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a b s t r a c t

Insulin resistance (IR), or low insulin sensitivity, is a major risk factor in the pathogenesis

of type 2 diabetes and cardiovascular disease. A simple, high resolution assessment of IR

would enable earlier diagnosis and more accurate monitoring of intervention effects. Cur-

rent assessments are either too intensive for clinical settings (Euglycaemic Clamp, IVGTT)

or have too low resolution (HOMA, fasting glucose/insulin). Based on high correlation of a

model-based measure of insulin sensitivity and the clamp, a novel, clinically useful test

protocol is designed with: physiological dosing, short duration (< 1 h), simple protocol, low

cost and high repeatability. Accuracy and repeatability are assessed with Monte Carlo anal-

ysis on a virtual clamp cohort (N = 146). Insulin sensitivity as measured by this test has a
C
Tiabetes screening

lucose modeling

nsulin modeling

coefficient of variation (CV) of CVSI = 4.5% (90% CI: 3.8–5.7%), slightly higher than clamp ISI

(CVISI = 3.3% (90% CI: 3.0–4.0%)) and significantly lower than HOMA (CVHOMA = 10.0% (90%

CI: 9.1–10.8%)). Correlation to glucose and unit normalised ISI is r = 0.98 (90% CI: 0.97–0.98).

The proposed protocol is simple, cost effective, repeatable and highly correlated to the

gold-standard clamp.
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the gold-standard to assess insulin sensitivity. However, it 21

is clinically very intense and thus not practicable for large 22
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. Introduction

major risk factor in the pathogenesis of type 2 diabetes and
ardiovascular disease is insulin resistance (IR) [1]. IR, or low
nsulin sensitivity, is defined as a reduced ability of the cells
o utilise insulin to take up glucose as energy. The pancreas
ries to compensate for increasing IR by increasing its insulin
roduction, often leading to an exhaustion of the insulin pro-
ucing beta-cells, resulting in impaired fasting glucose (IFG).
n early diagnosis of IR can enable early intervention and
U
N
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elay the onset of diabetes, thus greatly reducing the effects
nd cost of further complications.

∗ Corresponding author. Tel.: +64 3 364 2987x7486.
E-mail address: tlo16@student.canterbury.ac.nz (T.F. Lotz).

169-2607/$ – see front matter © 2007 Elsevier Ireland Ltd. All rights res
oi:10.1016/j.cmpb.2007.03.007
© 2007 Elsevier Ireland Ltd. All rights reserved.

The ability to sensitively and accurately identify individu-
als with IR is critical for the implementation and assessment
of intervention programmes in high risk groups. To diagnose
IR in population studies and to be applicable in clinical set-
tings, a test has to be simple and cost effective. However, it
must also be accurate enough to assess small changes in IR or
the progression of treatment.

The euglycaemic-hyperinsulinaemic clamp (clamp) [2] is
COMM 2642 1–11
a new model-based method for insulin sensitivity testing, Comput.

populations [3,4] or typical clinical use. Hence, simpler meth- 23

ods have emerged, such as the insulin tolerance test (ITT)

erved.
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[5], the intravenous glucose tolerance test (IVGTT) [6–8] and
the oral glucose tolerance test (OGTT) [9–11]. The intravenous
tests mostly use the minimal model of glucose kinetics to
quantify insulin resistance [12], whereas the OGTT has been
analysed with a variety of approaches [10,13]. All these tests
rely on a steady state glucose concentration in the end to
avoid unmodeled feedback dynamics in insulin and glucose
after a perturbation, either through insulin and glucose infu-
sions, bolus injections or oral glucose loads. They require 2–4 h
to perform. The model-based methods require frequent sam-
pling of glucose and insulin.

Simple, fasting assessments include Homeostasis Model
Assessment (HOMA) [14] and Quantitative Insulin Sensitivity
Check Index (QUICKI) [15]. These metrics require only one fast-
ing sample of glucose and insulin, but are less accurate and
repeatable due to varying fasting conditions, i.e. a pulsatile
insulin secretion pattern [16], natural variability in fasting glu-
cose or simply assay errors [17,18]. To be a useful clinical tool
for repeated and easy use, these measures must correlate well
with the gold-standard clamp test. To date, they have not
achieved enough resolution to accurately assess a wide range
in insulin sensitivity, limiting their application to a rough ini-
tial estimation of at-risk populations.

However, they are the primary avenue for diagnosis of type
2 diabetes and IFG. As a result of their low resolution the
diagnosis can occur very late in the aetiology of the disease,
and after some physiological damage has occurred [19,20].
Combined with incomplete compliance with regular medical
checks, many individuals in at-risk groups can go undiagnosed
for several years [21,20].

This research engineers a new model-based insulin sen-
sitivity test, relying on the dynamic state after a low-dose
glucose and insulin input. During this transient state, the
metabolic system model employed has been shown to be
highly correlated (r = 0.97) to the clamp test [22,23]. The goal
is a highly accurate, short and cost effective test that is useful
in a clinical setting and overcomes the limitations of currently
used metrics.

