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Abstract 

Forest managers aim to maximise the productivity, profitability, health, and sustainability of 

New Zealand’s plantation forests. There is an increasing need for high quality information 

about forest stands to support effective management. This is exemplified in the concept of 

precision forestry, which maps variation at a fine scale to allow targeted management, and in 

the concept of tree-level phenotyping, which quantifies the genetic and environmental drivers 

of tree growth. Remotely sensed data, in particular airborne laser scanning (ALS), was 

identified as having strong potential to provide tree level information to assist in attaining the 

goals of phenotyping and precision forestry. Tree-based, rather than area-based, analyses of 

ALS were identified as being essential to separate and quantify genetic and environmental 

factors on individual tree growth, and therefore critical to the development of novel 

phenotyping methods supporting precision forestry. The aim of this study was therefore to 

develop methods to characterise individual trees using remotely sensed airborne laser scanning 

data.  

The research was focussed on evaluating the utility of ALS data to estimate key operationally 

relevant tree attributes for New Zealand plantation-grown radiata pine. Review of the literature 

identified three key research questions within which to frame the study. The first research 

question addressed the need to obtain accurate estimates of tree size, form, wood quality and 

disease attributes from ALS. A set of 36 individual tree crown metrics were derived from ALS 

data and evaluated for their correlations with ground measurements of the attributes. The 

second research question was aimed at evaluating the utility of tree-level ALS data in the 

analysis of genetic and environmental variance components and the estimation of genetic 

parameters, including genetic gains. The third research question evaluated the effects of ALS 

pulse density on estimates obtained from tree-level analyses of ALS data. 

Strong correlations were established between morphological crown metrics and tree size 

attributes (r=0.90, 0.82, and 0.84 for H, DBH and V respectively), but not for tree form and 

wood quality attributes. A moderate correlation (r=0.50) with the level of Dothistroma 
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infection was attributed to the effect of the disease on tree growth, indicating potential for 

disease phenotyping using remote sensing. Accurate estimates of variance components and 

genetic parameters were obtained from ALS for tree size attributes, but not for tree form, wood 

quality and disease attributes. For H, DBH, and V crown-based versus ground-based estimates 

of narrow sense heritabilities were within 5.0%, 19.5% and 23.9%, and estimates of genetic 

gains (96 tree selection level) were within 19%, 25%, and 25% respectively. Manually 

corrected tree segmentations were found to provide negligible improvements to correlations 

and estimates of genetic parameters, supporting the operational use of automated methods. 

Exponential reductions in tree detection accuracy, correlations, and estimates of genetic 

parameters were observed with reducing pulse density. A minimum pulse density of 6 Pu.m
2
 

was recommended for tree-based analysis of ALS in New Zealand radiata pine stands, and 

results indicated exponential increases in pulse density will be required to significantly improve 

estimates.  

This study has successfully addressed the research questions and produced important findings 

regarding tree-based analysis of remotely sensed ALS data. Morphological crown metrics have 

been derived, representing allometric relationships, which are therefore are expected to have 

general utility in estimating tree size attributes. Novel features of this research included: the 

wide range of operationally relevant tree attributes including tree size, form, wood quality and 

disease; quantification of genetic and environmental factors from ALS; comparison of the 

effects of automated and manually corrected tree delineations; and the quantification of the 

effects of pulse density on tree-based analyses. This research provides significant findings in 

support of the use of remotely sensed ALS data for phenotyping trees in genetics and research 

trials, and the development precision forestry methods, nationally and internationally. 
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Glossary 

Additive variance. (𝜎𝑎
2) The similarity of offspring to their parents is due to additive effects of 

genes on phenotype. Additive variance is the component of total phenotypic variance 

(𝜎𝑃
2) attributed to additive genetic effects. It is used to estimate narrow sense heritability 

(h
2
) and genetic correlations (rg). 

ALS. Airborne Laser Scanning. An active remote sensing technology that uses the time of 

flight of laser pulses along with accurate positioning and orientation information to derive 

a three dimensional description of the terrain and covering vegetation below. The data 

produced can be in the form of discrete points (a point cloud) or a digitised representation 

of the reflected signal (waveform).  

ABA. Area-based analysis. An area-based approach to the analysis of remotely sensed data. 

With ALS this is done by analysis of square patches of LiDAR data, typically of the 

order of 20 by 20 metres. Metrics derived from these patches are typically related to 

averaged tree attributes such as mean top height, basal area, and stem volume. 

ASReml. A statistical package that provides methods for using restricted (or residual, or 

reduced) maximum likelihood (REML) methods to fit linear mixed effects models for 

large, unbalanced trial data sets (VSN International Ltd, Hemel Hempstead, HP1 1ES, 

UK www.vsni.co.uk). ASReml-R is a package allowing the use of ASReml from the R 

statistical software. 

Breeding value. The genetic value of an individual or group determined by the mean values of 

its progeny. Can be based on individual attributes or a composite selection index. 

CHM. Canopy Height Model. A digital surface model representing the difference between the 

upper surface of the canopy and the underlying terrain surface. Used in this study to carry 

out tree detection, crown delineation and derivation of individual tree crown metrics. 
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CITC. Calibrated individual tree crown. A methodological solution to the problem of inherent 

bias commonly incurred in individual tree crown (ITC) analysis, where a preponderance 

of omission or commission errors in uncalibrated approaches lead to large biases in 

estimates of tree counts and derived measures such as stand basal area and volume, or 

crown metrics.  

Commission error. In tree detection it is a falsely detected tree. One common form of 

commission is when a single tree crown is separated and counted as though it were two 

or more crowns. Another common form of commission is the detection of image features 

that are not trees, such as undergrowth or terrain features.  

Crown metrics. Measures determined for individual tree crowns. In this study crown metrics 

were derived from a segmented CHM image. 

Dilution of precision. DOP. The additional multiplicative effect of navigation satellite 

geometry on positional measurement precision. A number of variants are used for 

precisions of: geometric (GDOP), position (PDOP), horizontal (HDOP), vertical 

(VDOP), and time (TDOP) estimates. 

Fusion. A software package providing a number of functions for the viewing and analysis of 

ALS and associated data, principally for forestry applications (U.S. Department of 

Agriculture, Forest Service, Pacific Northwest Research Station, University of 

Washington, Box 352100, Seattle, WA 98195-2100). 

Genetic correlation. (rg). An estimate of the additive genetic effect (see additive variance) 

shared between two traits. The derivation is analogous to that of a Pearson’s correlation, 

but using additive genetic variance rather than total phenotypic variance.  

Genetic gain. (ΔG) The change realised by selection in a specific attribute. Gain is influenced 

by selection intensity, the level of variation and level of heritability. 
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Genotype. The specific set of genes possessed by an individual, which can be expressed or 

recessive. Interaction of the genotype with the environment results in the observed 

phenotype. 

GIS. Geographic Information System. Software, widely used in forestry, to store, present, and 

analyse various forms of spatial data, including remotely sensed information.  

GNSS. Global Navigation Satellite System. The generic term for satellite systems that provide 

global positioning information. This includes the GPS (United States), GLONASS 

(Russian), Galileo (European), and Beidou (Chinese) systems. Orbiting satellites transmit 

signals that allow a GPS receiver to calculate its position by triangulation, typically from 

four or more satellites. 

GPS. Global positioning system. A system of American satellites used to determine global 

positions. See GNSS. 

Heritability. The degree to which progeny resemble their parents. Broad sense heritability (H
2
) 

is the proportion of total phenotypic variance (𝜎𝑃
2) attributable to genetic (additive and 

non-additive) effects (𝜎𝑔
2). Narrow sense heritability (h

2
) is the proportion of total 

phenotypic variance attributable to additive genetic effects (𝜎𝑎
2). 

Incomplete block. A trial design where all treatments do not occur within each block. These 

are commonly used in tree and plant breeding, where a large number of breeds are to be 

evaluated and trial size must be limited to contain costs and reduce unwanted 

environmental effects.   

ITC. Individual tree crown. An approach to analysis of remote sensing data, including ALS, 

where individual trees are detected and characterised. This is contrasted with the area-

based approach (see ABA). 
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ITD. Individual tree detection. The detection of individual trees from remotely sensed data. 

Generally applied to data collected from satellite or aircraft, notably ALS data.  

LAStools. A software suite with a number of tools to view and process LiDAR data, 

principally ALS data (rapidlasso GmbH, http://rapidlasso.com/LAStools). 

LiDAR. Light detection and ranging. An active remote sensing technology that uses the time of 

flight of laser pulses along with accurate positioning and orientation information to derive 

a three dimensional description of the objects in the field of view. LiDAR systems can 

mounted on manned and unmanned aircraft and ground vehicles and can also be tripod 

mounted or hand-held. 

Multipath error. GNSS signals can reach receivers by multiple paths due to atmospheric 

interference or reflections from terrain, buildings or vegetation. This causes error in 

perceived positions. 

Non-additive variance. The component of the genetic variance which has a nonlinear effect, 

such as dominance, epistasis, or gene-environment interactions.   

Omission error. In tree detection it is the failure to detect a tree. A common cause of omission 

is the failure to detect small or completely supressed trees. 

Pedigree. The record of ancestry. In tree breeding a partial pedigree is common due to the use 

of trees from open-pollinated seed.  

Phenotype. The observable attributes of an individual. Phenotype is the results of the genotype 

interacting with the growth environment. 

Phenotyping. The process or methods to obtain measures of attributes. 
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Point cloud. The data set resulting when LiDAR returns are digitised as discrete points. Very 

large numbers of points are created, lying on the surfaces of objects in the field of view. 

Point density. The number of ALS points (returns) per unit ground area (points m
-2

). 

Point spacing. The mean horizontal distance between ALS points (returns) projected onto a 

horizontal plane (m). 

Precision forestry. The use of new technology and tools to obtain detailed information for use 

in improved forest management. Current examples are the use of remote sensing, 

navigation systems and geographic information systems. The aim is to use information 

based decision making to improve forestry processes such as production and 

sustainability.  

Pulse density. The number of ALS laser pulses, determined by considering first or last returns, 

per unit ground area (Pu.m
-2

). 

Point spacing. The mean horizontal distance between ALS laser pulses, determined by 

considering first or last returns, projected onto a horizontal plane (m). 

REML. The restricted (or residual, or reduced) maximum likelihood approach is a form of 

maximum likelihood estimation for use in fitting linear mixed effects models with 

unbalanced data such as found in incomplete block designs.  

Remote sensing. The collection of information without making physical contact. In forestry 

this typically takes the form of aerial and satellite imagery, and more recently ALS data. 

It also refers to data collected by sensors carried on UAVs, robots, vehicles or personnel. 

Segmentation. The processing of an image to divide it into multiple parts (segments) 

representing objects or features.  
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Selection differential. The difference between a selected tree, family, or clone and the average 

of the population it was selected from. Used to quantify the improvement in an attribute 

due to selection from the population. 

TBA. Tree-based analysis. Analysis of ALS data at the individual tree level, using individual 

tree crown (ITC) methods. A term used to differentiate from area-based analysis (ABA) 

of ALS.  

Variance components. Variance is a statistical measure of variability. The total observed 

variance is referred to as phenotypic variance, this can be segregated into genetic 

(additive and non-additive) and environmental variance.  
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Chapter 1 Introduction  

Accurate measurements of tree attributes such as diameter and height provide the foundations 

for forest research and management. Recent advances in remote sensing technology and 

associated data processing capabilities have made available new forms of information for use in 

forest assessment. There is strong potential to develop methods to extract information about 

individual trees from remotely sensed airborne laser scanning (ALS), a form of data that is 

becoming more widely available in the forestry sector. These methods, and the tree level 

information they create, will have applications in the development of a precision forestry 

approach for researchers, tree breeders and forest managers. Such methods can make an 

important contribution to commonly recognised goals of increased productivity, profitability, 

health, and sustainability of New Zealand’s forests (NZ Forest Owners Association 2012; Scion 

2014). 

1.1 Precision forestry 

The concept of precision forestry has been adopted from precision agriculture, where crop 

researchers and farmers have used modern technologies to map variation in order to manage 

inputs such as fertiliser and herbicide. Management is targeted on a site-specific basis, in order 

to increase production and maintain environmental quality (Cobb et al. 2013; Dhondt et al. 

2013). In forestry, accurate maps of forest stand variables such as tree spacing, size, quality, 

and disease levels could be used to plan management actions such as re-stocking, thinning, 

fertilisation and harvesting (Holopainen et al. 2014; McRoberts et al. 2010; Pont et al. 2013). 

Geographic information systems can then be used to collate, present and analyse the mapped 

information for use in decision making processes (Goulding 1998). Such detailed information 

can also establish better general forest records, improve traceability for forest certification, and 

provide the basis for sustainable management practices (Becker 2001; Holopainen et al. 2014).  
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1.2 Sources of variation in tree growth 

The need for precision forestry originates with variability in the resource, which demands 

appropriate management in order to maximise outcomes. There are a number of factors which 

contribute to variation in the attributes of trees. Observed attributes such as tree diameter and 

height can be viewed as the result of a tree’s genetic program interacting with the growing 

environment (Cobb et al. 2013; Visscher et al. 2008). Both the genetic program and the 

environment are complex, and the tree attributes observed at one point in time are the 

cumulative result of interactions between these two sources of variation. Due to an operational 

rotation length of 20 to 30 years for radiata pine (Pinus radiata D. Don) in New Zealand, the 

interactions between these dynamic effects are integrated over long time periods making them 

more difficult to understand. 

Radiata pine breeding has been underway for over 60 years in New Zealand (Dungey et al. 

2009). Despite successful improvements in growth and wood quality traits over that time, the 

trees are still at an early stage of domestication and the species has considerable genetic 

variability (Burdon 2001, 2008; Dungey et al. 2006; Jayawickrama 2001; Mead 2013). Radiata 

pine, like Pinus species in general, is tolerant of a range of different site conditions (Burdon 

2001). The species has noted phenotypic plasticity for several traits, including height, 

branching, stem form and wood properties (Burdon 2001). The variability exhibited by the 

species, from both genetic and environmental origins, offers opportunities and challenges. The 

range of genetic variation offers useful selection options for tree breeders. Phenotypic 

plasticity, evident as wide variation in stem form, growth, and wood properties, in response to 

site and silviculture, confers site tolerance and management options. Reducing the variability of 

the crop is, however, a major issue for forest managers and tree breeders (NZ Forest Owners 

Association 2012). The challenge is to carry out research to analyse and understand the drivers 

of tree growth and quality in order to better capitalise on them for forest management 

objectives. 
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1.3 The use of airborne laser scanning 

A remote sensing technology which is having a major impact on forest assessment is airborne 

laser scanning (ALS), a form of laser scanning which can provide highly detailed information 

on the structure of forest cover and the underlying terrain (Maltamo et al. 2014; Næsset 2004; 

Næsset et al. 2004). The use of ALS for forest research and management purposes has grown 

significantly in the last two decades (Brosofske et al. 2014; Maltamo et al. 2014; Næsset 2002, 

2004; White et al. 2013). The two major approaches to analysis of ALS are area-based analysis 

(ABA) and the use of individual tree crown (ITC) methods used to carry out tree-based analysis 

(TBA) (Maltamo et al. 2014). In ABA, metrics for use in modelling are generated for small 

areas, typically of the order of 0.04 to 0.08ha in size, a scale spanning many trees (Næsset and 

Økland 2002). In the TBA approach, individual trees are detected and metrics generated at the 

tree level.  

1.3.1 The need for tree-based analysis of ALS 

Area-based analysis of discrete return ALS is being widely developed and applied for forest 

management applications, internationally and in New Zealand, with proven success in 

estimating stand height, basal area, volume and biomass (Beets et al. 2012; Næsset 2002; Stone 

et al. 2011; Turner et al. 2011; Watt 2005; Watt and Watt 2013). However area-based methods 

are unsuitable for characterising individual trees, and yet methods to characterise individual 

trees from ALS data are essential to meet the research goals of phenotyping trees using remote 

sensing.  

Tree breeders, tree growth researchers and forest managers are interested in the ability to 

measure individual trees using remote sensing, following the lead of agricultural researchers 

whom have developed so-called phenotyping (measurement) methods for individual crop 

plants (Cobb et al. 2013; Dhondt et al. 2013). Recent technological advances have provided 

methods to identify trees in ALS data collected for New Zealand radiata pine stands (Pont et al. 

2015b), offering the potential to characterise individual trees. Tree-based analysis of ALS could 

therefore meet the need to characterise individual trees using remote sensing. 
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The availability of ALS data for New Zealand forests has increased over recent years as more 

forest owners adopt it for operational purposes such as roading and area-based inventory 

(Adams et al. 2011). Continuing technological advances are likely to result in increased 

availability and resolution of ALS. Developments such as LiDAR units on unmanned airborne 

vehicles (UAVs), ground-based vehicles, all-terrain vehicles (ATVs) as well as tripod mounted 

and hand-held units can produce very dense data and could provide cost-competitive alternative 

sources of data compared with the ALS collected from manned aircraft (Bilker and Kaartinen 

2001; Pont and Lorraine 2015; Wallace et al. 2014a; Wallace et al. 2012). The growing 

availability and quality of LiDAR data, combined with methods to detect individual trees, 

offers potential for such data to play important roles in research and precision forestry 

applications.  

There are a number of researchers investigating methods for tree delineation that point out the 

potential benefits of estimating tree-level measures from ALS (Chen and Zhu 2012; Lindberg 

et al. 2012; Lindberg et al. 2010; Vauhkonen et al. 2010). The main barrier to applications 

appears to be a lack of accurate and general methods (Breidenbach et al. 2010; Kaartinen and 

Hyyppa 2008; Kaartinen et al. 2012; Lindberg et al. 2010). In a study on Pinus sylvestris 

stands, significant bias in determining the number of stems with an ITC approach resulted in no 

improvement in estimation of tree size distributions, stand mean height and stand mean 

diameter compared with ABA estimates (Peuhkurinen et al. 2011). Accurate tree detection has 

also been reiterated as a barrier to developing methods to characterise trees using ALS in other 

recent research (Heinimann and Breschan 2012; Kankare et al. 2015; Tang et al. 2013).  

1.3.2 Locational error under forest canopy 

The ALS data routinely used in forestry is geo-referenced with high horizontal accuracy, 

having error < 100 mm (Maltamo et al. 2014; White et al. 2013), making it suitable for use in 

precision forestry applications. However in order to develop statistical relationships, crown 

metrics derived for individual trees detected in ALS data must be accurately matched with 

ground measurements made on the corresponding trees.  
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Positional information in the forest is routinely determined with GNSS (Global Navigation 

Satellite System) equipment. Errors, due to signal blocking and multi-pathing under typical 

radiata pine canopy, are likely prevent reliable location of single trees in the forest using GNSS 

equipment. The degree of canopy cover has been found to be a key variable affecting GPS 

accuracy and error of 7 m in young forest and 10 m under closed canopy using consumer-grade 

GPS was observed (Wing et al. 2005). In subsequent studies little improvement in error was 

found from using mapping-grade (post-corrected) GPS units under canopy (Valbuena et al. 

2010; Wing and Eklund 2007).  

One approach to locating individual trees in forest is to obtain an accurate location with high-

grade GPS in a relatively open position, and then surveying to the tree with accurate distance 

and bearing (Jakubowski et al. 2013b) but this method is time-consuming and of uncertain 

accuracy. In some cases, typically research projects on sites of limited size, surveying methods 

are used to determine highly accurate positions of all trees, but this approach is onerous. In 

other cases, tree maps within plots are used with a GPS plot location to provide approximate 

tree locations for alignment with trees detected in the ALS (Flewelling 2006). It is concluded 

that quantification of GNSS error in New Zealand forest conditions, and a solution to the 

problem of matching ground and remotely sensed tree data are required. 

1.3.3 Methods for tree segmentation 

Various segmentation methods have been researched for tree detection, and comparative 

studies made on different forest types (Jakubowski et al. 2013b; Kaartinen et al. 2012; 

Vauhkonen et al. 2011; Wallace et al. 2014b). Detection algorithms applied to ALS data can be 

classified according to the form of the data they operate on. Point-based methods operate 

directly on the three-dimensional points, or use a voxel representation, where space is 

subdivided into a regular grid of cubical cells (voxels) and voxels containing points are 

recorded. Raster-based methods typically use a canopy height model (CHM), generally 

represented as a grayscale image (Figure 1.1). With each type of input data there are also a 

number of different algorithms used to detect trees, but the literature shows that watershed or 
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similar algorithms applied to CHM images are a widely used combination (Jakubowski et al. 

2013b; Wu et al. 2016). Raster representations require less storage and processing, and have 

been shown to give acceptable results for tree detection, particularly for the planted conifer 

forest type which will be the focus of the planned research (Vauhkonen et al. 2011; Wallace et 

al. 2014a). Although there is active research into alternative methods, including point-based, 

hybrid, and more complex approaches, using techniques such as convex hull and alpha shapes, 

a recent review concluded these methods are much more difficult to implement, can be more 

dependent on laser point density, and be more sensitive to forest type (Zhen et al. 2016). It is 

therefore concluded that a raster-based approach using a watershed algorithm will provide a 

more stable, easy to implement, and efficient basis for tree detection and delineation.  

A recently developed methodology has been shown to provide unbiased estimates of tree count 

by applying tree detection to canopy height model (CHM) images derived from ALS (Pont et 

al. 2012a; Pont et al. 2015a; Pont et al. 2015b). This methodology includes an assessment of 

detection accuracy in terms of omission and commission errors, thus meeting the requirements 

for comprehensive evaluation of tree detection accuracy as proposed in a recent review of ITC 

methods (Zhen et al. 2016). Utilisation of this tree detection methodology can provide a sound 

foundation for the development of methods to characterise trees from ALS (Figure 1.2 and 

Figure 1.3). 
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Figure 1.1. CHM image of a mature stand of radiata pine. Pixel size is 0.25 m and the image 

covers an area of 120 by 120 m, the vertical axis of the image is oriented to true north.  
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Figure 1.2. Tree detection result processed to delineate tree crowns. Individual tree boundaries 

are processed to define crown boundary in green and larger growth boundary extended out to 

include a portion of any adjacent gap in red. 

