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Tobacco etch virus (TEV) protease is widely used for the removal of poly-histidine 

affinity tags from proteins.  In solution, it is a one-time use enzyme for tag cleavage 

that has low stability, and is therefore a good candidate for immobilisation. Amyloid 

fibrils can act as a versatile nanoscaffold by providing a large surface area for 

biomolecule immobilisation. Immobilisation of TEV protease to amyloid fibrils grown 

from the surface of a small glass bead, using physisorption, successfully immobilised 

active TEV protease.  The bead retained activity over several uses and successfully 

cleaved a poly-histidine tag from several his-tagged proteins. This is first time that 

TEV protease has been immobilised to insulin amyloid fibrils, or any protein based 

support. Such functionalised surface assembled amyloid fibrils show promise as a 

novel nanosupport for the creation of functional bionanomaterials, for example, 

active surface coatings for the production of fine chemicals, chemical detoxification, 

or biosensing. Insulin amyloid fibrils provide a new nanosupport for the 

immobilisation of TEV protease, which could allow for the reuse of the enzyme, 

saving on production costs for recombinantly expressed poly-histidine tagged 

proteins. 

 

  

Formulation and Engineering of Biomaterials Biotechnology Progress
DOI 10.1002/btpr.2670

This article has been accepted for publication and undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process which may lead to
differences between this version and the Version of Record. Please cite this article as
doi: 10.1002/btpr.2670
© 2018 American Institute of Chemical Engineers Biotechnol Prog
Received: Jan 21, 2018; Revised: Feb 25, 2018; Accepted: May 25, 2018

This article is protected by copyright. All rights reserved.



Introduction

A major use of tobacco etch virus (TEV) protease in biotechnology is for the cleavage 

of affinity tags used for purification of recombinantly expressed proteins
1
. Tags are 

fused with proteins of interest, generally to assist with purification, but they can also 

act to increase yields, protect them from intracellular proteolysis and in the case of the 

maltose binding protein, aid in solubility
2
. Whilst there are huge benefits of tags, their 

incorporation on a protein of interest can hinder the activity of the tagged protein, 

therefore, it is generally advised to remove the tags. The main advantage of TEV 

protease compared to other proteases, such as Factor Xa, and thrombin, is that it is 

extremely selective for its recognition site, thus its accuracy ensures the protein is not 

cleaved incorrectly, inactivating the protein
1
. 

TEV protease (EC number 3.4.22.44) recognises the linear epitope sequence E-Xaa-

Xaa-Y-Xaa-Q-(G/S), with cleavage occurring between the Q and the G/S amino acid 

residues. The optimal recognition site of TEV protease was shown to be ENLYFQG
3
, 

which is the sequence present in all of the cleavable poly-histidine tagged (his-tagged) 

proteins used in this research.  

TEV protease is a prime candidate for immobilisation, because although protocols 

have been optimized
4,5

, is it reasonably difficult to purify recombinantly
6
, and 

immobilisation will allow for the reuse of the protease. The general in-solution 

cleavage conditions for TEV protease are at ~1-100 w/w ratio of the target protein
7
. 

Once the reaction has taken place, the TEV protease generally needs to be separated 

from the cleaved target protein. If using the poly-histidine tagged TEV protease, 

nickel affinity chromatography can be used, but it requires removing dithiothreitol 

(DTT) and ethylenediaminetetraacetic acid (EDTA) (both are present in the TEV 

protease storage buffer) from the buffer, therefore the buffer would need to be 
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dialysed first
5
. Immobilisation could solve this problem, allowing for the simple 

separation of TEV protease from the target protein. 