The main performance criteria for this test are thus accu-
racy and repeatability. To assess these criteria, a Monte Carlo
analysis is performed on test simulations, taking into account
significant errors. These errors include: errors in laboratory
assays, dilution of input solutions, timing of samples, and
errors due to unmodeled dynamics. These latter errors could
include poorly or unmodeled endogenous glucose production
(EGP) and first pass hepatic insulin extraction. The simulations
are based on model-based insulin sensitivity values obtained
from fitting a cohort of 146 euglycaemic-hyperinsulinaemic
clamp tests, covering a range of metabolic responses. Rather
than assessing clinical/physiological validity of the estimated
insulin sensitivity, this study aims at validating the robustness
of the proposed test in a noisy clinical test environment.

2. Methodology
 U
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2.1. Procedure

The simulation procedure used in this study is shown in the
schematic in Fig. 1, and explained in more detail in the follow-
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FFig. 1 – Simulation procedure and performance metrics
used in this study.

ing sections:

(1) Insulin sensitivity from 146 euglycaemic-hyperinsulinae-
mic clamp tests [24] is calculated from the test data (ISI).

(2) A virtual cohort is created by fitting the metabolic model
to the clamp tests, resulting in a model-based insulin sen-
sitivity for each subject (SI).

(3) Monte Carlo simulations on the proposed test protocol are
run on the virtual cohort by adding random noise from
published error levels to measurements and inputs, and
accounting for potentially unmodeled regulatory dynam-
ics.

(4) The metabolic model is fit to the simulated test profiles
(glucose, insulin and C-peptide concentrations), resulting
in insulin sensitivity from the proposed low intensity test
(SI−MC).

(5) Performance of the method is assessed by the coefficient
of variation (CV = S.D./mean) of SI−MC and by correlating
SI−MC with ISI and SI. Additional comparisons are made to
HOMA.

2.2. Test protocol

The test is designed to be a short dynamic test to assess
insulin sensitivity from a metabolic system model fit to the
transient plasma glucose and insulin curves after intravenous
(IV) bolus injections of glucose and insulin. The model then
relates interstitial insulin to plasma glucose to determine the
subject’s sensitivity to insulin. The protocol has to account
for a wide variety of individuals (lean, obese, insulin resis-
tant, diabetic) and be short, robust and simple enough to be
applicable in a clinical setting. The dosing should be lower
than in an IVGTT to assess a more physiological state and
to minimise regulatory responses, such as suppression of
endogenous glucose production (EGP) and pancreatic insulin
secretion.

The protocol used in this development study results in
COMM 2642 1–11
a new model-based method for insulin sensitivity testing, Comput.

insulin in the example in Fig. 2. It is 55 min long and includes: 114

(1) Inject a fixed dose of glucose (5, 10 or 20 g) at 0 min. 115

(2) Inject a fixed dose of insulin (0.5, 1 or 2 U) at 10 min.
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Fig. 2 – Example of simulated profiles of glucose (left) and insulin (right) responses to the low-, medium- and high-dose test
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rotocols on the same virtual subject. Discrete measuremen
urves).

3) Sample blood at −10, 0, 5, 10, 15, 20, 25, 30, 35, 45 min and
assay for glucose, insulin and C-peptide concentrations.

4) Fit metabolic models of glucose, insulin and C-peptide to
dose–response curves.

5) Determine insulin sensitivity from model parameter SI.

A more frequent sampling directly after the injections, as
one in an IVGTT is not practicable, as the mixing process

n plasma can take up to 5–8 min to complete, and earlier
easurements may thus be inaccurate [25].
The dosing of 10 g of glucose and 1 U of insulin was chosen

s it is physiological and minimises the risk of hypoglycaemia.
t is also large enough to provide a good signal to noise ratio.
he protocol was also simulated with half (5 g glucose/0.5 U

nsulin) and twice (20 g glucose/2 U insulin) the dose to assess
ifferences in expected accuracy. The 55-min length and sam-
le numbers are primarily to maximise data to engineer a final
0–45 min, less intense test with fewer samples.

.3. System model
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simpler form of the glucose–insulin metabolic system model
hown in Fig. 3 has been presented previously and validated
n a wide range of subjects, namely on retrospective intensive

ig. 3 – Schematic of the glucose–insulin model employed
n this study. The three compartments represent different
olumes of distribution. Parameters are explained in detail
n Section 2.3.
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care unit (ICU) data [26], in glycaemic control trials in criti-
cal care [27–30] and on euglycaemic-hyperinsulinaemic clamp
and IVGTT data on healthy, insulin resistant and type 2 dia-
betes subjects [22,31]. To account for metabolic differences
between critically ill and healthy subjects, a time-varying
insulin sensitivity parameter was employed in validations on
critically ill subjects. On non-ICU populations, this correc-
tion was not necessary and the model was able to accurately
account for all dynamics [22,31].

The glucose–insulin pharmacodynamic model is derived
from the Minimal Model by Bergman et al. [6]. This model is
further enhanced by glucose clearance saturation dynamics
in the form of a Michaelis–Menten equation [32,33].