1.3.4 Crown metrics 

Because a CHM represents heights above ground, the area within each detected tree boundary 

can also be treated as a three-dimensional surface (see Figure 1.3) and analysed to generate 

further metrics such as crown depth and volume (Chen et al. 2007; Kaartinen and Hyyppa 
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2008; Lindberg et al. 2010; Packalen et al. 2013; Pont et al. 2012b; Xu et al. 2014). Once 

individual trees have been delineated, point-based analysis of ALS data at the tree level could 

be considered, particularly because of the successes of point-based methods in area-based 

analyses of ALS. In a recent review, tree-based analyses of ALS were shown to be widely 

researched but still in a relatively early stage of development, with a lack of standardised 

approaches or even methods for comparing results (Zhen et al. 2016). The authors noted the 

potential benefits of deeper analyses of the points belonging to individual trees but showed 

there is insufficient evidence to date for benefits of a point-based approach for tree-based 

analysis. Wallace et al. (2014a) showed that a raster-based approach was superior, and more 

sophisticated crown representations did not deliver concomitant benefits in estimation of crown 

width from derived crown metrics. In a study into estimation of height, DBH and volume for 

trees in boreal forest, crown volume metrics, easily derived from a CHM representation, 

featured strongly among a large set of candidate metrics evaluated (Vauhkonen et al. 2010). In 

a study comparing the use of raster- and point-based analyses to estimate crown dimensions of 

olive trees, the point-based approach provided only marginal benefits, while the raster-based 

approach was insensitive to reducing point density, indicating it as a more useful approach for 

operational purposes (Hadaś and Estornell 2016). Crown metrics derived from a CHM also 

used for tree detection were successfully used to estimate tree height and volume in a recent 

study applied to longleaf pine stands (Silva et al. 2016). 
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Figure 1.3. Derivation of crown metrics from a CHM image. Two-dimensional crown metrics 

can be derived using the crown (outlined in green) and tree detection boundaries (including a 

portion of any adjacent gap, outlined in red) delineated on the CHM image. The grayscale values 

in the CHM image represent height above ground and can be used to derive three-dimensional 

crown metrics from the enclosed crown envelope (transparent green surface above image). 

It is important to note that point-based analysis of ALS is effectively the only option in the 

area-based approach. Raster-based analysis at a patch level, without any detection of trees, 

yields few metrics, effectively being limited to texture analysis methods. In typical area-based 

analysis of ALS, a point-based approach is routinely used to generate large numbers of canopy 

metrics and several researchers have applied techniques such as principal components analysis, 

best-subset regression, and canonical correlation analysis to determine a parsimonious set of 

metrics for modelling (Hudak et al. 2006; Lefsky et al. 2005; Næsset et al. 2005). In a useful 

insight into the utility of the various ABA metrics Lefsky et al. (2005) found just three point-

based LiDAR metrics, describing canopy mean height, canopy depth and canopy closure, 

provided a concise description of canopy structure with clear biological interpretation and 

widespread utility in modelling. So while a point-based approach generated many metrics, a 

small subset were found to be the most useful across numerous studies, and it was apparent 

those metrics described canopy morphology. Once individual trees are delineated on a CHM 
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raster there are potentially many raster-based metrics that could be derived for each crown, and 

it is apparent that many of those metrics will effectively describe crown morphology, such as 

maximum height, crown area, and crown volume. It is concluded that raster-based methods 

used in tree-based analysis of ALS can provide a parsimonious approach (Zhen et al. 2016), 

with modest data storage and processing requirements, and potential to generate useful 

morphological crown metrics for use in estimating tree attributes. Researchers have already 

shown that measures of crown morphology, such as crown width, correlate strongly with tree 

size and quality through allometric relationships (Filipescu et al. 2012; Groot 2014; Groot et al. 

2015; Groot and Schneider 2011; Lenz et al. 2012; Madgwick 1994). 

The utility of crown metrics derived using the proposed raster-based approach will be 

dependent on the accuracy of tree detection, and subsequent crown delineation. Errors in tree 

detection and crown delineation will result in changes to delineated crown boundaries. For 

example undetected small tree crowns (omissions) could be merged with other tree crowns 

resulting in overestimation of crown size. Similarly, falsely detected trees (commissions) occur 

when crowns are erroneously subdivided, leading to underestimation of crown sizes. An 

investigation into the importance of accurate tree detection and delineation is seen as an 

important objective, requiring investigation in the proposed research. 

1.4 Estimating tree attributes using airborne laser scanning 

There are a number of tree attributes which are routinely assessed in forest inventory, research 

trials, and tree breeding programmes. Those attributes can be placed into four groups: tree size, 

tree form (determining tree and log quality), wood quality, and disease. There is potential for 

cost savings and new approaches to tree assessment if methods could be developed to evaluate 

attributes representing each of these groups using remotely sensed ALS data.  

1.4.1 Tree size 

Researchers have used crown metrics derived from ALS data to estimate individual tree height, 

DBH or volume in boreal and savannah forest types (Chen et al. 2007; Lindberg et al. 2012; 
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Vauhkonen et al. 2010; Yu et al. 2011), and for planted forests (Chen and Zhu 2012; Lo and 

Lin 2013). Estimates of tree height typically had higher accuracy than estimates of DBH and 

volume. Estimates of height, DBH and volume for trees in boreal forest in southern Sweden 

had RMSEs of 4%, 15% and 35% respectively (Lindberg et al. 2012). Very similar results were 

obtained in a study of boreal forest in southern Finland, where RMSEs on estimates of height, 

DBH and volume were 3%, 13%, and 31% respectively (Vauhkonen et al. 2010). While there is 

only limited international research, results indicate good potential for the use of crown metrics 

from ALS data to estimate tree size attributes in New Zealand radiata pine stands. 

1.4.2 Tree and log quality 

Stem form variables of interest in forest management are straightness, including absence of butt 

sweep, and absence of malformations, in order to maximise the merchantable volume and 

quality of the stem. Tree breeds with multi-nodal branching are also favoured as they tend to 

have smaller branches, as well as better growth rate and straighter, less malformed, stems 

(Burdon 2001). Trees with straight, defect-free stems and small branches achieve higher log 

grades and are therefore of higher value. A strong relationship was found between tree 

maximum branch diameter and crown radius measured from the ground in one study, and the 

potential to use ALS data for estimating branch size was proposed by the authors (Groot and 

Schneider 2011). However review of the literature found no examples of using ALS data to 

directly estimate stem form or branching attributes for individual trees. 

1.4.3 Wood quality 

 Wood stiffness and density are key attributes for structural timber and are therefore important 

to forest managers and tree breeders. In a review paper the potential use of ALS data to 

estimate various wood quality variables for forest management purposes was discussed (Van 

Leeuwen et al. 2011). Moderate success has been achieved in estimating wood properties from 

ground measured crown variables and the authors suggested the possibility of using remote 

sensing data, such as ALS, in the future (Groot et al. 2015; Lenz et al. 2012).  
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There are some examples of estimating wood quality from ALS, although these studies are 

confined to estimates at the plot, rather than tree, level. In a pilot study (Pont et al. 2012b), 

crown metrics were used to estimate plot mean standing tree acoustic velocity, a measure 

which is highly correlated with timber stiffness, with an R
2
 of 0.69 (Watt et al. 2013b). Wood 

fibre attributes, including wood density and microfibril angle, were estimated at the plot level 

with low to moderate precision (R
2
 from 0.18 to 0.53 and RMSE from 2% to 14%) using 

metrics derived from ALS data (Luther et al. 2014). In a study using area-based metrics 

describing canopy height, canopy depth and canopy light zones, about half of the observed 

variance at the plot level was explained for fibre attributes (Hilker et al. 2012). Crown 

structural metrics derived from a canopy height model (CHM) from terrestrial laser scanning 

data were used to estimate plot mean wood fibre properties with R
2
 from 0.63 to 0.72 for black 

spruce stands (Blanchette et al. 2015). In summary, a review of the literature has shown 

potential, but has not identified any research that has estimated wood quality metrics at the 

individual tree level from ALS data. 

1.4.4 Disease 

The negative impacts of defoliation on tree growth due to disease or pests is an important issue 

in New Zealand and internationally. Review of the literature found few studies using ALS data 

to characterise levels of infection or needle loss on individual trees. Metrics from area-based 

analysis of ALS data were found to be correlated with plot level assessments of needle loss due 

to pine beetle infestation (Coops et al. 2014). In a study of loblolly pine it was noted that crown 

metrics are known to be correlated with individual tree leaf area, but the ability to predict leaf 

area index (LAI) was limited by the ability to accurately detect tree crown diameters and 

lengths (Roberts et al. 2005). Nearest neighbour methods were used to establish relationships 

allowing determination of two defoliation classes for individual trees, to an accuracy of over 

80%, based on ground measured training data and point cloud metrics (Kantola et al. 2013; 

Kantola et al. 2010). Several studies have investigated the use of laser scanning in the 

estimation of leaf area index or the related measure leaf area density, which might be used to 

quantify needle loss due to disease (Beets et al. 2011; Korhonen and Mosdorf 2014; Solberg et 
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al. 2006b; Tang et al. 2014). A number of those studies have relied on full waveform or 

terrestrial laser scanner data (Adams et al. 2012; Kato et al. 2013). Measurement of LAI for 

individual trees is very difficult (Breda 2003), and the few studies which looked at the 

individual tree level were for isolated trees, not groups of trees which had been delineated 

(Oshio et al. 2015). While the potential use of ALS data to quantify needle loss on individual 

trees has been recognised, to date there has been little research into methods to carry this out. 

1.5 Understanding the drivers of tree growth 

The ability to analyse the genetic and environmental effects on tree growth has uses in the 

development of elite tree breeds (NZ Forest Owners Association 2012; Scion 2014). 

Researchers wanting to create models for tree growth and quality also have a need to 

incorporate the effects of genetics, environment, and silviculture in models (Kimberley et al. 

2015b). Such models would be valuable for operational forest management, helping plant the 

right breeds on sites, and to manage tree growth to increase productivity, value, health and 

sustainability (NZ Forest Owners Association 2012; Scion 2014). Therefore tree-based analysis 

of LiDAR data, combined with methods to partition environmental and genetic effects, 

provides opportunities to better understand and model the key drivers of tree growth. Such an 

approach may be applied to study trees in research trials and in forest stands. 

It is important to note that tree-based analysis, as opposed to area-based analysis, is essential 

for precision forestry applications. There is a need to separate, quantify, analyse and model 

genetic and environmental factors affecting the growth of individual trees. While genetics are 

often described at higher levels of grouping, such as seedlot and family, in typical non-clonal 

New Zealand forest stands each tree is genetically distinct (Dungey et al. 2013; Mead 2013). 

Environmental factors affecting growth, such as temperature and soil moisture are also often 

described at higher levels, such as the regional scale, but can exhibit variation right down to the 

tree level (Watt and Zoric 2010). In order to separate and quantify the interactions of genetics 

and environment on tree growth it is therefore essential to characterise and analyse the growth 

of individual trees in relation to their environment. 
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1.6 The effects of varying LiDAR resolution 

The required resolution of LiDAR scanning is an important consideration when considering the 

use of ALS data to characterise forest trees. LiDAR scanners emit pulses at high frequency and 

pulse density is a measure of the number of pulses (Pu.) per unit ground area (Pu.m
-2

) 

(Gatziolis and Andersen 2008; Wehr and Lohr 1999; White et al. 2013). A number of 

parameters can be managed to vary pulse density achieved when collecting ALS data (Gatziolis 

and Andersen 2008). Tree-based analyses of ALS have been shown to require higher density 

ALS than area-based methods, and increased pulse density might offer higher quality data, but 

at increased cost (Gatziolis and Andersen 2008; Vauhkonen et al. 2008). It is therefore 

important to quantify the effects of varying pulse densities on estimates of tree characteristics 

obtained from tree-based analyses of ALS. This knowledge will used to guide cost-effective 

operational collection of ALS data with adequate resolution.  

1.7 Research aims 

The aims of the research are to develop and evaluate novel methods for analysing individual 

trees detected in ALS data in order to improve measurement, management, breeding, and 

knowledge about tree growth for New Zealand plantation-grown radiata pine. The assessment 

of individual trees from remote sensing can be used in genetics trials and forest stands as a 

novel phenotyping tool, supporting a new approach to improved tree breeding. Such methods 

can also be used to produce tree-level data, at an unprecedented scale and volume, for the 

development of a next-generation of individual tree growth and wood quality models. With the 

use of appropriate experimental designs and analytical methods to partition variance according 

to genetic and environmental sources, such tree growth models could incorporate the effects of 

genetics, site and silviculture, thereby reducing uncertainty from forest management (De Reffye 

et al. 1995; Wang et al. 2012). A tree-based approach can therefore be used to develop a better 

understanding of the drivers of tree growth. This requires the development of methods to 

delineate individual tree crowns, match them with ground measurements, extract individual 

crown metrics, estimate tree attributes, and to partition sources of variation. These methods will 
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be evaluated in terms of the utility of crown metrics in estimating tree attributes and their 

component sources of variation. The resolution of ALS data necessary to apply such methods is 

also an important consideration for operational applications and warrants quantification. Such 

methods could generate an unprecedented level of detail in describing trees in trials and forests, 

supporting precision forest research, tree breeding and management applications (Dungey et al. 

2013; Scion 2014). 

Review of the literature relevant to the use of ALS data for characterising individual trees has 

identified the opportunities and gaps in international research. The focus of the research is the 

use of crown metrics derived from ALS data to estimate key attributes, including size, form, 

wood quality, and disease, for individual New Zealand radiata pine trees. The review was used 

to guide the formulation of three key research questions, with associated objectives: 

1. Can methods be developed to estimate key attributes of individual trees using 

airborne laser scanning data? 

 Derive a set of individual crown metrics from raster-based analysis of ALS data 

in which individual trees have been detected. 

 Quantify correlations between LiDAR crown metrics and ground-based 

measures of tree size, form, wood quality, and disease expression. 

 Evaluate the effect of errors in tree detection and delineation by comparing 

estimates of correlations from automatic and manual segmentation of individual 

trees. 

2. Can methods be developed to estimate variance components of individual trees 

using airborne laser scanning data to elucidate the genetic and environmental 

drivers of tree growth? 
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 Estimate genetic parameters for measures of tree size, form, wood quality, and 

disease expression using crown metrics and compare these with estimates from 

ground measurements. 

 Evaluate the effect of errors in tree detection and delineation by comparing 

estimates of genetic parameters from automatic and manual segmentation of 

individual trees. 

3. What is the effect of varying pulse density on the accuracy of estimates obtained 

from the analysis of discrete return LiDAR? 

 Quantify the effect of reducing pulse densities on the accuracy of tree detection. 

 Quantify the effect of reducing pulse densities on correlations between crown 

metrics and ground measurements of key tree attributes. 

 Quantify the effect of reducing pulse densities on estimates of heritabilities and 

genetic gains. 
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1.8 Thesis structure 

The Introduction (Chapter 1) defined the basic concept of precision forestry and identified 

applications and benefits of tree-based analysis of ALS data. Review of the international 

literature identified gaps and opportunities in relation to tree-based analysis of ALS, leading to 

the definition of the approach to be taken. Three key research questions were used to frame 

specific objectives to be achieved. Each research question and its associated objectives are 

addressed in a subsequent thesis chapter.  

Chapter 2, Materials and Methods, describes the materials and methods utilised in the main 

thesis chapters. In order to carry out the tree-based analyses of LiDAR for this thesis a critical 

requirement was the ability to match trees identified in the LiDAR with trees measured on the 

ground. An investigation was made of GNSS positional accuracy under typical New Zealand 

forest canopy conditions to determine the suitability of this technology to provide accurate 

ground locations for trees. This investigation is reported in Appendix A. 

In Chapter 3 the correlations between crown metrics and ground measurements are investigated 

to address the first research question. In Chapter 4 the relationships with crown metrics are then 

used to address the second research question regarding the estimation of correlations and 

variance components for key tree attributes. In Chapter 5 the third research question is 

addressed by evaluating the effects of reduced pulse densities on correlations and genetic 

parameters investigated in the prior chapters. 

In Chapter 6 the research covered in the thesis is reviewed in terms of the objectives and 

research questions posed. The relevance and impact of the research is demonstrated in 

Appendix B by outlining the dissemination of results to international and national audiences.
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Chapter 2 Materials and Methods 

2.1 Introduction 

The data sets utilised in the research covered in Chapter 3, Chapter 4, and Chapter 5 comprised 

ground measurements of individual trees in a genetics trial, and ALS data collected for that 

trial. This chapter documents the details of those data and of the processes used to derive crown 

metrics for individual trees from the ALS data. The results from investigations into GNSS error 

under forest canopy (see Appendix A) showed the error of that approach is too large for reliable 

identification of individual trees. This chapter also includes description of the methods used to 

locate individual trees for the analyses to be carried out in the subsequent chapters. 

2.2 Genetics trial site 

The study site was the genetics trial BC 35-3, established in 2007 by the Radiata Pine Breeding 

Company Ltd (RPBC) in compartment 76 at Kaingaroa forest (38.53° S, 176.66° E) in the 

central North Island of New Zealand (Figure 2.1). The trial was designed to evaluate 

Dothistroma resistance for breeds in the breeding programme lacking this information and used 

an incomplete block design with single tree plots. The trial site was relatively flat and sloped 

gently (< 5 degrees) to the southeast. 
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Figure 2.1. Trial location in the North Island of New Zealand. 

The trial comprised 75 blocks with single tree plots representing a total of 96 families (Figure 

2.2). There were 25 replicates of 3 incomplete blocks and each block contained 36 trees in a 6 

by 6 grid. Block size was 19.2 by 19.2 m, tree spacing was 3.2 by 3.2 m and there were trees 

missing due to an operational thinning in the surrounding stand which was also applied to the 

trial. A total of 2196 trees remained of the 2700 trees established in the trial (75 blocks times 36 

trees). 

 



Materials and Methods 

21 

 

Figure 2.2. Trial layout with blocks outlined in white on the CHM image used for tree detection. 

2.3 Airborne laser scanning data 

The discrete return aerial LiDAR data were collected in early 2014 using an Optech Pegasus 

scanner with a pulse rate of 100 kHz, a maximum scan angle of 12°, a 25% swath overlap, and 

a 0.25 m footprint size. The data were georeferenced to the NZGD2000 NZTM coordinate 

system and all returns were classified as ground (using Terrascan TerraSolid software) and 

above ground. The point density over the trial area was 17 returns per m
2 

and 7 last returns per 

m
2
.  
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2.4 Canopy height model creation 

The ALS data was processed to generate a CHM image with a 0.2 m pixel size for the area of 

interest (Figure 2.2) using methods outlined here and described by Pont et al. (2015b). The 

CHM image was created using the CanopyModel tool from the Fusion software (McGaughey 

and Carson 2003). Image defects referred to as pits were removed using the standard image 

processing method closing (Ronse and Heijmans 1991) rather than a more complex approach 

recently proposed in the literature (Khosravipour et al. 2013; Khosravipour et al. 2014). The 

simpler approach used to remove pits was found adequate for tree detection purposes, was 

easier to implement, and faster to process. Either method removes isolated low points, visible 

as dark pixels on a CHM, and replaces them with points nearer to the surrounding points. It was 

not thought the method for removing pits would have a significant effect on crown metrics 

derived for estimating tree attributes and the simpler method was chosen. A height threshold 

was applied to the CHM to avoid false detection of understory shrubs and other non-crop 

features. The histogram of LiDAR point heights for the area of interest over the trial was used 

to determine a height threshold of 1.5 m, corresponding to the first minima detected below the 

canopy (Figure 2.3).  
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Figure 2.3. Height histogram for the LiDAR returns used to determine the height threshold for 

the CHM image. The histogram (blue curve) was smoothed (green curve) and zero crossings of 

the first derivative (red curve) used to determine minima (red line) and maxima (green line).  

2.5 Tree detection 

The Calibrated-ITC (CITC) tree detection process, as described by Pont et al. (2015b), was 

applied to the CHM image to obtain individual tree crown segments (Figure 2.4). Calibration of 

the tree detection process was carried out using manual calibration with eight virtual plots 

located on the image on a grid with random location and orientation. The overall accuracy from 

the initial automated tree detection was 89.82%, consistent with the accuracy of the image 

calibration CITC method reported by Pont et al. (2015b). Manual correction of the 

segmentation (described below) was then carried out, improving overall tree detection to 

98.34%. These processes produced two tree segmentation results, allowing comparisons of 

automated and manual detection and delineation in subsequent analyses. 
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Figure 2.4. Tree detection result for part of the trial. Markers are shown on detected tree tops in 

the trial (black) and within a virtual calibration plot (white). The image spans a distance of 48 m 

in the horizontal direction. 

2.6 Matching detected and ground measured trees 

Results in Appendix A showed GNSS error under forest canopy, of the order of +- 2.7 m, to be 

2 to 5 times too high to allow reliable identification of individual trees within the trial. In 

addition, the registration of tree top locations with ground locations, usually stem centre at 

breast height, cannot be exact. Positional error from GNSS locations can result in a different set 

of trees, as detected in ALS, being associated with the ground plot (Figure 2.5). Tree lean 

results in differences between tree top and ground measured tree locations, as illustrated in 

Figure 2.5 (Flewelling 2006; Mikita et al. 2013). An additional source of error is due to 

omission and commission errors from tree detection in the ALS. 
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Figure 2.5. Errors in matching trees detected from ALS can result from GNSS error in plot 

location and from tree lean. Error in GNSS position can cause the actual ground plot location 

(green) to be shifted to an incorrect position (red) and therefore include a different set of trees in 

the ALS. Tree positions are determined at tree tops in ALS and at breast height on the ground. 

Tree lean can result in trees detected in ALS being falsely excluded (A) or included (B) in plots. 

Least squares or similar approaches can be used to simultaneously minimise misalignment due 

to global GPS error, individual tree lean and missing or falsely detected trees. For example, 

automated least-squares matching process have been used to match ground truth data with trees 

detected in remotely sensed data in a number of studies (Hauglin et al. 2014a; Hauglin et al. 

2014b; La et al. 2015). Residual problems of dealing with plots where registration fails 

completely and missing or falsely detected trees within plots, are commonly dealt with by 

excluding trees without a match (Chen et al. 2007; Lo and Lin 2013).  

In order to address the issues noted, the matching of trees detected in the CHM with trees 

within the trial required a combination of initial GNSS locations for pegs, refined by operator 

image interpretation, and an automated least-squares matching process for trees within each 

block, described in more detail here. The initial segmentation of the CHM image was used to 

create a list of detected trees with coordinates for each tree top. In this study a least-squares 

matching process implemented in Python code (version 2.6.2) (van Rossum 1995), was used to 
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associate each detected tree with the nearest tree measured on the ground. Ground locations for 

trees were determined by assuming trees were located on a uniformly spaced six-by-six grid 

between the four corner pegs for each block. Corner peg locations were manually digitised on 

the CHM image, with reference to GNSS locations for a subset of pegs surveyed on the trial 

boundary. The least squares matching process used the estimated tree ground locations and the 

detected tree top locations from the CHM. The process used an iterative process to determine a 

rotational and translational transformation that minimised the distances between nearest ground 

and detected tree locations. That process required a good approximate initial starting point, 

provided by the manually digitised block corner peg locations.  

