91]. Both the artefacts of this 

research fall into this quadrant, which offers a DLT interoperability framework (DIF) to enable 

the design and development of an integrated DLT solution with centralised IT systems (HDSP).  
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Invention: This quadrant accepts radical breakthrough solutions, a distinct mind-shift from the 

accepted way of thinking [91]. Solutions in this quadrant are scarce because innovations are 

scarce, and inventors are even scarcer. 

Exaptation: Individuals with expertise in multiple disciplines often develop original thoughts 

and ideas. This mindset allows insights and interconnections within a field to result in the 

exaptation of artifacts to another field  [91]. 

Routine Design: In this quadrant, the present expertise and knowledge about the problem area 

are well understood, and use prevailing solutions and artifacts to tackle and solve the 

opportunity or problem. The critical difference between routine design and DSR is that DSR 

solves interesting, unsolved problems in innovative, more efficient, and effective ways. The 

critical differentiator is the clear and visible identification of contribution to DSR knowledge 

based on research artefact(s) or methodologies or both [80].  

 

3.3 Research Methodology  

The design science research methodology (DSRM) is a widely accepted research framework 

for researching Information Systems based on DSR principles [84]. A design science research 

methodology offers methods, procedures, and practises to execute DSR, and provides a model 

for undertaking, evaluating and communicating research in IS [92]. Design science creates, 

evaluates, and validates IT artefacts meant to solve organisational wicked problems [93]. 

Design research expects to diverge from interpretative analysis or theory testing by relying on 

the process model to provide guidance (as consumers, editors, and reviewers) in setting the 

expectations from design research outputs [94]. The design science research methodology 

includes three elements: conceptual principles to define DSR, practice rules, and processes for 

carrying out and presenting the study [84]. A DSRM process model and its six sequential 

activities followed by this research are presented in Figure 3.3. 
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Figure 3.3. Design science research methodology process model. It represents the six sequential 

steps followed in this research. The artefact DIF followed the problem-centred initiation, and 

the HDSP followed the design and development centred initiation research entry point. 

Adapted from [88]. 

This research followed the DSRM process model and executed the recommended six steps in 

the sequence presented in Figure 3.3. The problem-centred initiation is the research entry point 

and trigger for the DIF. Evaluation and communication steps of the DSRM process model 

provided feedback and insights in an iterative manner that incorporated recalibrating the 

solution objectives and improving the design, development, and output of the artefacts. The 

steps followed by this research were as follows: 

1. Identify Problem and Motivation: A literature review was undertaken using academic 

journals and professional publications to identify the significant challenges DLT faces 

in its widespread enterprise usage. Enabling the interoperability of DLT with 

centralised IT systems was one of the most relevant research areas identified that would 

motivate organisations to invest in and implement DLT-based solutions.  
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2. Define the objective of a solution: Apart from the business benefits of DLT, 

enterprises want to know the interoperability capabilities of DLT solutions. Enterprises 

are keen to utilise interoperability architecture, framework, and DLT solution patterns 

to deploy in their IT ecosystems, accordingly, the objectives of this research are defined 

in Section 1.5.  

3. Design and Development: This research designed and developed two artefacts: 

a. It conceptualised and modelled the DLT interoperability framework (DIF) to 

enable interoperable architecture and integration design patterns.  

b. To validate the DIF, the research designed, developed and instantiated the 

HDSP. It also followed the design and development centred initiation process 

(Figure 3.3) to establish the interoperability of HDSP, based on the principles 

and solution objectives established in the DIF.  

4. Demonstration: The usefulness and utility of the DIF were demonstrated by designing 

the interoperability architecture and integration design using the DIF for the popular 

architecture models, integration patterns, and tools used by modern enterprises. The 

working functionality of the instantiation of the HDSP, based on the DIF and its 

integration principles, was demonstrated to departmental academic staff, fellow 

researchers, and practitioners.  

5. Evaluation: The HDSP was instantiated to evaluate and validate the utility and 

usefulness of the DIF. In addition, the DIF and the HDSP were evaluated based on the 

evaluation techniques and methods suggested in DSR and explained in Chapter 6. 

6. Publication: Publication efforts were made with top tier peer-reviewed journals: 

a. The research paper, “Integrating Distributed Ledger Technology into the 

Distributed Enterprise Architecture with Apache Kafka”, was sent to the IEEE 

Software journal two times. 

b. The research paper, “Recommended Software Engineering practices for 

Distributed Ledger Technology Solutions”, is prepared. 

 

3.4 Guidelines for Design Science Research 

This research followed the seven core guidelines and fundamental principles of DSR suggested 

by Hevner et al. [80], as follows:  
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1. Problem Relevance: The literature review of academic and industry publications 

identified enterprises' problems in implementing DLT solutions in Section 2.5. 

Organisations are looking for interoperability architecture and design patterns to build 

and implement integrated DLT-based solutions with their centralised IT ecosystems.  

2. Design as an artefact: Two artefacts were designed to address the interoperability 

challenge. The first artefact was the DLT interoperability framework (DIF) used to 

enable organisations to build integrated DLT-based solutions with centralised IT 

systems. The second artefact is the interoperable HDSP, which was designed, 

developed, and instantiated according to the DIF and its interoperability principles.  

3. Research Contribution: The DIF was produced to enable enterprises to develop 

integration architecture for their IT ecosystems. Subsequently, the DIF was utilised to 

design the standard interoperability architectures based on popular industry 

interoperability architecture and integration patterns. Another contribution of this 

research is in designing, developing, and instantiating an interoperable HDSP to 

validate the DIF and its principles. The knowledge generated based on the development 

of the two artefacts is the contribution of this research to the DSR project knowledge 

base.  

4. Design as a Search Process: The interoperability complexity increases as new 

technologies like DLT enter the IT landscape. Such complex and large-scale 

interoperability problems often need to be abstracted by breaking into simpler domains 

and representing only a subset of the relevant parameters and components [80]. The 

problem was divided into two levels:  

a. The DIF was conceptualised and modelled according to interoperability 

principles to address the enterprise-scale interoperability challenge for diverse 

and large systems, abstracting the code complexity and low-level technical 

design. 

b. The HDSP was designed and instantiated by implementing low-level technical 

design and code functioning based on the DIF and interoperability principles. 

It is neither feasible nor practical to model an integration framework applicable to all 

organisations' diverse and unique interoperability needs. This research designed DIF-

based implementation architecture using enterprise service bus (ESB), API gateway 

and Microservices implementation, event-driven architecture-based implementation, 

and generic integration implementation.  
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5. Research Rigor: Research by Hevner et al. [80] suggested that the assessment of rigour 

must be in the context of generalisability and applicability of artefacts; relevance will 

be compromised if there is an over-emphasis on rigour. The rigour of the DIF in this 

research was based on the framework’s practical usability in terms of helping 

enterprises design integration architecture. This ability was demonstrated by 

developing practical integration architecture for popular enterprise interoperability 

patterns based on the DIF. Moreover, the development of the HDSP established the 

rigour and robustness of the DIF.  

6. Artefact Evaluation: The artefacts produced in this research went through formative 

evaluation (synonym for ex-ante evaluation), summative evaluation (synonym for ex-

post assessment), the maturity model for enterprise interoperability (MMEI) 

framework, and artefact instantiation [95]. The DIF was validated by successfully 

instantiating the HDSP. The natural and iterative evaluation of the DIF was undertaken 

by developing interoperability architecture and integration design patterns based on the 

DIF. The HDSP was developed based on the DIF; even though its evaluation was 

predominantly artificial (technical evaluation), a natural evaluation aspect was added 

by including the contemporary technology, tools, architecture, and design patterns 

popular in modern enterprises.  

7. Communication of Research: The following opportunities were used to communicate 

the research process and its outcome to research, academic, and practitioner 

communities: 

a. Participation in the New Zealand Information Systems Doctoral Consortium in 

June 2018, July 2019, and July 2021. The conference paper, “Customer-Centric 

Traceability Framework for Food Sustainability and Quality Parameters to 

Improve Transparency in Food Supply Chain (FSC)”, was presented. 

b. The “Best presentation” award was received at the International Conference on 

Design Science Research in Information Systems and Technology, January 

2020, Bangkok, on “Cloud-Based Distributed Ledger Technology for manuka 

honey Traceability System”.  

c. The research was presented at a design science course (worth 180 working 

hours), conducted by Dr Jan vom Brocke and Dr Robert Winter, and attended 

by Ph.D. students from around the globe.  
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d. The research artefacts, DIF and HDSP, were explained and discussed with 

academic departmental academic staff, IT professionals, and research 

colleagues, to solicit feedback to help improve the final research output.  

e. The research was presented at the Accounting and Information Systems 

Department Conference, University of Canterbury, in November 2020. 

Feedback received from participants was incorporated into the research output.  

f. A research presentation was made to the Centre for Inclusive Digital Enterprise 

(CeIDE) research group in October 2020; feedback and constructive comments 

were incorporated into the research process and output. 

g. The Ph.D. research proposal was presented to the Christchurch Institute of IT 

Professionals, and their feedback and research direction comments were 

incorporated and used to enhance the research progress. 

h. The research was presented at the Accounting and Information Systems 

Department Conference, University of Canterbury, in October 2021. Feedback 

received from participants was incorporated into the research output. 

 

3.5 DSR Knowledge Contribution and Consumption  

Drechsler et al. [96] proposed a conceptual framework covering the two DSR knowledge bases 

of descriptive knowledge (Ω-knowledge) and prescriptive knowledge (λ-knowledge). Solution 

design knowledge is actionable and technological, and falls into the prescriptive knowledge 

domain. Descriptive knowledge involves explaining artificial, natural, and human-related 

activities, composed of measurements, classifications, observations, and logging these 

explanations into accessible forms [91]. Both knowledge bases illustrate six directions to 

produce, utilise, and contribute knowledge as modes of design theorising. Figure 3.4 presents 

an enhancement of the framework suggested by Gregor and Hevner [91] and separates the two 

knowledge bases from project design knowledge. Design science research projects utilise 

available knowledge and produce conjectural, untested, and transitory knowledge and entities, 

most likely in an unstructured, heuristic, and creative manner [97]. This knowledge is shared 

only amongst project team members. Only selected knowledge suitable for the broader research 

community is contributed to the DSR knowledge base.  
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Figure 3.4. An integrated perspective on knowledge production, contribution, and utilization 

to IS DSR. Reprinted from [96]. 

This research utilised the framework in Figure 3.4 to use available knowledge and contribute 

to the DSR knowledge base, as follows: 

1. Mode-1: Relevant knowledge was utilised to acquire an in-depth understanding of the 

problem, its context, and the possible diagnosis of the enterprise interoperability 

challenge. A clear goal statement was identified based on understanding a real-world 

problem. The research defined solution requirements and goodness criteria, against 

which the two developed artefacts, the DIF and HDSP, were evaluated. The second 

source of knowledge was the practical experience, intuition, tacit and non-scientific 

knowledge, insights, and skills of the researcher, professors, supervisors, IT 

professionals, and colleagues involved in the research.  

2. Mode-2: This research enhances understanding of the context and problem by 

emphasising the need for and importance of DLT solution’s integration with 

centralised IT systems. It explains the background and significance of both artefacts 

from a business capability, competency, and processes enhancement perspective. The 

research also provides indicators for possible changes to the behaviour of 

organisations, DLT network participants, and others, due to the trust and transparency 

enhanced amongst DLT network peers.  
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3. Mode-3: Knowledge and experience of Enterprise Architecture, ESB (enterprise 

service bus), layered architecture, API gateways, Service Mesh, Microservices, 

Apache Kafka, SOA, event-driven architecture, interoperability patterns, and message 

management, networking and oracles were used to design the DIF. System 

architecture, design knowledge and tacit experiences were utilised to build the HDSP. 

The expertise in RESTful API-driven system design, database knowledge, user 

interface, data modelling, system design principles and rules, and layered architecture 

patterns were utilised to design the system components. To develop and instantiate the 

HDSP, programming knowledge, database processing, Docker, Cloud technology, 

DLT, and testing knowledge were all utilised.  

4. Mode-4: The DIF validates the developed interoperability principles derived from 

available integrated DLT solutions. The DIF also advocates the system architecture 

and design for interoperability architecture using API Gateways, ESB and Service 

Mesh, event-driven distributed architecture, and generic interoperability architecture. 

The HDSP design, development, and instantiation followed the DIF and its principles, 

which can be used in similar business solutions. The research also recommends 

software development practices, API driven architecture, data design rules, Smart 

Contract design and development practice, and operational aspects of DLT-based 

solutions, that enterprises and the research community can utilise.  

5. Mode-5: The DIF utilised the layered architecture model, SOA principles, metadata 

model, external data feed, and canonical messaging principles to develop and refine 

the framework. The Hyperledger Fabric DLT solution prototype (HDSP) utilised the 

available solution entities to design, develop and instantiate the technical prototype. It 

also used DLT platform Hyperledger Fabric, MongoDB database, AngularJS 

framework, Node.js libraries and JavaScript Object Notation (JSON) data structures to 

implement the HDSP. Available knowledge of DSR artefacts evaluation was utilised 

to evaluate both artefacts.  

6. Mode-6: The DIF and architecture models developed based on the DIF (see Section 

4.3) are its solution design contribution. The HDSP’s technical instantiation, the 

components (API layer, Hyperledger network, DLT gateways and utilisation of 

MongoDB), the transaction process flow, and DLT network nodes’ interaction in the 

MHSC business context are the knowledge contribution of the HDSP. 
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Chapter 4: Distributed Ledger Technology Interoperability 

Framework (DIF) 

 

This chapter elaborates on the DLT interoperability framework (DIF), a technology agnostic 

framework based on modern systems interoperability principles. It is a generic integration 

framework relevant to many business domains, and applicable to all DLT/BC technology 

platforms. The DIF can be applied to many architecture patterns popular in enterprise IT 

systems, including event-driven architecture, API gateway, ESB, distributed system 

architecture or Service mesh for Microservices architecture. Based on SOA principles, the API-

driven design of the DIF enables the pluggable and loosely coupled integration of systems and 

their components. This service-focused design also facilitates integration with the IoT devices 

capable of handling the APIs or request and response messaging patterns, including 

synchronous and asynchronous communication.  

The following section describes the DLT interoperability framework (DIF), its components 

and their interrelationship, and its suitability to the enterprise requirements. Section 4.2 

elaborates on the interoperability principles based on which the DIF was conceptualised and 

modelled. Those multi-platform and technology agnostic principles and design guidelines were 

practically instantiated by developing the HDSP, as explained in Chapter 5. Finally, Section 

4.3 suggests three interoperability architectures, based on the DIF, for the popular 

interoperability patterns, integration design and tools used by modern enterprises. 

 

4.1 Interoperability Framework and its Components 

This research developed a DLT interoperability framework (DIF), represented in Figure 4.1. 

The model and its components are based on the following:  

• The interoperable solutions discussed in Section 2.6, 

• The contemporary and popular integration approach adopted by organisations, is 

explained in Section 2.2, and  

• interoperability principles are explained in Section 4.2. 

The interoperability model and its components are explained in detail in this section. The 

DIF enables enterprises to integrate DLT systems with centralised IT systems. This 
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framework improves the flow of data and information, message handling and technology 

agnostic interaction among diverse IT systems and their components. The framework 

supports the distributed environment, and its component design and interaction enable the 

integration of modern technologies such as DLT, IoT, Cloud computing, Big Data. This 

integration framework will allow the strength and capabilities of DLT (e.g., transparency, 

decentralisation, immutability) to be integrated with centralised systems. The DIF offers a 

blueprint for developing integrated application design, and enhancing the inter and 

intracompany business process. Its components, their interaction, and interrelationship are 

summarised in Figure 4.1 below.  

 

Figure 4.1. The distributed ledger technology interoperability framework (DIF) and its 

interacting components. The API-centric design of the framework enables the DIF 

component interactions via message flow; these components are represented in light green 

colour.  
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4.1.1 Enterprise Participating DLT Network Nodes Component 

Purpose: This component aims to consolidate all the ledgers of different DLT networks into a 

single layer. This layer will enable a consistent interaction of all DLT ledgers with the other 

components of the framework.  

Input: The transactions/events to be processed by DLT network ledgers. 

Output: Transactions and events in DLT network and relevant events triggered internally by 

DLT network will be pushed to DLT Gateways.  

Explanation: In the foreseeable future, an enterprise in a practical situation may participate in 

multiple DLT networks [63]. For example, a supply chain retail enterprise can be part of the 

Hyperledger supply chain network, participate in the Ethereum Auditing network, have an 

active node in the Corda Payment DLT network, and so on. Each DLT network would have 

multiple peers in the organisation. The bottom component of the DIF in Figure 4.1 displays the 

enterprise participating nodes in different DLT networks. DLT ledger of these networks will 

be stored on enterprise servers and managed by respective organisations, either in-house or on 

a Cloud. Although these DLT networks can function independently or in collaboration, the 

transactional data stored on the ledger is accessible and controlled by the organisation's IT 

infrastructure. Their ledger data can be exchanged and used by other systems and applications 

within the same enterprise.  

The Enterprise Participating DLT Network Nodes component of DIF ensures that the 

architecture and design of multiple DLT networks in an enterprise remain simple. The data on 

DLT networks are passed to the enterprise’s centralised IT systems via DLT gateways 

(explained in Sub-section 4.1.2). The data from these diverse DLT networks are similar to any 

other organisational data and can be used according to the enterprise's business needs. 