The two compartment insulin pharmacokinetics model
used here is the primary enhancement from the original sys-
tem model. It is derived from earlier studies by Sherwin et al.
[34]. The accessible central compartment can be understood as
plasma plus fast exchanging tissues. The peripheral compart-
ment represents interstitial fluid. The model accounts for the
major losses of insulin from the central compartment by the
liver and the kidneys and the loss out of the peripheral com-
partment, mainly insulin binding and eventual degradation by
the cells. Transport between the compartments is assumed
to be bi-directional diffusion. The resulting system model is
defined by the following equations [31]:

Ġ = −pGG − SI(G + GE)
Q

1 + ˛GQ
+ P

VG
+ EGP, G(0) = 0 (1)

Q̇ = −nCQ + nI

VQ
(I − Q), Q(0) = 3

5
IE (2)

İ = −nKI − nLI

1 + ˛II
− nI

VP
(I − Q) + uex

VP
+ (1 − x)

uen

VP
, I(0) = IE

(3)

where G is the concentration of plasma glucose above equilib-
rium level G (mmol l−1); I the concentration of plasma insulin
COMM 2642 1–11
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E

(mU l−1); Q the concentration of insulin in interstitial fluid 169

(mU l−1); GE the equilibrium (fasting) plasma glucose concen- 170

tration (mmol l−1); IE the equilibrium (fasting) plasma insulin 171

concentration (mU l−1); uex, uen the exogenous, endogenous 172
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insulin input rate (mU min−1); P the exogenous glucose input
rate (mmol min−1); EGP the endogenous glucose produc-
tion rate (mmol l−1 min−1); pG the clearance rate of plasma
glucose at basal insulin (min−1); SI the insulin sensitivity
(l mU−1 min−1); VP the plasma volume (+Fast exchanging tis-
sues) (l); VQ the interstitial fluid volume (l); VG the glucose
distribution volume (l); x the fractional first pass hepatic
insulin extraction (decimal % value); nK the kidney clearance
rate of insulin from plasma (min−1); nL the liver clearance
rate of insulin from plasma (min−1); nI the diffusion constant
of insulin between compartments (l min−1); nC the cellu-
lar insulin clearance rate from interstitium (min−1); ˛I the
Michaelis–Menten parameter for liver clearance rate satu-
ration (l mU−1); ˛G is the Michaelis–Menten parameter for
insulin-stimulated glucose clearance saturation (l mU−1).

2.4. Parameter fitting and identification

The parameters are identified a priori where possible and
using an integral based fitting method for patient specific
parameters, as described in refs. [26,22]. In the insulin model
parameters VP, VQ, nI, nK are assumed to be identical to corre-
sponding values for C-peptide, due to the similar molecular
weight of insulin (5800 Da [35]) and C-peptide (3600 Da [35])
and their similar passive properties. The parameters are taken
from a well validated population model of C-peptide kinetics
[36]. Variable nC is calculated to achieve a steady state con-
centration ratio of I/Q = 5/3 [37–39], and ˛I = 0.0017 is a mean
population value from [40,26].

In the glucose model, parameter pG = 0.01 is fixed to an
approximate population value [40,26]. Note that pG can be
estimated on some data sets, as in clinical glycaemic con-
trol trials [41,42], but the data in this study does not have
the resolution to uniquely identify it. In addition, it is not a
dominant dynamic in the presence of low doses and exoge-
nous insulin [32,33]. Equilibrium glucose concentration GE is
set to the fasting glucose level of each subject, as shown in the
cohort description in Table 1. Glucose clearance saturation is
set to ˛G = 0 in this study, as the subjects are fasted and with
the low dose injection, saturation is not very likely. This value
also better matches the assumptions used in calculating ISI
U
N
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for the supra-physiological clamp test [2].
The remaining parameters, nL and x for insulin and SI

and VG for glucose are identified using the integral based
fitting method described in more detail by Hann et al. [26].

Table 1 – Description of the intervention study population from
cohort in this study

Pre-intervention (N =
Mean (S.D.) Ra

Age (all N = 146) 46.8 (8.9) 30–6
Fasting glucose (mmol l−1) 4.9 (0.6) 4.0–6
Fasting insulin (mU l−1) 19.9 (12.1) 6.6–8
BMI (kg m−2) 34.4 (4.9) 24.5
Weight (kg) 96.7 (15.3) 67.9
ISI ((mg/kg/min) (mU/l)−1) 3.03 (0.9) 1.16
HOMA (mU mmol−1) 4.4 (3.2) 1.4–2
 P
R
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Briefly, the differential equations are integrated in different
time-steps by interpolating between discrete measurements,
transforming the non-convex non-linear problem into a set of
linear equations that can be easily solved using linear least
squares (LS). The method is convex and not starting point
dependent, unlike commonly used non-linear recursive least
squares (NRLS). Errors in the integration of equations, i.e. due
to noise, are not critical, as the method minimises areas under
the curve, not absolute differences, thus effectively filtering
noisy data [26,43]. The errors have been shown to be, in the
limit, on the order of model error [26]. Integrating Eq. (1) in the
interval [t0, t1] yields:

G(t1) − G(t0) = −pG

∫ t1

t0

G(t) dt − SI

∫ t1

t0

(G(t) + GE)
Q(t)

1 + ˛GQ(t)
dt

+ 1
VG

∫ t1

t0

P(t) dt +
∫ t1

t0

EGP(t) dt (4)

This step can be repeated for different time intervals,
resulting in a set of linear equations that can be readily solved.