2.7 Manual correction of segmentation 

The accuracy of tree detection and delineation will strongly affect any derived crown metrics 

(Paris and Bruzzone 2014; Vega et al. 2014). For example, omission errors (undetected trees) 

can result in overestimation of crown sizes, and commission errors (falsely subdivided crowns) 

can result in underestimation of crown sizes (Zhang et al. 2012). Manual correction of detected 

tree boundaries was carried out to achieve two goals. Firstly a corrected segmentation provided 

the best possible basis for the determination of crown metrics and subsequent characterisation 

of tree attributes. Secondly it allowed comparison of results from the fully automated and semi-

automated (manually corrected) methods of delineating crowns and deriving crown metrics, 

used as key research objectives of the study. Manual correction of crown delineations has been 

used in comparisons with automated delineation in a number of international studies. In two 

studies, manual correction was shown to significantly improve estimates of tree total volume 

and biomass compared to automated delineation (Kankare et al. 2013; Vastaranta et al. 2012). 

In another study, manual correction of the crown base height was found to improve the 

accuracy of DBH estimates compared to the automated crown segmentation (Korhonen et al. 

2013). In that same study, manual correction of the horizontal crown boundaries was used as 

the sole basis of all analyses, without any comparison to an automated delineation. Manual 

delineation of crowns was also used as the basis of all analysis in a study into the effects of 

pulse density on estimates of tree DBH using crown metrics (Vauhkonen et al. 2008), and in a 
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study into the estimation of branch biomass (Hauglin et al. 2013a). Manually delineated crown 

boundaries and visual comparisons are also widely used to assess accuracies in the evaluation 

of tree-based methods (Brandtberg et al. 2003; González-Ferreiro et al. 2013; Jakubowski et al. 

2013b; Ke et al. 2010; Lu et al. 2014; Paris et al. 2016; Vega et al. 2014; Wu et al. 2016; Zhao 

et al. 2014; Zhen et al. 2016). In this study tree-based analysis was carried out for a genetics 

trial. Because all trial trees were measured on the ground, automatic tree delineation could be 

readily compared against the tree map produced by ground measurements. This allowed visual 

inspection of all trees affected by omission and commission errors on the ground and in the 

CHM image, and subsequent manual correction of the segmentation. Therefore the manual 

component of this process was only for a subset of trees, and was guided by detailed 

information to enable more accurate crown delineation.  

Manual correction of an automated delineation is supported by several international studies, 

and provides the benefit of allowing comparisons with a fully automated delineation. Such 

comparisons provide insight into the effects of delineation errors, but it can be argued that 

manual corrections cannot be used operationally on large areas. However in this study the area 

of interest was a research trial, and manual correction was limited to a small number of readily 

identified trees. Therefore the use of manual correction not only provided a useful comparison 

with automated methods, but it could provide a viable procedure to obtain the best possible data 

in operational collection of phenotyping data from research trials.  

The manually corrected errors in segmentation were of two kinds, omissions and commissions. 

Omission trees were not initially detected, and were found to be smaller crowns merged into 

adjacent crowns. The effect of omissions was therefore a lack of smaller trees in the set of 

crown metrics, and an overestimation of crown sizes for the adjacent trees with which they 

were merged. The other source of segmentation error was commission errors of two distinct 

types. A number of commission errors resulted from large branches within tree crowns being 

segmented as though they were separate trees. These commission errors caused 

underestimation of crown size before they were corrected. The other form of commission error 

was the segmentation of various tree fern and shrub species growing within the trial. These 
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segments were counted as commissions in calculation of tree detection error, because they 

represented falsely detected trees. However they were not matched with ground trees, and did 

not contribute crown metrics to the analysis data set. In fact the detection and segmentation of 

these non-crop crowns is important as it ensured correct delineation of the crowns for the trees 

in the trial. Manual correction of omissions therefore reduced overestimated crown sizes and 

included missing smaller trees, and correction of commissions increased underestimated crown 

sizes.  

2.8 Crown boundary determination 

The tree detection process outlined above and described by Pont et al. (2015b) provided the 

starting point for new crown segmentation processes developed as part of this thesis. The initial 

image segmentation result comprised a set of segments, one per detected tree, which 

completely tiled the image into non-overlapping and completely abutting segments. These 

segments were then processed to determine the crown boundary for each tree by excluding any 

pixels within the original segment which lay below the threshold height determined earlier. 

This produced a crown boundary which followed the perimeter of the crown as seen from 

above and excluded any gaps between crowns (Figure 2.6). 
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Figure 2.6. Result of crown boundary determination. Detected tree tops are indicated with a 

black dot. Fragments of the initial segmentation boundaries are visible as dark grey lines on a 

black background in the upper left of the image. Crown boundaries are shown in white. The 

image spans a distance of 48 m in the horizontal direction. 

2.9 Derivation of crown metrics 

Review of the literature in section 1.3.4 showed that a raster-based approach to analysis of ALS 

data was more robust, and parsimonious than more complex methods such as point-based 

analysis (Hadaś and Estornell 2016; Wallace et al. 2014b). The utility of crown metrics 

representing crown morphology for estimating tree attributes was illustrated in a study where 

hundreds of crown metrics were evaluated (Vauhkonen et al. 2010). In this thesis research 

crown metrics were derived from the CHM image, using the individual tree crown boundaries. 

The pixel values within each crown boundary represented heights above the ground, providing 

a three dimensional description of the upper crown surface (Figure 2.7). The crown surface 

representation was used to derive a set of crown morphological metrics quantifying crown size 

and shape.  
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Figure 2.7. Derivation of crown metrics from a CHM image. The pixels belonging to a single tree 

crown are shown at the bottom. The pixel grayscale values represent heights above ground, 

allowing creation of a three-dimensional crown representation, and calculation of crown metrics 

such as the projected crown area (CAC), maximum height above ground (TH), and the enclosed 

volume between the crown upper surface and the ground (CVF). 

The full set of 36 crown metrics used in this study are introduced in general groups. Metrics 

representing one-dimensional measures of crown size included tree and crown height (TH, 

CH), crown length and radii (CL, CR, CRav). Basic statistical properties (mean and variance) of 

crown surface points provided measures derived from crown surface heights and crown radii 

(CHav, CHvar, CBvar, CRvar). Several metrics quantified two-dimensional measures of crown and 

gap sizes, in the form of projected areas (CAC, GAC, CAP, GAP) and perimeters (CP, GP). Three-

dimensional measures of crown size were represented by crown surface areas (CSC, CST) and 

volumes (CVF, CVP). A number of metrics represented derivations from the base metrics. 

Measures of crown foliage distribution (DF, WF) and functions of those (fDG and fρ) were 
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defined in a study relating tree crown structure with stem size and wood properties (Pont 2003). 

Three measures of crown slenderness were derived (CHR, CRH, SHV), recognizing that stem 

slenderness has been correlated with wood stiffness (Watt and Zoric 2010). A number of 

metrics quantified the regularity of crown and growing space shapes (RU, C2, C3P, C3F, CARxy, 

GARxy, CARR). Two measures compared crown and tree size (CVPF, CLH), and one measure 

compared crown size and growing space (ACG). Derivations and descriptive statistics for the set 

of metrics used in this study are given in Table 2.1. 
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Table 2.1. Individual tree crown metrics used in this study. The table includes descriptive statistics: minimum (Min.), mean, maximum (Max.), 

standard deviation (SD), and coefficient of variation (COV) for each crown metric.  

Abbreviation / Equation Description Units Min. Mean Max. SD COV 

𝐶𝐻av Mean of heights from CHM for the crown. m 2.410 6.145 8.898 1.015 0.165 

𝐶𝐻var Variance of heights from CHM for the crown. m 0.141 3.490 9.331 1.606 46.019 

𝐶𝑆𝐶 = 𝜋𝐶𝑅√𝐶𝐿2 + 𝐶𝑅2 Crown surface area derived from crown radius and crown length using formula for 

surface area of a cone. 

m
2
 2.8 29.5 140.2 12.1 0.4 

𝐶𝑅av Average of crown radii from tree top location to points on perimeter of crown 

boundary. 

m 0.867 2.011 8.668 0.398 0.198 

𝐶𝐴C Two-dimensional ground area of crown determined by number of pixels. m
2
 1.40 10.38 29.00 4.01 0.39 

𝐶𝑉F The volume between the crown upper surface and the ground (Chen et al. 2007). m
3
 9.6 76.7 208.5 31.3 0.4 

𝐶𝐻 Average height of crown boundary points. m 0.137 4.831 7.991 1.224 0.253 

𝐶𝐵var Variance of heights of crown boundary points. m 0.12 3.50 11.74 2.17 61.96 

𝐶𝑅var Variance of radii to crown boundary points. m 0.01 0.25 18.30 0.44 173.17 

𝐶𝐿 = 𝐻 − 𝐶𝐻 Crown length. m 0.692 4.279 8.597 1.201 0.281 

𝐶𝑉P The volume between the crown upper surface and the base of the crown. m
3
 0.4 21.2 131.3 12.9 0.6 

𝐷𝐹 Average of x + y coordinates, x relative to tree top, across all crown surface 

pixels. Represents mean hydraulic distance to foliage. 

m 3.44 7.47 10.66 1.17 15.65 

𝑊𝐹 Sum of volumes of crown surface voxels. A simplified representation of foliage 

mass. 

m
3
 4.1 45.6 151.8 18.7 41.0 

𝑓𝐷𝐺 WF/DF.   29.7 170.6 410.2 51.5 30.2 

𝑓𝜌 DF/WF.  329.3 375.7 482.1 18.5 4.9 

𝐶𝑃 Perimeter of crown boundary. m 6.40 16.79 69.60 3.81 0.23 

𝐶𝐴P Two-dimensional ground area of crown determined from polygon. m
2
 2.0 12.1 128.8 5.1 0.4 
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𝐶𝑅 = √
𝐶𝐴P
𝜋

 

Crown radius derived from crown polygon area. m 0.806 1.926 6.403 0.375 0.194 

𝐶𝑆T Surface area of triangulated crown CHM heights. m
2
 4.1 45.7 152.1 18.8 0.4 

𝐺𝑃 Perimeter of crown growing space. m 6.40 17.42 69.60 4.09 0.23 

𝐺𝐴P Two-dimensional ground area of crown growing space determined from polygon. m
2
 2.0 12.8 131.2 5.6 0.4 

𝑇𝐻 Height of the highest point within the tree segment from the CHM image. m 4.82 9.11 12.73 1.29 0.14 

𝐺𝐴C Two-dimensional ground area of crown growing space determined by number of 

pixels. 

m
2
 1.40 11.00 34.32 4.54 0.41 

𝐴CG =
𝐶𝐴P
𝐺𝐴P

 
Ratio of crown and growing space areas. - 0.496 0.955 1.000 0.074 0.078 

𝐶𝑉𝑃𝐹 =
𝐶𝑉P
𝐶𝑉F

 
A ratio of crown size to tree size. The ratio of crown partial and full volumes. - 0.0206 0.2731 0.9483 0.1157 0.4235 

𝐶𝐻𝑅 =
𝑇𝐻

𝐶𝑅
 

A measure of crown slenderness, tree height over crown radius. - 1.22 4.83 10.82 0.77 0.16 

𝐶𝐿𝐻 =
𝐶𝐿

𝑇𝐻
 

A measure of crown size comparing crown length to tree height. - 0.0983 0.4696 0.9733 0.1183 0.2519 

𝐶𝑅𝐻 =
𝐶𝑅

𝑇𝐻
 

A measure of crown slenderness, crown radius over tree height. Inverse of CHR. - 0.0924 0.2124 0.8209 0.0366 0.1722 

𝑆𝐻𝑉 =
𝑇𝐻

√𝐶𝑉F
3

 
A measure of crown slenderness. - 1.494 2.201 3.692 0.206 0.093 

𝑅𝑈 =
𝐶𝐴S
𝐶𝐴P

 
A measure of crown surface complexity. Ratio of crown surface area and crown 

projected area (Bogaert et al. 2000; Kane et al. 2010). 

- 0.179 3.787 7.136 0.713 0.188 

𝐶2 =
𝐶𝑃2

4𝜋𝐶𝐴P
 

Two dimensional compactness. Ratio of crown perimeter to two dimensional area 

(Bribiesca 2008; Liu et al. 2010). 

- 1.324 1.919 4.119 0.261 13.609 
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𝐶3𝑃 =
𝐶𝑆𝑇

3

36𝜋𝐶𝑉𝑃
2 

Three dimensional compactness. Ratio of crown surface area (CST) to partial 

crown volume (CVP) (Bribiesca 2008). 

- 0.877 2.357 337.648 7.229 3.0671 

𝐶3𝐹 =
𝐶𝑆𝑇

3

36𝜋𝐶𝑉𝐹
2 

Three dimensional compactness. Ratio of crown surface area  (CST) to full crown 

volume (CVF) (Bribiesca 2008). 

- 0.003 0.190 1.993 0.182 0.9581 

𝐶𝐴𝑅𝑥𝑦 =
min⁡(𝑅(𝑥), 𝑅(𝑦))

max⁡(𝑅(𝑥), 𝑅(𝑦))
 

Crown aspect ratio from x and y. Ratio of shorter over longer x, y dimension 

(Suárez 2010). The function R() indicates the range of x or y.  

- 0.314 0.846 1.000 0.110 12.961 

𝐺𝐴𝑅𝑥𝑦 =
min⁡(𝑅(𝑥), 𝑅(𝑦))

max⁡(𝑅(𝑥), 𝑅(𝑦))
 

Growing space aspect ratio from x and y.  Ratio of shorter over longer x, y 

dimension. The function R() indicates the range of x or y. 

- 0.282 0.827 1.000 0.119 14.389 

𝐶𝐴𝑅𝑅 =
min⁡(𝑟𝑎𝑑𝑖𝑢𝑠)

max⁡(𝑟𝑎𝑑𝑖𝑢𝑠)
 

Crown aspect ratio from radius. Ratio of minimum over maximum radius. - 0.043 0.389 0.693 0.112 28.731 
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2.10 Field measurements of trees 

A ground based assessment of the trial was carried out in July 2014 when the trees were aged 7 

years, following standard tree breeding measurement methodologies (Jayawickrama 2001). 

Measurements of tree diameter at breast height (DBH), height (H), stem straightness score (S), 

branch cluster frequency score (B), malformation score (M), outerwood stress wave velocity 

(A), and collection of breast height cores for subsequent determination of basic density (ρ) were 

carried out by T. Stovold, M. Miller and K. Fleet of the Forest Genetics group at Scion, 

Rotorua.   

Tree DBH was measured using a fibreglass girth tape having diameter gradations at millimetre 

intervals (Friedrich Richter Messwerkzeuge GmbH & Co., Speichersdorf, Germany). Tree H 

was measured using a Vertex IV (Haglof, Sweden AB). Total stem volume (V) was estimated 

for each tree using the standard volume equation V182, defined in Equation 4.1 (Goulding 

1986). 

V= 𝐷𝑎 (
𝐻2

𝐻−1.
)
𝑏

𝑒𝑐 
2.1 

where a=1.79068, b=1.07473, c=-10.03201, and e is Euler’s number. 

Visual assessment was made by experienced field staff to determine S, B, and M scores for all 

trees. The assessment guides, developed by the Forest Genetics group at Scion, are presented in 

Figure 2.8, Figure 2.9, and Figure 2.10.  
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Figure 2.8. Scoring guide for visual assessment of stem straightness. Higher values represent 

increasing straightness. The value of 5 is not used in scoring, values from 1 to 4 represent basically 

bent trees, and values from 6 to 9 represent basically straight trees. 
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Figure 2.9. Scoring guide for visual assessment of stem branch cluster frequency. Scores from 1 

to 9 represent a multinodal rating, higher values having more internodes per annual growth shoot 

(3 annual shoots are indicated with dotted horizontal lines). The scoring values may be inverted 

from 1 to 9 to be from 9 to 1 for scoring uninodal breeds, which was not necessary in this study.  
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Figure 2.10. Scoring guide for visual assessment of malformation. Scores 1 and 2 represent 

forked trees, 3 and 4 represent leader replacements with a lateral shift > D/2 and < D/2 

respectively where D is stem diameter immediately below, 5 is a main stem reduction, 6, 7, and 8 

represent ramicorns (large branches), and 9 represents a tree without malformation. Notes below 

the figure state: rate the most serious malformation and for two equally serious malformations 

deduct one extra point.   

Outerwood acoutic velocity (A) was measured using a HITMAN ST300 (fibre-gen Ltd, 

Christchurch, New Zealand) with the probes placed 1 m apart, avoiding knots and defects that 

could affect readings. Breast height bark to bark (diametral) cores were taken from each tree 

with a 5.1 mm Mattson (United Kingdom) increment borer. Cores were divided at the pith 

centre, the half with the least defects was selected, and basic density (ρ) was determined for the 

sample using the maximum moisture content method without resin extraction (Smith 1954). 

Degree of infection by Dothistroma needle blight (Dothistroma septosporum (Dorog.) M. 

Morelet) was assessed by M. Miller and K. Fleet of the Forest Genetics group, Scion, at age 24 
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months (D24) and by J. Wharekura of  Radiata Pine Breeding Co-operative (RPBC), Rotorua, at 

age 38 months (D38). The Dothistroma measurement data was provided by the RPBC. Degree 

of infection was recorded as a percentage of needles infected or lost, measured in 5 percent 

increments (van der Pas et al. 1984). The assessments of Dothistroma infection were made at 5 

and 4 years prior to the ALS measurement, but Dothistroma needle blight is a slowly 

progressive disease which continues to spread within the crown over several years. It was 

therefore expected that effects of Dothistroma needle blight would be apparent in the crown 

metrics derived from the ALS data collected some years after assessment of infection. 

2.11 Models for quantifying genetic variation 

A brief outline follows of how underlying components of total observed (phenotypic) variation 

in tree attributes were estimated using established methods. For more comprehensive 

description of the concepts and methods the reader is referred to forest genetics texts (Fins et al. 

1992; White et al. 2007). An observed phenotypic value (P) for a trait of interest can be 

expressed as the sum of genotype (G) and environment (E):  

𝑃 = 𝐺 + 𝐸 2.2 

Likewise the observed variance of a phenotype can be expressed as the sum of genotypic and 

environmental variances (White et al. 2007) : 

𝑉𝑎𝑟(𝑃) = 𝑉𝑎𝑟(𝐺) + 𝑉𝑎𝑟(𝐸) 2.3 

Heritability is then defined as the proportion of phenotypic variance that can be attributed to 

genetic origin: 

𝐻𝑒𝑟𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦⁡(𝑏𝑟𝑜𝑎𝑑⁡𝑠𝑒𝑛𝑠𝑒) = 𝐻2 =
𝑉𝑎𝑟(𝐺)

𝑉𝑎𝑟(𝑃)
 

2.4 
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Broad sense heritability includes various genetic contributions to the variance in the phenotype, 

including additive and non-additive effects. It should be noted such heritability estimates are 

specific to the observed population and environment. The genetic variance can be partitioned 

into additive effects (𝑉𝑎𝑟(𝐴), termed breeding values), dominance effects (𝑉𝑎𝑟(𝐷), 

interactions between alleles at the same locus), and epistatic (𝑉𝑎𝑟(𝐼), interactions between 

alleles at different loci): 

𝑉𝑎𝑟(𝐺) = 𝑉𝑎𝑟(𝐴) + 𝑉𝑎𝑟(𝐷) + 𝑉𝑎𝑟(𝐼) 2.5 

Additive variance represents the variance due to parent-offspring resemblance and is therefore 

important for selection in breeding (hence the term breeding values). In practice, narrow sense 

heritability is estimated in terms of an observed response (change in variance) resulting from 

selection, requiring knowledge of the phenotypic values for parents and selected offspring. 

Narrow (or strict) sense heritability is defined as the proportion of phenotypic variation 

attributed to additive origin:  

𝐻𝑒𝑟𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦⁡(𝑛𝑎𝑟𝑟𝑜𝑤⁡𝑠𝑒𝑛𝑠𝑒) = ⁡ℎ2 =
𝑉𝑎𝑟(𝐴)

𝑉𝑎𝑟(𝑃)
 

2.6 

Environmental variance (𝑉𝑎𝑟(𝐸)), might be assumed to consist of environmental variance 

common to groups such as siblings (𝑉𝑎𝑟(𝐶𝐸)), and non-genetic variance from repeat measures 

of individuals (𝑉𝑎𝑟(𝑃𝐸)), with the remainder attributed to random error variance and 

measurement error (𝑉𝑎𝑟(𝑅𝐸)): 

𝑉𝐴𝑅(𝐸) = ⁡𝑉𝐴𝑅(𝐶𝐸) + 𝑉𝐴𝑅(𝑃𝐸) + 𝑉𝐴𝑅(𝑅𝐸) 2.7 

In the simplest formulation, no specific environmental factors are identified and environmental 

variance remains as an unexplained component of the residual 𝑉𝐴𝑅(𝐸) = 𝑉𝐴𝑅(𝑅𝐸). However 

that approach is focussed on carefully partitioning variance according to genetic factors, and 

environmental variation is treated with relatively simple assumptions. Figure 2.11 illustrates a 
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simple conceptual model of the partitioning of both genetic and environmental variance 

components.   

Figure 2.11. A conceptual model for the partitioning of total phenotypic variation. Total 

variation can be subdivided into genetic and environmental components, which can each be 

further separated into underlying components. 