Waugh et al. (2010) stated “On-column (TEV protease) cleavage is possible but 

comparatively inefficient7”, and there have been a small number of efforts to immobilise 

TEV protease6,8-10. Puhl et al. (2009) covalently immobilised TEV protease to two 

insoluble supports, thiolsulfinate agarose and glutaraldehyde agarose, in which 

immobilised TEV protease only retained 0 or 30 % activity, respectively, compared to the 

enzyme in solution. The inactivation of the TEV protease was thought to be due to 

binding of the thiol group of a cysteine in the active site, and the GA interacting with 

lysine amino acid residues located near the substrate binding site. Miladi et al. (2012) 

immobilised TEV protease containing a Streptag II affinity sequence via affinity 

immobilisation on a strepavidin-agarose matrix, with a retained activity of ~81 %. This is 

a very good retention of activity, but examining their data closely the immobilised TEV 

protease has <10 % catalytic efficiency compared to the solution TEV protease. Wang et 

al. (2014) immobilised TEV protease onto magnetic nanoparticles via site specific (N- or 

C- terminus) 2-cyanobenzothiazole (CBT)-cysteine condensation reaction. The 

immobilisation enzyme showed a 50% reduction in activity, with immobilisation via the 

N-terminus resulting in much higher levels of activity than via the C-terminus. Yu et al 

(2017) successfully immobilised TEV protease to regenerated amorphous cellulose 

(RAC) via a fused cellulose-binding domain (CBD). Although the immobilised TEV 

protease showed reduced cleavage efficiency, improved stability (retention of 78% 

activity, compared to 40%) while operating at 4 °C for 10 days was observed. 

Immobilised TEV protease could prove to be extremely useful, but it is clearly a difficult 

protein to immobilise. The selected immobilisation matrix for high loading of TEV 

protease at low cost is an important consideration for industrial application8. 
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Many different supports exist for enzyme immobilisation, and protein nanofibrils, 

such as amyloid fibrils, can act as a biomolecule nanoscaffold
11-16

. The intrinsic 

features of amyloid fibrils such as their nanometre size, chemical functionality arising 

from amino acid side chains and the ability to self-assemble, make amyloid fibrils an 

ideal candidate as a nanoscaffold. In this study, bovine insulin amyloid fibrils are used 

as a model amyloid fibril nanoscaffold. Immobilising TEV protease to surface 

assembled insulin amyloid fibrils could provide a solution to the inactivation 

immobilisation problems and loss of catalytic efficiency seen with the other TEV 

protease immobilisation methods, because it could allow for a large enzyme loading and 

create a beneficial environment for TEV protease to remain active.  

Materials and Methods 

Materials 

Unless otherwise stated, chemicals were purchased from Sigma-Aldrich or Invitrogen. 

SDS PAGE densitometry analysis used GelAnalyzer
17

 and amyloid fibril dimensions 

were measured using ImageJ V1.51j8
18

. 

 

Insulin protein nanofibril formation 

Insulin amyloid fibrils were formed using in-house methods modified from Nielsen et 

al.
19

. Bovine insulin was dissolved at a concentration of 5.8 mg/mL (1 mM) in 

amyloid fibril incubation buffer containing 25 mM HCl, 100 mM NaCl, pH 1.6. The 

insulin solution was then incubated at 60 ºC for at least 24 hours. Formation of insulin 

amyloid fibrils was assessed by the thioflavin T (ThT) assay and transmission 

electron microscopy (TEM). 

 

Insulin protein nanofibril fragment formation 
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Bovine insulin protein nanofibrils were formed at 1 mg/mL as described above. The 

mature amyloid fibrils were then frozen overnight to create protein nanofibril 

fragments. TEM was used to confirm that fragments had been successfully produced. 

The fibril fragments were thawed, centrifuged at 14100 xg using an Eppendorf 

MiniSpin plus centrifuge and resuspended in 50 mM HEPES, pH 9. 

 

Insulin seed formation 

Bovine insulin (1 mg/mL) was incubated at 60 °C for 80 min. The sample was then 

tested for ThT fluorescence to ensure amyloid formation had not occurred. The seeds 

were then dialysed for ~ 15 hours into 50 mM HEPES, pH 9. 