Furthermore, a DLT network can trigger a business capability within another DLT network. 

For example, an HF supply chain network event triggers a message via DLT gateways and 

passes to the Messaging Service Layer. This layer can route the message to another DLT 

network via the Out-Flow Broker component (by reformatting the message) to invoke business 

capability, e.g., in Ethereum Payment DLT.  
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4.1.2 DLT Gateways Layer Component 

Purpose: This layer comprises programs or modules to capture and process events triggered 

by DLT networks’ Smart Contract (SC). 

Input: The event messages pushed by DLT network SC. 

Output: The event details are pushed to the In-Flow Broker for message transformation.  

Explanation: In DIF, the Enterprise Participating DLT Network Nodes store the events or 

transaction data that DLT processes in the network's respective ledgers. When a record is stored 

in the ledger, an event is triggered and processed by DLT Gateway (the invoice-transaction.js 

component in HDSP, as explained in Chapter 5), allowing non-DLT centralised systems to 

access DLT transactions, events, and data. The DLT Gateways component can be considered 

an architecture layer of one or many interacting components instead of having a separate 

module for each DLT platform or network (in the HDSP, it is a single program that interacts 

with the HF ledger, as explained in Chapter 5). The API message format pushes the committed 

DLT data to the In-Flow Broker component, which converts the messages of different formats 

from various DLT networks into the desired format convenient for consumption by centralised 

IT systems.  

The DLT Gateways is an essential layer of the DIF. Rezaei et al.’s [98] research have suggested 

four interoperability types: technical, syntactic, semantic, and organisational interoperability. 

The DLT Gateways component, Message Broker components and the Message Service Layer 

(MSL) facilitate these four types of interoperability. The gateway also enables the exchange of 

DLT data with the non-DLT systems, which can then be reformatted, massaged, or modified 

to be used by the centralised systems. This component can trigger the capability or business 

process of another DLT network via the Message Server Layer (explained in Sub-section 4.1.5) 

by using the API messages. The number of programs or modules within DLT Gateways 

component is determined by the number of DLT networks the enterprise is dealing with, and 

the technology platforms supporting those networks. This component can also capture 

performance values, metrics, and data volume exchanged among DLT and non-DLT systems 

based on the organization’s needs.  
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4.1.3 DLT Metadata Component 

Purpose: The DLT Metadata component holds DLT network static metadata to parameterise 

in-flow and out-flow message processing. 

Input: Input is static DLT metadata such as Smart Contract, DLT network parameters, Routing 

parameters, Language supported, Consensus mechanism, and centralised IT systems 

parameters.  

Output: This passes the parameters and meta-data to In-Flow and Out-Flow Broker 

components.  

Explanation: This component can parameterise the process of message brokering. The 

message conversion or formatting logic can be triggered for the In-Flow Broker components 

based on the source DLT network of the message and message destination. Similarly, for Out-

Flow Broker components, based on the destination DLT network and the source of the 

message, the appropriate message reformatting algorithm can be activated. 

  

4.1.4 In-Flow Broker Component 

Purpose: The In-Flow Broker component transforms messages destined for centralised IT 

systems. 

Input: Input is the parameters from DLT Metadata and the incoming message from DLT 

Gateways. 

Output: The output is the transformed message in standard or customised format, which is 

pushed to the Message Service Layer. 

Explanation: The In-Flow Broker (“In-Flow” because the messages are flowing into 

centralised IT systems) component manages the messages and their transformation, 

significantly simplifying the architectural design of the integrated solution. It mitigates the risk 

of dependency or tight-coupling of DLT with the Web Server, business orchestration or front 

end components [70]. This component enables semantic and syntactic interoperability, as an 

essential capability suggested in Rezaei et al.’s research [98], in collaboration with DLT 

Gateways and the Message Service Layer component. In the HDSP, this is a dummy program; 

however, in a multi-DLT ecosystem, this layer can comprise one or multiple components. 

Although the input messages to the In-Flow Broker will be in different formats, this layer’s 
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features convert the message into the desired standard format. This transformation enables 

message routing to the destination system in a uniform way. It can also transform the message 

in a standard way to be routed to another DLT network (by the Message Service Layer) via the 

Out-Flow Broker (see Sub-section 4.1.6) to trigger an event or transaction in another DLT 

network. Message transformation tools such as Apache Camel can reformat the messages.  

This layer can help keep the Messaging Service Layer (see Sub-section 4.1.5) manageable, 

lean, and maintain its performance by keeping the messaging routing, auditing, and logging 

separate from message transformation. The message brokering process can become heavy and 

CPU (central processing unit) intensive, and can become a bottleneck, impacting the other 

critical aspect of message integration. If the enterprise adopts a new DLT network, the majority 

of the impact would be absorbed by this layer, with minimal impact on DLT Gateways Layer 

and the Message Service Layer. 

 

4.1.5 Message Service Layer Component 

Purpose: This component is responsible for message routing, protocol transformation, 

message orchestration, encryption, and metric collection. 

Input: Input is DLT messages from the In-Flow Broker and centralised IT systems.  

Output: DLT message is sent to centralised systems, and messages from traditional systems 

are sent to the Out-Flow Broker component. 

Explanation: The Message Service Layer can implement a parameterised routing logic to 

decide on the message destination system, enabling decoupled systems, as suggested by Zhang 

et al.’s research [10]. This component, along with the functionality of In-Flow and Out-Flow 

Broker components, helps manage the application and system contract as indicated in Abebe 

et al.’s research [9] architecture and message flow. The destination system, routing mechanism, 

and routing protocol can be parameterised in the database, XML, or JSON-based data to map 

the correct source of DLT network to the destination (centralised) IT system. This layer can 

support communication through different protocols, reasonable messaging styles, and storing 

and forwarding messages to multiple systems. The parameterised encryption logic can be 

implemented if the message has to be routed to the internal and external partner or third party 

system, or across an organisation firewall.  
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The component (inside the Message Service Layer) to control the message flow from the 

centralised system to the Out-Flow Broker (see Sub-section 4.1.6) is expected to be 

comparatively simple. It does not need to route the message, but just adds the routing 

parameters to delegate the routing responsibility to the Out-Flow Broker component. This 

component can transform the message protocol format based on the destination DLT network 

the message is supposed to be routed to. This layer can also provide correct authentication to 

the message based on the access requirement of the destination DLT network. Message 

aggregation and message splitting can be executed to merge multiple messages or split them 

into multiple messages before being routed to the destination DLT network. Based on the 

architecture style, it can function in additional roles; for example, in event-driven architecture, 

it can act as an Event Listener. 

This component can manage the quality of service requirements such as performance criteria, 

transaction management, and exception handling. It can record, capture, monitor, and track 

service invocation and message routing activities. The security requirements of messages can 

also be managed in this layer. External Oracles can feed the live external data (e.g., currency 

exchange rates, commodity prices) to the incoming and outgoing messages, including the 

transactions from DLT or messages passed to DLT networks.  

 

4.1.6 Out-Flow Broker Component 

Purpose: To transform the centralised systems message and route it to the destination DLT 

network. 

Input: Input is the parameters from DLT Metadata and incoming messages from the centralised 

system in a standard format. 

Output: The transformed message is routed to the destination DLT network.  

Explanation: The Out-Flow Broker (“Out-Flow” because the messages flow out from the 

centralised IT systems) transforms the messages from the centralised IT systems into the format 

required for the destination DLT network. This mitigates the risk of dependency or tight 

coupling of DLT with the Web Server, business orchestration, or front-end components [70]. 

This component supports semantic and syntactic interoperability, as an essential capability 

suggested by Rezaei et al.’s research [98], in collaboration with DLT Gateways and the 

Message Service Layer (MSL) component. This layer conducts data positional mapping or 
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semantic mapping, and routes the message to the destination DLT network based on the header 

or configuration set-up by the Message Service Layer (see Sub-section 4.1.5). It also supports 

service virtualisation so that changes to the end-points (DLT network) can occur without 

impacting the service providers and service consumers.  

The three components in Figure 4.1, In-Flow and Out-Flow Broker and DLT Metadata, 

comprise the Message Broker Components. The In-Flow Broker, as explained in Section 4.1.4, 

supports the Gateways Layer to format the incoming messages from the source DLT platform 

in the standard format for consumption by any API or message enabled device or 

system/application. The Out-Flow Broker component uses DLT Metadata to convert the 

messages from centralised IT systems or devices into the specific format for the message 

destination DLT platform. In many organisations, this layer can become a bottleneck in the 

enterprise message flow due to the complex and intensive processing logic of converting 

messages from and to many formats [18]. This challenge can be addressed if the centralised IT 

systems and devices can send the messages in a canonical form (or two formats, if IoT devices 

are involved) to significantly reduce the message formatting logic. 

 

4.2 Foundational Principles for DIF  

The DIF is designed according to the interoperability principles replicated and extended from 

available DLT solutions and the interoperability requirements of modern enterprises. 

Enterprises use various architectural styles, design and their combinations, including layered 

architecture, Microservice architecture, event-driven architecture, and distributed architecture 

to fulfil their business requirements [70]. Furthermore, the enterprise architecture approach, 

and the solution design and implementation can differ based on each business's unique needs 

and requirements, even within the same business domain. The foundational principles of the 

interoperability framework are flexible and accommodate these diverse and sometimes 

contradicting expectations by maintaining its focus on interoperability.  

The DIF is based on interoperability principles replicated and extended (see Section 2.8) from 

available interoperability solutions (see Section 2.5), and the interoperability requirements of 

contemporary organisations (see Section 2.2) as explained next.  

1. Enterprise Centric Framework: Enterprises or organisations are the centre of the 

DLT interoperability framework (DIF). Enterprises undertake prototyping of DLT-

based solutions, invest money, time, and their workforce, to implement and 



39 

 

operationalise DLT-based solutions. Enterprises can be part of multiple DLT 

networks, which can operate independently or communicate among themselves 

(inter-BC interoperability). DLT network solution must synergize with centralised 

IT capability to benefit an organisation and business unit with better and more 

efficient business processes and capabilities, and swift decision-making. The DLT 

interoperability framework (DIF) visualises DLT solution capability as any other 

technical capability, enabling its integration with non-DLT systems. 

2. Core Business Functionality in DLT: DLT network solution is challenging to 

implement and operationalise compared to centralised IT systems in terms of 

organisation collaboration, development and implementation cost, human resource 

skill set, and the need to maintain the desired level of IT operations [4]. Hence, a 

DLT solution have to be lean, lightweight, and cost-effective, including limited and 

carefully chosen functionality in DLT network. This is beyond the control of a single 

organisation in a multi-organisation DLT network. However, enterprises is expected 

to keep only the business process and capability that directly enhances the trust, 

transparency, and distributed processing amongst the network participants. The rest 

of the functionality and business capability is expected to continue running on 

centralised IT systems. For example, in the HDSP explained in the next chapter, the 

customer (a honey consumer) requirement is managed outside DLT network because 

it is not the core functionality of the supply chain process. 

3. API-driven Design: Contemporary enterprise IT systems are based on distributed 

architecture using SOA patterns [99]. The services and business capabilities are 

distributed and can be developed on various technology platforms, multiple 

programming languages, tools, and development frameworks, starting with the 

monolithic Mainframe systems in the early 1970s, Microservices more recently, and 

everything in between. These capabilities are exposed as an API request and 

response messaging format to integrate the core business capabilities to create more 

complex and sophisticated business processes. The DIF uses the same API-driven 

design to integrate DLT solutions with the implemented IT capability. 

4. Selective Business Data in DLT Ledgers: The business data and information that 

directly contributes to improving the transparency and trust between the network 

participants have to be included in DLT data structure. The centralised IT systems 

can continue to manage the rest of the data.  
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5. Store Hashing or Signature in BC: Many business domains, e.g., the supply chain 

business process, involve extensive data management and significant document 

handling. These documents and large data are vulnerable to forgery and fraud; to 

avoid this, a mutually agreed algorithm signature or hash value have to be created 

for each document and stored in DLT Ledger. Before processing or relying on the 

document, the system must verify the ledger's signature to establish document 

authenticity. To store documents or massive amounts of data, organisations are 

expected to continue using specialised centralised tools such as ECM (Enterprise 

Content Management), document management systems and similar. 

6. Cloud-Native Framework: Almost all organisations have either adopted or are 

planning to adopt Cloud technology [100]. The interoperability framework is Cloud-

native, can be deployed on any Cloud environment, and can integrate among Cloud 

networks using the API-driven design.   

 

4.3 Integration Architectures based on DIF 

This section applies the DLT interoperability framework (DIF) to design integration 

architectures. The DIF is applied to popular interoperability architecture and solution patterns 

widely deployed by modern enterprises. The DIF is elaborated in Section 4.1, and the 

framework's foundational principles are explained in Section 4.2. These principles and 

framework formulate the appropriate architecture model and design pattern to design and 

develop interoperability architecture. This DIF based integration design enables the 

adaptability of the framework among broader business domains, utility across the various 

architecture patterns, and applicability to the diverse IT system landscape.  

 

4.3.1 Interoperability Architecture using API Gateways, ESB, and Service Mesh  

In the last decade, most IT systems evolved as applications with a web-based front-end layer 

and business services and processes supported by distributed back-end systems and 

applications. As the IT systems became distributed, and organisations adopted SOA, the 

services and business capabilities spread across the globe [30]. These capabilities were based 

on various architecture patterns, developed in many programming languages on diverse 

operating systems and platforms [85]. These services, functionalities, programs, and system 

components, were integrated to exchange the data, reuse the business capabilities, and create 
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new and improved business processes. Enterprises achieve such a complex level of 

interoperability by using (Section 2.2): 

• application programming interface (API) Gateways [35] (e.g., Apigee, Kong, Del 

Boomi, Akana, Cloud APIs like Azure, AWS, Oracle) 

• enterprise service bus [24] (Mule ESB, IBM Websphere ESB, Microsoft Biz Talk, 

Oracle ESB) 

• Service Mesh tools for integrating Microservices [36] (e.g., Istio, Conduit, Envoy, 

AWS App Mesh).  

These capabilities can be used standalone or in combination, if the service and integration 

landscape of the enterprise is complex, global, distributed, and diverse.  

 

 

Figure 4.2. Integration architecture, based on DIF, enabling interoperability among DLT and 

non-DLT systems using API gateways, ESB, and Service Mesh (Service Control Plane).  

The design presented in Figure 4.2 integrates the DIF components into the IT ecosystem to 

integrate DLT solutions with the centralised IT systems. The DIF design is API-driven (based 
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on the 3rd principle in Section 4.2), matching the API gateways’ principles to interact within 

and outside the organisation. The architecture also provides the capability of designing the IT 

ecosystem and customer-centric digital products to encourage the integration of current and 

new APIs (REST, SOAP). This API’sation supports both approaches: 1) a bottom-up or asset 

utilisation by making the published APIs available to API Gateways, and 2) a top-down or 

usage first approach in which the APIs are defined to meet needs and docked to an existent 

back-end business system. In each approach, the message exchanged with Business 

Orchestration and API Gateways will interact with the Message Broker to transform into a 

consumable format. The DLT Metadata feed can parameterise to automate the message 

handling functionality in both directions.  

For practical business purposes, an enterprise will participate in the many DLT networks. These 

different ledgers have multiple data formats, and their semantics and syntax are different. The 

DLT Message Broker component addresses this problem or gap, by transforming the messages 

into the desired or standard format for interacting with the ESB. The messages received from 

DLT message broker are treated like any other message in the system by the ESB.  

A Microservice or Service Mesh approach restructures the monolithic systems into many fine 

or coarse-grained, autonomous, scalable, minimal, resilient, and integrable services [36]. This 

microservice approach helps improve the modularity and agility of applications and systems  

[17]. Also, Microservice technology uses a framework (e.g., Spring Boot) and containers (e.g., 

Docker and Kubernetes) to build the business interface, which can be part of the Business 

Orchestration module. Thus, the service mesh is focused on service-to-service interaction that, 

along with DLT Message Broker component, enables the API data to push into DLT for 

transactional purposes, or consume a DLT transaction using a Microservice via a Service 

Control Plane. Service Mesh can facilitate and control the sharing of the application data 

(including DLT ledger data). Service Mesh does not implement integration logic; each 

Microservice must implement the integration logic by becoming an intelligent endpoint, and 

similarly for DLTs, this logic can be taken care of by DLT gateways and DLT message broker 

component.  

Figure 4.2 also illustrates a flexible architecture showing the capability of the DIF to work in 

synergy with current enterprise interoperability practices, tools, and designs. Based on the 

component design of the systems, one DLT Message Broker component can integrate with the 

APIs or messages coming straight from API Gateways or the Business orchestration layer. 
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Another module or sub-component in the message broker component can seamlessly interact 

with the ESB. The design and implementation of this sub-component can depend on the 

enterprise ESB ecosystem, the number of systems it interacts with, the scope of functionality 

included in the ESB (e.g., routing, messaging transformation, messaging brokering 

parameters), and its technology footprint. For the service mesh configuration, the service 

control plane can have a dedicated component(s) to deal with DLT related messages, a 

component for incoming and outgoing DLT API messages, or two separate components. If 

DLT Message Broker components are too complex and heavy, some non-core functionality 

can be moved to DLT gateways to meet business, architecture, and performance expectations. 