Both genetic and environmental variance can be analysed by taking account of fixed and 

random effects. Note that for this trial, replicate and control were specified as fixed effects, 

while replicate within block and pedigree were specified as the random effects, the latter used 

to estimate additive genetic variance (𝜎𝑎
2). The additive genetic variance was then used to 

estimate genetic correlations (rg), narrow sense heritabilities h
2
 and breeding values used for 

ranking and selection. The genetic correlations were also used to carry out clustering using the 

R hclust method with the default complete linkage method (Kaufman and Rousseeuw 2008; R 

Core Team 2014). Clustering was carried out to reveal groups of variables with closer genetic 

associations. Such associations are important when ranking and selecting superior trees on the 

basis of a single trait because they indicate other traits which will also be effectively selected.  
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Chapter 3 Correlations between Crown Metrics and 

Ground Measures of Tree Attributes 

3.1 Introduction 

The ability to estimate the key attributes of individual trees from remotely sensed data would 

provide valuable information for precision forestry at an unprecedented level of detail. The aim 

of this study was to evaluate individual tree crown metrics derived from ALS data for their 

utility to estimate tree size, quality and disease expression for precision forestry. The tree 

attributes of interest were tree height, diameter at breast height (DBH), total stem volume, stem 

straightness, malformation, branching, wood stiffness, basic density, and level of Dothistroma 

infection. The ability to estimate these variables from ALS would offer potential cost savings 

for operational forest inventory and management, and for trial measurement. Additionally, 

conventional forest inventory is based on the measurement of trees within sample plots. The 

ability to accurately identify all trees in an area and accurately estimate their sizes could be 

used to replace ground measurement of plots, or it could lead to development of alternative, 

more accurate, methods of forest inventory through assessment of all trees in an area of interest. 

There is extensive literature concerning the use of area-based analysis of ALS to estimate mean 

tree attributes such as top height, basal area and stem volume, to support forest inventory 

(Bouvier et al. 2015; Vauhkonen et al. 2014; White et al. 2013). Some literature has indicated 

the potential to use ALS data to estimate measures of wood quality (Van Leeuwen et al. 2011) 

and some promising results using area-based methods have been reported recently (Luther et al. 

2014). A review of literature focused on estimation of individual tree-level metrics from ALS 

was made. Although some researchers have suggested the potential use of ALS data to estimate 

individual tree attributes, there are few actual studies to date, generally limited to estimation of 

tree size attributes. In this study the ability to estimate a broader set of operationally relevant 

tree attributes is evaluated, encompassing measures of tree size, form, wood quality and 

disease, for trees in New Zealand radiata pine plantations. 
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3.1.1 Estimating tree size 

A number of other researchers have used prototype tree identification methods to demonstrate 

estimation of various measures of tree size. Canopy geometric volume was used to estimate 

tree basal area and stem volume with R
2
=0.77 and 0.79 respectively, but the results were reliant 

on accurate tree segmentation (Chen et al. 2007). In another example a new tree algorithm for 

tree segmentation was presented and it was noted that TBA had utility for estimating variables 

of interest such as biomass and forest growth, but this area of research was still regarded as an 

open problem (Tang et al. 2013). A new segmentation method was applied to ALS to estimate 

tree height, crown diameter and crown base height (Solberg et al. 2006a). Watershed 

segmentation was applied to identify individual trees from ALS and estimate individual tree 

heights with an RMSE of 0.42 m compared with ground measurements (Chen and Zhu 2012). 

The tree heights were then used to estimate predominant stand height as a measure of site 

quality for Pinus radiata stands in Australia.  

Tree-based analysis was used to estimate tree DBH and biomass (Kim et al. 2012). Tree-based 

analysis of a CHM was used to estimate tree DBH and volume from the following tree metrics: 

position, height, crown radius and competition index (Lo and Lin 2013). A combination of 

ALS and optical imagery have also been used to detect individual trees and estimate tree height 

(R
2
=0.99) and DBH (R

2
=0.87) (Prieditis et al. 2012). A simple tree identification process 

applied to ALS data was used to estimate tree DBH from LiDAR height, and significant 

potential benefits described for harvest planning from having an accurate map of tree locations 

and sizes (Heinimann and Breschan 2012). However the authors also noted this potential 

cannot be realised until reliable tree identification methods are available and pointed out 

smoothing of the canopy model is a critical step requiring further research. 

In a series of papers, Swedish researchers used ITC methods in combination with other ALS 

analysis methods to derive tree lists: DBH and height; and to estimate stand volume (Lindberg 

et al. 2008; Lindberg et al. 2010, 2013). In a study of boreal forest in eastern Finland the use of 

ITC methods showed improvements in estimation of diameter distributions compared with use 
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of ABA methods alone (Xu et al. 2014). In recognition of the inability to reliably identify all 

trees in boreal forest conditions researchers were developing statistical methods to estimate 

realistic distributions of tree size (Vauhkonen and Mehtätalo 2015). New Zealand radiata pine 

forests represent a more regular forest type, being even aged and single species and such 

approaches may not be necessary.  

Review of the literature has shown there is good potential to estimate tree size in New Zealand 

plantation forest conditions using tree-based analysis of ALS data. The problem of accurate tree 

detection, noted by researchers dealing with more complex forest types, could be less of a 

barrier in New Zealand conditions and the potential for development of ITC methods to 

characterise individual trees is therefore greater.  

3.1.2 Estimating tree form 

Few research papers specifically related to estimation of tree or log quality from ALS were 

found, and most used area-based methods (Hilker et al. 2013; Luther 2013; Watt and Watt 

2013). Tree-based analysis of ALS data was applied to estimate tree branch biomass with 

higher accuracy than estimates derived from ground measurements (Hauglin et al. 2013a; 

Hauglin et al. 2013b), and to estimate pruned height using extremely high laser pulse density 

over a Eucalyptus globulus plantation (Wallace et al. 2014b). The combined use of ABA and 

ITC methods showed improvements in estimation of timber assortments in a study of boreal 

forest in eastern Finland (Xu et al. 2014). In a study in Canadian boreal forest, tree maximum 

branch diameters were estimated with an RMSE of 0.32 cm using tree and stand attributes that 

the authors noted might be estimated from remotely sensed data, such as ALS, in the future 

(Groot and Schneider 2011).  

The following three studies used a combination of ALS data with more direct measures of stem 

quality for boreal forests in Finland and Sweden. Stem attributes were estimated from ALS and 

terrestrial laser scanning (TLS), by using attributes detected from the ALS to lookup stems with 

TLS data in a library (Lindberg et al. 2012). ALS based estimates of DBH, height and volume 
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had RMSE of 15.4%, 3.7% and 34.0% respectively, as compared with values from the TLS. In 

a related approach ALS and harvester measurements were combined to estimate stem attributes 

for forested areas (Holmgren et al. 2012). Estimates were made of mean tree height, mean stem 

diameter, stem volume and stem density, with an RMSE of 8%, 12%, 11% and 19% 

respectively. The authors noted this approach was useful to estimate log assortments for 

planned areas. Tree TLS scans were used with ALS to estimate yields of sawlog and pulp logs 

and estimates of sawlog volumes had RMSE of 16.8%.   

3.1.3 Estimating wood quality  

Examples of research on estimation of wood properties from ALS are also limited, although the 

potential to do so has been raised.  In a review paper the potential for the use of ALS to 

estimate various wood quality variables for forest management purposes was discussed (Van 

Leeuwen et al. 2011). In one study moderate success was achieved in estimating wood 

properties in individual trees (measured with Silviscan) in Canadian boreal forest from ground 

measured crown variables: tree height, crown dimensions, number and diameters of branches in 

selected whorls (Lenz et al. 2012). The authors suggested the possibility of using remote 

sensing such as ALS to do this in the future. This research approach was also described in 

another article, with the authors also concluding remote sensing could be used in the future 

(Groot et al. 2015).  

In a study using ABA metrics describing canopy height, canopy depth and canopy light zones, 

about half of the observed variance was explained for six wood fibre attributes measured at the 

plot level using Silviscan: wood density, cell perimeter, cell coarseness, mature fibre length, 

microfibril angle, and modulus of elasticity (Hilker et al. 2013). In a Canadian study of boreal 

forest a mixture of ABA and analysis of the CHM were used to estimate a number of wood 

properties, measured using Silviscan, at the plot level (Luther et al. 2012). Moderate success 

was achieved, for black spruce R
2
 ranged from 0.42 for wood density to 0.57 for modulus of 

elasticity. In subsequent research using the same database, canopy structure and tree 
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competition metrics derived from TLS data were used to estimate plot means of wood 

properties, with R
2
 from 0.63 to 0.72 for black spruce (Blanchette et al. 2015).  

In a pilot study on a pre-harvest area of radiata pine in New Zealand crown metrics derived 

using TBA were used to estimate standing tree acoustic velocity (STAV) (Pont et al. 2012b). 

STAV is highly correlated with modulus of elasticity (stiffness), a key wood property for 

structural log and timber grades. A model using metrics from ABA had an R
2
 of 0.27. Addition 

of crown metrics from TBA to the model improved the R
2
 to 0.69. The international literature 

indicates strong interest in, and potential for, estimating wood quality attributes using remote 

sensing (Luther et al. 2012; Van Leeuwen et al. 2011), but the use of tree-based analysis has so 

far been limited to a few studies at the plot level. 

3.1.4  Estimating needle blight 

New Zealand tree breeders have identified Dothistroma (Dothistroma septosporum (Dorog.) M. 

Morelet) as a disease that significantly affects profitability, and have an objective to develop 

breeds with improved Dothistroma resistance (Jayawickrama and Carson 2000). Dothistroma is 

a needle blight which progressively results in needle discoloration, death and early defoliation 

(Gadgil 1967). Although complete needle loss and tree death are rare, the disease can 

significantly reduce tree growth (van der Pas 1981; Watt et al. 2011; Woollons and Hayward 

1984).  

There is some limited research into the use of ALS to determine the effects of needle loss in 

trees. In a study of the effects of mountain pine beetle infestation in British Columbia, discrete 

return ALS density metrics were found to correlate well with plot-level observations of the 

degree of needle loss (R
2
 = 0.76) (Coops et al. 2014). In a study of defoliation in Scots pine 

stands by pine sawfly in southern Finland, a combination of aerial spectral and ALS data were 

used to classify individual trees as healthy or infected with an accuracy of up to 88.1% (Kantola 

et al. 2010). Subsequent research by the same researchers using ALS data only showed 

classification accuracies for individual trees from 82.8% to 83.7% dependant on ALS pulse 
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density which ranged from 20 to 2 pulses m
-2

 (Kantola et al. 2013). In further associated 

research using the same data, 84.3 % accuracy was achieved estimating needle loss 

classification at the plot level using an area-based approach (Vastaranta et al. 2013). 

3.1.5 Research objectives 

International research has demonstrated the use of crown metrics from ALS data to estimate 

tree size attributes, and has indicated potential to estimate stem form, wood quality and disease 

attributes. A set of 36 crown metrics were derived from analysis of a LiDAR CHM in section 

2.9 to meet the first objective: “Derive a set of individual crown metrics from raster-based 

analysis of ALS data in which individual trees have been detected”. Those crown metrics were 

then utilised to meet the second objective: “Quantify correlations between LiDAR crown 

metrics and ground-based measures of tree size, form, wood quality, and disease expression”. 

The effects of manual correction of the tree segmentation were evaluated to meet the third 

objective: “Evaluate the effect of errors in tree detection and delineation by comparing 

estimates of correlations from automatic and manual segmentation of individual trees”. This 

study represented the first known example of using ALS data to estimate a comprehensive set 

of tree size, form, wood quality and diseases attributes together at the individual tree level. 

Results were used to evaluate the ability to answer the research question: “Can methods be 

developed to estimate key attributes of individual trees using airborne laser scanning 

data?”.  

3.2 Materials and methods 

Refer to Chapter 2 for a detailed description of the materials and methods used to measure tree 

attributes in a breeding trial, and to derive crown metrics from ALS data collected above the 

trial. In this section only a brief outline will be given of the data to be used. A complete 

description will be given of the methods used to examine correlations between the ground 

measured attributes and crown metrics from the ALS data. 
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3.2.1 Tree attributes measured on the ground 

Variables available for all trees were diameter at breast height (DBH), height (H), total stem 

volume (V), straightness (S), branching (B), malformation (M), outerwood stress wave velocity 

(A), basic density (ρ), degree of Dothistroma infection at ages 24 and 38 months (D24 and D38 

respectively). Variables were placed into four groups for analyses: tree size (H, DBH, and V), 

stem form (S, B, and M), wood quality (A and ρ) and disease resistance (D24 and D38). 

3.2.2 Individual tree crown metrics 

A CHM created from remotely sensed ALS data of the tree breeding trial was processed using 

the CITC methodology, with the image calibration method, to segment individual trees on the 

CHM image (Pont et al. 2015b). The initial automated tree detection rate was 89.82%, 

consistent with the accuracy of the image calibration method reported by Pont et al. (2015b). 

Manual correction of the automated segmentation was carried out, improving tree detection to 

98.34%. Refer to section 2.7 for a more detailed description of the manual corrections carried 

out and the effects on tree crown segments. Tree top locations and tree crown boundaries were 

then determined from the image segment for each tree and 36 morphological crown metrics 

derived, representing measures of crown size and shape. 

3.2.3 Analysis of correlations 

Statistical analyses and model fitting were carried out using R (R Core Team 2014). 

Correlations between ground measures and crown metrics were examined using Pearson’s 

product-moment correlation (r). Further analysis of correlations was carried out among ground 

measured attributes and crown metrics by deriving a dissimilarity measure (DM) from the 

Pearson’s r: 

𝐷𝑀 = 1 − 𝑎𝑏𝑠(𝑟) 3.1 

Taking the absolute value of r allowed either positive or negative correlations to be treated as 

similar levels. The dissimilarity measure was used to carry out clustering to identify groups of 
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crown metrics, using the R hclust method with the default complete linkage method for 

determining clusters (Kaufman and Rousseeuw 2008; Legendre and Legendre 2012). 

Clustering provided insights into fundamental relationships among the range of variables being 

investigated by grouping variables that were more closely correlated, irrespective of the sign of 

the correlation. 

3.2.4 Fitting univariate linear models 

Univariate linear models were fitted to quantify the predictive ability of the best correlated 

crown metric for each tree attribute. Each model was fitted twice, using crown metric values 

derived before and after manual correction of the crown segmentation was undertaken. The 

manually corrected segmentation was used as the reference segmentation, allowing evaluation 

of the effects of errors in segmentation on correlations. The model fitting process followed a 

general approach used for development of models for forestry applications (Watt et al. 2013c; 

Watt and Watt 2013). Models were created for each of the ground measures using the single 

best correlated crown metric, entered as a second order polynomial term. Polynomial terms 

were evaluated because they can accommodate variables which have curvilinear, as well as 

strictly linear, responses within models, resulting in better model fit (Kleinbaum et al. 2013). 

Additional variables were not added to the models as the focus was on determination of the 

main relationships between crown metrics and tree attributes. Only significant quadratic and 

linear coefficients (p<0.05) were retained in each final model.  

Model bias and heteroscedasticity were evaluated by examining plots of residual values against 

predicted values and the independent variables in the model. Residuals should show random 

distribution, while patterns indicate model bias. The precision of the models was quantified 

using the coefficient of determination (R
2
), the root mean square error (RMSE) and the RMSE 

normalised by the mean of the measured values (CV(RMSE)). The R
2
 is the proportion of the 

response variable variation explained by the model. The RMSE provides an absolute measure 

of the goodness of fit, being the square root of the variance in the residuals, in the units of the 
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response variable. The derived value CV(RMSE) expresses RMSE as a value relative to the 

mean, to allow comparisons across models. Model RMSE was determined as: 

𝑅𝑀𝑆𝐸 = √∑
(𝑌̅𝑖 − 𝑌𝑖)2

𝑛

𝑛

𝑖=1

 3.2 

where 𝑌̅𝑖 and 𝑌𝑖 represent predicted and actual values respectively. 

3.3 Results 

3.3.1 Descriptive statistics for measured attributes 

The descriptive statistics of the ground measured attributes are given in Table 3.1. The 

measured attributes generally showed a wide range of variation (see coefficient of variation in 

Table 3.1). Tree height and the wood quality variables (H, A, and ρ) were the least variable, 

with COVs of 13%, 14%, and 6% respectively. Diameter and two of the form variables (DBH, 

S, and B) were of intermediate variability, with COVs of 21%, 27%, and 28% respectively. 

Measures of volume, malformation, and Dothistroma infection (V, M, D24, and D38) exhibited 

the highest levels of variability with COVs of 0.42, 0.49, 0.33, and 0.32 respectively. 

Table 3.1. Descriptive statistics of tree attributes measured from the ground in the trial. 

(n=2188). 

Variable Units Minimum Mean Maximum Standard deviation Coefficient of variation 

H m 4.30  11.34 16.30 1.44 0.13 

DBH mm 13.00 181.18 285.00 37.48 0.21 

V m
3
 0.00 0.13 0.35 0.06 0.42 

S 1 to 9 1.00 5.96 9.00 1.62 0.27 

B 1 to 9 1.00 5.90 9.00 1.65 0.28 

M 1 to 9 1.00 6.21 9.00 3.06 0.49 

A km.s
-1

 1.91 2.86 4.17 0.39 0.14 

ρ kg.m
-3

 264.00 327.01 410.00 19.57 0.06 

D24 % 5.00 33.86 90.00 11.31 0.33 
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D38 % 5.00 35.65 90.00 11.33 0.32 

 

3.3.2 Correlations among ground measured variables  

There were a few high correlations (r >0.7) observed among the measured attributes (Table 

3.2). The high correlations for V with D (r=0.974) and H (r=0.826) were expected as total stem 

volume (V) was estimated from D and H. The next highest correlation was between H and D 

(r=0.750), and a moderate correlation (r=0.558) between the degree of Dothistroma infection 

assessed at ages 24 and 38 months (D24 and D38 resp.).  

Moderate correlation values with D24 (r<-0.37) and D38 (r<-0.48) were observed for the tree 

size attributes DBH, V and H. The strongest correlations with Dothistroma infection were with 

DBH (r=-0.590) and V (r=-0.569) when assessed at the later age (D38). There were some weak 

correlations (0.3<r<0.4) among the tree form attributes S, B, and M. 

Table 3.2. Pearson’s product-moment correlation coefficients (r) among the ground measured 

attributes.  

 H DBH V S B M A ρ D24 D38 

H 1.000 0.750 0.826 0.293 0.220 0.241 0.144 0.018 -0.371 -0.470 

DBH 0.750 1.000 0.974 0.219 0.219 0.127 -0.140 -0.106 -0.492 -0.590 

V 0.826 0.974 1.000 0.243 0.232 0.160 -0.092 -0.084 -0.467 -0.569 

S 0.293 0.219 0.243 1.000 0.392 0.286 0.151 -0.002 -0.101 -0.168 

B 0.220 0.219 0.232 0.392 1.000 0.263 0.029 -0.006 -0.122 -0.166 

M 0.241 0.127 0.160 0.286 0.263 1.000 0.036 -0.015 -0.009 -0.063 

A 0.144 -0.140 -0.092 0.151 0.029 0.036 1.000 0.157 0.110 0.109 

Ρ 0.018 -0.106 -0.084 -0.002 -0.006 -0.015 0.157 1.000 -0.030 -0.025 

D24 -0.371 -0.492 -0.467 -0.101 -0.122 -0.009 0.110 -0.030 1.000 0.558 

D38 -0.470 -0.590 -0.569 -0.168 -0.166 -0.063 0.109 -0.025 0.558 1.000 

Note: Pearson’s r with absolute values greater than 0.5 are shown in bold. 
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3.3.3 Correlations between crown metrics and ground measured 

attributes.  

Several crown metrics showed correlations over 0.5 (Table 3.3) with the ground measured tree 

size attributes (H, DBH, and V). The best correlations were between TH and H (r=0.904) and 

between CVF and DBH and V (r=0.824 and r=0.844 resp.). The crown metric TH was also the 

most strongly correlated metric for S (r=0.261), B (r=0.173), M (r=0.204) and D24 (r=-0.390). 

The crown metric CVF provided the strongest correlation with D38 (r=-0.499), and with DBH 

and V. The crown metrics RU and SHV had the strongest correlations with the wood quality 

attributes ρ (r=0.080) and A (r=0.219) respectively. 

Table 3.3. Pearson’s correlation coefficients (r) between the measured attributes and the crown 

metrics derived from the segmented CHM after manual correction.  

  H DBH V S B M A ρ D24 D38 

GP 0.420 0.587 0.573 0.149 0.099 0.098 -0.095 0.026 -0.282 -0.367 

GAC 0.432 0.619 0.603 0.145 0.105 0.112 -0.128 0.011 -0.284 -0.369 

GAP 0.367 0.518 0.511 0.138 0.091 0.084 -0.089 0.038 -0.246 -0.323 

GARxy 0.078 0.073 0.079 0.035 0.050 -0.015 0.054 0.011 -0.041 -0.030 

CAC 0.535 0.704 0.697 0.179 0.121 0.130 -0.101 0.005 -0.321 -0.425 

CAP 0.443 0.573 0.574 0.164 0.101 0.094 -0.061 0.035 -0.270 -0.362 

CARxy 0.038 0.047 0.050 0.022 0.051 -0.008 0.052 0.035 -0.040 0.017 

CARR 0.210 0.137 0.148 0.094 0.108 0.100 0.054 0.044 -0.055 -0.048 

TH 0.904 0.772 0.821 0.261 0.173 0.204 0.146 0.003 -0.390 -0.485 

CH 0.486 0.385 0.412 0.097 0.046 0.053 0.133 -0.053 -0.202 -0.275 

CL 0.476 0.437 0.462 0.181 0.139 0.165 0.020 0.057 -0.213 -0.241 

CRav 0.492 0.636 0.628 0.168 0.104 0.100 -0.068 0.024 -0.301 -0.404 

CR 0.535 0.679 0.670 0.186 0.122 0.121 -0.068 0.023 -0.319 -0.420 

CSC 0.519 0.584 0.598 0.191 0.130 0.144 -0.041 0.046 -0.276 -0.347 

CST 0.478 0.568 0.574 0.175 0.122 0.136 -0.050 0.041 -0.259 -0.324 

WF 0.479 0.569 0.575 0.175 0.122 0.136 -0.050 0.041 -0.259 -0.324 

DF 0.759 0.688 0.718 0.190 0.118 0.126 0.126 -0.036 -0.338 -0.456 

fDG 0.410 0.503 0.502 0.160 0.117 0.128 -0.054 0.047 -0.228 -0.280 

fρ -0.244 -0.331 -0.322 -0.120 -0.103 -0.110 0.045 -0.057 0.144 0.163 

CP 0.504 0.647 0.639 0.176 0.106 0.105 -0.066 0.016 -0.306 -0.411 

CVF 0.718 0.824 0.844 0.221 0.149 0.159 -0.019 -0.013 -0.384 -0.499 

CVP 0.417 0.541 0.541 0.166 0.118 0.121 -0.074 0.032 -0.256 -0.310 

ACG 0.297 0.187 0.207 0.089 0.017 0.014 0.104 -0.022 -0.089 -0.157 

C2 0.183 0.252 0.242 0.054 0.007 0.007 -0.029 -0.020 -0.131 -0.189 

C3P 0.004 -0.032 -0.010 -0.023 -0.045 -0.028 0.001 0.036 0.057 0.012 
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C3F -0.124 -0.081 -0.081 -0.005 0.011 0.017 -0.054 0.062 0.062 0.109 

CLH 0.011 0.044 0.045 0.052 0.064 0.073 -0.053 0.066 -0.011 0.018 

CVPF -0.115 -0.046 -0.056 0.020 0.045 0.035 -0.055 0.059 0.031 0.083 

CRH -0.157 0.122 0.070 -0.014 -0.007 -0.039 -0.198 0.029 -0.032 -0.067 

CHR 0.118 -0.175 -0.119 0.006 -0.002 0.018 0.201 -0.014 0.055 0.085 

RU 0.005 -0.140 -0.104 0.046 0.063 0.073 0.118 0.080 0.076 0.145 

CBvar 0.111 0.150 0.146 0.097 0.072 0.076 0.002 0.025 -0.115 -0.070 

CRvar 0.004 0.033 0.038 0.018 -0.017 -0.042 0.003 0.046 -0.033 -0.063 

CHav 0.720 0.614 0.648 0.183 0.116 0.119 0.167 -0.035 -0.316 -0.400 

CHvar 0.290 0.258 0.274 0.153 0.118 0.116 0.050 0.053 -0.140 -0.130 

SHV 0.179 -0.163 -0.092 0.038 0.020 0.056 0.219 0.015 0.047 0.082 

Note: Pearson’s r with absolute values of at least 0.5 are shown in bold. The highest correlation for the 

ground variable in each column is underlined.  