Ā

[
SI,

1
VG

]T
= b̄ (5)

The same method is applied to the measured plasma
insulin profile I(t) to estimate parameters nL and x, using the
analytical solution for Q(t) in integrating Eq. (3).

Q(t) = nI

VQ

∫ t

0

I(�) e−(nC+(nI/VQ))(t−�) d� (6)

The result is a set of linear equations:

B̄[nL, x]T = c̄ (7)

The time intervals used in the integrations can be chosen
to suit the available data density, as long as the minimum
number of intervals required are used to ensure an optimal
LS solution [26]. In this study, two sets of measured data are
COMM 2642 1–11
a new model-based method for insulin sensitivity testing, Comput.

The optimal interval length was identified as 2 min in this 245

study, resulting in 28 integral equation for each data set. No 246

additional weighting or normalisation was performed with the 247

equations.

McAuley et al. [24], used to create the virtual simulation

73) Post-intervention (N = 73)

nge Mean (S.D.) Range

8
.8 4.8 (0.6) 3.5–6.9
4.3 17.2 (11.2) 5.7–65

–45.2 33.2 (5.0) 23.6–44.8
–140.8 93.4 (15.5) 62.5–142.4
–5.15 3.79 (1.3) 1.74–8.37
4.4 3.8 (3.0) 0.9–19.9
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.5. Test simulation on clamp cohort

o simulate the proposed test and make it comparable to the
lamp, a simulation cohort was created using metabolic infor-
ation estimated from a set of clamp trials performed by
cAuley et al. [24] to study the effects of lifestyle interventions

n insulin resistance. The data consist of 146 trials performed
n 73 individuals, once before and once after a 16 week inter-
ention. Details of the clamp study population are given in
able 1.

The clamp is a test to determine insulin sensitivity in a
esearch setting. It is currently the most accurate method to

easure insulin sensitivity, but too intense and expensive to
e used in a clinical setting. A constant insulin infusion is
aired with a varying glucose infusion to achieve a steady
tate glucose concentration. Blood is sampled every 10 min
or 2–4 h. Due to the supra-physiological dosing, it is assumed
hat endogenous glucose and insulin are fully suppressed
fter 60 min. The insulin sensitivity index (ISI) derived from
his test is the ratio of the average glucose infusion rate to
he mean plasma insulin concentration during steady state
ISI = Pss/Iss).

The clamp trials were fitted by the model described in
qs. (1)–(3) by estimating parameters SI and nL. Mean absolute
rrors of the fits were 5.9% (S.D. 6.6%) for glucose and 6.2% (S.D.
.4%) for insulin [22]. Insulin sensitivity, SI, was estimated as
ime-varying, piecewise constant during transient and steady
tate [31]. The steady state value was taken for the subse-
uent simulations. Mean nL estimated from the clamps was
ery low compared to that seen on dose–response tests. This
an be caused by various factors, i.e. heavy saturation of the
iver being exposed to such large supra-physiological concen-
rations [44], reduced clearance in obesity [45] or incomplete
uppression of pancreatic insulin during the clamp, which
s not accounted for in the model fit and results in under-
stimated nL. Incomplete suppression of pancreatic insulin
ecretion is particularly likely, given the shorter and lower
U
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ose method used in this clamp study [3].
To achieve a more realistic insulin profile, nL was thus

ncreased by 0.1 min−1 for all individuals based on empiri-
al testing on various dose–response data (unpublished). This

Table 2 – Simulation model parameters calculated and estimate
virtual simulation cohort

pre-intervention (N = 73

Mean (S.D.) Ran

VP(l) 4.52 (0.37) 3.98–5
VQ(l) 5.67 (0.54) 4.52–7
VG(l) 12.22 (1.06) 10.20–
nI(lmin−1) 0.28 (0.027) 0.22–0
nK(min−1) 0.060 (0.0024) 0.053–
nL(min−1) 0.15 (0.027) 0.10–0
nC(min−1) 0.032 (0.00037) 0.032–
SI(10−4 l mU−1 min−1) 4.91 (1.54) 2.08–8
pG(min−1)
˛I(l mU−1)
˛G(l mU−1)
 P
R
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increase results in a more realistic simulated insulin profile
and does not change the insulin sensitivity. Thus, the out-
come of the test and the performance of the simulations are
not affected. Due to the low resolution of the clamp data, fur-
ther parameters had to be identified a priori, as described in
Section 2.4. In addition, VG was set to VG = 1.2(VP + VQ), as the
clamp data is not dense enough to allow a unique identifica-
tion. A 20% larger volume than the total insulin distribution
volume was chosen, as glucose distribution volume has been
found to be larger than for insulin, due to fast hepatic storage
and non-insulin dependent uptake by the brain [46,47]. This
choice does not affect the outcome of the study, as SI and VG

are subsequently identified from the test profiles as described
in Section 2.4.