 

Thioflavin T (ThT assay) 

ThT (2.5 mM in 50 mM tris-base, 100 mM NaCl, pH 7.5) was filtered and stored in 

the dark for up to a maximum of two days. ThT fluorescence was measured using a 

BMG Labtech FLUOstar Optima plate reader with excitation/emission filters of 450 

and 485 nm, respectively
20

. Samples had a total volume of 200 µL containing 25 µM 

ThT. Three replicates of each sample were measured. Where glass beads were used, 

each bead was placed into a well of a 96 well plate and immersed with 200 µL 

containing 25 µM ThT. 

 

Transmission electron microscopy (TEM) 

Insulin amyloid fibrils were negatively stained with filtered 1% uranyl acetate on 

Formvar-coated copper grids (200 mesh) and washed twice with nanopure H2O. 

Samples were viewed at 89,000x magnification on a Morgagni 268D TEM (FEI 

Company, Oregon, USA) operating at 80 kV, fitted with a 40 µm objective aperture. 
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Glass bead surface activation 

Borosilicate glass beads (5 mm diameter; Sigma-Aldrich) were cleaned overnight in a 

piranha solution (70 % H2SO4, 30 % H2O2), followed by rinsing in dH2O. The beads 

were then treated with a 3 % (3-aminopropyl)triethoxysilane (APTS) solution in 

ethanol/water (95:5 v/v) for 1 hour, immersed in 99.9 % ethanol and cured at 110 °C 

for 1 hour. The beads were allowed to cool, then washed in 95 % ethanol followed by 

treatment with 20 mM N,N’-disuccinimidyl carbonate (DSC) in 50 mM NaHCO3, pH 

8.5 for 3 hours. The beads were then rinsed with dH2O and left to dry prior to use. 

 

Glass bead template directed insulin amyloid fibril assembly 

Surface activated glass beads were immersed in a solution of 1 mg/mL insulin 

fragments or seeds at room temperature for 30 min. The beads were then rinsed twice 

in dH2O before being immersed in incubation buffer containing 1 mg/mL insulin for 5 

hours at 50 °C. The beads were then rinsed twice with dH2O. 

 

TEV protease immobilisation on surface assembled insulin amyloid fibrils 

S219V TEV protease was recombinantly overexpressed and purified as described 

previously
5
. The preparations were homogeneous as judged by SDS-PAGE with 

Coomassie blue staining.  

Glass beads with surface assembled insulin amyloid fibrils were immersed in TEV 

protease (1 mg/mL in TEV storage buffer (25 mM sodium phosphate, 200 mM NaCl, 

10 % glycerol, 2 mM EDTA, 10 mM DTT, pH 8.0) for 2 hours before being rinsed 4 

times with dH2O. The beads were stored at 4 °C until needed.  
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Surface immobilised TEV poly-histidine tagged enzyme cleavage 

Wild type E. coli dihydrodipicolinate synthase (DHDPS), Y107W E. coli DHDPS, 

wild type T. maritima dihydrodipicolinate reductase (DHDPR), wild type A. Thaliana 

DHDPR, and wild type human peroxiredoxin 3 were the cleavable poly-histidine 

tagged enzymes used in the cleavage experiments. All of the enzymes were obtained 

from purified frozen laboratory stocks. All of the enzymes were diluted to ~1 mg/mL 

with TEV storage buffer prior to use. 

Glass beads with surface assembled amyloid fibrils and immobilised TEV protease 

were covered with 150 µL of one of the poly-histidine tagged enzymes containing a 

TEV protease cleavage site. The cleavage reaction was carried out overnight (~18 

hours) at 4 °C to allow cleavage of the poly-histidine tags. The supernatant (20 µL) 

was carefully pipetted off and assessed for cleavage with SDS-PAGE. The beads 

where then washed 5 times in dH2O ready for reuse, with another enzyme containing 

a cleavable poly-histidine tag. 