3.3.4 Clustering of variables 

Clustering is a data exploration technique used to determine groups of variables that are more 

similar to each other than those in other groups. This is a useful way to screen correlations 

among a large number of variables such as the set of crown metrics and ground measured 

attributes available in this study, and to aid identification of relationships among the variables. 

Tabular and graphical presentation of correlations among a large set of variables, such as the 36 

crown metrics employed in this study, is not feasible. Clustering is a useful technique in this 

situation, as it allows examination of correlations among the variables in a structured and 

compact representation. Clustering effectively filters out the clutter of numerous weak 

correlations, revealing stronger associations and groupings among variables. A dissimilarity 

measure, determined from the correlation values in Table 3.3 (using Equation 3.1), was used to 

apply a clustering algorithm to the 36 crown metrics and the 10 ground variables evaluated in 

this study. Examination of the clustering results indicated a set of six main clusters. In the 

dendrogram produced from the clustering results (Figure 3.1), vertical lines joining groups of 

one or more variables indicate the dissimilarity measure of those two groups. Therefore vertical 

lines on the left of the dendrogram join groups with higher dissimilarity and vertical lines on 

the right join groups with high similarity.  
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Six clusters ranging in size from 2 to 16 variables were segregated from the data. The second 

largest cluster (black labels in Figure 3.1) contained 11 variables including the tree size and 

disease attributes (H, DBH, V, D24 and D38), representing 5 of the 10 ground measured 

attributes. Those attributes were already seen to have moderate to high correlations with each 

other in Table 3.2. This cluster also included the two crown metrics TH and CVF, which were 

the best correlated metrics for 8 of the 10 ground measured attributes (see Equations 3.4 to 

3.13). The tree form attributes (B, S, and M) and the wood quality attributes (A and ρ) formed 

two isolated clusters (red and blue labels resp. in Figure 3.1), indicating poor correlations with 

all of the crown metrics. Three clusters containing only crown metrics comprised the remainder 

of the variables, those groups containing 16, 8, and 6 crown metrics (green, purple and brown 

labels resp. in Figure 3.1). This result indicated those metrics did not have significant 

correlations with any of the ground measured attributes. 
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Figure 3.1. Similarities among measured attributes and crown metrics. Dendrogram plot of 

ground measured attributes (prefixed with asterisk) and crown metrics showing dissimilarity of 

variables. Clustering was used to define six groups which are indicated by different coloured 

labels. 

3.3.5 Linear models relating tree attributes and crown metrics 

Linear univariate models were fitted to define the basic mathematical nature of the relationships 

between crown metrics and the corresponding ground measured attributes. One model was 

fitted for each of the ten ground measured attributes. Estimation of tree height from diameter 
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can be useful because tree height and diameter are typically strongly related, and diameter is 

significantly easier to measure than height. An additional model was therefore fitted to estimate 

H from DBH, for comparison with the model fitted to estimate H from a crown metric.  

Models were fitted to crown metrics derived before and after correction of the crown 

segmentation. Coefficients obtained from re-fitting with crown metrics from the uncorrected 

segmentation were generally only slightly changed. The coefficients presented below for each 

model are from fitting to the crown metrics derived from the manually corrected segmentation.  

𝐻 = 4.17 + 0.056⁡𝐷𝐵𝐻 − 0.000067⁡𝐷𝐵𝐻2 3.3 

𝐻 = 1.36 + 1.31⁡𝑇𝐻 − 0.0219⁡𝑇𝐻2 3.4 

𝐷𝐵𝐻 = 85.2 + 1.71⁡𝐶𝑉𝐹 − 0.00483⁡𝐶𝑉𝐹
2
 3.5 

𝑉 = 0.00139 + 0.00208⁡𝐶𝑉𝐹 − 0.00000402⁡𝐶𝑉𝐹
2
 3.6 

𝑆 = 3.03 + 0.325⁡𝑇𝐻 3.7 

𝐵 = 3.94 + 0.219⁡𝑇𝐻 3.8 

𝑀 = 1.84 + 0.482⁡𝑇𝐻 3.9 

𝐴 = 1.94 + 0.416⁡𝑆𝐻𝑉 3.10 

𝜌 = 319 + 2.19⁡𝑅𝑈 3.11 

𝐷24 = 93.9 − 10.5⁡𝑇𝐻 + 0.410⁡𝑇𝐻2 3.12 

𝐷38 = 55.6 − 0.376⁡⁡𝐶𝑉𝐹 + 0.00124⁡⁡𝐶𝑉𝐹
2
 3.13 

Results for accuracies of the fitted models are given in Table 3.4. The first model (Equation 

3.3) estimates tree height (H) from DBH. The subsequent models (Equations 3.4 to 3.13) 

estimate each of the ground measured attributes. There are two sets of results for each model in 
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Table 3.4. Results from models fitted after manual correction of the segmentation are indicated 

by the entry A in the Model fit column. Results for using metrics obtained before correction are 

indicated with B.  

The model to estimate H from DBH has an R
2
 of 0.57 and an RMSE of 0.87 m (7.6%). The 

model to estimate H from the crown metric TH has an R
2
 of 0.82 and an RMSE of 0.56 m 

(4.9%). Models to estimate DBH and V from the crown metric CVF had similar R
2
 values of 

0.71 and 0.72 respectively. Normalised RMSE values of 10.2% from the model for DBH model 

and 20.8% from the model for V showed there is double the variability in residuals for the latter 

model. 

Quadratic terms were not significant in the models to estimate the tree form and wood quality 

variables (S, B, M, A, and ρ) and were dropped. The resulting linear models had extremely low 

R
2
, explaining less than 7% of the variation in the response variables. Quadratic terms were 

significant in models to estimate level of Dothistroma infection at ages 24 and 38 months, and 

the models explained 16% and 27% of the variation respectively.  

There was an increase in R
2
 for all models fitted using crown metrics derived after manual 

correction of the image segmentation (model fit A in Table 3.4) compared with metrics from 

before correction (model fit B). The improvement in R
2
 due to manual correction was 2% for 

H, 9% for DBH, 8% for V and 15% for D38. 
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 Table 3.4. Accuracy of model prediction estimates for the ground measured attributes. 

Trait Units Equation Model fit Adjusted R
2
 RMSE CV(RMSE) % 

H m 3.3 A 0.57 0.87 7.56 

   B 0.57 0.85 7.40 

H m 3.4 A 0.82 0.56 4.93 

   B 0.80 0.57 5.00 

DBH mm 3.5 A 0.71 18.75 10.23 

   B 0.65 20.05 10.88 

V m
3
 3.6 A 0.72 0.03 20.81 

   B 0.67 0.03 22.19 

S 1 to 9 3.7 A 0.07 1.55 25.91 

   B 0.06 1.55 25.90 

B 1 to 9 3.8 A 0.03 1.61 27.12 

   B 0.03 1.62 27.22 

M 1 to 9 3.9 A 0.04 2.99 47.88 

   B 0.04 2.99 47.93 

A km s
-1

 3.10 A 0.05 0.38 13.33 

   B 0.04 0.38 13.45 

ρ kg m
-3

 3.11 A 0.01 19.43 5.94 

   B 0.01 19.40 5.93 

D24 1 to 100 3.12 A 0.16 9.85 29.51 

   B 0.15 9.81 29.39 

D38 1 to 100 3.13 A 0.27 9.23 26.22 

   B 0.23 9.37 26.75 

Note: Model fit values of A and B represent the model fitted to values After and Before (resp.) manual 

correction of the CHM segmentation. RMSE values are in the units of the variable being estimated. CV 

(RMSE)% values are the RMSE normalised by dividing by the mean value for the corresponding 

variable and expressed as a percentage to allow comparison among models. 

3.4 Discussion 

This is the first known example of a study to investigate correlations with a combination of 

individual tree size, form, quality and disease attributes using metrics derived from ALS data. 

Analysis has shown that key individual tree size attributes were strongly correlated with crown 

metrics derived from the ALS data. Moderate correlations between crown metrics and a 
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measure of Dothistroma infection were also demonstrated, while correlations with tree form 

and wood quality attributes were poor. 

3.4.1 Correlations with tree size 

Tree height and diameter are basic measures of tree size widely used in forest inventory and 

research measurement. Tree height is more difficult to measure on the ground than diameter 

and is therefore usually measured on a sub-sample in forest inventory and may not always be 

measured in research trials. Stem volume is a measure of tree size that is operationally and 

ecologically relevant and is usually estimated from tree height and diameter because direct 

measurement is prohibitively challenging. Correlations among the three size attributes were 

relatively high (0.75<r<0.97), as expected, and they also had high correlations with a number 

of the crown metrics being evaluated. These strong correlative relationships were further 

evidenced by cluster analysis which grouped the three tree size attributes (H, DBH, and V) 

together with two crown metrics (TH and CVF). Tree height H had a strong correlation (r=0.90) 

with the crown metric TH and the fitted model had an R
2
 of 0.82. In comparison, a model fitted 

to estimate H from DBH had a substantially lower R
2
 of 0.57. The normalised RMSEs from 

models fitted to H, DBH and V (CV(RMSE) = 5%, 10%, and 21% resp.) compared favourably 

with values reported in the limited existing literature estimating individual tree size attributes. 

For example Vauhkonen et al. (2010) reported similar errors for H, DBH, and V (CV(RMSE) = 

3%, 13%, and 31% resp.), as did Lindberg et al. (2012) (CV(RMSE) = 4%, 15%, and 34% 

resp.).  

It is worth noting that for area-based analysis of ALS, R
2
s over 0.9 are routinely obtained for 

height (Maltamo et al. 2014), but this is for the mean height of trees in a patch, typically of the 

order of 0.5 ha in size. The lower R
2
 obtained for height in this study, using tree-based analysis, 

is due to the attempt to estimate the heights of individual trees, which are inherently more 

variable, and subject to more measurement error. The crown metric TH represents the 

maximum height from the CHM segment for the tree. This is effectively the height to the top of 

the tree, as represented by the CHM (see Figure 2.7). Incident laser pulses may not exactly 
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intercept the very top of every tree, and each pulse must encounter sufficient material for the 

reflected energy to trigger registration of a discrete return. Also, the highest discrete return in 

any CHM pixel may come from a second or subsequent return, dependant on pulse density. The 

combination of these three factors means that a CHM derived from discrete return ALS data is 

a raster representation of a surface which lies some distance below the actual upper surface of 

the canopy at any given location (Khosravipour et al. 2014; Liu and Dong 2014). 

Notwithstanding this bias, the inherent spatial accuracy of ALS data means a CHM provides 

useful information about canopy heights. With an accurate delineation of individual trees, a 

CHM could also provide a useful measure of tree height. Results in this study demonstrated a 

high correlation between individual tree heights and a CHM crown height metric. A simple 

univariate model fitted to the crown metric TH estimated 82% of the variance in individual tree 

heights.  

The remaining two tree size attributes DBH and V were highly correlated with each other and 

were both highly correlated with the crown metric CVF. Linear models using CVF predicted just 

over 70% of the variation in DBH and V, although normalised RMSE of 21% for V was double 

the value of 10% for DBH. Model RMSE and R
2
 values for DBH and V also compared 

favourably with international results estimating individual tree size attributes (Chen and Zhu 

2012; Lindberg et al. 2012; Lo and Lin 2013; Vauhkonen et al. 2010). For example Vauhkonen 

et al. (2010) fitted models for V and DBH having CV(RMSE) values of 31% and 13% 

respectively, while Lindberg et al. (2012) had corresponding values of 34% and 16%.  

In the past researchers have found measures of crown size, such as crown diameter and 

projected area, to be strongly correlated with tree diameter and stem volume (Balenović et al. 

2015; Filipescu et al. 2012; Gonzalez-Benecke et al. 2014; Groot et al. 2015; Leech 1984; 

Madgwick 1994). Such relationships effectively link current crown size with past cumulative 

stem growth, although Filipescu et al. (2012) has suggested crown size might integrate the 

effects of past growth conditions. In this study crown metrics representing crown radius (CR) 

and crown area (CAC) had strong correlations with DBH and V (r values near 0.7) but the 

strongest correlations were with the crown metric CVF (r values over 0.8). The crown metric 
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CVF quantified the enclosed volume between the upper surface of the tree crown and the 

ground (see Figure 2.7). This metric quantifying crown volume was derived relatively easily 

from the CHM but would be difficult to estimate from ground measurements, which would 

explain why relationships with measures of crown volume are not as widely reported as for the 

more easily measured crown diameter. The crown metric CVF effectively incorporates crown 

diameter, accounting for relative tree size, and a measure of tree height, accounting for age-

related growth. The crown volume metric was therefore interpreted as including useful 

additional explanatory information about past growth compared with more widely reported 

measures of crown size used to estimate tree size.  

Relationships between measures of crown and tree size have been found to be stand specific, 

modified by factors such as species, site, stand age, tree genetics and silviculture (Balenović et 

al. 2015; Madgwick 1994; Watt and Kirschbaum 2011). One limitation of crown diameter in 

accounting for tree size is that after canopy closure, crown diameter will remain static, while 

stem diameter and volume will increase. This could explain the lack of generality of the 

relationship between crown diameter and stem size at different ages. In this study the crown 

volume metric CVF has been shown to explain a large proportion of variation in tree size due to 

genetics because the trial included a range of genetic material. It will be interesting to test the 

generality of the crown volume metric over a range of stand conditions. 

3.4.2 Correlations with tree form 

The tree form attributes S, B and M were most highly correlated with each other, and 

correlations with crown metrics were low, the highest being r=0.26 for S. This was clearly 

illustrated by cluster analysis which showed these three attributes grouped together in an 

isolated cluster. The lack of useful correlations with crown metrics was also demonstrated in 

the inability to fit quadratic terms in the models, and the very low R
2
s of the final models. The 

crown metric TH, representing tree height, was the best correlated crown metric for all three 

form attributes. This correlation indicates that within this trial there was a slight trend for taller 

trees to have better stem straightness, more branch clusters and a lower incidence of stem 
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malformations. Those correlations between height and tree form are to be expected, resulting 

from the long-term focus on tree growth and form in the radiata pine breeding programme 

(Mead 2013).  

3.4.3 Correlations with wood quality 

The two wood quality attributes, standing tree acoustic velocity (A) and wood basic density (ρ), 

were most highly correlated with each other, although the correlation was low (r=0.16) and 

they were also grouped together in an isolated cluster by cluster analysis (Figure 3.1). Tree A 

was most highly correlated with the crown metric SHV. Although the correlation was low 

(r=0.2) it is interesting to note this crown metric is derived as the ratio between TH and the 

cube root of CVF, effectively a measure of slenderness (height/diameter), which was a key 

variable in a site level model estimating modulus of elasticity (Watt and Zoric 2010). Despite 

the appearance of this plausible crown metric, a linear model incorporating SHV explained less 

than 5% of the variation in A. Correlations between ρ and crown metrics were even lower than 

for A. The finding that crown metrics were not highly correlated with tree basic density or 

stiffness also agrees with observations made by Groot et al. (2015), finding no evidence in the 

international literature of reliable correlations between crown structure and wood density. 

Rather, they concluded wood density may be determined by mechanical and water conduction 

requirements.  

3.4.4 Correlations with level of needle blight 

The degree of Dothistroma infection, expressed as a percentage, was assessed at two prior ages, 

24 and 38 months, (D24 and D38 respectively). There was a moderate correlation between D24 

and D38 (r=0.6), which was expected as Dothistroma infection is known to persist for several 

years (van der Pas et al. 1984). Cluster analysis confirmed this association and also illustrated 

moderate negative correlations (r from -0.5 to -0.6) with the tree size attributes DBH and V. 

Correlations with tree size and crown metrics were higher for D38 than D24. This was 

interpreted as evidence of a stronger effect of Dothistroma infection on tree size at the later age 

and further discussion will be limited to D38.  
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The best correlated crown metric for D38 was CVF (r=-0.5) which was already found to 

correlate highly with the tree size measures DBH and V. This is further evidence of the 

observed negative correlation between D38 and tree size. Defoliation due to Dothistroma 

damage is well known to reduce tree growth (van der Pas et al. 1984) and therefore the negative 

correlation between CVF and D38 is interpreted as representing reduced tree growth associated 

with higher levels of Dothistroma infection. A linear model using CVF explained 27% of the 

variation in D38. At this early stage of evaluating crown metrics it is not clear to what degree 

the crown size metric CVF includes some measure of the effect of defoliation or to what degree 

the apparent correlation between D38 and CVF is due to the co-variance of DBH (or V) and D38.   

3.4.5 Improvements from manual correction of segmentation 

Correlations between crown metrics and tree attributes after manual correction (See Table 3.3) 

were compared with correlations before correction (not presented). Correlations were found to 

be improved by manual correction of the image segmentation. For the tree size attributes (with 

r>0.5) the degree of improvement in r was 1% for H, 4% for DBH and V. Manual correction 

was found to result in improved correlations for all attributes although the effect was small. 

This was an important finding, showing only slight benefit from the extra effort of manual 

correction.  

The numbers and locations of trees were known from the trial layout and ground measurement 

data. Automated matching of trees assessed on the ground and detected in the automated 

segmentation allowed identification of individual omissions and commissions within the trial. 

The interpretation of the segmented CHM image needed to correct erroneous crown segments 

was not onerous and the process largely became a matter of investing the time needed to carry 

out the corrections. In an experimental application, such as measurement of a trial, the extra 

time required could be warranted in order to obtain data for all trees and to obtain the best 

possible crown metrics. For operational forest inventory applications the small improvements 

demonstrated in this study might not be practical, or worthwhile. However application of the 

automated methodology in forest stands is likely to experience greater variations in crown 
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sizes, and the effects of this on detection errors, crown metrics, and correlations requires further 

study. 

3.4.6 Morphological crown metrics 

Two principal approaches to creating crown metrics were identified during review of the 

literature. In the first approach various statistics of the point cloud belonging to each tree are 

used, similar to the metrics widely used in area-based analysis of ALS data. The second 

approach identified was the use of measures of crown size and shape, such as crown diameter 

and volume. The term morphological metrics was applied to geometric measures of the tree 

crown and it is the use of these metrics that was applied in this study. 

The metrics TH and CVF, representing tree height and crown volume respectively, were 

identified as key morphological crown metrics, suitable for evaluation in future studies. The 

lack of correlations between wood quality attributes and crown metrics could be considered as 

evidence against the theories of Larson (1969) relating crown structure to wood quality. The 

results presented are from a limited study and further research could be applied to develop and 

evaluate additional metrics which might lead to better correlations with tree form, wood quality 

and disease attributes.  

3.5 Conclusions 

A set of crown metrics were derived from ALS data, representing measures of crown 

morphology, meeting the first objective for this section of the thesis: “Derive a set of individual 

crown metrics from raster-based analysis of ALS data in which individual trees have been 

detected”. Those metrics were evaluated for correlations with key individual tree attributes, 

meeting the second objective: “Quantify correlations between LiDAR crown metrics and 

ground-based measures of tree size, form, wood quality, and disease expression”. Results 

showed high correlations between crown metrics representing tree height (TH) and crown 

volume (CVF) and the important tree size attributes: H (r=0.904), DBH (r=0.824), and V 

(r=0.844). Moderate correlations were found between crown metrics and measures of 



Correlations 

65 

 

Dothistroma infection (D24 r=-0.390 and D38 r=-0.499). Correlations between crown metrics 

and the tree form and wood quality attributes were very weak (r<0.27). 

Investigations were carried out to determine the effect of manual correction on correlations, 

meeting the third objective: “Evaluate the effect of errors in tree detection and delineation by 

comparing estimates of correlations from automatic and manual segmentation of individual 

trees”. Results showed that manual correction of the initial segmentation did not substantially 

increase the strength of correlations.  

Demonstration of strong correlations for the height, diameter, and stem volume of individual 

trees from remotely sensed ALS data is a significant result, providing an affirmative response 

to the research question “Can methods be developed to estimate key attributes of individual 

trees using airborne laser scanning data”. Future effort should be directed to look for 

opportunities to estimate stem form and wood quality attributes from ALS data, by evaluating a 

wider range of stand conditions and by development of additional crown metrics.  
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Chapter 4 Quantifying Sources of Variation in Tree 

Growth 

4.1 Introduction 

Observed attributes of trees can be viewed as the expression of the intrinsic genetic program 

modified by environmental influences. This viewpoint establishes a useful basis for analysis 

and partitioning of the different factors driving tree size and quality attributes. Knowledge 

about the key drivers of growth in forest trees can then be integrated into models and decision 

support tools for use in forest management to grow trees fit for purpose (Dungey et al. 2013; 

Scion 2014; Telfer et al. 2015). Tree-based analysis of remotely sensed ALS data provides an 

opportunity to do this at an unprecedented level of detail, creating novel methods supporting 

the development of precision forestry for the New Zealand forestry sector.  

4.1.1 Statistical quantification of sources of variation 

Geneticists view variability in tree attributes as being the result of genetic and environmental 

factors and phenotyping can be described as separating genetic effects from environmental 

effects and experimental error (Cobb et al. 2013)  This is echoed in the analytical approach they 

take to quantifying variation. Models are constructed to partition variance in observed traits 

from measurements taken in carefully constructed trials, which can be designed to quantify 

genetic, within and between site, and silvicultural factors (Burdon et al. 1992; Cullis et al. 