  

4.3.2 Event-driven Distributed Architecture 

Event-driven Distributed Architecture (EDA) is a software architecture paradigm and system 

design pattern to develop the IT systems to detect, react, and consume business events [38]. 

Event-driven distributed architecture enables horizontal scaling of the systems in a distributed 

architecture, making them more failure resistant by making multiple copies of the application 

available among parallel systems. Event-driven distributed architecture promotes loose-

coupling architecture because events are not aware of the consequence of their trigger and 

destination processing system. Many techniques and tools are available to implement EDA in 

enterprises, e.g., Apache Flink, Apache Kafka, AWS Kinesis, Rabbit MQ. Apache Kafka (AK) 

is one of the most popular industry tools used to implement EDA  [39].  

The grey portion of Figure 4.3 represents the pub/sub (public and subscribe) integration pattern 

for event-driven architecture for non-DLT based systems. This part of the figure consists of 

REST (Representational State Transfer), MQTT (Message Queue Telemetry Transport) 

broker, Kafka Clients and Connector as incoming gates through which inflowing messages 

flow to the Kafka cluster. These messages are routed to specific AK topics, subscribed to and 

accessed by Micro Services, Systems and Applications, data consumers, and big data or Cloud 

storage input. Zookeeper makes AK's configuration simple and efficient, and the schema 

registry provides the meta-data for the incoming messages in the Kafka cluster. Furthermore, 

the message sequence in AK is fixed once a message is received in a partitioned cluster, which 

maintains a permanent sequence of messages, similar to a sequence of transactions or messages 

in a DLT ledger.  
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Figure 4.3. Apache Kafka DLT interoperability Architecture displays the integration of an 

organisation’s multi-DLT network with its centralised IT systems. Apache Kafka is a broker 

receiving incoming messages from diverse protocols and their associated devices, including DLT 

networks. These incoming messages are routed to specific AK topics as output, and subscribed to 

by both DLT and non-DLT systems for further processing.  

The AK DLT interoperability architecture in Figure 4.3 displays the integration of DLT 

solutions in a typical distributed event-driven architecture. This diagram includes the coloured 

DLT components and the centralised non-DLT grey components; the integration pattern is 

consistent for DLT and non-DLT systems. The DLT Gateways component extracts the events 

or transactions from DLT networks. Message Broker act as an interface, bridging the message 

formatting, and the syntactic and semantic gap between DLT and centralised systems. The 

Message Broker can also convert the message protocol, and grant enterprise users access for 

DLT system. The DLT Producers receive DLT transaction data from the Message Broker in a 
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standard format to send the records (i.e., event messages) to an AK topic based on the record 

key. These messages can be consumed by enterprise non-DLT systems such as ERP, CRM, 

and the DLT Consumer. The DLT Consumer is responsible for delivering an event record (e.g., 

a sell order generated by the enterprise ERP system, payment fulfilled by a payment system, 

or an event from a DLT network) in a standard messaging format to the Message Broker. The 

Message Broker re-formatted this message based on the destination DLT network, using the 

DLT Network Metadata. The integration architecture is flexible enough to design one or 

multiple DLT Producers and DLT Consumers, based on DLT type, technology, and business 

functionality of the network, batch processing or high-speed online transaction processing, and 

similar considerations. The component design is flexible enough to offload or exchange the 

capability among DLT Gateways, Message broker, and DLT Producers and Consumers to 

format and transmit data between the systems, determine the access points for DLT and non-

DLT systems, and capture event metrics.  

Distributed ledger technology and AK share affinity characteristics; for example, both share the 

concept of an immutable append-only log. Apache Kafka is an immutable, ordered sequence of 

records continually added to a structured commit log, and DLT is a continuously growing list of 

sequentially linked and secured blocks of records. Apache Kafka provides high throughput and 

horizontal scalability, and DLT excels in the secured order and structure of transactions and events 

blocks. By integrating these complementing capabilities, synergy can be created from combining 

these technology solutions. Many organisations use AK in their event-driven distributed enterprise 

architecture to integrate diverse systems  [39]. These same blue-chip organisations are investing 

significantly in DLT solutions, so continuing to use AK as an integration pattern seems to be a 

logical choice [6].  

Apache Kafka enables interoperability by supporting the system transaction processing capability, 

which DLT integration components illustrated in Figure 4.3 may extend to process and integrate 

DLT transactions along with non-DLT transactions. Apache Kafka provides in-stream non-DLT 

data processing and can produce integrated data processing by merging the incoming DLT 

transactions on the distributed ledger with implemented systems. Apache Kafka has a flexible and 

scalable capability for capturing and ingesting the high volume stream of non-DLT transactions. 

This capability can extend to integrating a large volume of DLT ledger transactions into big data 

and data lakes such as Hadoop and Spark, stored in RDBMS, Cassandra, or AWS S3 Cloud storage 

[101]. The log aggregation capability of AK enables the cumulative and integrated logging of all 

DLT and non-DLT transactions. Both AK and DLT have a unique ability of transaction order 
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preservation, which allows for consistent processing of high volume fixed sequence transactions. 

Furthermore, AK provides the capability to transform, process, and load the data, which is well 

suited to the requirements of DLT integration, where the vast number of transactions from different 

types of ledgers need consistent transformation, processing, and loading into current systems and 

storage.  

Under a heavy load, AK provides outstanding performance; its flexible architecture provides 

scalability, which can be helpful when there is a sudden spike in transaction flow from DLT nodes 

or significant data flows from IoT devices. Apache Kafka provides sequential access and 

immutable commit log, ensuring that immutable transactions in DLT are processed, and their logs 

are maintained in AK. The capability of AK to process the transaction in sequence, which is one 

of the primary reasons for its immense processing performance, is of enormous benefit for 

processing the sequential transactions in DLT ledger. The DLT Smart Contracts can produce 

business events (pre-defined or custom events) listened to by DLT or non-DLT applications to take 

action. The consumer uses these events for business processing, which can be further delivered as 

events using AK; Hyperledger Fabric provided AK-based orderer implementations for a fault-

tolerant production environment, which can be immensely helpful in processing such events. 

 

4.3.3 Generic Interoperability Architecture 

This section discusses a generic and flexible interoperability architecture an enterprise can 

consider implementing if it does not want to implement the prevailing integration design 

patterns. Using technology, tools, the IT landscape, and systems expertise, an organisation can 

design and execute its customised interoperability architecture. Many technical components 

exist in today’s business world, such as payment engines, ERP (Enterprise Resource Planning) 

systems, transaction processors, decision-making applications, and intelligent autonomous 

systems. These are expected to expose services and consume external services using industry-

established protocols (e.g., REST) and APIs. The generic architecture have to integrate the 

current IT capabilities and DLT network nodes; enterprises are supposed to carefully consider 

the network participating nodes and the current system landscape requiring interoperability.  

The system design of the HDSP is discussed in Section 5.1 in the next chapter and illustrated 

in the left section of Figure 4.4. It features a Node.js based API layer to connect RESTful API 

services using an HF SDK (Software Development Kit) library, which provides a powerful, 

service-oriented, and easy-to-use capability for injecting the transactions/events into the HF 
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network [102]. Supply chain network participants have the flexibility to use a variety of devices 

and messaging protocols. For example, a manuka honey distributor can use IoT devices and 

related protocols to push jar information into the network when the warehouse receives the 

manuka honey jar boxes. The honey producer can then bulk transfer the jar information from 

its database (DB) (e.g., Access DB or MS SQL) into the HF network. However, a honey retailer 

might also decide to make the honey jar entries into its ERP/inventory systems first and then 

provide the API feed to the HF DLT network. 

 

Figure 4.4. Generic interoperability architecture. The left section demonstrates the design of 

HDSP, which is enhanced and extrapolated in the right section of the diagram for a business 

organisation participating in a multiple DLT network.  

The API layer in the left section of Figure 4.4 is flexible to push the transactions/events from 

various devices such as mobile telephones, IoT, IT systems by network peers. These non-DLT 

data are processed by CC (Chain Code, also called “Smart Contract SC”) to store in the HF 

ledger and Level-DB. For every transaction within DLT, an HF event will be triggered by 

SubEvent() function to receive two parameters: the event's name, and the payload in bytes to 

input in JSON format. When the transaction is completed successfully by CC, the event is sent 

to the SDK to unmarshal the payload and complete the required business processing. This event 

may create various transactions and associated payloads to be sent to the SDK after the block 

is committed. The SDK listens to the event, accepts it, unpacks the payload, and decides what 

to do, such as sending an email, writing to an external system, initiating another process, or 
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sending a notification. A simple one line of code can efficiently integrate the HF with a range 

of systems, and the DLT gateways further process events, converting DLT data to non-DLT 

data for storage in the MongoDB database.  

For businesses participating in multiple DLT networks, the right section of Figure 4.4 suggests 

the integration design based on the design of the HDSP implementation shown in the left 

section of the figure. The essential components of the integration design are DLT gateways for 

extracting DLT data entities from the multiple DLT networks. Another component, Message 

Service, bridges the differences in technology protocol between DLT and non-DLT systems. 

It can also grant enterprise users access to a DLT system, transmit external data (e.g., transmit 

a near field communication (NFC) tag detection event to DLT network), transmit DLT data to 

an external system (e.g., approved purchase order placed by an external organisation on DLT 

network) and enable the data auditing transferred to and from DLT networks. Irrespective of 

the originating network, DLT Producers receive DLT transaction data from DLT Gateway via 

Message Service. The DLT producer functionality is similar to the In-Flow Broker in DIF in 

that it transforms the message based on the originating DLT network and the message 

destination system. The DLT Consumer functionality is similar to that of the Out-Flow Broker 

in that it delivers the message to the Message Service after appropriate transformation. In 

addition to its other critical responsibility, the Message Service layer can also undertake 

message transformation, depending on architecture requirements. The feed of DLT Metadata 

to the Message Service layer can parameterise this responsibility for incoming and outgoing 

messages. The DLT gateway can also push the ledger data into single or multiple non-DLT 

databases (e.g., MongoDB in HDSP) for further data consumption by systems like Big Data. 
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Chapter 5: Hyperledger Fabric DLT Solution Prototype (HDSP) 

 

This chapter explains the Hyperledger Fabric 1.4 (HF) DLT solution prototype (HDSP) 

developed using the DLT interoperability framework (Section 4.1). The HDSP utilises the DIF 

interoperability principles (Section 4.2) to design the MHSC solution. The solution contributes 

to addressing the research gap by building a transparent and trusted supply chain network, 

integrating DLT solution with non-DLT centralised IT systems. The solution also validates that 

the DIF and its interoperability principles are implementable for creating an integrated solution.  

An extensive survey of DLT interoperability by Belchior et al. [7] suggested that organisations 

apply DLT to use cases with only one DLT platform. There is considerable interest in deploying 

multiple DLTs in a relevant business context [63]; however, examples of multiple DLT 

platform implementation in an organisation are rare. It is reasonable to assume that enterprises 

will implement a DLT solution and then add more DLT networks as their experience and 

capability in implementing DLT solutions grow. The HDSP explained in this chapter can be 

considered the first implementation; hence only one DLT network is considered in DLT 

solution prototype instantiation. Furthermore, implementing a multi-DLT network solution 

needs expertise in multiple DLT platforms; the IT resource requirements are significantly 

higher (e.g., Cloud servers, network, and peers), and the timelines to implement the solution 

are substantially longer. This research has taken a balanced approach by considering the 

resources available, such as technical expertise, finance, timelines, and previous research 

feedback, and decided to implement a DLT solution prototype with a single DLT platform. The 

platform evaluation in Section 5.2.2 and Section 5.2.1 guided the decision to choose 

Hyperledger Fabric 1.4 as DLT platform and the MHSC use case, respectively.  

This chapter presents the HDSP and validates the DIF and its principles by demonstrating the 

integrated DLT solution with non-DLT technologies and tools. Section 5.1 describes the 

solution architecture and design of the Hyperledger Fabric (HF) based HDSP for the MHSC 

use case. It explains the message and data flow among DLT and non-DLT systems and presents 

the HDSP solution characteristics. Section 5.2 describes the rationale for choosing the MHSC 

use case and selecting a DLT platform to implement the solution prototype. Section 5.3 delves 

into the HF network's prototype development, HF components, node interactions, and event 

handling. Finally, the knowledge gathered during the prototype's design, development, and 

implementation is documented in Section 5.4. As expected in the DSR methodology, this 
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research knowledge contribution (Section 5.4) can be used by practitioners to build future 

interoperable DLT solutions.   

 

5.1 HDSP Architecture and Solution Design  

This research uses an MHSC use case to build an interoperable HDSP based on the DIF. 

Although the solution establishes trust and transparency amongst the network 

participants/nodes, the study focuses on demonstrating the interoperability of DLT-based 

solutions with centralised IT systems. The solution architecture, end-to-end transaction and 

data flow, and the solution characteristics of the HDSP are explained in this section.  

 

5.1.1 Solution Architecture 

This sub-section elaborates on the solution architecture and component design of the HF-based 

solution for an MHSC business process. The HDSP involves the interaction between the supply 

chain network's three stakeholders (honey producer, distributor, and retailer are the most 

important stakeholders in the honey supply chain). The customer user interface is provided to 

display the honey product quality and provenance information. The solution can augment the 

supply chain business capability by using DLT-based solutions to create or improve the 

business process by integrating the HDSP with centralised systems.  

 

Figure 5.1. Solution Architecture displaying the end-to-end message flow of transactions. The 

figure also shows the interaction points of system (DLT and non-DLT) components and the 

message flow across them.  
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The end-to-end flow of transactions across DLT and centralised system components in the 

HDSP are illustrated in Figure 5.1. The transaction can trigger from any system or device 

capable of generating messages. The message is saved in the ledger and LevelDB of the HF 

network via the API Layer, further getting pushed into the MongoDB database by the DLT 

Gateways layer. The data in MongoDB are accessible to any user interface.  

The honey producer can send a pre-formatted message containing jar information from the 

database on its local system. The transaction message sends the transaction to the HF DLT 

layer via the Node.js API layer (app.js component). The transaction is approved, endorsed, and 

committed into the HDSP ledger copy for all three HF nodes/peers. The data from the HF 

network are stored in the Level-DB database, offering the data query functionality to query 

DLT data. Every committed transaction is passed to DLT gateways (component invoice-

transaction.js), from where the data are stored in the MongoDB database. All the transactions 

committed into the HF network flow to the MongoDB via DLT gateways will be inserted or 

updated. Data are inserted if the producer adds new jar information; data from other network 

participants are updated in the MongoDB based on the unique jar identity (ID) or digital jar 

identity. 

A similar process is followed when the honey distributor or retailer inserts the HF network 

data, which flows from the API layer to the HDSP network and is committed to the ledger of 

all the network peers. The HF transactions get pushed to the DLT gateways to update the jar 

record (the honey producer has already inserted the jar information) into the MongoDB 

database. The customer user interface (UI) is provided for viewing the jar details for the end-

user or honey customer. The AngularJS based UI accesses the MongoDB database via the API 

to fetch the information after the jar ID is entered or scanned by the customer.  
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Figure 5.2. Solution Architecture of the HDSP technical prototype instantiation. The figure 

emphasises the internal components of HF, their interaction with each other and non-DLT 

components of the system.  

The components of the HDSP are presented in Figure 5.2. The component in the centre is the 

manuka honey channel (MH channel), three peer nodes (honey producer, distributor, and 

retailer), and a transaction orderer is connected to this MH channel. Multiple channels can be 

defined in HF depending on business requirements (e.g., another channel can be added to share 

sensitive data such as honey’s cost); the HDSP technical prototype uses a channel to share the 

data. Every peer node deploys, instantiates, and executes the Chaincode (Smart Contract SC); 

the functionality of the SC in the HDSP is kept simple to enable the exchange of transactions 

across the peer nodes and non-DLT systems. All three HF network nodes store an identical 

local copy of the ledger. As represented by the distributor peer in Figure 5.2, internally, the HF 

ledger (on each node) consists of two related parts: DLT ledger and the world state, as follows: 

1. DLT ledger logs all transaction records executing in the HDSP. Transactions are 

stored inside blocks and appended in a fixed sequence forming DLT ledger, and it 

cannot modify its data structure; it is immutable. 

2. The World State is a database holding the current values of a set of ledger states. It 

makes it easy for an SC or other program to directly access the current state value 

instead of calculating it by traversing the complete transaction log from a DLT ledger. 
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The world state can be stored in either the LevelDB or CouchDB; the HDSP uses the 

LevelDB. 

Another vital component in the HF DLT Network in Figure 5.2 is Founder Orderer, which 

forms an ordering service to undertake the transaction ordering for the transactions or events 

to be included in the blocks. It also enforces access control for channels, managing who can 

read, write, and configure the data. It consists of a system Chaincode (CC) that defines a low-

level program code corresponding to domain-independent system interactions. The solution 

prototype uses the solo orderer to order the transactions into blocks; the production 

implementation is expected to use fault-tolerant Raft or Apache Kafka (AK) to order the 

transactions.  