Results and discussion 

Characterisation of solution assembled protein nanofibril scaffold 

The routine self-assembly of bovine insulin protein nanofibrils was based on in-house 

method modified from Nielsen et al.
19

 Briefly, bovine insulin (5.8 mg/mL, 100 mM 

NaCl, pH 1.6) was subjected to 60 °C and the formation of amyloid fibrils detected by 

monitoring the increase in ThT fluorescence upon binding to amyloid fibrils.  The 

time-course monitoring of the formation of bovine insulin amyloid fibrils using ThT 

is shown in Figure 1 (black symbols). As can be seen, there is a pronounced lag 

phase preceding an exponential growth phase, characteristic of amyloid fibril 

formation occurring by a nucleated growth mechanism
21

. The formed protein 
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nanofibrils were characterised by negative stained TEM (Figure 2 (A)), and have the 

characteristic unbranched, twisted, fibrillar morphology of amyloid fibrils
20

. 

 

 

Figure 1. Time-course profile of insulin (1 mg/mL) amyloid fibril formation at 60 °C 

in the presence of 5 % insulin seeds (blue), 5 % insulin fragments (red), 5 % insulin 

fragments buffer exchanged (green), and insulin only (black), as monitored by ThT 

fluorescence. Measurements are the average of 3 replicates of each samples and the 

error is the standard deviation of the mean. 

 

 

Figure 2. Representative TEM micrographs of insulin amyloid fibrils (A) pre-, and 

(B) post freezing. Scale bar 1 µm. 
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Surface assembled protein nanofibril scaffold 

The method to surface assemble the protein nanofibril scaffold relies on amyloid fibril 

formation occurring by a nucleated growth mechanism
21

. With this in mind, the 

surface assembly process is based around covalent immobilisation of protein 

nanofibril seeds to the surfaces, from which mature amyloid fibrils can assemble
22

. 

The self-assembly of insulin protein nanofibrils on glass surfaces has been 

demonstrated via the covalent attachment of amyloid seeds to the glass surface
23

. The 

covalently attached seeds provide the base to which mature amyloid fibrils assemble. 

Surface assembled amyloid fibrils offer many potential applications for highly active 

surfaces by increasing the surface area of the surface to which the amyloid fibrils are 

assembled. Assembling the amyloid fibrils on surfaces could also provide a method of 

collecting the amyloid fibrils, and potentially allow for a bottom-up approach to 

functional bionanomaterial design. 

Glass (SiO2) was chosen as a model surface because bovine insulin amyloid fibrils 

have previously been self-assembled from the surface of micro cover glasses
23

, and 

because the transparency of glass allows for spectrophotometric assays to be used. 5 

mm glass beads were used in a 96 well sample plate to allow for high throughput 

sample analysis. To ensure the glass beads did not interfere with ThT fluorescence 

measurements, a solution of mature insulin amyloid fibrils was produced, and the 

fluorescence was measured with and without a glass bead in the wells of the 96 well 

plate (Supplementary Figure S1).  

Figure 3 provides an overview of the surface assembly of amyloid fibrils, towards 

functional bionanomaterial manufacturing – namely an enzyme immobilisation 

platform. First, the surface is chemically derivatised to yield an aminated surface 

Page 9 of 23

John Wiley & Sons

Biotechnology Progress

This article is protected by copyright. All rights reserved.



which amyloid seeds can be covalently attached to through their ε-amino lysine or N-

terminal α-amino groups. As stated previously, amyloid fibril formation proceeds via 

a nucleated growth mechanism which allows the assembly of mature amyloid fibrils 

from the covalently bound amyloid seeds when the seeded surface is placed in a 

solution of native protein, and heated at low pH. 