2014; Gilmour et al. 1995; Liu et al. 2014). Recently developed methods can apply the 

considerable computing power necessary to fully take into account the complex incomplete 

block trial designs, and pedigree information, such as found in the trial to be used in this study 

(Butler et al. 2009).  

The base analytical model partitions phenotypic (observed) variation into genetic and 

environmental origins, along with unexplained residual variation. Tree breeders and growth 

modellers typically focus on genetic and environmental (site and silvicultural) effects, 

respectively (see Figure 2.11). According to trial design and research objectives, the genetic 
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and environmental factors can be further partitioned to more precisely quantify factors of 

interest. 

It can be easier to measure a trait which is not of direct interest in its own right, but which is 

correlated with a trait of interest. This could be particularly relevant in the case of using remote 

sensing to assess traits. Researchers or foresters might have limited interest in metrics such as 

crown diameter, but this metric would be useful to them if it were to correlate with stem 

volume for example. From a tree breeder’s perspective, selection to improve one attribute also 

gives improvements in other attributes having strong genetic correlations. Attributes having 

negative genetic correlations are also of interest, because selection for gains in one attribute 

will result in losses for the other attribute. Such correlations are also valuable for the insights 

they can give into functional relationships associated with tree growth.  

4.1.2 The potential role of remote sensing 

The use of remotely sensed data to phenotype trees offers a number of potential benefits for 

tree breeders, researchers, and forest managers. It would be useful to develop and evaluate 

methods to analyse remotely sensed data at the individual tree level, with the ability to separate 

and quantify genetic and environmental effects. Internationally, crop researchers have 

identified the need for development of remote sensing, image processing, and analytical 

methods in order to build the high-throughput, accurate phenotyping systems they desire (Cobb 

et al. 2013; Dhondt et al. 2013). Tree breeders identified the potential of applying such methods 

for forestry, and incorporated remote sensing and phenotyping as core elements underpinning a 

multi-year forestry research programme (Dungey et al. 2013; NZ Forest Owners Association 

2012; Scion 2014; Telfer et al. 2015). The use of remotely sensed ALS data, along with 

methods to detect individual trees, could make it possible to estimate tree attributes, such as 

individual tree heights (Pont et al. 2015a; Pont et al. 2015b). This could be a useful alternative 

to the somewhat slow and error-prone conventional methods for height measurement. In 

addition to providing a tool to measure research trials, the ability to characterise individual trees 

could be applied in wide scale phenotyping in forest stands. The merit in this approach would 
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be the ability to assess large numbers of trees across varying environmental conditions. 

Localised patches showing correlation among traits (such as an area with taller trees) may 

reveal information about environmental drivers such as soil or micro-site conditions. Individual 

trees with notable differences to neighbours (a lone tall or disease resistant tree) may indicate a 

tree of interest for tree breeding. The ability to quantify distributions of key tree attributes may 

also provide a useful measure of variability in stands or parts of stands. 

4.1.3 Using a genetics trial as a case study 

A genetics trial is a useful basis for developing and evaluating methods to characterise 

individual trees using ALS data. Trials with single tree plots generally have a block structure 

for replication to manage within site variability, and have single trees within the blocks 

representing individual families. Replication and randomisation of tree locations within blocks 

are used to minimise effects of tree-to-tree interactions and local site variability. Such trials are 

also established with trees planted on a highly regular grid to minimise variability in 

competition effects (Fu 2003).  

The regular structure of a trial simplifies the problem of tree detection because tree spacing and 

crown sizes are relatively regular compared with general forest stand conditions (Williams et 

al. 1999). This allows a principal focus on development and evaluation of crown metrics, rather 

than tree detection. The block layout of a trial also simplifies the problem of matching trees 

detected in the ALS data with the correct ground measurements. In 0 the issue of accurately 

locating trees on the ground was investigated and it was shown that available GNSS devices are 

inadequate to determine unambiguous tree locations. This issue was addressed by using GNSS 

locations of trial boundary pegs to determine initial block boundary locations which were then 

refined by manual interpretation of ground measurement records and the CHM image for the 

trial area. Matching of trees was then able to be completed using an automated process.  

Use of a genetics trial as a case study has another significant benefit: the trees have known 

genetic parentage. This provides a controlled basis for partitioning variance using the powerful 
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methods developed by geneticists (Butler et al. 2009; Gilmour et al. 1995). A genetics trial 

therefore provides a tightly controlled environment within which to develop and evaluate 

methods to characterise trees using ALS data. These methods have important application for 

assessment of genetics trials, by potentially supplementing ground based measurement methods 

and potentially improving efficiency and reducing costs of measuring genetics trials. There 

would also be precision forestry applications using such methods, for wide scale phenotyping, 

research and inventory. 

4.1.4 Research objectives 

Statistical methods were applied to partition variance components using individual tree crown 

metrics derived from ALS data, and to evaluate the utility of crown metrics in estimating a 

number of standard genetic parameters in a genetics trial. Models allowed determination of 

genetic and environmental variance components, used to estimate heritabilities, genetic 

correlations, breeding values and selection rankings for several key tree attributes, to meet the 

first objective: “Estimate genetic parameters for measures of tree size, form, wood quality, and 

disease expression using crown metrics and compare these with estimates from ground 

measurements”. 

The genetic parameters were estimated from metrics based on automatic and from manually 

corrected tree delineation, in order to meet the second objective “Evaluate the effect of errors in 

tree detection and delineation by comparing estimates of genetic parameters from automatic 

and manual segmentation of individual trees”. Analyses were also used to gain insights into 

functional relationships between genetics, environment and tree growth, wood quality and 

disease. Results were used to address the research question: “Can methods be developed to 

estimate variance components of individual trees using airborne laser scanning data to 

elucidate the genetic and environmental drivers of tree growth”. 
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4.2 Methods 

The statistical tool ASReml-R (Butler et al. 2009; Gilmour et al. 2009; R Core Team 2014) was 

used to construct mixed-effects models to estimate variance components for a set of tree size, 

form, wood quality and disease attributes. Estimates were produced using tree-level ground 

measurements and crown metrics, before and after manual correction of the crown 

segmentation created by the initial tree detection process. Refer to Chapter 2 for a more detailed 

description of the materials and methods used, an outline is provided below for convenience. 

4.2.1 Ground measurements of trees 

The ground measurements of tree size comprised diameter at breast height (DBH) and height 

(H), used to estimate total stem volume (V). Tree form was assessed with straightness (S), 

malformation (M), and branching (B) scores described in the Methods chapter. Wood quality 

measures were represented by basic density (ρ) and standing tree acoustic velocity (A), the 

latter known to correlate strongly with wood stiffness. Tree disease measurements were 

Dothistroma infection scores at 24 months (D24) and 38 months (D38). Together, those 

measures represented key attributes of interest to forest managers, as well as the key traits in 

the current breeding programme, selected to improve wood production (Burdon 2001; Dungey 

et al. 2009; Jayawickrama and Carson 2000; Mead 2013). 

4.2.2 Airborne laser scanning data 

A canopy height model (CHM) extracted from ALS data collected over the trial was processed 

to detect individual trees using a method developed by Pont et al. (2015b). A set of 36 

individual tree crown metrics were then derived for each detected tree, refer to section 2.9 for 

their definitions. The automatic segmentation of tree crowns was corrected manually to remove 

omission and commission errors, and the crown metrics were derived before and after 

correction. Correction of omission errors added small crowns that were merged with adjacent 

crowns, and reduced the size of the crowns they were previously merged with. Correction of 

commission errors increased the size of crowns where large branches, forks or multiple leaders 
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had been falsely segmented. Corrections therefore reduced errors in determination of crown 

size and shape and affected the derived crown metrics. Manual correction enabled comparison 

of results using metrics from automated and from manually corrected tree detection and 

delineation. 

4.2.3 Analytical model for variance components 

Analyses to estimate variance components were carried out using ASReml-R which 

implements efficient fitting of a general linear mixed model by residual maximum likelihood 

(Butler et al. 2009). The following general individual tree linear mixed model was used 

𝒚 = 𝑿𝒃 + 𝒁𝒖 + 𝒆 4.1 

where y is a vector of individual tree observations of an attribute, b is a vector of fixed effects, 

u is a vector of random effects, and e is a vector of random residuals. The terms X and Z 

correspond to design matrices relating the observations in y to the fixed and random effects in b 

and u, respectively (Costa et al. 2004; Dungey et al. 2012). 

Fixed terms in vector b included the overall means, a factor to represent replication, and a 

factor to account for control families present in every trial block. Random terms in vector u 

included the additive genetic effects of individual genotypes and the effects of replicates within 

incomplete blocks. Fixed, additive (random), and residual variances were obtained for further 

analysis. It is worth noting that single-site estimates of additive genetic variance will usually be 

overestimated (Cullis et al. 2014). The emphasis in this study is however not the determination 

of definitive values, but evaluation of the use of crown metrics to derive estimates, and the 

comparison of automated and corrected data for tree selection accuracy. 

4.2.4 Genetic parameters 

Variance components obtained from ASReml-R were used to determine a number of standard 

genetic parameters (Fins et al. 1992). Narrow sense heritability (h
2
) was estimated as the 
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proportion of total phenotypic variance (𝜎p
2) attributable to additive genetic effects (𝜎a

2) 

respectively (Equation 7.2).  

ℎ2 =
𝜎𝑎
2

𝜎𝑝2
 

4.2 

where the phenotypic variance was the sum of the additive and residual variances. 

In this trial, like many forest genetics trials, generally only the female parents were known, with 

limited information for a few of the male parents. There was also information from prior 

generations, largely on the female side, which altogether created a complex set of partial 

pedigree information. In the analysis, ASReml-R took into account all available pedigree 

information to give the best possible estimates of the variance components and heritabilities.  

Breeding values were estimated and trees ranked for each attribute. Typical breeding selection 

practices are to exclude malformed trees and to retain only a single tree per family, in order to 

avoid inbreeding depression. Selections of the best 100, 30 and 10 trees are typically made for 

the respective scenarios: forward selection for a next generation; selection for a seed orchard; 

selection for clonal deployment. In this study, trees were not excluded on the basis of 

malformation, in order to permit comparable genetic gain results from ground-based selection, 

where malformation scores were available, and from selection using crown metrics obtained 

from ALS, where malformation was unknown.  

As there were only 96 families in the trial, the 100 tree selection level was represented by 

selection of a single tree from each family, giving a selection level of 96 trees. Mean breeding 

values for each attribute in the three selection subpopulations (96, 30 and 10 trees) were 

determined. Subtraction of the population mean gave a selection differential, the improvement 

obtained by each selection. A measure of genetic gain (ΔG) was then determined, by expressing 

the selection differential as a percentage of the appropriate population mean. Genetic gain was 

determined for all three levels of selection, for each of the ten ground measured attributes, 
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using three methods of tree assessment: ground measurements, and using crown metrics, before 

and after correction of tree segmentation. Selections from ground measurements represented 

standard operational selection methods based on trial measurement. Selections from crown 

metrics represented the potential use of remotely sensed ALS data for trial measurement, and 

allowed comparison of estimates using automated and manually corrected tree segmentation. 

Genetic correlations were also estimated among the set of ground variables and selected crown 

metrics. A genetic correlation (rg) is the estimate of the shared additive genetic variance among 

two variables, computed in the same manner as Pearson’s r, but using the additive variance 

components only, rather than total phenotypic variance, for a pair of attributes x and y. The 

additive variance components were obtained from ASReml-R, where σ̂axy
2 is the estimate for the 

additive genetic covariance between the two attributes, and σ̂ax
2  and σ̂ay

2  are the estimates for 

additive genetic variances of the two separate attributes (Equation 4.3). 

𝑟𝑔 =⁡
𝜎̂𝑎𝑥𝑦
2

√𝜎̂𝑎𝑥
2 𝜎̂𝑎𝑦

2

 
4.3 

Clustering was carried out, using the R hclust method with the default complete linkage 

method, based on genetic correlation values. Analysis of the results of clustering was used to 

determine groups of attributes associated in terms of genetic variance (Kaufman and 

Rousseeuw 2008). 

4.3 Results 

4.3.1 Variance components and heritabilities 

The fixed, additive genetic (random), and residual variance components estimated by ASReml-

R were presented as proportions of the total observed phenotypic variance in Figure 4.1. The 

fixed effects were replicate and control, and the additive genetic effects were estimated from 

the random effects of replicate and control. The residual variance component included non-
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additive genetic variance and unexplained environmental variance. Unexplained residual 

variance accounted for more than 50% of total variation for all but one variable (ρ). For the 

ground measured variables, fixed effects accounted for less than 10% of the total variation, and 

additive genetic variance ranged from 13% to 57%.  

Figure 4.1. Variance components for measured attributes and crown metrics. Fixed, additive 

(random), and residual variance components as percentages of the total phenotypic variance for 

all ground measured variables (the lower set of ten items in the chart) and crown metrics (upper 

items in the chart). 

Overall, comparing the ground measured variables and crown metrics in groups (in the lower 

and upper sections of Figure 4.1 respectively), there were similar levels of variation due to 
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fixed effects (averaging 4-5%), but variation attributed to additive genetic origin was lower for 

crown metrics than ground variables (averaging 10% and 30% respectively). A number of 

crown metrics with a relatively high fixed effects variance component (approaching 10%) and a 

relatively low additive genetic variance component were also apparent (top of Figure 4.1).  

Results showing variance components and narrow-sense heritabilities for the ground measured 

attributes and selected crown metrics are presented in Table 4.1. Heritabilities for the ground 

measured attributes were examined and found to agree with typical values for radiata pine 

(Burdon and Low 1992; Carson et al. 1988; Jayawickrama 2001; Mead 2013; Wilcox 1982). 
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Table 4.1. Descriptive statistics and genetic parameters for measured attributes and selected crown metrics. The table includes descriptive statistics, 

variance components, and narrow-sense heritabilities (h
2
), with associated standard error (SE), estimated using ASReml-R for ground measured 

attributes (Source G) and selected crown metrics after and before correction of the crown segmentation (Source A and B respectively). 

      Variance   

Variable measured Units Source Mean SD COV Phenotypic Fixed effects Additive Residual Heritability SE 

H m G 11.3 1.44 12.7 1.89 0.149 0.560 1.33 0.295 0.066 

DBH mm G 181 37.5 20.7 1320 55.8 371 949 0.281 0.064 

V m
3
 G 0.131 0.055 41.7 0.003 0.001 0.001 0.002 0.297 0.064 

S 1 to 9 G 5.96 1.62 27.1 2.54 0.057 0.506 2.04 0.199 0.052 

B 1 to 9 G 5.90 1.65 27.9 2.73 0.019 1.28 1.45 0.470 0.080 

M 1 to 9 G 6.21 3.06 49.3 9.36 0.02 1.26 8.10 0.135 0.04 

A km.s
-1

 G 2.86 0.391 13.7 0.147 0.004 0.06 0.085 0.422 0.077 

ρ kg.m
-3

 G 327 19.6 5.98 392 2.24 224 168 0.573 0.087 

D24 % G 33.9 11.3 33.4 109 8.11 29.6 79.7 0.271 0.061 

D38 % G 35.7 11.3 31.8 115 9.88 42.0 73.3 0.365 0.071 

TH m A 9.05 1.37 15.1 1.66 0.164 0.52 1.15 0.311 0.068 

  B 9.09 1.33 14.6 1.56 0.150 0.436 1.12 0.280 0.064 

CVF m
3
 A 75.3 32.1 42.6 982 27.1 222 760 0.226 0.056 

  B 76.1 32.3 42.5 1000 16.9 193 810 0.193 0.052 

RU - A 3.80 0.728 19.1 0.492 0.040 0.077 0.415 0.156 0.048 

  B 3.81 0.716 18.8 0.475 0.042 0.077 0.398 0.162 0.049 

SHV - A 2.21 0.216 9.79 0.043 0.002 0.006 0.038 0.126 0.044 

  B 2.21 0.225 10.2 0.048 0.003 0.004 0.044 0.092 0.040 
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The tree attributes having the highest heritability were the two wood quality attributes and 

branching (ρ, A, and B), indicating relatively high genetic control. The attributes with the 

lowest heritability were the form attributes malformation and straightness (M and S), which 

indicated stronger environmental influences for these stem defects.  

Figure 4.2. Estimated narrow-sense heritabilities (h
2
) by variable. Standard errors are indicated 

with error bars. Estimates were derived from ground measurement (G) and using crown metrics 

before (B) and after (A) correction of the crown segmentation. 

Estimates of h
2
 obtained using the best correlated crown metrics from the ALS data, before and 

after correction of the segmentation, were compared against estimates from ground 

measurement (see Figure 4.2). Estimates of h
2 

derived using crown metrics were within the 

standard errors of ground based estimates for H and D24, just outside the standard errors for 

DBH, V, and S, and well outside the standard errors for all other variables. Percentage 
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differences of h
2
 estimates from ground and crown measures were 5.0%, -19.5% and -23.9% 

for H, DBH, and V respectively. Correction of the automated segmentation made only small 

changes in estimates of h
2
, falling well within the standard errors (refer to Figure 4.2), for all 

variables. 

4.3.2 Genetic gains 

Genetic gains (ΔG), based on breeding values, were determined for all ten ground measured 

attributes, using selections of the best 96, 30 and 10 trees, with a limit of one tree per family. 

Selections were made using ground measurement data, and using the best correlated crown 

metric, before and after manual correction of the crown segmentation (Figure 4.3). 

For all variables and selection levels, the use of a crown metric for selection (A or B in Figure 

4.3) resulted in a reduction in ΔG compared with selection based on ground measurement (G in 

Figure 4.3). The reductions in gain tended to increase with higher selection intensity, implying 

the effect is generally proportional to the total amount of gain. Reductions in ΔG resulting from 

use of crown metrics for ranking and selection varied across the different attributes and seemed 

to be related to the strength of the phenotypic correlations (quantified using Pearson’s r in the 

previous chapter) between the respective ground measures and crown metrics. The Pearson’s r 

between H and TH was 0.90 and the reductions in ΔG using an uncorrected segmentation were 

19%, 18%, and 27% for the 96, 30, and 10 tree selection levels respectively. The lower r 

observed between DBH and CVF (r=0.8) corresponded with greater reductions in ΔG, ranging 

from 25% to 35%. The correlation between D38 and CVF was moderate (r=-0.50), and 

reductions in ΔG were larger, ranging from 25% to 46%. Those results indicate that a minimum 

Pearson’s r of 0.8 between a crown metric and an attribute is a requirement for realising genetic 

gain comparable to that obtained using ground measurement. The effect of manual correction 

of the crown segmentation on ΔG was minor (compare A and B in Figure 4.3). This finding 

was consistent with the small effects observed for estimates of variance components and h
2
. 



Sources of Variation 

79 

 

 



Sources of Variation 

80 

 

Figure 4.3. Percentage genetic gain by variable after selection of the best 96 (all), 30 and 10 trees (one per family). Selections were made using ground 

measurement (G), and crown metrics before (B) and after (A) correction of the crown segmentation. Negative gains have occurred for A from selections 

using the best crown metric (SHV) because of the poor correlation between A and SHV.
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For tree breeders it was of interest to consider how stable tree rankings were when using crown 

metrics instead of ground measurements. Individual tree and family rankings for the key 

attributes were examined across the selections made using ground measured data and crown 

metrics. In general large changes in tree and family rankings were observed when crown 

metrics rather than ground measures were used to select trees. Changes in family rankings were 

moderate for H, attributed to the strong correlation with the crown metric TH. This finding 

supports the use of ALS to carry out assessment of tree heights for tree selection purposes. 

4.3.3 Genetic correlations 

Genetic correlations (rg) among the ground measured attributes and selected crown metrics 

were estimated using variance and co-variance components estimated in ASReml-R (see Figure 

4.4). Examination of correlation values before and after correction of the crown segmentation 

showed minor changes in rg, consistent with the small changes observed in the variance 

components, h
2
 and ΔG. 

Clustering, based on genetic correlation values, revealed five groups of variables, outlined with 

a dark line in Figure 4.4. Selection of superior trees on the basis of one attribute would also 

effectively select for any other attributes having strong genetic correlations. Note that selection 

for one attribute will result in positive or negative gains on a correlated attribute, dependant on 

the sign of the correlation. The groups identified were broadly consistent with groups identified 

using clustering on Pearson’s r in the previous chapter. The main group, with rg ranging from 

0.7 to 1.0, comprised the tree size variables (H, DBH, and V) and the crown metrics (TH and 

CVF) they correlated most strongly with, according to Pearson’s r. The measures of 

Dothistroma infection (D24 and D38) and the tree form variables (M and S) formed another two 

strongly correlated groups. Moderate to strong negative correlations between Dothistroma 

infection and tree size measures were also evident in Figure 4.4. Those groups of variables 

were not merged because clustering used the signed values of rg.  
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Figure 4.4. Genetic correlations (rg) among the ground measured attributes and selected crown 

metrics. Correlation values are shown in the lower left, and indicated with circles in the upper 

right, where colour and size represent the correlation value. Variables were grouped using the R 

hclust method with the default complete linkage method based on the genetic correlation. The five 

groups from clustering are outlined with bold squares.  

The strong positive rg of 0.88 observed between malformation (M) and straightness (S) scores 

indicated a strong positive relationship among these two measures of stem defects. This 

indicates selection for one of these attributes would also realise gains in the other attribute. The 

moderate positive rg of 0.59 between branching score (B) and crown slenderness (SHV), 

indicated a genetic correlation between slender crowns and light uniform branching. There was 

also evidence of moderate to weak correlations among B, SHV and tree size attributes. It is 

 



Sources of Variation 

83 

 

interesting to note the Pearson’s correlations between M and S and between B and SHV, 0.29 

and 0.02 respectively (Chapter 3, Table 3.2 and Table 3.3), were much weaker than the genetic 

correlations. This indicated that stronger underlying genetic correlations are masked by 

environmental noise when observing overall phenotypic correlations. 

The rg values among B and the other two form variables (S and M) were slightly weaker than 

the rg values among the two crown metrics (SHV and RU) with which it was clustered. The two 

wood quality attributes (ρ and A) were grouped into an isolated, weakly correlated group. 

4.4 Discussion 

In this study the utility of crown metrics for estimating variance components and genetic 

parameters was evaluated for measures of tree size, stem form, wood quality and disease 

expression, representing major attributes of interest in tree breeding and forest management. 