The components outside the HF DLT Network section in Figure 5.1 are centralised (non-DLT) 

components. The API Layer Node JS enables the seamless message flow from the messaging 

enabled device to the HF network. For simplicity, three API Layer Node JS components 

(equivalent to Message Service Layer in DIF, explained in Section 4.1.5) are shown for every 

node; in implementation, it is a single component with which the three nodes interact. The DLT 

Gateways (equivalent to the DLT Gateways Layer in the DIF, explained in Section 4.1.2) 

component uses the event function to push the transactions from the MH channel into the 

MongoDB database in a standard (canonical) message format. The honey data from the 

MongoDB database are accessed by API messages to display on the customer web user 

interface (manuka honey consumer AngularJS UI component). The HDSP uses a single DLT 

platform; for such solutions, the In-Flow Broker or Out-Flow Broker components of the DIF 

(see Sub-sections 4.1.4 and 4.1.6) can be considered dummy components that need to be 

developed only for multi-DLT platform integration implementation.  

 

5.1.2 Transaction and Data Flow  

The HDSP end-to-end transaction flow from DLT network nodes to the HF Ledger, MongoDB 

database, and customer UI is represented in Figure 5.3. The transaction messages flow into the 

HF network in a standard format (due to which the In-Flow and Out-Flow Broker components 

from the DIF are not required in this implementation) and include transactions executed by the 

network peers. For example, for a particular jar, the producer injects the API message, 

Transaction 1, into the HF network. This transaction and other transactions are executed 

simultaneously to form an HF block in the network and get added to HF Ledger. For the same 
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jar, the distributor injects Transaction 2 into the HF network once the distributor has received 

the jar; the retailer pushes Transaction 3 after it receives the jar. These three transactions can 

be part of the same or other blocks, most likely in different blocks, because transactions from 

three nodes for the same jar will trigger at different times.  

 

Figure 5.3. Transactions flow from the external devices or systems to HF Ledger, MongoDB 

database and customer user interface.  

After storing the transaction in the HF ledger, each transaction in the HF network is pushed 

into the MongoDB database via the DLT Gateway. In MongoDB, the record is stored at the jar 

level, combining the jar's information from the honey producer, distributor, and retailer. In this 

example illustrated in Figure 5.3, a row is stored combining Transactions 1, 2 and 3 in the 

MongoDB for a particular jar. The jar information on the customer UI is displayed at the row 

or record level from the MongoDB (centralised IT systems component from DIF), presenting 

all the information for a jar coming from all the nodes of the HF network in the JSON message 

format.  

The major components of the HDSP for processing the messages from the HF network nodes 

are represented in Figure 5.4. First, the invoking messages trigger the app.js (Message Service 

Layer in the DIF) to perform the initial set-up and configuration before sending the message to 

the invoke-transaction.js program. Because the Broker component from the DIF is not required 

for a single DLT network, the invoke-transaction.js program overlaps the DIF’s Message 

Service Layer and DLT Gateways Layer component. Next, the Chaincode or Smart Contract 

is triggered to endorse and validate the transaction and store it in the HF Ledger (Step 1). 
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Finally, after successful execution, the CC triggers the DLT Gateway function, invoke-

transaction.js, to process and store the message in the MongoDB database (Step 2).  

 

Figure 5.4. The major software components implemented in the HDSP. This presents the key 

components of processing the transaction and data flowing from external devices or systems 

and saved in the HF Ledger and MongoDB database.  

 

5.1.3 HDSP Solution Characteristics 

The distributed ledger technology interoperability framework (DIF) components and their 

interoperability principles are the foundational characteristics for establishing the 

interoperability of DLT solutions with centralised systems. The HDSP, its solution architecture 

in Figures 5.1 and 5.2 and the end-to-end transaction flow in Figure 5.3 are based on these 

critical aspects of the DIF. The HDSP design makes HF data and DLT solution an extension to 

non-DLT data and centralised solutions and establishes the pathway for DIF to enable the 

integrated DLT-based business solutions with centralised IT systems. Furthermore, the HDSP 
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imbibes and extends the interoperability principles of the DIF and exhibits the following 

characteristics:  

1. API Centric Design: The architecture and solution design are developed using Service 

Oriented Architecture (SOA) principles. Every service capability of the solution is 

wrapped around the service wrapper and exposed as an API request and response 

message. Any device, service, component, database, which interacts synchronously or 

asynchronously in a request and response message format, can interact with the system. 

This capability enables the services or business capabilities developed on any 

technology, platform or programming language and can be exposed as APIs to interact 

with DLT-based solutions. 

2. Internet of Things (IoT) enabled solution: The architecture can integrate with IoT 

devices even though the IoT solution is not instantiated in the HF DLT solution 

prototype (HDSP). Radio frequency identification (RFID) or near field communication 

(NFC) can be implemented to assign a unique digital identity to the jar in the business 

process flow. The design to enable scanning of the honey jar by the distributor to feed 

the data into the HF DLT network demonstrates the IoT enablement of the solution. 

Most IoT devices can exchange data as API messages, making them interoperable with 

the solution design of the HDSP.  

3. JSON data format: This makes the solution interoperable at the data level. The JSON 

format is the most widely used, accepted, and user-friendly data format for exchanging 

and transforming data. It is the format adopted by or compatible with most IT systems, 

applications and IoT devices [73].  

4. Business-critical network participants: DLT network nodes and participants are 

limited to those who directly contribute to increasing trust and transparency in the 

business context (supply chain network). For example, the end customer (honey 

consumer) is kept out of DLT network because its sole interest is the quality and 

authenticity of the product, and this information is made visible by data integration and 

a web user interface (customer UI).  

5. Regulated DLT Data: Processing, transporting, and storing the data in DLT network 

is expensive and not convenient to consume (compared to centralised application data). 

Therefore, only data contributing directly to improve the business process using DLT 

solution (e.g., enhancing trust and transparency in the supply chain) is part of DLT data 

structure (ledger). Hence, business-critical and minimal data are stored on DLT ledger 
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storage. Other essential and business-relevant data to the producer, retailer, or 

distributor, is expected to be stored on their own IT systems. This segregation enables 

the management of DLT ledger's size and the network's data bandwidth, enabling the 

solution's scalability.  

6. Cloud-Enabled Solution: The end-to-end implementation of the HDSP is developed 

and implemented on AWS (Amazon Web Services) Cloud infrastructure. The API-

centric design enables the solution to be workable on any Cloud, hybrid Clouds, or on-

premises infrastructure. In addition, instead of installing the HF on a Linux medium 

size AWS server, which was done for the HDSP, any Cloud provider's Blockchain as a 

Service (BaaS) offering can be used to implement the solution.  

7. Contemporary Technology Stack: Contemporary enterprise technology stack is used 

to implement the solution. This includes AngularJS designing the lean web interface 

for customers, Node.js to implement the API layer, JSON data format, MongoDB 

database, Hyperledger Fabric 1.4, Docker containers, Linux operating system, AWS 

Cloud, and enabling IoT technology (NFC or RFID). This solution demonstrates that 

DLT solutions can be integrated with enterprises' modern and popular technology 

stacks.  

8. Contemporary Enterprise Architecture: Modern enterprise architecture concepts are 

implemented in the solution and include the solution based on SOA, API driven 

architecture, Cloud implementation, distributed systems, Messaging layer to enable 

interoperability, IoT enabled design, and NoSQL MongoDB database (even though the 

solution is processing structured data).  

 

5.2 Business Use Case and DLT Platform Selection 

An integrated DLT solution is built to validate the DIF and its interoperability principles. A 

relevant business use case is required to demonstrate the integration of DLT solution with 

centralised systems. The technical stack used to develop the IT solution for the selected 

business use case have to be relevant to establishing and proving the interoperability of DLT 

solutions with popular technologies used in modern enterprises. The business process or part 

that can be improved and made more effective using the distributed technology must be 

developed on DLT; the rest is expected to be implemented on a traditional technology stack. 

Therefore, selecting a business use case, a DLT platform and traditional technologies to 

implement the business use case, based on the DIF and its principles, becomes a crucial 
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decision factor in demonstrating the interoperable solution. This section details the rigorous 

process of choosing an appropriate business use case and assessing various DLT platforms to 

select one suited for building the HDSP. 

 

5.2.1 Supply Chain Use Case Selection 

A suitable use case needs to be considered to design, develop, and instantiate the solution 

prototype for a specific business context. Without such a use case, the solution will remain at 

the architecture, framework, or similar abstract level, without providing the technical 

feasibility, technical design, and technology implementation insights needed to prove the utility 

of the DIF in enabling the design and implementation of interoperable solutions. Detailed 

technical implementation for a use case provides better insight into the interoperability 

potential at the solution's data, semantic, syntactic, application, tools, technology, interface, 

and infrastructure levels. Successful instantiation of a technical solution for a use case is 

expected to provide the knowledge and clarity for enterprises to consider the DIF in designing 

DLT solutions for their requirements.  

A supply chain is one of the most complex business processes and is currently managed by 

centralised IT systems [103]. A supply chain’s business processes and transactions span 

countries and continents, involve many non-trusted, governmental, intermediary organisations, 

and invisible stakeholders, and involve a significant amount of paperwork; a business 

transaction can last weeks or months. Such a complex process comes with inefficiencies, fraud, 

pilferage, significant trust deficits, ever-increasing compliance requirements, regulations, and 

stringent monitoring, all of which add costs to a business [104]. Current technology capability 

does not effectively address the severe challenges associated with a supply chain [55]. 

Therefore, it is timely that the supply chain process is made simple and transparent to establish 

trust amongst non-trusted and remotely located participants and stakeholders. This will enable 

monitoring and tracking of the provenance of the supply chain products, and how the products 

were produced or manufactured to help identify any slavery, child labour, environmental 

impacts, fertilizers or chemicals, component authenticity, or animal exploitation involved in 

production [2].  

Distributed technology can simplify the supply chain processes and answer many of the 

industry's teething problems [105]. Distributed ledger technology based solutions can improve 

transparency and data sharing, establish trust in non-trusted participants, enhance security, and 
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enable product visibility from start to finish [106]. A DLT transaction can record goods 

transferred among multiple parties, each identified by a unique address in DLT network. The 

relevant information of the supply chain, such as quantity, date, location, price and similar, can 

be lodged into the distributed ledger as a transaction [107]. The information in the ledger will 

then be transparent and visible to all participants in DLT network, making it feasible to 

establish the traceability of every transaction to the grassroots of raw material.  

Many solutions are suggested and implemented in the supply chain domain based on DLT. 

Chen [108] designed autonomous, IoT-based fuzzy cognitive maps and an agent-based tracing 

system for a product usage life cycle. Chen discussed agricultural-based food products to 

simulate a complex food tracing system. The RFID and DLT technology-based food 

traceability systems were discussed by Tian [109] in a system that covered information 

management and data gathering processes for every link in the agriculture food supply chain. 

This achieved monitoring, tracking management, and traceability for the safety and quality of 

food from farm to table. A TraceFood system was proposed by Storoy et al. [110] to ease the 

automated electronic data interchange for supply chain products, and was based on non-

proprietary international standards. Their system included the principles for uniquely 

identifying food items, traceability information exchange based on generic standards, and the 

relationship between the data elements was defined for sector-specific ontology. A BC-based 

traceability system for wine supply was proposed by Biswas et al. [111]. The immutable block 

of information was recorded in a DLT system as a transaction. This traceability system enabled 

safety and transparency in the overall process of wine preparation from the grape to the bottle. 

An AgriBlockIoT traceability solution based on a decentralised DLT was presented by Caro et 

al. [62] for Agri-food supply chains. Other researchers (e.g. Bahga et al. [112], Olsen et al. 

[113], Lin et al. [114], Kamoun et al. [115]) provided traceability solutions to improve trust 

and transparency in a supply chain. The solutions' focus is to establish and convince of the 

usefulness of the BC/DLT based solution in the supply chain domain, with little or no 

discussion on systems or solutions interoperability. However, the design of the HDSP focuses 

on establishing the interoperability of DLT-based solutions with traditional systems by using 

the DIF and its interoperability principles.  
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5.2.2 Distributed Ledger Technology Platform Selection 

Many DLT platforms are available to implement solutions at the technical level. For supply 

chain use cases and enterprise-scale implementation, the following five prominent platforms 

were evaluated, and summarised in Table 5.1: 

• Ethereum: This is one of the most popular BC platforms [114], widely used in a 

permissionless network; however, recently, its usage has also increased in permissioned 

enterprise network setups [116]. Ethereum can create almost any application; the 

software runs on its own Ethereum Virtual Machine, using various programming 

languages. Ethereum introduced the concept of a Smart Contract, now widely used in 

almost all DLT platforms, and can automate many business processes. The platform is 

used in supply chain solution implementation like Treiblmaier et al. [117], Ge et al. 

[118], Mao et al. [119], Kshetri [120], Galvez et al. [105], Casey et al. [121], Want et 

al. [122], Hewett et al. [22], Lin et al. [60], Biswas et al. [111].  

• Hyperledger: This is an enterprise grade and one of the most renowned DLT platforms 

offering modular system design and architecture with greater resiliency, flexibility, 

confidentiality, security, and scalability [123]. It is designed to support pluggable 

applications with various components and accommodates enterprise systems' 

significant complexities and intricacies. In addition, Hyperledger supports data storage 

in multiple formats [102]. It can create different ledgers for personal channels to 

manage sensitive data, is strongly supported by IBM and Linux, and is used in many 

research projects like Lin et al. [114], Ge et al. [118], Kshetri [120], Wang et al. [122], 

and Petersen et al. [124]. 

• R3 Corda: R3 Corda is one of the leading DLT consortia [63], and was formed by a 

financial organisation's collaboration to design and develop the Corda network [125]v. 

The platform was designed for financial purposes; however, its usage in other domains, 

including that of the supply chain, is increasing [63]. Corda uses known identities to 

establish trust in the network, and the transactions are kept private between network 

participants; only parties part of a transaction have access to that transaction. This helps 

maintain data consistency, a higher volume of transactions, and better scalability.  

• IBM Blockchain: This platform offers robust utility in many domains such as supply 

chains, trade finance, governance, oil, and gas [6]. It enables higher value for business 

models by creating synergies with traditional technologies and other permissioned DLT 

implemented in organisations. It offers a powerful SDK and interface capability 
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offering the agility and flexibility to deliver integrated solutions. It also allows either 

joining an available DLT network or creating a new channel inviting interested 

organisations to join, supported by on-Cloud or on-premises infrastructure and easy to 

instantiate networks.  

• Multichain: This is an open-source DLT platform for building and operationalising 

permissioned DLT applications to function between or within organisations [1]. High-

end features such as data streams, native assets, simple configuration per-chain and 

permissions management, enable an enterprise to build scalable, integrated, and 

function-rich applications. It is considered one of the most effective permissioned 

enterprise DLT networks and is used by around a hundred organisations for financial 

transactions [125]. However, its usage in business domains beyond the financial 

industry has not reached a critical stage in selecting this DLT platform for supply chain 

use case.  

DLT 

Platform 

Public / 

Permissioned 

Language Supported Consensus Support for 

Smart Contract? 

Ethereum Public and 

Permissioned 

Flint, Solidity, Scilla PoS, PoW Yes 

Hyperledger 

Fabric 

Permissioned Go, Java, Node.js PBFT Yes 

R3 Corda Permissioned Java, Kotlin PoS, PoW Yes 

IBM 

Blockchain 

Permissioned Go, Java PoS, PoW Yes 

Multichain Permissioned C#, Go, Java, Python, 

PHP 

PBFT No 

Table 5.1. The evaluation of five DLT platforms used to select a suitable one, Hyperledger 

Fabric, for the MHSC use case. Note: PoS – Proof of Stake, PoW – Proof of Work, PBFT – 

Practical Byzantine Fault Tolerance. 

Hyperledger Fabric (HF) is an enterprise-grade DLT platform with advantages over other 

similar platforms. Hyperledger Fabric allows modular architecture, which enables developers 

to create plug-in components. Companies want to reuse available capabilities (e.g., Identity 

Management), and the modular architecture of HF enables those capabilities to integrate well. 

While building permissioned DLT, HF offers an advantage by assigning different roles to the 



62 

 

nodes, as a Client to invoke transactions, Orderer to update transaction data, Peer to receive the 

update and commit transactions, and an Endorser to validate the transaction authenticity. HF 

does not indulge in PoW (Proof of Work), so it can attain high throughput and scalability. 

Sensitive data (e.g., commodity price) can be kept private with the involved nodes in the 

transaction by establishing separate Channels. Hyperledger Fabric allows rich querying 

capability; its LevelDB enables keyed queries via its key-value DB, can process critical range 

and composite key queries, and can be used with JSON. The Hardware Security Model feature 

helps manage and safeguard the digital keys for authentication and, if used along with Identity 

Management, can increase the security of sensitive data and keys [126]. Backed by IBM and 

Linux, HF offers rich community support, and its development community is vibrant and 

experienced. This research used HF as a DLT platform to establish the interoperability amongst 

DLT solution and traditional technologies in the MHSC use case. 

 

5.3 Hyperledger Fabric for HDSP Development 

Hyperledger is an umbrella project started by Linux Foundation and consists of open-source 

DLTs and related tools. Among the many frameworks developed and supported by 

Hyperledger, the Hyperledger Fabric (HF) is prominent, popular, and widely used in 

enterprises [63]. Hyperledger Fabric is based on a modular architecture, provides the capability 

to execute Smart Contracts (called Chaincode CC in HF), provides membership services, 

configurable consensus, and supports open and flexible development capability supporting 

Java, JavaScript and Go [123] [50]. 

 

5.3.1 Hyperledger Fabric Components 

The main components of HF developed in the HDSP are presented in Figure 5.5 and explained 

next.  