 

 

Figure 3. Overview of surface assembly of amyloid fibrils, and subsequent enzyme 

immobilisation. Firstly, glass beads are chemically derivatised with APTS and DSC to 

yield an activated surface that can then covalently bind amyloid seeds. Surface 

assembly of mature amyloid fibrils can then occur by immersion in native amyloid 

forming protein and heating at low pH. The surface assembled amyloid fibrils are 

then decorated with biomolecules by either physical adsorption or covalent coupling, 

depending on the biomolecule. 

 

Derivatisation of glass surfaces 

(3-aminopropyl)triethoxysilane (APTS) is an organo-functional silane that has a non-

hydrolysable amino group, and three ethoxy groups which can react with the hydroxyl 
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groups of glass, and can undergo a condensation reaction with itself to create an 

aminated surface coating
24

. The chemical derivation of glass with APTS, and 

subsequent activation with N,N’–disuccinimidylcarbonate (DSC), allows the covalent 

immobilisation of proteins through amide coupling chemistry
25

. This surface 

chemistry is readily applicable to other types of materials such as polyesters, 

polyamides and polycarbonates, where silanes have been used as coatings for many 

different applications
24

. The reaction between APTS and a glass surface firstly 

involves a hydrolysis and condensation step of APTS, followed by a hydrolysis and 

condensation step with the glass surface. The reaction produces an aminated surface 

that can then be activated with DSC via the formation of a succinimido carbamate to 

yield a surface that is able to spontaneously react with proteins, in this case insulin 

oligomers, through their ε-amino group of lysine residues and the N-terminal α-amino 

group
25

. 

 

Template directed self-assembly of insulin amyloid fibrils 

The first step in template directed amyloid fibril growth is the covalent 

immobilisation of the template to the surface of the glass bead. Ha & Park (2005) 

used insulin seeds as their template for the surface assembly of insulin amyloid 

fibrils
23

. The seeds were created by incubating a fresh solution of insulin and heating 

it until the end of the lag phase, which is characteristic of a nucleated-polymerisation 

mechanism. The protein species formed just before the exponential growth phase are 

classified as seeds if they are able to eliminate the lag phase in a fresh solution of the 

same amyloid forming protein
26

. In this research insulin amyloid fragments were used 

as the template for the surface assembly of insulin amyloid fibrils. Fragments are 

mature amyloid fibrils that have been fragmented usually by mechanical means to 
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produce shorter amyloid fibrils
27

. Insulin amyloid fibril fragments were produced by a 

freeze-fracture method, whereby mature insulin amyloid fibrils were subjected to 

freezing at -20 °C overnight, then thawing
28

. The thawed amyloid fibril samples were 

then assessed for the presence of fragments using TEM before use as a template. 

Figure 2 shows the electron micrographs of mature insulin amyloid fibrils before 

freezing (A), and after freezing (B). As can be seen, the freeze-fracture method yields 

shorter (40 nm ± 17) fragmented amyloid fibrils than the mature control sample (207 

nm ± 66), confirming the method can produce amyloid fragments.  

Insulin amyloid fragments were chosen over insulin amyloid seeds because fragments 

seeded the formation of mature amyloid fibrils faster than seeds (Figure 1). 

Fragmentation of the amyloid fibrils also gave more reproducible template directed 

amyloid fibril formation. This was because the incubation time to produce seeds 

before the exponential growth phase occurred varied between repetitions. When 

insulin amyloid fragments or fragments (buffer exchanged into 50 mM HEPES, pH 9) 

are added at 5 % v/v, both fragment types induce amyloid fibril formation faster, 

starting from time 0 when incubated at 60 °C (Figure 1). Insulin seeds added at 5 % 

v/v induced amyloid fibril formation at ~40 min, only slightly faster than not adding 

seeds. The fragments were buffer exchanged to allow the amide coupling chemistry to 

proceed. Buffer exchange had almost no consequence on the ability of the fragments 

to seed the formation of insulin amyloid fibrils (Figure 1). 