This represents the first time such methods have been used in the analysis of individual tree 

data from ALS. Sensitivity to the accuracy of crown segmentation was also evaluated using 

crown metrics produced using automated and manually corrected segmentation. The statistical 

software ASReml-R was used to estimate variance components and genetic parameters, from 

ground measurements and using crown metrics derived from remotely sensed ALS data before 

and after manual correction.  

4.4.1 Estimation of genetic parameters 

4.4.1.1 Tree size 

The crown metrics TH and CVF were found to have strong genetic (rg) correlations with the tree 

size attributes H, DBH, and V, in addition to the strong phenotypic (r) correlations shown in the 

previous chapter. Those strong underlying correlations are known to have contributed to the 

success of the long term selection of trees for improved growth in terms of H, DBH, and V, 

over the last 60 years of tree breeding in New Zealand (Dungey et al. 2009; Kimberley et al. 

2015b; Mead 2013).  
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Crown metrics were found to provide operationally useful estimates of heritability for H and 

D24 and to show potential for DBH, V, and S. Reduced genetic gains were realised when 

selecting superior trees on the basis of crown metrics. However the relatively small reductions 

in gains evident for H and DBH were low enough to support the use of remotely sensed crown 

metrics in selection of trees of superior height, and possibly for diameter growth. The ability to 

estimate tree size attributes from ALS crown metrics agrees with international studies 

(Lindberg et al. 2012; Vauhkonen et al. 2010), but this is the first study to evaluate an 

application in forest genetics. Tree size attributes have historically been the principal focus of 

tree breeding programmes in New Zealand (Dungey et al. 2009), therefore the ability to 

estimate these attributes and their genetic parameters from ALS data is an important outcome, 

with applications for tree breeding, forest research and forest management.  

4.4.1.2 Tree form and wood quality 

Estimates of h
2
 obtained using crown metrics for tree form and wood quality attributes were 

poor except for straightness (S), which had the highest Pearson’s r value among this set of 

attributes. Genetic gains in form and quality realised by selection using crown metrics instead 

of ground measurements were greatly reduced. This was interpreted as a result of poor 

correlations with the crown metrics used, and the low phenotypic variability available for 

selection. Tree form attributes have always been an important aspect of the radiata pine tree 

breeding program, and more recently wood quality attributes have also been recognised due to 

their importance to log and product performance (Dungey et al. 2009; Dungey et al. 2006; 

Jayawickrama and Carson 2000; Kennedy et al. 2014). It would be highly desirable to reliably 

estimate the genetic parameters for tree form and wood quality attributes from ALS data, as 

they are difficult and costly to assess using conventional ground-based methods. Measurements 

of the tree form attributes rely on subjective visual assessment, and the wood quality attributes 

require specialised equipment and methods. However the morphological crown metrics 

evaluated in this study were found to be unsuitable for estimation of these important attributes 

within genetics trials.  
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4.4.1.3 Dothistroma infection 

Possible genetic gains by selection for reduced Dothistroma infection as assessed with ground 

measurement were found to be relatively high, ranging from 50% to 80% depending on 

selection level, and were slightly higher when assessed at age 38 months (D38). However more 

than half of that gain was lost when trees were selected using correlated crown metrics, the 

resultant gain falling to range from 17% to 29%. Such large reductions in gains for this 

important attribute are unacceptable for the use of crown metrics in selecting trees from 

genetics trials for disease resistance. It must be noted that there was a delay of at least two years 

between the latest Dothistroma assessment (D38) and the collection of the ALS data used to 

derive crown metrics. This delay may have weakened correlations and it could be useful to 

further evaluate the utility of crown metrics for estimating Dothistroma infection in future 

research. 

4.4.2 The effects of segmentation accuracy 

An initial automated segmentation of the tree crowns within the trial was found to have a 

number of omission and commission errors. Manual correction of those errors resulted in 

changes to the size and shape of the segmented crowns, affecting crown metrics for the 

corrected crowns. Corrections added small crowns (omissions), reduced the size of some large 

crowns (omissions), and increased the size of some large crowns (commissions). It was thought 

tree detection errors could affect the relationships between crown metrics and measured 

attributes and therefore affect estimates of genetic parameters. Because these changes occurred 

at the extremes of crown size they were also thought likely to affect selection of superior trees 

for genetic gains (Fins et al. 1992). Results have shown correction of the crown segmentation 

has had negligible effect on estimates of the key genetic parameters: h
2
, rg and ΔG. It is 

therefore concluded that in applications of the methodology, the extra effort of carrying out 

manual correction of the initial automated segmentation would not be warranted, unless the 

resulting small gains in estimates were critical. 
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4.4.3 Understanding the drivers of tree growth 

This study represented a novel approach to the investigation of individual tree crown (ITC) 

methods for forestry applications, and a novel application to genetic analyses. The use of data 

from a genetics trial, coupled with the use of analytical techniques to segregate environmental 

and genetic variance components, provided useful insights into the drivers of tree growth. 

Partitioning of variance using an individual tree mixed effects model has allowed quantification 

of fixed effects (in the trial design), additive genetic, and residual variance components (Costa 

et al. 2004; Fu 2003; Gilmour et al. 1997). This approach revealed that the crown metrics 

evaluated in this study, which were predominantly measures of crown morphology (such as 

height, diameter, volume, and slenderness), accounted for less additive genetic variance than 

was observed from ground measurement of the attributes of interest. This could be attributed to 

error in the ability to estimate tree attributes using crown metrics, supported by the observation 

that the best estimates of genetic parameters were obtained using crown metrics having stronger 

correlations with the attributes. However some of the error in the relationships is likely to have 

come from variation due to environmental influences. Spatial variation can occur within the 

trial due to localised changes in site conditions such as soils, topography and competition 

effects among trees (Gilmour et al. 1997; Liu et al. 2014; Zas 2006). Such variation could be 

investigated in future work by including spatial terms in the REML models.  

4.4.3.1 Tree size 

An important finding of this study was the identification of strong relationships between crown 

size metrics and ground measurements of tree size. Other researchers have found useful 

relationships between measures of crown size and tree size, but usually in inventory or forest 

settings rather than research trials (Chen et al. 2007; Chen and Zhu 2012; Lindberg et al. 2012; 

Lo and Lin 2013). Several researchers also evaluated additional, non-morphological, crown 

metrics with less success in estimating tree size (Chen et al. 2007; Lindberg et al. 2013; Yu et 

al. 2011). The results of this study, when considered in the context of the earlier work by 

others, supports the conclusion that morphological crown metrics provide useful correlations 
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with tree size attributes, due to underlying allometric relationships (Filipescu et al. 2012; Groot 

et al. 2015; Madgwick 1994). Such relationships can have important applications in assessment 

of research trials, for tree growth and breeding, and in assessment of forest stands for 

management applications. This potential to use remote sensing could offer considerable cost 

savings and open up opportunities for new approaches to phenotyping forest trees. 

4.4.3.2 Dothistroma infection 

The moderate to strong negative correlations observed between crown size metrics and the 

measures of Dothistroma infection at a young age (r = -0.8 at 38 months) were noted earlier 

(Chapter 3) and agree with findings of Kennedy et al. (2014). Results from the current chapter 

re-confirm the interpretation that these correlations are the result of reduced tree growth due to 

Dothistroma infection (van der Pas et al. 1984; Watt et al. 2011; Wilcox 1982). The implication 

is that the reduced tree growth, evident in tree DBH and V, is echoed in reduced crown volume 

(CVF). This is the first known observation of this effect through the use of crown metrics 

derived from remote sensing.  

While the correlation between crown volume and Dothistroma infection is not strong enough 

for operational use in tree selection for breeding, there may be utility in being able to quantify 

the effects of Dothistroma and other diseases on tree growth, through the use of crown metrics. 

Growth losses due to the effects of disease are an important issue in New Zealand, and 

internationally, and remote sensing can play an important role in detection and quantification of 

loss (Coops et al. 2014; Dungey et al. 2009; Kantola et al. 2013; Mead 2013). Reduction in 

growth could be evaluated through differences in crown metrics between areas with and 

without the disease, and candidate areas affected by disease might be detected by observing 

reduced growth (van der Pas 1981; Watt et al. 2011). Spatial analysis of areas with known 

levels of infection could also be used to identify site conditions prone to Dothistroma, such as 

moist areas in gullies, (Watt et al. 2011; Wilcox 1982). Such an approach could be developed 

in genetics trials or in general forest stands, using crown metrics from ALS as a tool to map and 

characterise areas related to Dothistroma infection. This methodology might even be extended 
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to characterise susceptible areas for other diseases of economic importance (Coops et al. 2014; 

Kantola et al. 2013; Wallace et al. 2012; Watt et al. 2011).  

4.4.3.3 Wood quality 

Partitioning of variance from ground measurements showed the wood quality variables to have 

high additive genetic variance components, high heritabilities, and low overall variability. 

These attributes therefore appeared to be under relatively stronger genetic control. Correlations, 

both r and rg, were notably absent between the wood quality variables and crown metrics. It 

was already noted the crown metrics evaluated in this study represent crown morphology. The 

lack of correlation between the wood quality attributes and crown metrics indicated that wood 

quality is not related to crown morphology at the level of individual trees, a finding also made 

by Lenz et al. (2012). This finding was evidence against the theories of Larson which suggested 

that crown morphology (specifically crown size and proximity to crown) determined stem 

wood basic density and ring width (Groot 2014; Larson 1962, 1963, 1969; Pont 2003). The 

crown metric most strongly correlated with tree stiffness (A) was a measure of crown 

slenderness, a relationship that has been observed in other research and interpreted as possibly 

representing a mechanical influence on wood stiffness (Dean 2004; Dean et al. 2013; Groot et 

al. 2015; Waghorn et al. 2007; Watt and Zoric 2010). However the correlation observed 

between A and crown slenderness in this study was weak. This study was restricted to a single 

genetics trial, where the environmental effects were minimised and the range of crown 

morphology was small. In a pilot study in radiata pine stands crown area was found to be 

strongly negatively correlated with stiffness (A), reflecting variations in stand density within 

and among stands (Pont et al. 2012b). In recent studies for radiata pine in New Zealand it was 

shown that both stand density and seedlot affected A, microfibril angle, modulus of elasticity, 

and wood density (Carson et al. 2014; Moore et al. 2015). Another recent study of New 

Zealand radiata pine showed ring width, attributable to stand and tree-level competition effects, 

and site had a significant negative correlation with wood density (Kimberley et al. 2015a). 

Further studies with a wider range of crown morphology, as examined by other researchers, are 

suggested to look for evidence of relationships between crown morphology and wood 
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properties for forest management applications (Dean et al. 2013; Fournier et al. 2013; Lenz et 

al. 2012; Swetnam and Falk 2014).  

4.4.3.4 Tree form 

Strong genetic correlations were observed among the form attributes, indicating a tendency for 

trees to exhibit multiple form defects. The branching frequency score (B) was found to have a 

strong additive genetic variance component, interpreted as stronger genetic control of this 

attribute, at a level comparable to the wood quality attributes. Tree form measures were poorly 

correlated with crown morphology, and there was little evidence in the literature on the use of 

ALS data for estimating tree form. In a study of Canadian conifer species, measures of crown 

size obtained from the ground were used with stand metrics to estimate maximum branch size, 

and the potential use of ALS data to derive crown metrics was noted (Groot and Schneider 

2011). However in the New Zealand tree breeding program the desired branching characteristic 

is uniform light branching and maximum branch size is not a useful indicator for this (Dungey 

et al. 2009). In a study of boreal forest in Sweden, individual tree metrics from ALS were 

combined with harvester data in models to successfully estimate log products, but not to 

explicitly estimate stem form characteristics (Barth et al. 2014). As a result it is concluded that 

ground-based measurements which more directly observe stem and branching characteristics 

are required to characterise tree form, particularly in the valuable lower logs. LiDAR could still 

play an important role, in the form of vehicle-mounted or hand-held scanners that can measure 

stem shape and branching (Kaartinen et al. 2015; Kankare et al. 2014; Pont and Lorraine 2015).  

4.4.3.5 Correlations among crown metrics and measured tree attributes 

A number of tree attributes were most strongly correlated with the TH and CVF crown metrics 

(see Chapter 3, Table 3.3) supporting widely recognised allometric relationships among tree 

size, crown configuration, stand density and site characteristics for forest trees (Allouis et al. 

2013; Enquist et al. 2009; Filipescu et al. 2012; Groot et al. 2015; Groot and Schneider 2011; 

Kempes et al. 2011). An implication of the observed correlations was that selection of trees of 
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superior size using either of these crown metrics would result in concomitant improvements in 

the other correlated attributes. Selection at the 96 tree level on the crown metric TH, using an 

uncorrected segmentation, gave ΔG of 15% in H and also gave associated gains for S (10%), B 

(4%), M (16%) and D24 (17%). Selection under the same conditions using the crown metric 

CVF gave ΔG of 25% for DBH, with associated gains in V (59%), and D38 (21%).  This was an 

important finding for tree breeders, as it confirmed that general genetic correlations they would 

expect from ground based selection will also be realised using crown metrics from ALS data 

(Dungey et al. 2009; Kennedy et al. 2013; Kennedy et al. 2014). This observation lends 

confidence in the use of remotely sensed data for phenotyping applications such as tree 

breeding and forest management (Scion 2014). 

4.5 Conclusions 

This is the first known study to utilise individual tree crown metrics from remotely sensed ALS 

data to quantify variance components in order to better understand genetic and environmental 

factors affecting tree growth. The tree measures studied covered the range of attributes 

important to forest managers and tree breeders, comprising: growth, form, wood quality and 

disease expression, thereby meeting the first objective “Estimate genetic parameters for 

measures of tree size, form, wood quality, and disease expression using crown metrics and 

compare these with estimates from ground measurements”. The first known evaluation of the 

effects of tree segmentation accuracy on estimates of tree attributes from crown metrics in a 

genetics trial was also carried out, meeting the second objective “Evaluate the effect of errors 

in tree detection and delineation by comparing estimates of genetic parameters from automatic 

and manual segmentation of individual trees”.  

Results showed the ability to accurately estimate genetic parameters for the tree size attributes 

H, DBH, and marginally for V. Estimates of genetic parameters for the tree form, wood quality, 

and disease expression attributes were generally poor, the best estimates, with moderate error, 

were for the tree form measure S.  
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The considerable investments in establishing and maintaining trials, in propagation of selected 

superior trees, and the long rotation of forest trees before gains are realised make every ounce 

of genetic gain precious (Dungey et al. 2009; Mead 2013). Results showed the losses in genetic 

gain incurred when selecting superior trees using crown metrics are acceptable to tree breeders 

in operational tree selection applications for the tree size attributes only. 

Genetic parameters estimated from metrics based on manually corrected tree delineation 

showed negligible improvement over those from an automated delineation. This is seen as an 

important finding for operational uses of the methodology, because the extra effort of manual 

correction could be avoided. This study demonstrated that, for the methodology evaluated, the 

main determinant of accuracy in estimates of genetic parameters was the strength of 

correlations between crown metrics and tree attributes, rather than the accuracy of tree 

detection. A minimum Pearson’s r of 0.8 between crown metrics and tree attributes was 

indicated as a threshold for obtaining operationally useful estimates of genetic gain, which 

provides a benchmark for future development of crown metrics. 

Opportunities for future research were identified. Strong correlations between crown metrics 

and the tree size attributes were interpreted as having a sound allometric basis, with potential 

for general applications in forest trial and stand conditions that should be further evaluated. 

Correlations were also observed among tree size, crown size and disease expression which 

could offer opportunities for detection, and quantification of disease expression, and for 

identifying disease prone site conditions. Genetic and phenotypic correlations among 

branching, crown slenderness and tree size were also observed, indication potential for better 

understanding relationships between environment and genetic effects on tree growth. Given the 

importance of tree form, wood quality and disease expression to researchers, tree breeders and 

forest managers, further research into crown metrics to estimate these attributes will be 

worthwhile. 

This study has established a novel and useful methodological approach to the tree-based 

analysis of remotely sensed ALS data. It has revealed useful insights into relationships between 
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genetics, environment, and tree growth and supports an affirmative answer to the research 

question: “Can methods be developed to estimate variance components of individual trees 

using airborne laser scanning data to elucidate the genetic and environmental drivers of 

tree growth”. The methods developed can provide useful tools for precision forestry, with 

broad applicability in analysis of research trials and management of forest stands, and warrant 

future development.
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Chapter 5 The Effects of Laser Pulse Density on Tree-

based Analyses of ALS 

5.1 Introduction 

Analysis of discrete return LiDAR is now being widely used to characterise forests for 

management purposes around the world (Maltamo et al. 2014; Næsset 2004; Næsset et al. 

2004). This is due to the ability to accurately and cost effectively estimate important forest 

measures such as mean height, volume, biomass and basal area. Pulse density is an important 

measure of the resolution of LiDAR data and the cost of obtaining increased pulse density must 

be balanced against the accuracy and precision desired.  

5.1.1 Measures of LiDAR resolution 

Factors affecting pulse density are scanner pulse rate, altitude, and aircraft speed (Gatziolis and 

Andersen 2008; Wehr and Lohr 1999). Pulse rate and altitude affect the spacing of pulses 

within each scan line, while aircraft speed principally affects spacing of pulses along the flight 

line. Discrete return LiDAR scanners in current use for forestry applications typically provide 

up to four returns (points) per outgoing pulse (Gatziolis and Andersen 2008; Wulder et al. 

2012). The number of returns observed largely depends on the nature of the target. Paved 

surfaces, buildings and flat ground will provide one return, while vegetation can be penetrated 

by the laser pulse to record multiple returns, depending on the depth and density of vegetation, 

and number of returns supported by the hardware system. Point density, the number of points 

(or returns) per unit ground area, is therefore a more variable measure of resolution than pulse 

density, and is highly dependent on the nature of the target. Both pulse and point density are 

terms seen in the literature, and it is important to distinguish which is being referred to. While it 

is the points that are analysed, pulse density is a useful measure as it allows comparisons across 

vegetation types and can be used in specifications for LiDAR capture (Ferraz et al. 2015). 
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Another measure of LiDAR resolution is pulse spacing (S), derived as the inverse square root 

of pulse density (D): 

𝑆 =
1

√𝐷
 

5.1 

Pulse spacing expresses the mean spacing between pulses on the ground plane, following the 

inverse-square law formulated by Sir Isaac Newton, which describes the dilution of energy in 

three-dimensional space, stated as: “the intensity of radiation emitted by a point source is 

inversely proportional to the square of the distance from that source” (Waff 1976). By 

considering only last (or first if only one return) returns, pulse spacing can be determined from 

LiDAR point data, providing a measure that is independent of vegetation characteristics, like 

pulse density.  

5.1.2 Area-based analysis of LiDAR 

A number of researchers have investigated the effect of pulse density on estimates of forest 

variables obtained from area-based analyses of LiDAR (Gobakken and Næsset 2008; Hansen et 

al. 2015; Jakubowski et al. 2013a; Magnusson et al. 2007; Watt et al. 2013a). In a mixed 

conifer forest, accuracies of estimates for a number of commonly assessed forest variables, 

including height, diameter and basal area, were relatively unaffected above pulse densities of 1 

Pu.m
-2

 (Jakubowski et al. 2013a). In a study on the effects of reduced pulse density on precision 

of total stem volume estimates from area-based analysis of LiDAR for New Zealand planted 

forests (94% Pinus radiata), it was found there was little effect of thinning pulse densities 

down to 1 Pu.m
-2

, but a significant decline in precision following pulse density below 0.1 Pu.m
-

2
 (Watt et al. 2013a). In a study of high density Douglas-fir stands in New Zealand, precision 

declined rapidly at pulse densities below 1 Pu.m
-2

 (Watt et al. 2014). It was also noted that the 

number of pulses per plot integrated the effects of plot size and pulse density, with precision 

falling markedly below a threshold value of 100 pulses per plot. In a study of tropical forest, 

reliable estimates of common metrics were found at pulse densities above 0.5 Pu.m
-2

, with a 

plot size of 0.7 ha, indicating a threshold of 350 pulses per plot for this more complex forest 
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type (Hansen et al. 2015). These results from a range of forest types indicate reliable estimates 

from area-based analyses generally require pulse densities greater than 0.1 to 1 Pu.m
-2

.  

5.1.3 Tree-based analysis of LiDAR 

Tree-based analysis of LiDAR is a widely researched approach to the assessment of forest trees 

(Hyyppä and Inkinen 2002; Kaartinen et al. 2012; Larsen et al. 2011; Persson et al. 2002). 

Tree-based analysis of LiDAR requires accurate detection, delineation and characterisation of 

individual trees (Holmgren and Lindberg 2014; Ke et al. 2010; Wang et al. 2016; Zhen et al. 

2015). There is general agreement that tree-based analysis of LiDAR requires higher density 

LiDAR compared to area-based analysis, with a minimum of 4 returns m
-2

 being stated by 

Gatziolis and Andersen (2008), and a minimum of 5 Pu.m
-2

 mentioned by Vauhkonen et al. 

(2008).  

There have been few studies that have investigated the effects of pulse density on tree-based 

analyses of LiDAR. In a study of different forest types in southern Sweden using ALS data at 

two pulse densities (approximately 5 and 2.5 Pu.m
-2

), and at range of beam footprint sizes 

(from 0.26 to 3.68 m), tree detection and estimates of tree height, diameter and volume were 

evaluated (Persson et al. 2002). Better tree detection was observed for the forest type with more 

trees per unit area, and a smaller laser footprint size, but estimates of tree height and crown 

diameter were not strongly affected by footprint size or the two evaluated pulse densities. 

In a study on boreal forest, the effects of reducing point density on a number of crown metrics 

were examined, although this was based on tree detection carried out with the highest point 

density (Vauhkonen et al. 2008). Crown metrics based on alpha shapes were much more 

sensitive to reductions in point density than metrics based on maximum height, crown area, 

height and intensity distributions, and CHM texture. It was concluded 3 Pu.m
-2

 were required to 

obtain reliable species classification and estimation of tree DBH.  
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In a recent study, a comparison was made of five tree detection methods in forest types 

including sub-dominant and suppressed trees (Wang et al. 2016). Detection methods were 

described as raster-based, point-based, and hybrid (utilising raster and point analysis). The two 

point-based methods were found to detect a much greater proportion of sub-dominant trees. 

The two point-based methods were evaluated at three point densities (8, 4, and 2 points m
-2

). It 

was concluded that 2 points m
-2

 could be adequate for detecting dominant trees only, while at 8 

points m
-2

 approximately one third of supressed trees were detected by the best method.  