Model simulation parameters determined from the clamp
population as described in Sections 2.4 and 2.5 are given in
Table 2. These parameter values are used to create the virtual
cohort on which the test protocol is simulated.

Pancreatic insulin secretion is not known for this cohort, as
C-peptide data is not available. A healthy pancreas responds
to a glucose input by secreting insulin in two phases. The
first phase consists of an insulin burst, lasting approxi-
mately 10 min, followed by a second phase of lower dose,
but longer duration [35]. Insulin secretion can be suppressed
or reduced by exogenous insulin, with a full suppression
only achievable by a prolonged infusion of large amounts of
insulin [3]. In the protocol for this study, an insulin bolus is
injected 10 min after glucose, thus not affecting first phase
burst, but suppressing second phase insulin secretion. Sim-
ulated total insulin secretion rate is thus reduced back to
its basal rate after the bolus injection of exogenous insulin
[23,48,49].

Pre-hepatic endogenous insulin secretion can be simu-
lated by a basal secretion rate, superimposed by a first-phase
burst. The burst peaks at a rate of 72 mU min−1 m−2BSA [50,51],
which is dependent on body surface area (BSA), and is fol-
lowed by an exponential decay lasting 10 min. For the lower
COMM 2642 1–11
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and higher dose protocol, this first-phase burst is halved and 325

doubled, respectively [52]. Basal endogenous secretion ub is 326

calculated from the steady state fasting insulin balance using 327

Eq. (3) with insulin concentrations Ib and Qb = (3/5)Ib, and a 328

d as described in Sections 2.4 and 2.5 to generate the

) post-intervention (N = 73)

ge Mean (S.D.) Range

.93 4.46 (0.36) 3.90–5.96

.47 5.54 (0.57) 4.44–7.26
15.67 12.00 (1.08) 10.00–15.75
.36 0.27 (0.029) 0.21–0.36
0.064 0.060 (0.0028) 0.053–0.064
.21 0.16 (0.022) 0.10–0.20
0.033 0.032 (0.00038) 0.032–0.033
.29 6.18 (2.13) 3.07–13.0

0.01 (fixed)
0.0017 (fixed)

0 (fixed)

dx.doi.org/10.1016/j.cmpb.2007.03.007
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randomly generated first pass hepatic extraction x:

ub = VPIb
1 − x

(
nK + nL

1 + ˛IIb
+ 2

5
nI

VP

)
(8)

Total pre-hepatic endogenous insulin secretion is thus
modeled as:

uen(t) =
{

ub + (72BSA) e−0.3t 0 ≤ t < 10 min
ub t < 0 and t ≥ 10 min

(9)

First pass hepatic extraction is often approximated around
50%, but is generally higher in fasting state [53–55], often
reaching values of over 90% [54]. As a conservative choice,
x is thus determined from a uniform distribution of values
between 0.5 and 0.95 (almost complete extraction). Using this
model, the total insulin secreted and the peak during the first
phase match values reported in the literature [50,51].

Basal endogenous glucose production EGPb is calculated
from the fasting steady state glucose balance in Eq. (1), where
Qb = (3/5)Ib and G(0) = 0:

EGPb = SIGE
(3/5)Ib

1 + ˛G(3/5)Ib
(10)

2.6. Monte Carlo analysis

The Monte Carlo analysis simulates test result accuracy in the
presence of assay, timing, insulin and glucose dilution errors,
and unmodeled suppression of endogenous glucose produc-
tion. The assay errors are assumed normally distributed with
inter- and intra-batch coefficients of variation (CVinter, CVintra)
reported by the assay manufacturers. Random intra-batch
errors are generated for each sample of a test and added to
an inter-batch error, equal for all samples of a given test. As
CVintra is assumed to be included in the reported CVinter, the
CV to be superimposed on CVintra (CVadd) is calculated:

CVadd =
√

CV2
inter − CV2

intra (11)

Errors in timing of samples are caused by variations in
blood sampling procedure and are assumed to be normally
distributed between ±30 s around the sampling time. Due to
anticipation of these small complications, the sampling pro-
cedure is usually initiated early, thus sometimes resulting in
early sampling. Dilution errors can occur when drawing up
glucose in a syringe or when diluting insulin, which is typically
distributed in highly concentrated form (e.g. 100 U/ml). Insulin
has also been reported to bind to inner walls of syringes and
tubes when being administered, causing a loss of insulin dur-
ing the dilution process [56]. As these are well known problems
and usually taken into account by the investigator and the
choice of equipment, the errors are assumed to be normally
distributed around the mean.