63 

 

 

Figure 5.5. The components of the Hyperledger Fabric 1.4 developed for the HDSP. It 

illustrates the interaction between the external client application and components of the HDSP. 

Adapted from [123]. 

Membership Services: These provide an identity for the honey producer, distributor, and 

retailers transacting on the HF network. This identity is a digital certificate that network peers 

use to sign transactions and submit to the HF. One MSP (Membership Service Provider) is 

defined for every honey producer, distributor and retailer organisation, with one or multiple 

users or participants (this research defined one participant or node for each MSP). The MSP 

authenticates the legitimate peer and provides appropriate access to participants. In the HDSP, 

each participant is an anchor peer, endorser, and committer that can authorise and commit 

transactions. The Membership Services can either interact with internal Fabric-CA 

(certification authority) or plug into an External CA to generate membership certificates. A 

client application can be on any system; HF client is an SDK provided to interact with the HF 

peer or ordering service.  

This research used the Fabric provided CA to generate the MSP certificates. This capability is 

comparable to enterprises' security certificates for HTTPS or TLS (Transport Layer Security) 

and relies on public and private key associations.  

Client Application: The client application can be written in any language; the HDSP utilised 

the popular enterprise language Node.js to develop the application. It provides SDKs to interact 

with DLT, known as “Hyperledger Client” (HC) and can be developed using Java and Python.  
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Peer: Multiple organisations will participate in the HF network, and each organisation can have 

multiple users, peers, or network participants. Separate functionality or roles can be assigned 

to users within an organisation with appropriate authorisation. There are three organisations in 

the HDSP network; each has one peer as a honey producer, distributor, and retailer. The peer 

node manages the HF ledger storing all the transactions and state information, and executes 

Chaincode on each node of the HF network. Once the transactions in the HDSP are committed 

to the HDSP ledger, they can be emitted as events to integrate with external, DLT, or non-DLT 

applications (e.g., MongoDB in HDSP).  

A peer can have one or more functions; one function is an endorser. An endorser executes the 

CC on a node, signs the output of that CC execution using the certificate, and endorses the 

transaction output. Every signed transaction from all the endorsers goes to the ordering service 

to commit the transaction on the network. The ordering service transactions are committed to 

the HF ledger by the Committer, as shown in Figure 5.5. Peers can distribute the responsibility 

as endorsers or committers; however, for simplicity, each peer is defined as an endorser and 

committer in the HDSP.  

Ordering Service: This component aims to provide the ordered set of transactions. The HDSP 

peers can submit the transactions in random orders, and the ordering service puts the 

transactions in the correct order. It approves the transaction block inclusion into the HF ledger 

and communicates with endorsing and committing peer nodes. This ensures that all the nodes 

on the HDSP network receive the transactions in the same and correct order to commit on the 

HF ledger, guaranteeing the HF ledger’s consistency among all the nodes. The dedicated 

ordering node need not hold a ledger or smart contract. 

Transaction Consensus Sequence: The sequence in which the transaction consensus is 

achieved is shown in Figure 5.6. For example, the honey producer API submits the transaction 

to all the endorser nodes in the client application. They execute the transactions, agree on the 

identical output produced by those nodes, and add the signature to the output produced. Next, 

the honey producer application/API collects the endorsement from the other two peers for the 

transaction submitted. Once sufficient signatures are collected, the transactions are presented 

to the ordering service (order) to ensure the correct order of the transactions. Then the 

transactions are validated, for example, to ensure no duplicated spending on the same account 

in the transaction block.  
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Figure 5.6. Order of transactions to achieve the consensus to commit the transaction to the 

ledger. 

 

5.3.2 HDSP Nodes Interactions 

This section explains the flow of the honey jar into DLT network to track the jar. The solution 

assumes that the manuka honey is handled at jar level instead of batch or container level. At 

every stage of the flow of jars in the HF network, it explains the involvement and interaction 

of honey producers, distributors, and retailers. The relevance and interaction point of the 

customer UI interface demonstrates the efficient design of the business solution.  

Manuka honey producer: The producer produces the honey from its own, rented, or 

contracted bee hive. The honey is sent to a designated government laboratory for testing to 

authenticate its quality. The honey is then packaged in a jar based on its quality and specially 

packaged with a unique ID assigned to the jar. The industry-wide adopted technology used to 

assign a unique ID is RFID (radio frequency identification) or NFC (near field 

communication); in many situations, NFC is preferred because of its low cost and ease of use. 

Near field communication can be as thin as paper and designed to disable once the customer 

opens the honey jar lid. This feature makes the NFC non-usable after the jar lid is opened, 

avoiding duplication or reusing the NFC identification or honey jar.  

The detail of the jar is pushed into DLT network by the producer. Honey jar details need not 

be pushed one by one; for example, a producer can store the NFC or RFID details in the 

database. Additional information (e.g., honey production date, batch number, producer 

information) can be automatically suffixed to unique jar IDs to push the data into DLT network 

in a batch process. Every network participant is also an endorser that can approve the 

transactions to be inserted into DLT to keep the design of the HDSP simple. This inserted 

information by the producer is committed to the ledger of all three network peers. 

Manuka honey distributor: The distributor receives the honey jar from a producer(s) to 

distribute to the retailer(s). Distributors can capture the jar information using an IoT 

scanner/device and append the jar information with distributor information (e.g., distributor 
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name, date/time, transport quality) to push the data into DLT network in a batch process. The 

distributor is also an endorser and can approve and inject the transactions into the network. The 

ledger updates the insertion of jar information fed by the distributor for all three network 

participants. If the jar is damaged, the seal is broken, or the lid is open, the distributor can 

decide not to inject that jar information into the network but return the same to the producer. 

Manuka honey retailer: The retailer receives the jar batch from the distributor and can decide 

to update its retailer ERP system first. The retailer can build an automated process of injecting 

the appropriate ERP records into DLT network. Because the retailer is also a network endorser, 

the HF network will commit the transactions, and the ledgers of all three network participants 

are updated with the new transactions.  

• For the customer UI, the honey jar data are accessed from MongoDB. The Events() 

function pushes the HF transaction data into the MongoDB database via DLT 

Gateways. The AngularJS web UI extracts the data from the MongoDB database each 

time the customer scans a purchased honey jar. Thus, the information displayed for a 

customer is the consolidated information from the honey producer, distributor, and 

retailer, for the specific jar.  

 

5.4 HDSP Based Knowledge Contribution 

The development of the HDSP utilised system design knowledge, code development skills, 

testing abilities and tacit skills. The development was a technical activity undertaken in 

collaboration with industry experience people. The HDSP build process stimulated many 

discussions, alternative designs, operational models, Smart Contract designs, generating 

helpful knowledge that can be useful for the research community. From a DSR perspective, 

this section elaborates on the prescriptive and descriptive knowledge acquired from the 

research contribution of building the HDSP. Prescriptive knowledge is interested in achieving 

the specified goals efficiently and effectively and explains the ideas, structure, concepts, and 

practices to be used in future research for possible instantiations. Descriptive knowledge or 

truth value illustrates the observational facts, empirical observations, and causal laws. The 

knowledge explained in the remaining section can be used by practitioners to instantiate 

solutions or by researchers to build further advanced solutions based on the knowledge gained.  
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5.4.1 API Driven Architecture 

The architecture of the HF DLT solution prototype is presented in Figures 5.1 and 5.2. To 

simplify the prototype, only one peer (Peer0) in an organisation is allowed to be associated 

with the channel (however, there will be multiple peers on the channel in a production 

implementation). The components outside the yellow box in Figure 5.2, Hyperledger Fabric 

DLT network, are off-chain components, and the remainder is on-chain components. Every 

peer ledger contains two major interior components, although Figure 5.2 represents the internal 

components of only the distributed peer ledger, and the MHSC channel holds the history of all 

transactions.  

The Linux Foundation (LF) designed the HF as a modular system to plug different API 

methods. Using the same principles, the HF DLT is designed as a modular system using the 

APIs to promote the components of HF: Chaincode (CC), HDSP ledger, communication layer, 

data store, pluggable cryptography, and consensus layer. This design enables not only 

backward interoperability but also integration with different flavours of DLT implementation. 

This design abstracts the complexity of the HF business network and enables solution 

implementation. This simplicity and solution feasibility is possible due to easy-to-use APIs by 

Linux Foundation to access new systems, network participants, middleware, and business 

networks. The research recommends either a token coin or crypto-asset-agnostic approach to 

set the asset tokenization notion to represent virtual and physical assets.  

While instantiating, the network design is expected to be centred around the participating 

organisations instead of peers, as they are the delivery unit with a secured domain and 

credentials. This will facilitate governing one or more peers depending on the MSP 

(Membership Service Provider) to issue certificates and identities for the network peers and 

clients for CC access privilege. The HF orderer is a separate organisation (including the MSP) 

and is one of the critical components of the HF for ordering the transactions in sequence. The 

HDSP implemented the orderer using Solo. However, Apache Kafka on Zookeeper or Raft 

protocol must be used for a production-grade orderer system to provide a Crash Fault Tolerance 

(CFT) system and robust and stable implementation. From the CAP (consistency, availability, 

partition tolerance) principal perspective, HF is designed as the AP system, like many other 

DLT technologies. The “A” in AP is for availability where the ledger copy is available on all 

the peers, and “P” denotes partition tolerance to maintain network operation despite failed 

nodes. In addition, HF uses version control and transaction order to manage consistency.  
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Executing an HF peer is a costly and heavy business, which can be reduced by grouping the 

entities with trusted parties into an organization, which decreases the number of network peers. 

For example, a financial institution and its customer may be combined as one organisation, as 

a financial institution will probably have resources to run the peer for itself and its client. Two 

possible implementation designs are proposed:  

1. Middleware and application layers can embed the access control logic. For example, 

the login credentials or IDs can distinguish users and mapped IDs or control the access 

of permitted CC functions.  

2. Distinguishing attributes embed within the certificates issued to organisations’ 

members by an organisation MSP (acting as a CA server). CC or middleware can 

implement the access control functionality to disallow or permit the operation by 

parsing the attributes according to the application policy.  

The HDSP was designed using distributed system architecture principles and developed on an 

AWS Cloud medium Linux server. AWS is a leading cloud service provider offering IaaS, 

SaaS, PaaS and function execution platform. The HDSP supports using IoT devices to assign 

a digital identity to a honey jar to monitor and track the movement of the honey jar. Various 

programming languages (e.g., Golang, JavaScript, Node.js) are supported for the organisation 

to use their choice of programming language based on their technical stack and programming 

skills. The customer UI was developed using the AngularJS framework. Docker containers 

were utilised to execute the HF CC with Mongo DB. The APIs provided loosely coupled 

architecture to enable the servers/solutions to be geographically distributed as per organisation 

infrastructure requirements, service exposures, technical skillsets, and data bandwidth 

constraints.  

 

5.4.2 Data Design  

The data design is expected to inject data into the HF network to contribute to trust 

improvement, transparency, and collaboration amongst peers. An off-chain/non-DLT database 

have to store the rest of the data and can use the HF data partitioning capability to control 

access to sensitive and confidential data with selected peers. This feature also contributes to 

managing the data bandwidth for geographically distributed servers, maintaining the latency 

and increased transaction volume.  
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The HF DLT solution prototype (HDSP) uses an HF event to copy the data into the MongoDB 

database via DLT Gateways for further processing by centralised systems. DLT world state 

maintains the current state, using Level DB or Couch DB to store DLT data. Couch DB can 

support JSON-based rich query operations. However, the HDSP uses Level DB for design 

simplicity and because MongoDB was used to store transactions and events to support complex 

relational database queries. A business have to consider using CouchDB if not planning to use 

a query-friendly database or if it needs a reasonable data query capability. 

Data must not be stored on DLT for big data or file operations. However, the file's fingerprint 

or data may be stored on a DLT network and the signature verified before processing to assure 

data integrity. Flexible implementation parameters may manage the performance and 

scalability of the system (e.g., BatchTimeout 1s, maximum message count 50) as blocks are 

committed to the ledger. These parameters can significantly influence the system's 

performance, throughput, and scalability.  

 

5.4.3 Smart Contract (Chaincode) Design  

After an organisation deploys DLT solutions, it will require ongoing maintenance and 

enhancements to Chaincode (CC) due to regulation changes, new peers in DLT network, and 

bugs. This requirement can make development and operational practices challenging, 

especially when organisations with varying velocities and cultures collaborate to develop and 

operationalize the solution within time, cost, and quality constraints. This research endorses 

the following recommendations to mitigate these challenges.  

While designing DLT data, ensure that CC owns the data and the underlying ledger accessible 

directly only by APIs to track, manage and measure the data access from the ledger using API 

Gateway. When the CC is enhanced for the new version, it migrates the previous CC data to 

the new one. To remedy this situation, consider splitting the CC in the business contract (to 

address the business logic) and data contract (to record the data into the ledger). Because the 

data contract does not change as often as a business contract, it addresses the need to access 

the most-used operations and data attributes. However, if the CC needs to change frequently, a 

CC Registry (a CC ID can be assigned to each CC for better management) may be created to 

register all the deployed CC. Each time a new CC version is deployed, a transaction can be 

invoked to register the newly deployed CC and update the previous versions. 
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The fundamental CC development principle is to have a deterministic operation to produce an 

identical output of code execution on different peers/machines. Everything required for 

transactions/operations must depend on the current state of the ledger and the parameters 

provided by the invocation. Non-deterministic operations such as random number generation, 

network calls, and file operations in CC must be moved to DLT network or provided as 

parameters to the executing code. Also, validating or sanitising the parameters is essential 

before executing the business logic based on the current state of DLT network. Avoid long-

running tasks like network operations or complex cyclic logic in CC. Keep the process simple 

to receive the data, validate it, do the appropriate conversion, extract DLT state data, merge the 

parameters according to the business logic, and serialise the data before storing it into DLT and 

processing the next operation. DLT network peers may exchange business information running 

on CC in completely isolated and independent containers (not running inside the channel).  

The HDSP in Figure 5.1 incorporates the business logic into CC, and most DLT solutions use 

a Smart Contract (SC) to implement business processing. These are executed in an independent 

Docker container, managed as an isolated entity, and loosely connected with other system 

components to exchange information. CC may be written in various languages (e.g., Golang, 

JavaScript, Node.js) to support development in the technology of choice. Service-Oriented 

Architecture (SOA) practice will help develop the services at the right granularity, enabling the 

efficient usage of distributed employees’ skill sets and modular, service-oriented, and 

distributed architecture in the organisation. CC in the HDSP is developed in Golang and uses 

the HF libraries and toolkit for application development. Golang is recommended for CC 

because Node.js uses the npm (node package manager) package when container building, 

impacting network response for multiple peers on the network. Java is a new entrant, and its 

technology robustness and community support for HF have not yet matured.  

Chaincode is a vital component for business and network peers, defining the conditions and 

rules for transaction validity, which all network participants must agree upon in advance to 

build trust. To support this, the following suggestions may be helpful.  

1. Record the approvals from the relevant parties on CC and encourage code 

review to avoid misinterpretation.  

2. If possible, publish the test cases, automate them, and make the test result 

available to network participants for their approval/review. 
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3. Use test case results to assess the CC change impact and any backward 

compatibility required.  

4. Carefully review the scope of CC for the entire network or a set of participants.  

5. Establish the traceability of the CC change to the underlying new requirement 

or bug-fixing.  

Reach consensus on the frequency of CC code promotion in the production and change process, 

and release checks and conditions to avoid ambiguity for participating organisations.  

 

5.4.4 Deployment and Operational Aspects  

Instead of Docker containers, from HF 2.0 onwards, organisations may also use other external 

non-Docker containers. The HDSP executes the CC, peers, orderer, and fabric certification 

authority in independent Docker containers managed as isolated entities. The HF community 

publishes stable and tested commonly used Docker images and Docker Compose definitions 

to build the binaries, which along with the capability of spinning operating system instances 

and scripting, may enable easy deployments and operations. Kubernetes or a similar container 

orchestration tool have to be used for production-grade deployment to efficiently manage many 

containers, based on the organisation’s scalability requirement. Furthermore, the DevOps tools, 

such as Jenkins, Ansible/Chef/Puppet. may enable Infrastructure as a Code (IaaC) practice. 

Continuous Integration (CI) tools such as Jenkins may automatically deploy Docker images 

and CC executables to different application environments. Additionally, the recent versions of 

HF, 1.4 and 2.0, focus on production operations and stability, which is expected to increase 

practitioners' trust  in implementing and operationalising the HF-based solutions [123]. 

Hyperledger Fabric uses a multi-version concurrency control (MVCC) mechanism to prevent 

double-spending and enforce ledger consistency. A network may face critical collisions 

(modifying the key-value pair simultaneously), unintentional or intentional modification of 

transaction sequences or delays in transaction calculation and commitment. These issues can 

be addressed by versioning the stored keys on the ledger, algorithm checks to match the result 

of executing range query, projecting the WriteSet onto the current Worldstate, deriving the key 

from the transaction, multiple keys usage, transaction queuing, and splitting assets. It can be 

relatively easy to exploit user profiles created by an organisation to create hostnames and 

specifications, to organise the complex network and its structures for the CI, automation, and 
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testing. This design may use the definition in the profile to generate the genesis block and 

channel.  

During prototype development, logging was a vital function that assisted with analysing and 

detecting runtime problems. Writing the log messages (collected from all components) in a 

standard error file (stderr) controlled by the peers and modules configuration is recommended. 