The surface-activated glass beads were placed in a solution of buffer exchanged 

insulin amyloid fragments to covalently bind them to the glass surface via the amide 

coupling chemistry. The beads with the covalently bound insulin amyloid fragments 

were then placed into a solution containing dissolved insulin at pH 1.6. By heating the 

insulin solution at 50 °C for 5 hours, insulin amyloid fibrils will self-assemble from 

Page 12 of 23

John Wiley & Sons

Biotechnology Progress

This article is protected by copyright. All rights reserved.



the surface bound fragments. This process was monitored via ThT fluorescence using 

a 96 well plate reader (Figure 4). As can be seen, the glass beads which had been 

seeded with the fragments, then amyloid fibrils assembled, had the shortest lag phase 

for amyloid fibril formation. This implies that by seeding the surface of the glass 

beads with the fragments, template directed amyloid fibril assembly can occur. The 

slower amyloid formation seen with the beads can be attributed to the lower amyloid 

formation temperature of 50 °C, and because the native insulin has to interact with 

surface immobilised amyloid seeds slowing the formation process due to diffusion. 

 

 

Figure 4. Time course profile of template directed assembly of 1 mg/mL insulin 

amyloid fibrils (in 25 mM HCl, 100 mM NaCl, pH 1.6 at 50 °C for 5 hours) as 

monitored by ThT fluorescence. Traces shown are glass beads seeded with fragments 

and fibrils assembled (red); not seeded and fibrils assembled (blue); seeded with 

fragments, no fibrils (green); not seeded and no fibrils (black – behind green). 

Measurements are the average of 3 replicated of each sample and the error is the 

standard deviation of the mean. 
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The beads which are not seeded with fragments still show mature amyloid fibrils are 

produced, but after washing the beads and measuring ThT fluorescence, only the 

beads which were seeded with fragments retain significant fluorescence, compared to 

the control without fragments or amyloid fibrils (Figure 5). This implies that only the 

seeded beads have the template directs amyloid fibrils present and that the fibrils 

formed in the non-seeded sample were free in solution. Appropriate controls were 

carried out to validate if full surface derivatisation was necessary for maximum 

surface assembly of the insulin amyloid fibrils (see Supplementary Information, 

Figure S2). The beads which had the full surface derivatisation, seeded with 

fragments, and mature amyloid fibrils assembled, had the highest ThT fluorescence 

and therefore the most surface assembled insulin amyloid fibrils. The sample without 

initial surface derivatisation (Figure S2), also shows a relatively high ThT 

fluorescence, suggesting there could be a relatively strong intrinsic association 

between the glass beads and the amyloid fragments. 

 

 

Figure 5. ThT fluorescence (RFU) of 1 mg/mL insulin amyloid fibrils samples 

assembled on glass beads after washing to remove amyloid fibrils from solution 

phase. Measurements are the average of 3 replicates of each sample and the error is 

the standard deviation (SD) of the mean. 
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Tobacco etch virus (TEV) protease immobilisation on surface assembled insulin 

amyloid fibrils 

The aim of template directed amyloid fibril growth from surfaces is to increase the 

available surface area for enzyme immobilisation, and to create an environment that is 

advantageous towards enzyme activity and stability. The use of other nanosupports 

such as nanoparticles, nanotubes, electrospun nanofibers and nanoporous matrices 

have shown the ability to increase the available surface area for enzyme 

immobilisation, whilst lowering mass transfer resistance
14,29,30

. Template directed 

amyloid fibril growth allows the creation of self-assembling nanomaterials, provides a 

means to collect amyloid fibrils, and if the surface assembled amyloid fibrils are 

functionalised with biomolecules, the biomolecules can be easily reused due to their 

surface attachment. 

TEV protease was used in this research as an example of a commercially relevant 

biomolecule that could benefit enormously from immobilisation to an amyloid fibril 

nanoscaffold. TEV protease could benefit from immobilisation due to its instability 

outside of the cellular environment, and so that it could potentially be reused multiple 

times, saving on production costs. 