Suppression of EGP is caused by increases in plasma insulin
or glucose [49]. The amount and efficiency of suppression is
U
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dependent on the administered dose [57]. With the low dose
this test aims at, the suppression is likely not as large as dur-
ing an IVGTT (75–100% [58,59]), but cannot be neglected. Since
this level of suppression cannot be easily measured, a linear
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reduction of EGP is assumed from the time of insulin input,
reaching a randomly generated maximal suppression EGPsuppr

at the end of the test. It is defined:

EGP(t) =
{

EGPb (1 − EGPsupprt/tend) tend ≥ t > 0 min
EGPb t ≤ 0 min

(12)

The maximal suppression at the 10 g/1 U dose was chosen
randomly from a normal distribution between 25 and 75%.
For the lower (5 g/0.5 U) and higher (20 g/2 U) dose variants,
EGPsuppr was shifted to 0–50 and 50–100%, respectively. Stud-
ies have shown a direct dose-dependent relationship between
glucose concentration and suppression of EGP [57], validating
this basic approach.

The random disturbances thus assumed in this Monte
Carlo analysis are:

• Glucose assay errors: CVintra = 1%; CVinter = 2% [18]
• Insulin assay errors: CVintra = 2%; CVinter = 2.8% [18,60]
• C-peptide assay errors: CVintra = 3%; CVinter = 3.4% [61]
• Glucose input error: CV = 1.67%
• Insulin input error (dilution): CV = 3.33%
• Sample timing error: S.D. 10 s
• First pass hepatic insulin extraction: x ∈ [0.50, 0.95]
• Maximal suppression of EGP: EGPsuppr = 50% (10 g/1 U); 25%

(5 g/0.5 U); 75% (20 g/2 U) (S.D. 8.3%)

The required number of Monte Carlo simulations was iden-
tified to be 500 in a convergence test, as the variability in the
standard deviation (S.D.) of the resulting SI value identified did
not change significantly with more runs.

An example of the resulting simulated profiles of glucose
and insulin responses during the proposed test, employing all
three dosing options on one virtual subject, is shown in Fig. 2.

2.7. Performance metrics and statistics

Performance of the method was assessed by correlation (Pear-
son correlation) of the estimated insulin sensitivity SI with the
gold-standard clamp test. Accuracy of estimation of SI is given
as its coefficient of variation (CV = S.D./mean). The distribu-
tion of SI can be assumed to be normal, as assessed by the
single sample Kolmogorov–Smirnov (KS) test.

Accuracy of ISI was assessed by Monte Carlo analysis with
assay errors as described above and a glucose infusion error
of 10%. Accuracy of HOMA is affected by assay errors and pul-
satile basal insulin secretion. It is estimated through Monte
Carlo analysis with a CV of 10%, as reported by Wallace et al.
[17].

3. Results

The model parameter for insulin sensitivity fit from clamp
trials is SI = 5.55(S.D.1.95) × 10−4 l mU−1 min−1. This value
is higher than clamp ISI normalised by steady state glu-
COMM 2642 1–11
a new model-based method for insulin sensitivity testing, Comput.

cose and corrected for units (ISIG = ISI/G × weight/VG) ISIG = 422

3.23(S.D.1.16) × 10−4 l mU−1 min−1. This difference is due to 423

the different compartmental insulin concentrations used in 424

the respective calculations. The clamp uses plasma insulin (I) 425
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Fig. 4 – Correlation SI−MC and ISIG with 90% CI’s of each
m
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etric and mean regression line.

nd the modeled SI uses interstitial insulin (Q). Clamp fitted SI

nd measured ISI correlate r = 0.93. However, SI and ISIG cor-
elate much better r = 0.99. The higher correlation with ISIG is
result of the unit correction, which reduces variability intro-
uced by other parameters and imperfect clamping to a basal
lucose level [9].

Mean insulin sensitivity resulting from Monte Carlo anal-
sis is SI−MC = 5.56(S.D.1.96) × 10−4 l mU−1 min−1and thus
dentical to SI. Correlations with ISI and ISIG are slightly lower,
t r = 0.91 (90% CI: 0.90–0.92) and r = 0.98 (90% CI: 0.97–0.98),
espectively. Fig. 4 shows the correlation plot of SI−MC and ISIG

ith the 90% CI’s of each metric.
Intra-individual CV in SI−MC using the proposed low inten-

ity test method is CVSI = 4.5% (90% CI: 3.8–5.7%). This value
s larger than the CV for ISI, CVISI = 3.3% (90% CI: 3.0–4.0%),
U
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ut significantly lower than the CV for HOMA, CVHOMA = 10.0%
90% CI: 9.1–10.8%). The three intra-individual CV’s are shown
n Fig. 5 for all N = 146 subjects.

ig. 5 – Intra-individual coefficients of variation for SI−MC

CVSI), ISIG (CVISI) and HOMA (CVHOMA).
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The increase in insulin sensitivity after lifestyle inter-
vention [24] was captured by the model, with SI increasing
from SI−MC(BEFORE) = 4.99 (S.D. 1.47) × 10−4 l mU−1 min−1 to
SI−MC(AFTER) = 6.19 (S.D. 2.02) × 10−4 l mU−1 min−1. This value
matches the increase in ISI shown in Table 1. Correlation
between the change in SI−MC and ISIG, �SI−MC and �ISIG is
r = 0.96 (90% CI: 0.96–0.97) with a mean regression line of
ISIG = 0 + 0.58SI−MC. Note that the ∼ 60% slope is due to the
fixed 3/5 ratio of insulin concentration in interstitium (Q) and
plasma (I) during steady state. Specifically, ISI is calculated
using I and SI is identified using Q.