Provide a unique name to each object logged that is used as the prefix for each record. Do not 

send all the log records to the output, but control by setting a logging severity for each object. 

CC may control the severity of logging by setting the SetLoggingLevel API function. Ensure 

that the standard output function is disabled in the production environment for security reasons 

when the peer manages the CC process. The outputs of CC and peers have to be disabled and 

only used for debugging.  

Certificate generation defines the domain tied to YAML (yet another markup language) 

configuration files to offer flexibility and tie to the specific domain for the orderer organisation. 

The certificates can streamline many securities and related checks by attaching them to the 

organisation, preventing data leakage. For example, if a hacker steals a peer’s certificate for 

use on a completely different network, perhaps to spoof the issuing organization, it exposes the 

certificate’s content to unauthorized access. Because certifications are tied to a domain, if 

somebody tries to use this certificate outside the organisation’s domain, the connection will be 

refused, and data leakage will be prevented, providing robust security.  

For security purposes, a good HF design must not enable peers from one organisation to 

communicate with a peer of another organisation, except via anchor peers, which can be 

defined during the MSP setup. An anchor peer acts as a fulcrum in an organisation by using a 

gossip protocol to synchronise the cross-organisation ledger. Hyperledger Fabric also provides 

the hardware-based protection of a digital key, resulting in better security of assets. Also, 

practitioners must use traditional security practices like SFTP, database encryption, HTTPS, 

two-factor authentications, SAML, to synergise with the security features of DLT network. 
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Chapter 6: Framework and Solution Prototype Evaluation  

 

This chapter explains the methods and techniques used to evaluate the two artefacts developed 

in this research, the DLT interoperability framework (DIF) and the Hyperledger DLT solution 

prototype (HDSP). The evaluation validates that the artefacts produced are practical and 

relevant to the research problem and were not created by random steps, but by executing 

established research steps following a trusted methodology. Design science has always 

emphasised the need to assess the utility and efficacy of artifacts and knowledge produced, as 

suggested in Larsen et al.’s research [127]. Evaluation of research artefacts is an integral part 

of research activity to assure research rigour and provide feedback for future development 

[128]. Following the advice of Cleven et al. [88], this research did not undertake evaluation as 

an isolated activity but was designed to be conducted iteratively from the beginning of the 

artefact design, development, and instantiation process.  

Section 6.1 of this chapter explains the evaluation methods and techniques followed in this 

research. The subsequent section elaborates on the formative and summative evaluations 

undertaken to validate the DIF. Sections 6.3 and 6.4 overview the assessment of the DIF by IT 

professionals and instantiate the solution prototype designed based on the DIF. The following 

section explains the evaluation undertaken to choose the business use case, technology, 

architecture, and data format to create the HDSP. Section 6.6 explains the formative and 

summative assessment undertaken for the HDSP; Section 6.7 covers the working 

demonstration of the HDSP and its test cases execution. Section 6.8 validates that the artefact 

evaluation conducted in this research is adequate, and section 6.9 summarises the overall 

evaluation undertaken for both artefacts.  

 

6.1 Artefact Evaluation Methods 

The evaluation of artefacts is crucial to establish the relevance and practical utility of the 

artefacts to address the targeted problem. Evaluation involves the design research outputs, 

including artefacts and the research process. Research by Alturki et al. [129] published an 

overall DSR roadmap after analysing and reviewing sixty articles to document the key 

activities, tasks, and steps involved in DSR. Alturki et al.’s work was based on March et al.’s 

study [104], suggesting that acceptable research need not extend to evaluation if the design 

solution is novel. It is argued that both aspects of DSR, construction (i.e., design and 
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development) research, and evaluation research, have to be encouraged. However, the 

separation between them is an important decision, as evaluation requires different expertise 

and entail substantial resources [129]. This research balanced the approach to evaluating the 

artefacts (the DIF and HDSP) against available resources, such as evaluation and testing 

knowledge, project time, and cost, and utilised selective and relevant evaluation methods to 

assess the artefacts produced. Early and iterative assessments reduced time and expense by 

evaluating the decisions and choices (e.g., Business use case, DLT platform) before the design 

and development of the artefacts. 

Research by Pries-Heje et al. [130] integrated a significant proportion of the extant research 

work on artefact evaluations. Their study explained two evaluation dimensions:  

• the method used (naturalistic or artificial), and  

• at what time to conduct the evaluation. When to conduct evaluations can be categorised 

as follows: 

o ex-ante – before the design or development of artefacts and a synonym for 

formative evaluation. 

o ex-post – when the artefacts are developed or constructed or reached a particular 

milestone/build stage. It is synonymous with summative evaluation. 

Both natural and artificial evaluation methods have their advantages. An artificial (technical) 

evaluation has a lower cost and is quick to evaluate, but a naturalistic evaluation is more 

practical and relevant. However, the nature of the artefacts also determines the appropriate 

evaluation method; the technical nature of the artefact produced in this research demanded 

technical (artificial) evaluations. The selection of modern architecture, design, integration 

patterns, technology platforms, databases, and tools popular in modern enterprises covered the 

natural aspect of both artefacts’ evaluations. 

The research also utilised the maturity model for enterprise interoperability (MMEI), artefact 

assessment by IT professionals, validation by practical instantiation of the solution, 

demonstration of the solution prototype, and MHSC test cases execution. These are the widely 

discussed and adopted evaluation methods and techniques popular in Design Science literature. 

[92] [93][131]    
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6.2 DIF Formative and Summative Evaluation  

The formative and summative evaluation of the DIF was designed and undertaken from the 

design stage of the DIF. The formative evaluation was undertaken to design and enhance the 

components of the DIF to meet the interoperability principles criteria (see Section 4.2.2) and 

to meet the integration needs of modern organisations (see Section 2.2). When the DIF reached 

a particular development milestone, a summative assessment was conducted. The DIF is 

implemented to design interoperability architecture for popular enterprise architecture and 

interoperability design patterns and tools (see Section 4.3). For each design implementation of 

the DIF, a summative assessment was triggered. As a part of the iterative evaluation process, 

as shown in Figure 6.1, the outcome of the summative assessment was fed into the formative 

evaluation of the DIF. This iterative evaluation process enabled the refinement of the DIF 

components and the final interoperability framework.  

 

Figure 6.1. The cyclic formative and summative evaluation process for the DIF. The figure 

shows that each significant activity follows the DIF evaluation exercise to undertake formative 

(ex-ante) and summative (ex-post) evaluations. Adapted from [86]. 
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As a part of the formative assessment, the maturity model for enterprise interoperability 

(MMEI) framework was used to evaluate the interoperability capability of the DIF. An iterative 

formative evaluation of the DIF was undertaken to validate that: 

• the design of the DIF and its components met the interoperability principles criteria, as 

explained in Section 4.2.2 

• the DIF and its components aligned with the modern interoperability approach and met 

the integration requirements of modern enterprises, as described in Section 2.2  

 

6.2.1 Summative Evaluation 

Three interoperability architectures, as explained in Section 4.3, were created by using the DIF. 

After every architecture design, a summative evaluation was undertaken to validate the 

architecture against the interoperability principles and interoperability requirements of 

enterprises. After each summative assessment, the DIF was enhanced, and the formative 

assessment was repeated. This iterative assessment enabled significant improvements in the 

DIF design, supporting the interoperability for widely used architecture practices, design 

patterns, tools, and IT systems used in contemporary organisations.  

a. Enhancements due to the First Iteration: During the conceptualisation of the GIA 

(Generic Interoperability Architecture), a layer of organisational DLT network 

nodes (similar to the Hyperledger component in the HDSP) was formed. This layer 

participates in many DLTs that interact with DLT Gateways layers (similar to DLT 

Gateways in the HDSP). The interaction of the DLT Gateways layer with the 

Message service layer (similar to the API layer, app.js component in the HDSP) 

was established and interacted with centralised IT systems/applications or devices.  

b. Enhancements due to the Second Iteration: After designing the Interoperability 

Architecture using API Gateways, ESB and Service Mesh (IAAES) architecture, 

some potential shortcomings and implementation challenges were identified. The 

output of the DLT Gateways layer is supposed to go to an additional layer to handle 

the message in a format suitable for the destination system. The earlier Messaging 

Service Layer (MSL) was designed to handle the message conversion; however, 

this can make the MSL layer CPU intensive and complex, causing end-to-end 

message flow bottlenecks. Also, many-to-many message conversions would add 

overheads in the MSL and risk distributing the functionality into various 
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components or layers. This additional layer of the Message Broker clearly defined 

the separation of concern for the components in the DIF.  

An interface for External Oracles was added for the dynamic data that need to be 

fed into DLT, such as currency rates, stock prices, improving the practicality and 

utility of the framework.  

c. Enhancements due to the Third Iteration: A single layer of Message Broker 

became heavy during the EDA design, and implementation was not straightforward. 

Also, there was no need to bring the DLT Gateways layer between DLT and the 

outgoing Message Broker. Therefore, to ease these concerns, the message broker 

component was broken into two: In-Flow and Out-Flow Brokers. Only the 

incoming messages (towards the centralised IT systems) would get a feed from the 

DLT Gateways layer to the In-Flow Broker; the outgoing message (from centralised 

IT systems) directly feeds the API/messages to DLT network layer via the Out-

Flow Broker. This segregation provided significant flexibility during solution 

implementation, and the layer dependencies were reduced. An additional input 

block, DLT Metadata, was added to feed the input to the outgoing canonical 

messaging layer. These metadata parameterise the message conversion into the 

destination DLT message format definition based on DLT network and the 

message's route. This layer can also add additional parameters to the outgoing 

messages for DLT to enable the enterprises to tag the messages to automate further 

business processing. The message reformatting is parameterised when the message 

flows from the DLT Metadata to the In-Flow Broker. The parameters and associated 

reformatting are based on the source DLT network from where the message 

originates.  

 

6.2.2 Maturity Model for Enterprise Interoperability (MMEI) 

Research by Leal et al. [132], Guedria et al. [28], Rezaei et al. [98] and Leal et al. [95] discussed 

the maturity model for enterprise interoperability (MMEI) framework to measure the 

interoperability degree of enterprise systems. There are five levels of interoperability maturity 

of any solution [28]. Level 0 is the unprepared and non-relevant solution from an 

interoperability perspective. Level 1 is the defined capability of correctly modelling and 

describing systems to prepare interoperability. Level 2 is an aligned solution capable of making 

necessary changes to align to common formats or standards. Level 3 is an organized solution 
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capable of metamodeling for necessary mapping to integrate with multiple heterogeneous 

systems. Level 4 is an adapted solution capable of negotiating and dynamically accommodating 

heterogeneous systems. 

Table 6.1 presents the three critical barriers for enterprise systems interoperability: conceptual, 

technological, and system components. Each barrier has four significant concerns: business, 

process, service, and data integration. The maturity model for enterprise interoperability 

framework measures the interoperability degree of the enterprise systems in all the four major 

concern areas for each barrier.  

The maturity model for enterprise interoperability framework is utilised, as a part of formative 

assessment, to measure the interoperability capability of the DIF. Section 4.3 demonstrated that 

the DIF is relevant and feasible to implement contemporary and modern architectural styles 

and integration patterns utilised by organisations. The interoperability maturity mapping table, 

Table 6.1, measures the interoperability of these DIF based architecture and system design 

implementations. The table illustrates the interoperability maturity mapping of these three 

integration architectures, based on:  

• comparative logical reasoning of these architecture and design implementations as 

explained in Section 4.3 

• practical experience of the author in developing the Hyperledger DLT solution prototype 

(HDSP)  

• the industry experience of the author in integrating the IT systems 

 
Table 6.1. Mapping the maturity levels for the EDA, IAAES, and GIA interoperability 

solutions, respectively. This table covers three major interoperability problem areas in the 

columns and four major concerns in the rows. 

The interoperability maturity of EDA (see Section 4.3.2) is high on the conceptual 

interoperability of businesses because it provides the flexibility to connect among diverse 

business systems. The services can integrate seamlessly with the flow of events, and data can 
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be exchanged across the systems by Kafka producers and consumers via a Kafka Broker. 

However, the interoperability maturity of EDA is relatively low in terms of integrating the 

processes because the events can be too granular, and stringing them together into business 

processes is comparatively more complex (this is an inherent drawback of event-driven 

architecture). A similar result is observed for system components interoperability, as the 

architecture expects interoperability to occur via a Kafka broker with an additional intermediate 

layer. The technological interoperability barrier is addressed well because of the seamless event 

flow among the systems using pub/sub integration patterns.  

The IAAES’s (see Section 4.3.1) interoperability maturity model score is high on technological 

and system components interoperability because it uses a combination of API Gateway, ESB, 

and Service Mesh to integrate systems and technologies, providing more capabilities and tools 

to integrate. The score is comparatively low for conceptual interoperability because the various 

layers (ESB, Service Control Plane, Orchestration, API Gateways) can become complex with 

time. Moreover, the functionality of these layers can become heavy and overlapping. 

Enterprises need to put more effort into designing the interoperability of business, service, and 

data, as these layers can obscure underlying system components' scope and capability. 

However, this problem is not due to DLT integration, and it is expected that enterprises will 

have sufficient clarity and governance on the functionality to be included in their DLT because 

other organisations are part of the distributed network. The IAAES involves two-way 

communication for all the components, so its interoperability capability is high; however, it 

also has the risk of complexity. Enterprises can integrate DLT system via ESB, Service Mesh, 

or API Gateways. However, a choice must be made regarding solution effectiveness, 

complexity, and operational manageability from a long-term perspective. 

Generic Interoperability Architecture (see Section 4.3.3) is a flexible architecture design an 

enterprise can consider for its interoperability solution. It offers a simplistic conceptual and 

system component view, so the interoperability score is high. However, this flexibility comes 

with the technology choice and its design implementation cost, due to which the score is low 

on technology parameters. Generic Interoperability Architecture can adopt API Gateways, 

ESB, Service Mesh or Apache Kafka to implement their interoperability requirements. 

However, judiciously choosing an approach and consistently applying for the majority of the 

enterprise interoperability requirement will help to reduce the technology implementation risk. 

The DLT producer and consumer can become a heavy layer as enterprises add interoperability 
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solutions and interacting systems or devices. Enterprise can consider breaking it into multiple 

layers based on the technology approach for implementation and architecture requirements. 

 

6.3 DIF Evaluation by IT Professionals 

Three IT professionals (Participants 1 to 3) were selected to assess the integration capability of 

the DIF. This selection is based on the guidelines suggested by Prat et al. [89] to execute the 

generic evaluation method by practitioners. The research adopted the approach to  undertake 

evaluation by a small set of practitioners, those who are very experienced and expert in their 

domain areas, instead of evaluating from a larger set of relatively less experienced practitioners. 

The brief experience of the three participants is summarised next. 

Participant 1 had 25 years of professional experience in the IT industry as an integration 

specialist, data migration expert, and ERP implementation and software development manager.  

Participant 2 had 20 years of professional experience as a data expert, data integration 

specialist, data warehousing consultant, and IT manager.  

Participant 3 had 28 years of experience in the IT industry in broad and diverse roles such as 

executive manager, solution architect, business analyst, and development manager.  

A one-hour meeting was scheduled with the three participants to: 

• explain the aims and objectives of the research 

• explain the rationale of the DIF principles and the interoperability framework 

• demonstrate the working of the HDSP 

• explain the maturity model for enterprise interoperability (MMEI), as summarised in 

Table 6.1 

In the last 20 minutes of the meeting, each participant was requested to independently assess 

the interoperability capability of the DIF using the MMEI. The interoperability score on MMEI 

framework will indicate the integration effectiveness of DLT solutions with non-DLT 

technologies in HDSP.  They were requested to rate the DIF in increments of 0.5 to address the 

four interoperability concerns (i.e., data, service, process, and business) among the three 

integration barriers (i.e., conceptual, technological, and system components). The results are 

presented in Table 6.2. 
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Table 6.2. Mapping of the maturity levels of the Interoperability Framework by three 

professional participants, covering three significant interoperability barriers and four major 

concerns for each barrier. 

The last column in Table 6.2 shows the average score of the participants for a particular concern 

within an integration barrier. The average interoperability score of the DIF is “good” (3.0 and 

above, based on MMEI model explained in [28]) in all areas except business and processes 

concerns for the technological barrier. Before concluding the meeting, a brief discussion of the 

possible reason for the low score for business and processes concerns happened. Conceptually 

and at the components level, its comparatively easy to integrate the solutions; however, the 

integration landscape becomes very broad and diverse from a technology perspective. To 

integrate businesses and processes (from a technology perspective), many technology 

platforms, operating systems, protocols, a lack of standards, implementation challenges, and 

operational complexities must be overcome. Because DLT is a new technology, there are few 

accepted standards and the experience in integrating DLT services and solutions is limited, 

resulting in low confidence and a low score on these two concerns.  