TEV protease was immobilised onto glass beads decorated with surface assembled 

insulin amyloid fibrils, via physisorption to the amyloid fibrils. Following immersion 

of the fibril decorated beads in a 1 mg/mL solution of TEV protease, the beads were 

thoroughly washed to remove unbound TEV protease. To assess the amount of TEV 

protease immobilised, the pre-bead immersion and post-bead immersion TEV 

protease solutions were analysed by SDS-PAGE, with a reduction in TEV protease 

solution indicating immobilisation is occurring. Figure 6 (A) shows the SDS-PAGE 

gel of the pre-bead immersion TEV protease solution (lane 1), and post-bead 
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immersion TEV protease immobilised solutions. Densitometry analysis confirmed 

that the seeded + TEV protease (L2) had 15.9 % TEV adsorbed; the seeded + fibrils + 

TEV protease (L3) had 24.8 % TEV adsorbed; the bead + TEV protease (L4) had 38.7 

% adsorbed; and the fibrils + TEV protease (L5) had 27.5 % TEV adsorbed. The TEV 

protease is clearly being adsorbed to all of the samples whether or not the glass beads 

had been seeded or not, or had amyloid fibrils assembled. 

 

 

 

Figure 6. (A) SDS-PAGE gel showing the amount of TEV protease in the pre-bead 

immersion and post-bead immersion solutions. L – ladder; 1 – pre-bead immersion; 2 

– post-bead immersion (seeded + TEV protease); 3 – post-bead immersion (seeded + 

fibrils + TEV protease); 4 – post-bead immersion (+ TEV protease); 5 – post-bead 

immersion (fibrils + TEV protease). The same amount of protein was loaded in each 

lane. (B) SDS-PAGE gel of E. coli DHDPS poly-histidine tag cleavage by 
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immobilised TEV protease bead samples. L – ladder; 1 – DHDPS only control; 2 – 

TEV only control; 3 – solution TEV protease + DHDPS cleavage control; 4 – bead 

(seeded + fibrils + TEV protease) DHDPS cleavage; 5 – bead (seeded + TEV 

protease) DHDPS cleavage; 6 – bead (fibrils + TEV protease) DHDPS cleavage; 7 – 

bead (+ TEV protease) DHDPS cleavage. (C) SDS-PAGE gels of poly-histidine tag 

cleavage by TEV protease immobilised to bead samples. For all gels the lanes 

contain: L – ladder; 1 – protein control; 2 – TEV protease only control; 3 – solution 

TEV protease protein cleavage control; 4 – bead (seeded + fibrils + TEV protease). 

protein cleavage; 5 – bead (seeded + TEV protease) protein cleavage; 6 – bead (fibrils 

+ TEV protease) protein cleavage; 7 – bead (+ TEV protease) protein cleavage.  

 

The TEV protease functionalised surface assembled amyloid fibrils were initially 

tested for their ability to cleave the poly-histidine tag of wild-type E. coli 

dihydrodipicolinate synthase (DHDPS). The immobilised TEV protease bead samples 

were put in a 1 mg/mL solution of wild-type E. coli DHDPS, and were incubated for 

18 hours at 4 °C. The control in-solution reaction contained 10 ug of TEV protease, 

whist the beads with immobilized TEV protease contained ~160-390 µg as verified 

from the densitometry. A fraction of each of the DHDPS solutions was carefully 

pipetted off without touching the glass beads, and the fractions analysed for poly-

histidine tag cleavage by SDS-PAGE. As can be seen in Figure 6 (B) all of the bead 

samples displayed the ability to cleave the poly-histidine tag of the DHDPS, but the 

immobilised TEV protease bead which showed the highest activity was the bead 

which was seeded, amyloid fibrils assembled, and TEV protease immobilised (lane 

4). All of the beads contained a higher concentration of TEV compared to the control 