The intra-individual CV of SI−MC decreased slightly from
CVSI(BEFORE) = 4.6% (90% CI: 3.8–5.9%) to CVSI(AFTER) = 4.3%
(90% CI: 3.7–5.2%). A strong correlation of r = 0.83 could be
seen between a decrease in insulin sensitivity ISI and intra-
individual CV in SI−MC. Fig. 6 shows the linear relationships
between ISIG and CVSI before and after intervention. A clear
reduction in accuracy of estimated SI can be seen in subjects
with very low insulin sensitivities.

Re-simulating the low intensity test protocol with different
doses of glucose and insulin showed a clear dependence of
accuracy of the method on the dose employed, as can be seen
in Fig. 7. Administering 5 g glucose and 0.5 U insulin resulted in
CVSI = 6.9% (90% CI: 4.9–9.9%). The high dose variant with 20 g
glucose and 2 U insulin resulted in a more accurate measure
with CVSI = 3.6% (90% CI: 3.0–4.5%), which is very close to the
accuracy of ISI. Correlation of CVSI with ISIG was stronger in
the low dose protocol (r = 0.90) but showed a weaker linear
relationship in the high dose variant (r = 0.46).

Simulated hepatic insulin clearance nL and simulated first
pass hepatic insulin extraction x were underestimated slightly
in the Monte Carlo analysis, by −4.4% (90% CI: −16.5–8.1%)
and −2.2% (90% CI: −12.4–7.3%), respectively. Simulated glu-
cose distribution volume VG was overestimated by 1.7% (90%
CI: 0.7–3.5%).
COMM 2642 1–11
a new model-based method for insulin sensitivity testing, Comput.

4. Discussion

The model-based protocol presented was developed with 479

the main goal to provide a clinically useful, highly accurate 480
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Fig. 7 – CVSI compared to CVISI and CVHOMA simulating the
protocol with 5 g glucose and 0.5 U insulin (above), and 20 g
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glucose and 2 U insulin (below).

method to diagnose insulin resistance (IR), that is highly cor-
related to the gold-standard euglycaemic-hyperinsulinaemic
clamp. To be clinically useful, a test must be accurate, short
and simple. To correlate highly to the clamp, a test must mea-
sure the same effects as the clamp. The most widely used and
accepted tests developed so far (e.g. IVGTT, OGTT and HOMA),
are all judged by their ability to correlate to the clamp. This
goal has been achieved only with some significant variability,
yielding a wide range of IVGTT-clamp correlations between
r = 0.44 − 0.89 (e.g. [62–64]).

A main obstacle is that every test effectively measures a
different effect [4]. The clamp relies on a steady state glucose
concentration during supra-physiological insulin and glu-
cose infusions, in which endogenous insulin and glucose are
assumed to be completely suppressed. Its metric for insulin
sensitivity is the rate at which glucose is disposed in the body
with a given plasma insulin concentration. In contrast, the
IVGTT fits the Minimal Model [6] to the glucose response curve
after a high-dose injection of glucose and insulin by estimat-
ing three model parameters (p1, p2, p3), with insulin sensitivity
being the ratio SI−MM = p3/p2. Fitting three parameters has
the disadvantage that a longer test is required to allow for
Please cite this article in press as: T.F. Lotz et al., Monte Carlo analysis of
Methods Programs Biomed. (2007), doi:10.1016/j.cmpb.2007.03.007

enough resolution and data and thus inter-subject variability
is distributed amongst these three parameters. In general, the
IVGTT is considered the best clamp-correlated method, with
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correlation values of up to r = 0.89 being reported [64]. How-
ever, lower results as low as r = 0.44 have also been reported
[62].

Other popular methods, widely used due to their simplicity,
are surrogate measures such as the OGTT (measuring the rate
of glucose decay after an oral glucose load) and HOMA (based
on one fasting glucose and insulin sample). These methods
are less correlated to the clamp, as they too measure different
effects. In particular, HOMA can be very variable due to a pul-
satile secretion of insulin [16] and assay inaccuracies, leading
to a CV > 10% [17].

The proposed low intensity protocol presented was
designed to specifically measure the same effects as the clamp
in a much shorter and less intense transient test. Variability
is constrained to insulin dependent effects in the periphery,
controlled by the insulin sensitivity parameter SI. Modeled SI

is lower than clamp ISI, but it does not introduce additional
variability. The difference is consistent across all individuals,
due to the fixed ratio of steady state plasma (I) and intersti-
tial (Q) insulin in the model. The model and fitting method
employed have been well validated [26,22] and correlated to
clamp data in transient and steady state [31], resulting in very
high correlations (r = 0.97 in transient state, r = 0.99 in steady
state) [31].