 

6.4 DIF Validation by Instantiating Solution Prototype  

The HDSP is an interoperable DLT solution prototype for the MHSC use case. The 

interoperability of the HDSP is due to the architecture, solution design, and technical 

instantiation derived from the DIF design, components, and its interoperability principles, and 

not from some circumstances or independent confounding variables. These factors established 

the interoperability of the DLT-based solution, the HDSP, with centralised technologies. The 

design and integration pattern of the HDSP is in line with the SOA and modern distributed 

architecture, establishing its relevance to contemporary organisations.  
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The Hypderledger Fabric DLT solution prototype (HDSP) is an object of the technical 

instantiation of the DIF and its interoperability principles. Design science research researchers 

such as Herselman et al. [133], Cleven et al. [88], and Venable et al. [128] imparted significant 

importance to instantiation validity if an artefact (the HDSP in this research) instantiates design 

theory, model (the DIF in this research) or design principles (interoperability principles in this 

research). As per Venable et al.’s research [128], technological artefacts such as the HDSP 

must undertake artificial or technical evaluation. The HDSP represents a physical realisation 

of the DIF (design representation of the solution) and its principles functioning in the natural 

world and has been widely accepted as a core type of DSR contributions [127]. Modern and 

contemporary technology stack was used to implement the HDSP using a naturalistic 

evaluation, in addition to a technical evaluation of the HDSP.  

 

6.5 Evaluation to Assess HDSP Design Options  

The assessment to decide the appropriate business use case, DLT platform, non-DLT 

technology stack, architecture, and data format choice, was undertaken before initiating the 

design of the HDSP. The correct decisions during this assessment enabled the research to 

execute the research process in a cost-effective and timely manner, enhancing the quality of 

design artefacts and design process and reducing the calendar timelines of the project. This 

initial assessment assisted in improving the outcome of the design research process and 

provided a foundation for the other assessment techniques, triggering continuous improvement 

of the HDSP. The following evaluation was undertaken:  

1. Evaluation to Determine Instantiation Use Case 

A business use case was required to design DLT-based solution and integrate it with the 

centralised IT system. As explained next, the literature guided the choice of an appropriate 

business context in which to implement the HDSP based on the DIF.  

a. Casino et al. [134] conducted a systematic literature review of DLT-based applications 

among multiple domains. Their study presented an inclusive classification of DLT-

enabled systems across various sectors, such as supply chains, healthcare, governance, 

humanitarian aid supply chains, and finance. Casino et al. [134] claimed that DLT was 

expected to improve transparency, accountability, and trust amongst the global and 

unknown supply chain stakeholders, enabling more trusted, efficient, and transparent 
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value chains. The supply chain domain is one of the few business domains on which 

DLT is expected to provide the most positive impact.  

b. Foreseeing the possible positive impact of DLT on food supply and safety, IBM and 

Walmart established a collaboration to implement BC technology to develop food 

provenance, traceability, and transparency solutions in the food supply chain. In 

addition, they aimed to digitise the food supply, safety, product information, and food 

processing using a DLT-based solution [6]. 

c. Larsen et al. [105] provided recommendations, suggestions, and guidelines for the 

design and structure of DLT case studies in a supply chain business context as 

compared to other business domains. Furthermore, Peterson et al.’s [103] ‘s research 

emphasised that implementing DLT to supply chain and logistics provides a wealth of 

opportunities for enterprises in this business domain. 

This evaluation and Section 5.2.1 (Supply Chain Use Case Selection) helped decide to 

choose the manuka honey supply chain (MHSC) domain to instantiate a DLT-based 

technical prototype.  

2. Evaluation to Determine DLT Platform 

The research evaluated prominent DLT platforms to implement and instantiate the technical 

prototype of the MHSC use case. Section 5.2.2 (Distributed Ledger Technology Platform 

Selection) details the evaluation undertaken for different DLT platforms before choosing a 

suitable one (Hyperledger Fabric 1.4) for the HDSP instantiation. 

3. Evaluation To Choose Technology Stack 

The modern popular technology stack used in contemporary enterprises was chosen to 

develop the HDSP [135]. It enabled the establishment of the interoperability capability of 

DLT platform with cutting-edge and futuristic IT systems and technology stacks. The 

website WebFX [136] and the review of internet sources, such as Basias et al. [30] and Biel 

et al. [27], enabled the choice of the right technology stack. By adopting the modern web-

based, API-centred, and Cloud-enabled technology stack used by enterprises, the natural 

evaluation factor was included while undertaking the artificial (technical) evaluation of the 

HDSP.  

4. Choosing Architecture for the Design of the HDSP 

Service Oriented Architecture (SOA) is widely used for designing modern distributed 

systems, Basias et al. [30], Leotta et al. [16], and Yarberry et al. [99] emphasise the success 

and wide adoption of SOA principles and practices in enterprises. The HDSP followed the 

SOA architecture style for designing the solution. 
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5. Choosing a Data Format:  

This research evaluated the XML and JSON data formats and followed Svetashova et al.’s 

[73] suggestion to use the JSON data format. This format enabled a well-defined data 

structure, making data interoperable and easy to understand, and helping to streamline the 

data processing. The JSON data format and API-driven design of the system enabled data 

interoperability among the system components. The sample RESTful input message from 

the producer, in JSON format, is presented in Table 6.3. 

{ “jarId”: “50”, 
“umf”: “150”, 
“jarWt”: “1000”, 

 “batch”: “D21062020”, 
 “lab”: “Analytica”, 
 “floral”: “Mono”, 
 “tutin”: “1”, 
 “pname”: “Comvita”, 
 “paddress”: “Hamilton”, 
 “pcontact”: “0295412547”, 
 “plicence”: “NZ0123470235”, 
 “cost”: “250” } 

 

Table 6.3. Sample RESTful input message from the producer, in JSON format. 

 

6.6 HDSP Formative and Summative Evaluation  

Formative evaluation of the HDSP validated the decisions taken before and during the design 

phase, evaluating the design research process and ensuring the desired level of rigour. The 

summative assessment of the HDSP was executed when the first iteration of product 

development was completed, instantiated, and ready for testing. As shown in Figure 6.2, the 

insights from the summative evaluation were fed as input to the formative assessment to 

improve the artefact design and development for enhanced research rigour and final product. 

The HDSP was developed using the modern and popular contemporary technology stack 

employed by current organisations, covering the naturalistic evaluation aspect of the HDSP 

[135]. 
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Figure 6.2. Iterative formative and summative assessment undertaken for the HDSP. Adapted 

from [86]. 

 

6.6.1 HDSP Formative Evaluation 

The architecture design and solution components of the HDSP were evaluated in the formative 

evaluation of the artefact. The authors comparative logical reasoning and practical experience 

were utilised to validate that the HDSP solution design was in line with the interoperability 

principles of the DIF. The solution components and their interactions were evaluated to verify 

that the HDSP followed the DIF components, purpose, and message interactions. Two cycles 

of summative assessment were undertaken; after each cycle, the formative assessment was 

repeated to enhance the HDSP.  

 

6.6.2 HDSP Summative Evaluation 

Two iterations of summative evaluation of the HDSP were conducted. The focus of each 

iteration stage was to evaluate the interoperability of DLT solution with the centralised IT 

systems. The HDSP demonstration (Section 5.1.2) validated that the solution fulfilled the 
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essential MHSC business criteria (criteria validation). The solution met the semantic and data 

interoperability expectations for the business use case and validated that the DIF based DLT 

solution integrated with the current IT system, and therefore the overall solution augmented 

the current business’s capability. Koussouris et al. [149] discussed other types of 

interoperabilities, like rules, object and software interoperabilities. Many of these 

interoperabilities are covered implicitly by the artefacts, e.g.:  

• Rules Interoperability: When enterprises join DLT network, they agree on specific 

fundamental rules based on which the network functions and Smart Contract executes.  

• Objects Interoperability: Every object (IoT, systems, services, NFC etc.) is interconnected 

via APIs. Earlier the APIs were not standardised, the newly established RESTful standard 

simplified the object interoperability.  

• Software System Interoperability: Modern software systems are based on SOA, so 

integration is enabled by APIs, ESB or microservices design patterns.    

 

The evaluation methods executed and their outcomes are discussed further.  The first 

summative evaluation was initiated after the initial design, development, and instantiation of 

the HDSP. The outcome of the first summative evaluation triggered changes in the artefacts 

design. The first summative evaluation changes were included in the HDSP before initiating 

the second summative evaluation. The process was repeated to incorporate the enhancements 

from the second summative evaluation of the HDSP.  

a. Enhancements due to the First Iteration: This evaluation was triggered when the 

HDSP was instantiated the first time to undertake the testing. The program invoke-

transaction.js was activated from the HF node with the virtual layer of app.js. The 

application was functioning; however, this enabled the tight coupling of the HF 

node interface with the HF core component. The first summative assessment 

identified the need to provide a flexible interface from the devices and DLT nodes 

(user) to the HF network. This requirement was fulfilled by adding API Layers 

(Node.js) to integrate the enhanced system from various devices and systems to the 

HF network. The addition of the app.js component provided the flexibility to choose 

the user interface the peer node wished to use to inject the transaction.  

b. Enhancements due to the Second Iteration: The app.js layer was made 

functional. This API layer provides the flexibility to interact with any message or 
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API-driven system, protocol or application from the HF node to interact with fabric 

core components and smart contract (chain code). The customer (MH end-user) 

node was part of the HF network.  

Based on the test cases execution and literature review, the customer node was 

removed from the HF network. This node did not improve the trust and transparency 

provided by DLT solution to the MHSC. Instead, a user interface (UI) was provided 

to meet customers’ MH jar information requirements.  

 

6.7 HDSP Demonstration and Test Cases Execution 

The HDSP instantiation demonstrated that the DIF promoted the architecture and solution 

design to integrate DLT solution with centralised IT systems. The working functionality of the 

instantiation of the HDSP was presented to seven department academic staff, four fellow 

researchers, and five industry peers. The honey producer, distributor, and retailer could push 

the transaction into the HF network, and transactions were committed to the ledger on all the 

nodes, improving the trust and transparency amongst the HDSP network participants. 

Transactions were reliably pushed into the network, committed on the HF ledger, and saved on 

the MongoDB database to be accessed by centralised systems (customer UI). The MHSC testes 

cases executed during the HDSP demonstration were captured, confirming the solution met the 

business criteria. The transaction execution time of these test cases validated the solution’s 

practicality endorsing the working of a DLT interoperable solution. The transaction time 

between 2 to 3.5 seconds is pragmatic considering that the HDSP and its three nodes are 

executed on a medium-sized Linux server on an EC2 instance. It would indicate the scalability 

potential of the solution if more IT infrastructure resources were deployed for DLT solution 

instantiation. The detailed analysis of DLT application performance, throughput and scalability 

is considered out of the scope of this research, which is discussed in the studies conducted by 

Kuzlu et al. [139] and Kuhi et al. [140].  

The test cases executed are documented in the Appendix, and the transaction execution time is 

shown in Table 6.4. This demonstration meets the evaluation objective of DIF by solution 

instantiation.    



88 

 

Transact

ion

Event MH Producer 

Transaction

Exececution 

Time(sec)

MH Distributor 

Transaction

Exececution 

Time(sec)

MH Retailer 

Transaction

Exececution 

Time(sec)

Trans 1 Start "2020-09-23 

22:42:41.579"

2.184 "2020-09-23 

22:46:40.147"

2.170 "2020-09-23 

22:48:25.599"

2.172

End "2020-09-23 

22:42:43.763"

"2020-09-23 

22:46:42.317"

"2020-09-23 

22:48:27.771"

Trans 2 Start "2020-09-23 

22:15:34.785"

2.230 "2020-09-23 

22:21:57.843"

2.812 "2020-09-23 

22:23:45.563"

2.200

End "2020-09-23 

22:15:37.015"

"2020-09-23 

22:22:00.031"

"2020-09-23 

22:23:47.763"

Trans 3 Start "2020-10-09 

14:10:56.876"

2.355 "2020-10-09 

14:12:43.334"

2.228 "2020-10-09 

14:15:01.745"

3.060

End "2020-10-09 

14:10:59.231"

"2020-10-09 

14:12:45.562"

"2020-10-09 

14:15:04.805"

Tran 4 Start "2020-10-09 

16:01:12.985"

2.122 "2020-10-09 

16:04:36.678"

2.406 "2020-10-09 

16:05:55.412"

2.467

End "2020-10-09 

16:01:15.107"

"2020-10-09 

16:04:39.084"

"2020-10-09 

16:05:57.879"

Tran 5 Start "2020-10-15 

11:32:16.541"

2.917 "2020-10-15 

11:36:41.746"

2.428 "2020-10-15 

11:41:51.214"

2.244

End "2020-10-15 

11:32:19.458"

"2020-10-15 

11:36:44.174"

"2020-10-15 

11:41:53.458"

Tran 6 Start "2021-04-24 

21:05:54.984"

3.118 "2021-04-24 

21:10:25.478"

3.280 "2021-04-24 

21:14:47.057"

2.901

End "2021-04-24 

21:05:58.102"

"2021-04-24 

21:10:28.758"

"2021-04-24 

21:05:49.958"

Tran 7 Start "2021-04-24 

19:07:34.214"

2.91 "2021-04-24 

19:11:41.415"

2.694 "2021-04-24 

19:15:21.745"

3.333

End "2021-04-24 

19:07:37.124"

"2021-04-24 

19:11:44.109"

"2021-04-24 

19:15:25.078"

Tran 8 Start "2021-04-24 

18:41:14.478"

2.77 "2021-04-24 

18:47:25.749"

3.434 "2021-04-24 

18:53:55.358"

2.989

End "2021-04-24 

18:41:17.248"

"2021-04-24 

18:47:29.183"

"2021-04-24 

18:53:58.347"

Tran 9 Start "2021-04-24 

18:20:52.364"

2.325 "2021-04-24 

18:26:14.873"

2.478 "2021-04-24 

18:35:23.785"

2.471

End "2021-04-24 

18:20:54.689"

"2021-04-24 

18:26:17.351"

"2021-04-24 

18:35:26.256"

Tran 10 Start "2021-04-25 

13:52:45.781"

2.943 "2021-04-25 

13:58:62.278"

2.403 "2021-04-25 

14:02:39.459"

2.798

End "2021-04-25 

13:52:48.724"

"2021-04-25 

13:58:64.681"

"2021-04-25 

14:02:42.257"  
 

Table 6.4. Transaction execution time for the HF networks three peers, honey producer, 

distributor, and retailer nodes. 

 

6.8 How much Evaluation is Enough? 

Design science research puts significant emphasis on evaluating and validating the artefacts 

produced in research. However, the question, “how much evaluation is enough?” for artefact 

evaluation activity, needs to be addressed for any study limited in financial, time, and other 

resources. The five Design Evaluation Methods (DEM) suggested by Hevner et al. [80] were 

followed to validate that the research followed a sufficient evaluation process. The evaluation 

strategy adopted and the evaluation activities conducted in this research met the evaluation 

expectation set by Hevner et al., as explained next.  
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1. Observational DEM: In the observational method, the case study approach is 

suggested for evaluating the artefact in a business environment. The usefulness of the 

HDSP in the supply chain business context (use case of MHSC) validated the utility of 

the DIF in developing interoperable solutions.  

2. Analytical DEM: Analytical analysis is suggested to evaluate artifacts’ fitment into 

the information system architecture. The DIF was implemented to design the enterprise 

interoperability architecture, and HDSP architecture was utilised to enhance the 

Generic Interoperability Architecture, described in Section 4.3.3.  

3. Experimental DEM: This method recommends artefact simulation and 

experimentation in a controlled business environment. The HDSP artefact was 

simulated for the MHSC use case by using artificial data. It was executed in a 

controlled environment to test the interoperability of the HDSP without paying 

attention to other less relevant aspects of this study, such as trust and transparency.  

4. Testing DEM: This method suggests black box (functional) and white box (structural) 

testing. The HDSP executed functional testing to verify that both DLT solutions and 

centralised systems executed the transactions performed by the three nodes on the HF 

network. The HDSP structural testing was undertaken to trace the transactions’ 

execution path and analysed to optimise the HDSP (e.g., designing the components of 

HDSP and moving the customer node out of the HF network).  

5. Descriptive DEM: Informed argument was utilised to use the available knowledge 

base of DLT integration solutions to define the interoperability principles of the DIF. 

The informed argument used the current interoperability practices (architecture, 

design, and tools) to design the interoperability architecture in Section 4.3 (based on 

the DIF) to establish a convincing argument for the DIF utility. The MHSC business 

scenario was created to implement the DIF by instantiating the HDSP to demonstrate 

the utility and usefulness of the DIF.  

  

6.9 Summary of Artefact Evaluation  

The artefacts produced by this study, the DIF and HDSP, utilised relevant evaluation methods 

and techniques to validate the research process and usefulness of the artefacts. The summary 

of these evaluation techniques is plotted in Figure 6.4.  
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Figure 6.3. Evaluation Framework with suggested evaluation summary. The curves for the DIF 

and the HDSP represent the evaluation summary for the two artefacts; the triangles on these 

curves are the summative evaluation of the respective artefacts. Adapted from [128]. 

The formative evaluation of the DIF enabled the design and enhancement of its components. 

When the DIF reached a particular development milestone, a summative assessment was 

conducted. The DIF was implemented to design interoperability architecture for popular 

enterprise architecture, interoperability design patterns and tools (see Section 4.3). For each 

design implementation of the DIF, a summative assessment was triggered. As part of this 

iterative evaluation process, the outcome of the summative assessment was fed into the 

formative evaluation of the DIF. This iterative evaluation process enabled the refinement of 

the DIF components to produce a robust and practical integration framework.  