reaction indicating that immobilization of the TEV does inhibit some of its catalytic 
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activity. Although, the bead sample from lane 4 was able to cleave DHDPS as well as 

the control in-solution reaction, indicating the immobilized TEV protein retains 

enough enzymatic activity to complete the reaction within 18 hours. The slight 

cleavage activity seen by the other bead samples could be due to the non-specific 

physisorption of TEV protease to the glass surface as seen in Figure 6 (A) when 

investigating the amount of TEV protease being immobilised to the surface assembled 

amyloid fibrils. However, the nanoscaffold affords a clear advantage. This is also 

confirmed because the TEV protease loading on the bead that was seeded and fibrils 

assembled did not contain the highest concentration of immobilized TEV, yet still 

showed the highest activity.  

The TEV protease functionalised surface assembled amyloid fibrils were then tested 

for their ability to be reused sequentially, cleaving a different poly-histidine tagged 

protein on each day. It was decided to cleave a different protein each day, so that if 

there was any substantial contamination from a previous day’s protein cleavage, a 

protein band corresponding to the previous days cleavage reaction would be visible 

on the SDS-PAGE gel. The cleavage reactions were setup as for Figure 6 (B), but 

after each 18 hour cleavage reaction, the beads were thoroughly washed in dH2O 

before being placed in the next cleavable protein solution. This procedure was 

repeated until immobilised TEV protease activity had ceased. 

 

Figure 6 (C) shows the sequential poly-histidine tag cleavage of T. maritima 

dihydrodipicolinate reductase (DHDPR), A. thaliana DHDPR, human peroxiredoxin 3 

(PRX3), and E. coli DHDPS Y107W by TEV protease functionalised surface 

assembled amyloid fibril samples. On day one of the cleavage reactions, all of the 

bead samples showed some cleavage activity, with the SDS-PAGE gel showing very 
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similar results as Figure 6 (B). Again, the bead which was seeded, amyloid fibrils 

assembled, and TEV protease immobilised (lane 4) showed the highest TEV protease 

activity. The cleavage on day two had a very similar trend, but this time the amount of 

cleavage by the bead sample which was seeded, amyloid fibrils assembled, and TEV 

protease immobilised (lane 4), was much more pronounced compared to the other 

bead samples. By day three, the only bead sample retaining TEV protease activity was 

the bead sample which was seeded, amyloid fibrils assembled, and TEV protease 

immobilised (lane 4). This provides evidence that the presence of the surface 

assembled amyloid fibrils present protect TEV protease activity on the bead sample. 

By day four all of immobilised TEV bead samples showed no TEV protease activity. 

The control TEV protease reaction (lane 3) showed that the protein is cleavable, 

therefore the reason for no cleavage activity by the immobilised TEV protease beads 

samples could be due to inactivation of the immobilised TEV protease, or leaching of 

the immobilised TEV protease over time, which is known to be a problem when 

immobilising enzymes by physical adsorption. 

Conclusions 

Protein nanofibrils, such as amyloid fibrils can act as a versatile nanoscaffold by 

providing a large surface area for biomolecule immobilisation. In this work, 

immobilisation of TEV protease to insulin amyloid fibrils grown from the surface of a 

small glass bead, using physisorption, successfully immobilised active TEV protease. 

The catalytic activity of the immobilised TEV protease was preserved over three uses, 

with three different poly-histidine tagged proteins. Considering the immobilised TEV 

protease beads as a commercial proof-of-concept system, the results are promising 

taking into account that one 5 mm bead was used per reaction. Further optimisation of 

the surface amyloid fibril assembly and the enzyme immobilisation conditions could 
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increase the enzymatic activity, reusability and storage life of the immobilised TEV 

protease bead system, and optimisation of this technology towards smaller micro 

glass beads packed into a column could potentially increase the specific enzyme 

activity exponentially.  
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