The proposed method was able to estimate SI with high
accuracy, given the assay errors and unmodeled suppression
of EGP. CVSI was slightly larger than CVISI. This larger CV
can be expected given the highly dynamic state of the pro-
posed test. Accuracy decreased drastically by 53% in the lower
dose test (5 g glucose, 0.5 U insulin), though accuracy was still
better than HOMA. The higher dose test (20 g glucose, 2 U
insulin) improved accuracy by 20%. As suppression of EGP was
adjusted to the dose accordingly, being higher in the high dose
test, the still improved accuracy suggests a strong dependence
on the signal to noise ratio of the test, with EGP playing a minor
role.

In spite of the improved accuracy at higher dose, it is not
as practical for a simple clinical test, for a variety of reasons.
As IV glucose is commonly available in 50% solution, 20 g
requires a 40 ml injection of a very viscous solution, which
causes discomfort for the test subject. The 2 U insulin dose
also increases risk of hypoglycaemia, particularly in lean sub-
jects. Finally, an intravenous glucose bolus of 20 g is on the
upper physiological range, possibly triggering other glucose
regulatory effects not accounted for in this simulation, which
could in reality worsen results. The 10 g glucose and 1 U insulin
dose is only slightly less accurate, but a lot easier and safer
to administer in clinical practice. Mean and range of CVSI

are greatly reduced in the step from low to medium dose,
whereas the improvement from medium to high dose is not
as pronounced any more. This decay is shown in Fig. 8, which
illustrates that the medium dose of 10 g glucose and 1 U insulin
appears to be the best compromise in practicability, safety and
accuracy.

A strong negative correlation was seen between a decrease
in insulin sensitivity ISI and CV . This correlation was even
COMM 2642 1–11
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in the high dose test. The origin of this effect is likely phys- 563

iological, as insulin-dependent effects are less dominant in 564

subjects with low insulin sensitivity, leading to a reduced sig- 565
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Fig. 8 – CVSI with the 90% confidence intervals for the low
(5 g glucose, 0.5 U insulin), medium (10 g glucose, 1 U
insulin) and high (20 g glucose, 2 U insulin) dose test
v
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al to noise ratio. As can be seen with the high dose test, this
orrelation can be reduced by increasing the signal. In con-
rast, the correlation is stronger with a weaker signal as shown
n the low dose test.

Overall, the method is able to estimate the underlying
nsulin sensitivity with high accuracy from the proposed test
rotocol. Results from the first clinical pilot trials [23] are
hown in Fig. 9 and suggest an equally good performance in
tting the dose–response data from real clinical data. In the
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xample shown, the proposed method estimated virtually the
ame SI in two tests on the same subject. The two tests were
eparated by a 2 week interval. Whether the estimated SI is
true marker of insulin sensitivity will require further clin-

ig. 9 – Example of two pilot clinical tests of the proposed protoc
he left side shows plasma glucose concentrations and the right
odel fitted profiles). Modeled insulin profiles shown are in plas
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ical validation with the clamp and other methods. However,
judging from the accurate simulation of clinically observed
dynamics, it is very likely that the effect described by the
model parameter SI is physiological and that insulin sensitiv-
ity can be estimated with similar accuracy in clinical data. This
result is supported by the high correlation between SI and ISI
using clamp test data [31]. More specifically, because the pro-
posed low intensity test was specifically designed to measure
the same physiological effect as the clamp using highly cor-
related models and methods, the test should also be highly
correlated to the clamp.

Even if the most prominent unmodeled dynamic (suppres-
sion of EGP) is included in this Monte Carlo analysis, real
results could still be affected by other effects not simulated
here. Inaccuracies in the simulated test protocol were iden-
tified in initial trials [23], i.e. in sample timing and imperfect
cannula flushing, or incomplete mixing of glucose and insulin
in plasma during the first 10 min. These effects are more
likely in a clinical, non-research setting with a simple proto-
col, where special considerations common in research settings
cannot be met. These factors have to be taken into account
when designing a robust clinical test. Additional variability
could be introduced by less accurate assay methods, especially
for insulin and C-peptide. The assays used in this study are
run by the authors’ collaborating laboratory and are amongst
the most accurate methods. Less accurate insulin assays with
more cross reactivity to proinsulin are still widely used and
could increase the test’s variability or introduce a systematic
error [65,66].

Finally, in a simulation setting means are limited and not
all noise and physiological dynamics can be accounted for. We
COMM 2642 1–11
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have tried to best possibly approximate a real clinical setting, 610

but ongoing pilot studies and a complete clinical validation 611

against the gold-standard clamp test will have to be completed 612

to fully validate these simulation results.

ol on one subject. Test 1 is shown above and test 2 below.
side plasma insulin concentrations (measurements and
ma (I(t), solid) and in interstitial fluid (Q (t), dashed).
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5. Conclusions

The proposed method to diagnose insulin resistance proved to
be very accurate in Monte Carlo simulation, and only slightly
less accurate than the gold-standard clamp test. As a result of
its design to measure the same effects as the clamp, it is highly
correlated to the gold-standard clamp ISI metric. The physio-
logical dosing, simple and robust protocol and high accuracy
make it very attractive for early diagnosis and monitoring of
interventions. Accuracy and correlation to gold-standard tests
in a clinical setting must still be assessed. However, this study
has indicated that the proposed test should possess the accu-
racy and robustness required, as compared to a large cohort
of clamp results.
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