The application of the maturity model for enterprise interoperability (MMEI) framework to 

measure the degree of interoperability specifies the integration strength of the DIF. This is 

expected to provide the motivation to utilise the framework to design integrated solutions. The 

evaluation undertaken by three IT professionals established the relevance and strength of the 

suggested framework from an industry perspective. The implementation of the HDSP, based 

on the DIF, assured a practical and implementable solution when using the framework.  

Formative evaluation of the HDSP validated the decisions taken before and during its design 

and development, evaluating the design research process and ensuring the desired level of 

rigour. The summative assessment of the HDSP was executed when the product development 
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had been completed, instantiated, and was ready for testing. The insights from the summative 

evaluation were fed as input to the formative assessment, improving the design and 

instantiation of the final product (the HDSP). In addition, the MHSC testes cases executed 

during the HDSP demonstration were captured, confirming the solution met the business 

criteria and endorsing the working of a DLT interoperable solution. The transaction execution 

time of these test cases validated the solutions practicality and indicated the scalability potential 

if more IT resources were deployed for DLT solution instantiation. 

  



92 

 

Chapter 7: Research Summary 

 

During the last decade, DLT became popular by establishing trust amongst non-trusted or 

unknown peers through real-time, distributed, digital, immutable and secure transactions and 

the technology capability has been maturing. Many technology characteristics have emerged 

distinguishing DLTs based on their usefulness for the specific business domain. The major 

category is public and private DLT network technology: public DLT is useful for a business 

where untrusted or unknown persons or entities can join DLT network. A private DLT network 

is applicable where the participants are trusted or partially trusted to execute the transactions. 

Hyperledger Fabric, Ethereum, Corda R3, are suitable technology platforms for private DLT 

networks. Integrating DLT-based solutions with the traditional IT system is crucial for 

enterprises looking to implement DLT solutions in their organisations. The analysed DLT 

integrated solutions are not comprehensive and complete, and to address this gap, this research 

developed an interoperability framework (the DIF) based on interoperability principles. This 

framework enables enterprises (participating in a private DLT network) to design an integrated 

solution, establishing a synergy with the current non-DLT based IT capability with emerging 

DLT solutions. To provide the evidence of DIF usefulness, the HDSP solution was built, 

demonstrating the successful integration of the Hyperledger Fabric 1.4 solution prototype with 

the traditional IT systems.  

This chapter summarises the research undertaken, its artefact outcome, the contribution made 

in the DSR domain, the research limitations, and suggestions for future research. The following 

section recaps the identified research problem and its significance. Section 7.2 describes the 

research contribution of developing the DIF and interoperability principles and building the 

HDSP artefact. The evaluation of both artefacts to justify their utility is revisited in Section 7.3. 

The next section summarises the DSR knowledge contribution made by this research, and 

Section 7.5 explains the research limitations. The final section suggests the potential for future 

research to extend the knowledge developed in this thesis. 

 

7.1 Research Problem and its Significance 

DLT offers significant benefits to organisations wishing to improve their current business 

processes or establish new ones to enhance and expand their business capabilities [63]. Almost 

all universities, research entities, and organisations invest in or closely monitor technologys 



93 

 

progress and breakthroughs [141]. These entities experiment with the utility and usefulness of 

DLT in every possible domain to realise its claimed benefits. High-profile collaborations such 

as IBM and Walmart’s partnership to improve the supply chain process are taking place to 

leverage the strength of each other’s capability so they can realise the significant business 

benefits of DLT implementation [6]. 

However, it is unlikely that DLT and its solutions will replace the current functioning solutions 

based on centralised IT systems. Instead, DLT-based solutions will augment business 

capability by improving the current processes or defining new ones. Organisations will not 

expect DLT-based solutions to work in isolation or silos, but extend the capability of 

implemented IT solutions. For this, DLT-based solutions must collaborate and integrate with 

centralised IT solutions. Without the seamless integration between DLT-based and centralised 

IT systems, enterprises will be less interested in investing and implementing DLT-based 

solutions. This research was focused on this critical challenge of establishing interoperability 

between these DLT and non-DLT based solutions. Based on this, the research developed a 

DLT interoperability framework (DIF). It proposed the integration architecture designs and 

integrated DLT-based solutions that enterprises can consider implementing into their current 

integration architecture and IT solution stacks.  

 

To realise the benefits of DLT, the research community is recommended to address the 

interoperability challenge of DLT solutions with the current IT ecosystem. To design the 

solutions and artefacts to meet these challenges is a complex process and it expects a creative 

advance in the solution and artefacts domain. To address this problem, DSRM is utilised, which 

is a problem-solving paradigm rooted in the science of artificial and engineering [91]. The 

design science research methodology (DSRM) addresses wicked and real-world problems by 

designing and developing innovative artifacts and system knowledge, following the design 

science research process, methodology, and activities. The DSRM is used to define the problem 

and its importance, establish solution objectives, design artefacts to meet the objectives, 

evaluate the artefacts, demonstrate the solution and its benefits, and communicate the research 

outcomes to the research community. The research also followed the seven guidelines and 

fundamental principles of DSR to establish the artefacts to meet the research objectives. In 

designing the two artefacts, the generated knowledge was able to contribute to DSR project 

design knowledge. 
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7.2 Research Contribution 

The literature review of academic and professional journals conducted in this research 

identified that: 

• the lack of integration of DLT-based solutions with traditional IT systems is one of the 

primary obstacles to the broader adoption and implementation of DLT  

• analysed DLT integrated solutions from the literature review are inadequate for 

addressing the interoperability challenges faced by organisations  

This research examined the available DLT solutions integrated with centralised IT systems. 

Based on these solutions and considering the integration requirements and expectations of 

modern enterprises, interoperability principles were formed and explained. Based on these 

principles and integration criteria, an integration framework, the DIF, was conceptualised and 

modelled. The framework has significant implications for practitioners and researchers to:  

• enable enterprises to design an integrated solution integrating a DLT-based solution 

with traditional IT systems;  

• provide pathway in  synergising the new DLT-based capability with current non-DLT 

based capabilities in an organisation;  

• demonstrate that the contemporary interoperability architecture, integration patterns 

and tools popular in modern enterprises are relevant and fit for purpose with the 

suggested integration framework; 

• instantiate a practical, interoperable technical solution integrating DLT system with 

centralised IT systems to provide implementation example of DIF-based solutions; and  

• future research and a DIF-based implementation are expected to further refine the 

components of the DIF. This might establish what might be termed a “golden 

interoperability framework” that professionals and enterprises can reference to 

enhance trust in an integration solution. 

As these points suggest, this research designed, developed, and instantiated the HF DLT 

solution prototype (HDSP) for the MHSC business case to: 

• validate that the integrated DIF-based designed solutions are practical and 

implementable; and 

• ensure that DIF-based solutions establish seamless interoperability between DLT and 

non-DLT technologies at the technical, semantic, syntactic, data, and message levels. 
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7.3 DIF and HDSP Evaluation 

In design science research, the evaluation of artefacts includes evaluating the design research 

process, artefacts produced, and knowledge contribution. Artefact evaluations require different 

expertise and entail substantial resources; research need not extend to evaluation if the design 

solution is novel or offers a significant improvement (as explained in Section 6.1). However, a 

reasonable level of evaluation provides trust to the artefact users in deploying the artefacts and 

utilising the knowledge supporting the artefacts. This research utilised formative (ex-ante) and 

summative (ex-post) evaluation, artefact instantiation and maturity model for enterprise 

interoperability (MMEI) evaluation techniques to evaluate the artefacts. The established DSR 

process was followed, as explained in Chapter 3, and the research knowledge contribution was 

documented.  

The DLT interoperability framework (DIF) was evaluated rigorously and iteratively: 

1. The DIF components were validated against the interoperability principles to ensure the 

DIF met the required expectations.  

2. The DIF was evaluated based on the interoperability maturity model, the maturity 

model for enterprise interoperability (MMEI). This method was applied for event-

driven Distributed Architecture (EDA), Interoperability Architecture using API 

Gateways, ESB and Service Mesh (IAAES), and Generic Interoperability Architecture 

(GIA). This provided the evidence that the DIF was relevant to contemporary 

interoperability architecture, integration patterns, and tools used in modern enterprises. 

3. Information technology professionals utilised the MMEI framework to assess the 

interoperability capability of the DIF. This established the utility of the framework in 

industry and professional domains.  

4. An interoperable DLT solution (the HDSP) was instantiated based on the DIF. This 

demonstrated the implementability and practicality of the solutions designed based on 

the DIF. 

The HDSP’s formative assessment was undertaken to:  

• identify the relevant use case for the solution instantiation in the domain where DLT-

based solution could produce the most favourable business impact 
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• determine DLT platform most appropriate and relevant to modern enterprises for the 

selected MHSC use case 

• choose the centralised technology stack to design the solution prototype that modern 

organisations commonly adopt 

• determine the HF network peers or nodes to enable the accurate selection of network 

participants to optimise the solution's benefits by managing the technical complexity  

Two iterations of the summative evaluation of the HDSP were undertaken, and the outcomes 

were incorporated to iteratively enhance the HDSP solution. These also evaluated the extent to 

which the interoperability principles (e.g., API driven design) and the integration requirements 

of modern enterprises were incorporated into the design of the HDSP. A criterion validation 

was undertaken to ensure that the HDSP instantiation met the supply chain functionality criteria 

and integrate DLT and non-DLT solutions. Semantic and data interoperability was undertaken, 

and the technical interoperability was validated by the fact that the prototype demonstration 

worked as expected. The working demonstration of the HDSP was recorded, and test cases 

execution data and transaction execution times were reported. 

 

7.4 Knowledge Contribution 

This research has made a significant contribution to knowledge in the DSR project knowledge 

base. The DLT interoperability framework and its interoperability principles have been fully 

explained. Based on the solution context and prerequisites, these principles and rules can be 

modified, dropped, or enhanced to meet the specific requirements of the enterprise solution. 

These principles also enable the DIF components and their interactions to be sufficiently 

flexible to meet the expectations of a particular enterprise's IT architecture or ecosystem. The 

interoperability architecture was developed and explained for commonly used integration 

patterns and tools popular in modern enterprise IT ecosystems. This will help enterprises 

modify and enhance the integration architecture and its component, to build an appropriate 

architecture for their specific needs.  

The solution architecture and the end-to-end message flow of the HDSP can be replicated from 

the MHSC solution to other similar use cases. The prototype's messages and data flow pattern 

are centred around the API-driven design of the solution, a popular system design pattern in 

the industry. The characteristics of the solution explain the foundation principles based on 

which the solution prototype was built, and are significantly relevant for DLT-based 
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interoperable solutions. The event handling process has strong utility for many business 

situations among the different DLT platforms available to manage business events originating 

from IoT devices, centralised systems, or DLT-based solutions. The recommended software 

practices to build DLT-based solutions can benefit practitioners wishing to build similar 

solutions. It details the best practices and explains the learning outcome of this research to 

develop API-driven architecture, data design, building a smart contract, and deploying and 

operationalising DLT-based solutions.  

 

7.5 Research Limitations  

This research has made a significant contribution by developing the interoperability principles, 

the DIF based on these principles, and the HDSP solution design and implementation based on 

the DIF. However, the research has three limitations due to the constraints on the project’s 

timeframe, cost, and related resources. After reflecting on the research process and outcomes, 

these limitations were identified as follows: 

1. The artificial or technical evaluation processes and techniques used in the research 

have limitations. Natural evaluation is supposed to have been undertaken by 

implementing the DIF framework and its interoperability principles for an enterprise 

IT ecosystem. Ideally, the research is supposed to have chosen an organisation 

interested in DLT solution implementation, studied its IT eco-system and integration 

architecture, and implemented a multi-DLT network solution to improve its business 

process and integrate this DLT-based system with the current IT system in the selected 

organisation. However, an organisation needs a business commitment and significant 

investment to implement such a broader impacting solution.  

2. Instead of a single DLT network, the HDSP solution have been implemented for a 

multi-DLT network. This could have enabled the design, development, and 

instantiation of all the components of the DIF. However, there are currently few multi-

DLT network implementations; hence, this must not discourage organisations from 

implementing the interoperable solution provided in this research. However, this can 

be considered as a future research opportunity to advance multi-DLT interoperability.  

3. This research has not delved into the performance analysis of HDSP’s transaction 

throughput, latency and scalability. The study of improvement in the number of 

transactions per second, transaction response time per second and number of 
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participants a platform can serve is beyond the scope of this research. It can be referred 

to in the research conducted by Kuzlu et al. [139] and Kuhi et al. [140]. 

 

7.6 Suggestions for Future Research  

Interoperability is a major concern and focus area of many enterprises, especially with 

emerging technologies such as the IoT and DLT. For DLT to be a mainstream and successful 

technology, it must co-exist and communicate with current technologies and IT ecosystems. 

This research has focussed on this aspect and designed the DLT interoperability framework 

(DIF) and built the HDSP, establishing an integrated DLT solution with centralised IT 

technologies. However, more research is required to provide trust and conviction to enterprise 

stakeholders and decision-makers to invest in and implement this technology. The following 

sections explain the possible research areas researchers can focus on to improve the adoption 

and implementation of this promising DLT. 

 

7.6.1 Interoperability Framework Instantiation  

This research developed a DLT interoperability framework that can be instantiated in an 

enterprise environment. Future research can consider an enterprise use case to design DLT 

architecture and instantiate its components to design and develop the integration architecture 

for their IT ecosystem. Such a study would demonstrate the working instantiation of the 

interoperability architecture based on the DIF. It could also conduct structured or semi-

structured interviews and data collection involving the organisation’s IT staff, business 

analysts, and business stakeholders to measure the utility and effectiveness of the DIF. Based 

on the study, the DIF and its components can be further refined and improved.  

This research suggested software engineering practices for DLT solution design, development, 

and instantiation, which can be experimented with and validated in the enterprise environment. 

This knowledge can further feed enterprises' learning outcomes and DLT solution development 

experience into the DSR project knowledge base. This research has also suggested the DIF-

based interoperability architecture for prevalent integration patterns and tools in modern 

enterprises. The learning outcomes from these designs, enhancement in the architecture, and 

the insights gained into the components and layers of the DIF can further feed the expertise 

into the knowledge base to improve the DIF. This can help establish a golden interoperability 
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framework that can be referred to by broader organisations and practitioners, boosting trust in 

the interoperability of DLT-based solutions and systems. 

 

7.6.2 Cross-DLT Interoperability  

Organisations are endeavouring to leverage the technological capabilities of DLT and 

attempting to build distributed solutions. However, it is also acknowledged that no single 

solution will be perfect for addressing all or most issues. For example, the IOTA DLT uses 

direct acyclic graph (DAG) technology to improve the micro-payment capabilities among IoT 

devices and networks. Stellar DLT has been built to smoothen the global payment network 

functioning and use VeChain DLT system to strengthen supply chain business management. 

With the proliferation of such DLT projects, various technology flavours are used to handle 

specific business needs, data quantity, network expectations, and the specific requirements of 

governments, businesses, and social organisations.  

 In the near future, there will be an expectation of inter-DLT interoperability among these 

specialised DLT platforms. This integration will enable the transfer and exchange of messages 

and data among different DLT networks. Even though some DLT networks might work in 

isolation to meet specialised purposes, the data and processing capability will be helpful for 

other DLT networks and centralised IT systems, which must be transferred and shared among 

the networks. Without developing such an ability, the full benefits of DLT will not be realised. 

Therefore, future research can focus on cross-DLT interoperability so that these diverse DLT 

platforms can communicate with one another with simple standards, building a truly 

decentralised and integrated network.  

  

7.6.3 Decentralised Applications Interoperability  

DApps (decentralised applications) run on decentralised or distributed technology. The next 

stage of technological innovation is where DLT forms the infrastructure, and the Smart 

Contracts bind the application users and network participants. Soon, DApps may mimic or 

replace applications like Facebook, Uber, Airbnb, because they are cost-effective, trustworthy, 

and running on decentralised infrastructure. There are many popular DApps based on 

specialised DLT, meeting the specific demands of businesses and users. However, few DApps 

use the limited integration capability across the applications; for example, HyperDragon can 

use kittens or tokens collected from CryptoKitties to progress functionality. However, this area 
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has a significant research gap for building the integrated DApps integrating among DLT 

platforms and centralised IT systems.  

Until recently, interoperability within and among DLT and centralised IT systems was 

considered a significant challenge. However, recent advancements in integrating these diverse 

technologies have provided conviction to researchers and practitioners in using the cross-

technological capabilities. In DApps, integration offers significant benefits such as:  

a) smooth information sharing among the systems and applications 

b) execution of Smart Contracts across DLTs 

c) sharing DLT-based solutions and collaborating on enterprise development; and 

d) gaining deep knowledge in a few DLT platforms and reusing the capabilities of other 

DLT platforms.  

The need for the DApps interoperability framework will grow as more platforms, applications, 

distributed networks, and systems are developed. Platforms like Polkadot, Ark, Cosmos, have 

realised this importance; however, more researchers and institutes need to collaborate to enable 

practitioners to build interconnected applications to tap the capability of DLT and non-DLT 

based applications.  
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Appendix A 

 

The research has developed a Hyperledger Fabric DLT Solution Prototype (HDSP), explained 

in detail in Chapter 5. The source code of the solution, both front-end (HDSP_UI) and back-

end (HDSP_Hyperledger_Code), is available on GitHub at the below mentioned link: 

• HDSP_Prototype https://github.com/hushare1/PhD-Prototype-HDSP   

https://github.com/hushare1/PhD-Prototype-HDSP
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