Another recent study estimated crown dimensions of olive trees from LiDAR at three point 

densities (0.5, 3.5, and 9 points m
-2

) using raster and point-based approaches (Hadaś and 

Estornell 2016). Results showed improved accuracies at higher density, and the point-based 

approach performed slightly better at the higher density, while the raster-based approach was 

insensitive to point density.  

Prior research has evaluated the sensitivity of area-based analysis to LiDAR resolution and has 

indicated pulse densities in the range of 1 to 0.1 Pu.m
-2

 to ensure reliable estimates of mean 

height, volume and basal area. There is a lack of corresponding research into the effects of 

pulse density on tree-based analysis of LiDAR. The limited research to date has evaluated only 

a narrow range of LiDAR resolutions and has not evaluated tree detection and subsequent 

derivation of crown metrics together, for forest trees.  

5.1.4 Research objectives 

In this chapter the effects of reducing LiDAR resolution on tree detection, correlations between 

crown metrics and ground measures, and estimation of heritabilities and genetic gains were 

evaluated. The approach used was to artificially thin LiDAR data to simulate data capture at a 

range of lower pulse densities and to evaluate the effects on results of subsequent processing 

and analysis of the LiDAR. Investigations into the effects of pulse thinning were aimed to meet 

three objectives: “Quantify the effect of reducing pulse densities on the accuracy of tree 

detection”, “Quantify the effect of reducing pulse densities on correlations between crown 
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metrics and ground measurements of key tree attributes”, and “Quantify the effect of reducing 

pulse densities on estimates of heritabilities and genetic gains”. Results can be used to inform 

decisions about pulse densities specified for LiDAR data capture to be used for tree-based 

analyses, addressing the overall research question “What is the effect of varying pulse 

density on the accuracy of estimates obtained from the analysis of discrete return 

LiDAR?”. 

5.2 Methods 

5.2.1 Pulse thinning 

In order to evaluate the effects of reduced LiDAR resolution, LiDAR point clouds at a range of 

pulse densities were created by artificially thinning the initial data set. There are a number of 

approaches to artificially reducing the resolution of discrete return LiDAR. None of these 

approaches produce point clouds exactly equivalent to those that would be obtained by 

collecting data at the equivalent pulse density (Jakubowski et al. 2013a; Vauhkonen et al. 

2008). The removal of selected pulses, with all of their associated returns, is preferable to 

removing individual points as this more closely mimics real world conditions.  

In this study, pulse thinning was carried out so as to leave pulses at regular time intervals. The 

first step was to sort the LiDAR file by the GPS time field using the LAStools (version 160329 

rapidlasso GmbH, http://rapidlasso.com/LAStools) tool lassort to ensure returns occur in the 

file in acquisition order. Next the median time separation of returns in the original LiDAR file 

was determined by examining the output of the LAStools tool las2txt with the –parse rnt# 

option, which outputs return number (r), number of returns for the pulse (n), timestamp (t), and 

time difference from the prior return (#). The median time separation between returns in the 

original LiDAR file was 6.0 µs. The average pulse and point densities were 6.09 Pu.m
-2

 and 

15.68 points m
-2 

respectively, determined using LAStools lasinfo.  

Pulse thinning was then carried out using the LAStools tool las2las with the -thin_with_time 

option, which retained the first occurrence of a particular time stamp within a user-specified 
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time interval. LiDAR files, thinned to different time separations, were created to cover a range 

of pulse densities. A set of 2 µs time steps were used to cover the range from 6 to 2 Pu.m
-2

, and 

below this, steps doubling the prior time separation were used to extend the range down to 0.3 

Pu.m
-2

. Characteristics of the 11 LiDAR files created are presented in Table 5.1. 

Table 5.1. Resolution characteristics of the thinned LiDAR data. 

Test Subsample µs Pulse density 

(Pu.m
-2

) 

Pulse spacing 

(m) 

Point density (Points 

m
-2

) 

Point spacing 

(m) 

1 6* 6.09 0.41 15.68 0.25 

2 8 4.35 0.48 11.19 0.30 

3 10 3.48 0.54 8.96 0.33 

4 12 2.90 0.59 7.48 0.37 

5 14 2.49 0.63 6.41 0.39 

6 16 2.18 0.68 5.61 0.42 

7 18 1.94 0.72 5.00 0.45 

8 20 1.74 0.76 4.50 0.47 

9 40 0.88 1.07 2.27 0.66 

10 80 0.47 1.46 1.22 0.91 

11 160 0.31 1.81 0.80 1.12 

* Unthinned data, having a measured median time spacing of 6.0 µs. 

5.2.2 Tree detection 

Canopy Height Model (CHM) images were created from the series of LiDAR files using the 

methodology described earlier (section 2.4 Canopy height model creation). A pixel size of 0.2 

m was used for all images so as to accommodate the minimum average point spacing of 0.25 m 

in the unthinned LiDAR. At the lower pulse densities there was an increase in the number of 

image pixels having no LiDAR returns, referred to as pits. The image processing method used 

(closing) removed the majority of pits at all pulse densities. Tree detection was then carried out 

according to the approach documented earlier (2.5 Tree detection) using a manual calibration 

determined on the original CHM image. Tree detection accuracy was quantified using omission 

error, commission error and overall accuracy measures, calculated using a conventional method 

of error matrix assessment as shown by Equations 5.2-5.4 (Girard 2003; Zhang et al. 2014). 
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𝐶𝐸 =
𝑁𝑑𝑒𝑡−𝑁𝑐𝑜𝑟

𝑁𝑑𝑒𝑡
 

5.2 

𝑂𝐸 =
𝑁𝑟𝑒𝑓−𝑁𝑐𝑜𝑟

𝑁𝑟𝑒𝑓
 

5.3 

𝑂𝐴 =
𝑁𝑐𝑜𝑟

𝑁𝑐𝑜𝑟 + (𝑁𝑑𝑒𝑡 − 𝑁𝑐𝑜𝑟) + (𝑁𝑟𝑒𝑓 − 𝑁𝑐𝑜𝑟)
 

5.4 

Where CE is commission error (falsely detected trees), 𝑂𝐸 is omission error (trees not 

detected), OA is overall accuracy taking omissions and commissions into account, Ncor is the 

number of correctly detected (and matched) trees, Ndet is the total number of trees detected by 

the algorithm within the trial, and Nref is the number of reference trees counted on the ground.  

The error values defined above were then used to derive additional measures of error. User’s 

and producer’s accuracy (UA and PA respectively) are terms also used to quantify detection 

error, derived from commission and omission errors respectively (Equations 5.5 and 5.6). 

𝑈𝐴 = 1 − 𝐶𝐸 5.5 

𝑃𝐴 = 1 − 𝑂𝐸 5.6 

All tree detection error measures (Equations 5.2 to 5.6) were multiplied by 100 to be expressed 

as percentages. In this study the value for Nref , the total number of trees in the trial, was 2196. 

5.2.3 Quantifying the effects of pulse density 

For each of the eleven LiDAR data sets the derived crown metrics for individual trees were 

analysed to determine correlations with ground measures, estimates of heritabilities, and 

genetic gains. Detected trees were matched to trees measured on the ground and crown metrics 

were derived for each detected tree using the methods described earlier (refer to sections 2.5 2.8 

and 2.9 ). Next, correlations (Pearson’s r) between crown metrics and all ground measurements 

were determined using the approach described in section 3.2.3 Analysis of correlations. Then, 
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narrow sense heritabilities (h
2
), were determined for tree height and diameter, according to the 

methods described in section 4.2.4 Genetic parameters. Finally genetic gains were estimated at 

three operational selection levels for height and diameter using the methods described in 

section 4.2.4 Genetic parameters. To support comparisons across different pulse densities the 

genetic gains were expressed as a proportion (from 0 to 1) of the gain estimated using ground 

measurements, and referred to as realised gain. 

Results for tree detection accuracies, correlations, narrow sense heritabilities and genetic gains 

were used to establish simple regression models with pulse spacing. The fitted linear models 

were then used to predict the pulse spacing, and corresponding pulse density, at which 5% and 

10% of initial estimates (tree detection, correlations, and genetic parameters) at the full 6 Pu.m
-

2
 were lost due to increased pulse thinning.  

5.3 Results 

5.3.1 Tree detection 

The results of tree detection carried out on CHM images derived from the thinned LiDAR data 

sets are presented in Table 5.2. Commissions occurred at over double the rate of omissions 

across the range of pulse densities, although their occurrence was more variable. Both 

commission and omission error rates (CE and OE respectively) increased with decreasing pulse 

density. The increases in errors were moderate from 6 to 4 Pu.m
-2

, and more marked below 2 

Pu.m
-2

.  
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Table 5.2. Tree detection results from thinned LiDAR. The total number of trees in the trial (Nref) 

is 2196. 

Test Pulse 

density 

Pu.m
-2

 

Total 

detected 

(Ndet) 

Correctly 

detected 

(Ncor) 

Commissions Omissions Commission 

error (CE) % 

Omission 

error (OE) 

% 

1 6.09 2317 2132 121 64 7.98 2.91 

2 4.35 2416 2117 220 79 12.38 3.60 

3 3.48 2471 2117 275 79 14.33 3.60 

4 2.90 2388 2106 192 90 11.81 4.10 

5 2.49 2537 2097 341 99 17.34 4.51 

6 2.18 2508 2098 312 98 16.35 4.46 

7 1.94 2571 2087 375 109 18.83 4.96 

8 1.74 2483 2056 287 140 17.20 6.38 

9 0.88 2616 1974 420 222 24.54 10.11 

10 0.47 2804 1932 608 264 31.10 12.02 

11 0.31 2904 1851 708 345 36.26 15.71 

 

Producer’s, user’s, and overall accuracy measures are presented in Figure 5.1. Producer’s 

accuracy, derived from omission error, was higher than user’s accuracy, derived from 

commission error. Both those measures of accuracy were higher than overall accuracy, which 

takes into account both omission and commission errors. Overall accuracy was similar to user’s 

accuracy because the commission error component was much greater than the omission error 

component. Overall accuracy ranged from 90% at 6 Pu.m
-2

 down to 57% at 0.3 Pu.m
-2

. The 

producer’s, user’s, and overall accuracy measures reflected the trends noted for the underlying 

omission and commission measures they are derived from, with a moderate, linear, decrease in 

accuracies from 6 to 4 Pu.m
-2

, and a higher, exponential, decrease in accuracies below 2 Pu.m
-2

 

(Figure 5.1). When tree detection accuracies were plotted against pulse spacing, linear trends of 

declining accuracy with increasing pulse spacing were evident across the range of thinning tests 

(Figure 5.2). 
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Figure 5.1. Producer’s, user’s and overall tree detection accuracies plotted against thinned pulse 

density. 

Figure 5.2. Producer’s, user’s and overall tree detection accuracies plotted against thinned pulse 

spacing. 

5.3.2 Correlations 

In section 3.3.3 the best correlated crown metric was determined for each of the ten ground 

measured tree attributes. The strength of those correlations was re-evaluated using crown 

metrics derived from detection and delineation carried out with each of the thinned LiDAR data 
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sets. For each ground measured attribute the best correlated crown metric determined earlier 

with the full pulse density data set was retained for comparison. 
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Estimated Pearson’s correlation coefficients (r) for each of the ground measured attributes were 

plotted against pulse density (

 

Figure 5.3). Absolute values of r were plotted to aid comparisons across all attributes. 

Correlations declined with reducing pulse density for all tree attributes. At the higher pulse 

density (6 Pu.m
-2

) correlations for H, DBH and V were relatively high (r= 0.89, 0.80, and 0.82 

resp.) and were moderate for D24 and D38 (r= -0.41 and -0.49 resp.). For those attributes the fall 

in r was moderate and linear from 6 Pu.m
-2

 down to 2 Pu.m
-2

, and a more exponential decrease 

was evident below 1 Pu.m
-2

. For the remaining tree attributes correlations were initially low 

(r<0.25) and the decrease in r with reduced pulse density was slight. Plotting Pearson’s r 

against pulse spacing showed a trend for a linear decline in correlations as spacing increased 

with lower pulse densities (
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Figure 5.4).  

Figure 5.3. Pearson’s correlation coefficients (r) from the best correlated crown metrics for each 

of the ground measured variables plotted against thinned pulse density. Note that absolute 

values of the negative correlations for D24 and D38 are plotted for ease of comparison with the 

other correlations. Variables are indicated with shapes: squares for size, circles for form, triangles 

for wood quality, and diamonds for disease. 
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Figure 5.4. Pearson’s correlation coefficients (r) from the best correlated crown metrics for each 

of the ground measured variables plotted against thinned pulse spacing. Note that absolute 

values of the negative correlations for D24 and D38 are plotted for ease of comparison with the 

other correlations. Variables are indicated with shapes: squares for size, circles for form, triangles 

for wood quality, and diamonds for disease. 
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5.3.3 Heritabilities and genetic gains 

Figure 5.6. 

In section 4.3 the narrow sense heritabilities and genetic gains were estimated for the ground 

measured attributes. Results showed that estimated genetic gains, and the underlying 

heritabilities, were considered of acceptable accuracy for operational use for the tree attributes 

H and DBH. The effects of reducing pulse densities on heritabilities and genetic gains were 

investigated for those two tree attributes. Estimated heritabilities for H and DBH, as well as the 

respective best correlated crown metrics (TH and CVF), were plotted against pulse densities in 

 

Figure 5.5, and against pulse spacing in 
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Figure 5.5. Estimated narrow sense heritabilities (h
2
) plotted against thinned pulse density. 

Horizontal lines indicate the h
2
 values for H and DBH estimated using conventional ground 

measurements. Curves show h
2
 values estimated using the best correlated crown metrics for H 

and DBH (TH and CVF respectively) plotted against thinned pulse density.  

Figure 5.5). Below 2.5 Pu.m
-2

 heritability was increasingly under-estimated. The estimated 

heritability for CVF was lower than that for D, but was stable down to 2 Pu.m
-2

, below which it 

declined sharply. When heritability estimates were plotted against pulse spacing they appeared 

 

The estimated heritability (h
2
) for H using the best correlated crown metric (TH) was similar to 

that from ground measurement for pulse densities from 6 down to 2.5 Pu.m
-2

 (
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variable at lower spacing, corresponding to the higher pulse densities, and then exhibited a 

steady linear decline with increasing pulse spacing below 0.6 m. 

Figure 5.6. Estimated narrow sense heritabilities (h
2
) plotted against thinned pulse spacing. 

Horizontal lines indicate the h
2
 values for H and DBH estimated using conventional ground 

measurements. Curves show h
2
 values estimated using the best correlated crown metrics for H 

and DBH (TH and CVF respectively) plotted against thinned pulse spacing.  
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Genetic gains for H and DBH were estimated using the respective best correlated crown metrics 

TH and CVF. Gains were estimated at three selection levels (best 10, 30 and 96 trees), using 

each thinned LiDAR dataset. Realised genetic gains were derived by comparing the gain 

obtained when using the appropriate best correlated crown metric, with the gain obtained when 

using the ground measurements for selection. Realised gains were plotted against pulse 

densities (  

Figure 5.7 and 

 

Figure 5.9) and against pulse spacing (

 

Figure 5.8 and 
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Figure 5.10). 

Figure 5.7. Proportion of genetic gain realised for H when selecting using the best correlated 

crown metric TH for three selection levels (best 10, 30 and 96 trees) plotted against thinned 

pulse density.  
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Figure 5.9).  

For tree height (H), selection of the best trees using the TH crown metric derived from LiDAR 

data at a density of 6 Pu.m
-2

 realised 80 to 90% of the gain obtained when selecting using 

ground measured heights (

 

Figure 5.7). Realised gain for H was quite stable as pulse density decreased to 2 Pu.m
-2

, and 

then dropped markedly below that pulse density. Gains realised for DBH when using the CVF 

crown metric for selection, derived at 6 Pu.m
-2

, ranged from 70 to 80% of the gain obtained 

using ground measurements of diameters (
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Figure 5.8. Proportion of genetic gain realised for H when selecting using the best correlated 

crown metric TH. Realised gain is shown for three selection levels (best 10, 30 and 96 trees) 

plotted against pulse spacing.  
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Figure 5.10). 

 

Similar to the trends observed for H, realised gain for DBH declined only slightly as pulse 

density reduced to 2 Pu.m
-2

, below which it dropped quite rapidly. When realised gains were 

plotted against pulse spacing very similar patterns were observed for H and DBH, with realised 

gains declining quite linearly with increased pulse spacing (

 

Figure 5.8 and 
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Figure 5.9. Proportion of genetic gain realised for DBH when selecting using the best correlated 

crown metric CVF. Realised gain is shown for three selection levels (best 10, 30 and 96 trees) 

plotted against thinned pulse density. 

 

Figure 5.10. Proportion of genetic gain realised for DBH when selecting using the best 

correlated crown metric CVF. Realised gain is shown for three selection levels (best 10, 30 and 96 

trees) plotted against pulse spacing.  

Regressions fitted to results were used the estimate the pulse densities at which 5% and 10% 

reductions in initial estimates occurred. Estimated pulse densities for correlations, heritability 
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and realised gain were made for tree height (H) only, selected because it yielded the most 

significant results amongst the ground measured variables. Realised genetic gain for H was 

estimated at the 96 tree selection level.  Estimates showed that pulse densities of 3 to 5 Pu.m
-2

 

were required to maintain estimates within 5% of the initial values and a 10% reduction in 

estimates occurred at pulse densities of 2 to 3 Pu.m
-2

 (Table 5.3).   

Table 5.3. Pulse densities at which 5% and 10% reductions in initial estimates from full pulse 

density (6.1 Pu.m
-2

) are predicted for the various quantities examined in this study.  

Estimated quantity Estimate at 6.1 

Pu.m
-2

 

Pulse density for 5% 

reduction Pu.m
-2

 

Pulse density for 10% 

reduction Pu.m
-2

 

Tree detection overall 

accuracy 

89.54% 4.4 2.2 

Pearson’s correlation 

coefficient* 

0.89 2.7 1.6 

Narrow sense heritability* 0.29 3.9 2.7 

Realised genetic gain 

(selection of 96 trees)* 

0.88 3.1 1.6 

* These estimates are for tree height (H) 

5.4 Discussion 

5.4.1 Accuracy of tree detection 

Relatively few omission errors occurred, by failing to identify trees with smaller crowns, while 

commission errors occurred more than twice as often, and were found to result from two 

causes: falsely subdivided large branches, and segmented shrubs or ferns. The use of a height 

threshold derived from the LiDAR point cloud to create CHM images, as applied in this study, 

reduced segmentation of understory vegetation and any other sub-canopy features, and 

therefore reduced commission errors due to detection of non-target objects. However some 

errors of this type still occurred, where non-target shrubs and ferns exceeded the threshold 

height. Those errors contributed to the commission and user’s error measures, but did not 

negatively affect crown metrics. In fact segmentation of those non-target objects is important to 

ensure accuracy of crown segmentation and derived crown metrics for the target trees.  
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This study has shown clear effects of pulse density on tree-based analyses of ALS data. Tree 

detection accuracy declined with reducing pulse density and overall accuracy dropped from 

89.54% to 84.85% when pulse density decreased from 6.1 to 4.4 Pu.m
-2

. The observed 

accuracy at 6.1 Pu.m
-2

 for the genetics trial used in this study is in general agreement with the 

documented accuracies for operational stands in earlier work using the same tree detection 

methods (Pont et al. 2015b). Analyses have considered a range of pulse densities, and results 

have quantified trade-offs between pulse density and accuracy of detection, and have showed a 

linear decline in the accuracy of tree detection when compared to pulse spacing, rather than 

density. The observed linear relationship between accuracy and pulse spacing was used to 

determine that reductions in detection accuracy of 5% and 10% corresponded to pulse densities 

of 4.4 and 2.2 Pu.m
-2

. A marked increase in tree detection error was observed below 2 Pu.m
-2

 

which aligns with reported minimum pulse densities from other studies. For example Wang et 

al. (2016) concluded 2 points per m
2
 could be adequate for the detection of dominant trees, in a 

study that included coniferous stands in southern Finland. In another study on boreal forest in 

southern Finland, reduction of point density from 12 to 0.5 points m
-2

 was found to have only a 

moderate effect on the accuracy of estimates for individual tree properties (Vauhkonen et al. 

2008). However in that study tree detection and delineation had been carried out using full 

point density and so the effect of these important steps were not included in the study. The 

authors concluded that 3 Pu.m
-2

 were adequate for deriving useful three-dimensional crown 

metrics, based on alpha shapes, given that accurate detection and delineation were already 

available. They also noted prior work which showed pulse densities of 5 to 10 Pu.m
-2

 are 

usually required for detecting and delineating trees in boreal forests (Persson et al. 2002). 

Accurate tree detection is essential to the subsequent derivation of crown metrics and estimates 

of values such as genetic parameters. On the basis of results, 2 Pu.m
-2

 should be considered an 

absolute minimum to avoid rapidly escalating errors in the detection of radiata pine trees in 

research trials, but higher pulse density is desirable to achieve corresponding increases in 

accuracy. A LiDAR resolution of 6 Pu.m
-2

 is indicated to achieve automated tree detection rates 

near 90%.  
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5.4.2 Crown size 

The study area was a forest genetics trial, containing young (age 7) radiata pine trees, planted 

on a regular grid. Tree spacing was 3.2 by 3.2 m and apart from intermittent gaps caused by 

missing trees, the trial had reached canopy closure. Detection of trees in even-aged conifer 

stands is generally agreed as representing a relatively simple case, and it can be argued that a 

regularly planted trial area is an even closer to an ideal case. Crown areas of detected trees, 

determined from delineation on the CHM image averaged 10.4 m
2
. This is slightly greater than 

the 10.2 m
2
 area theoretically available to each tree due to the 3.2 by 3.2 m grid spacing, and 

has occurred as a result of crowns occupying space left by missing trees. Crown areas ranged 

from 1.4 to 29.0 m
2
, reflecting a large range of variation in crown sizes within the trial. The 

observed variability of crown sizes, largely of genetic origin in this trial, therefore presented 

more of a challenge to tree-based analysis than might be expected for a trial established with a 

regular grid layout.  

Pulse spacing is related to pulse density by an inverse square relationship. The initial pulse 

density of 6.1 Pu.m
-2

 corresponded to a pulse spacing of 0.41 m, and a point spacing of 0.25 m. 

It is interesting to note that detection of tree crowns with average diameters of 3.2 m was 

imperfect, even with such closely spaced returns. In fact it is more instructive to consider the 

limiting case as being the smallest crowns able to be detected. In this study, crowns as small as 

1.6 m in diameter were detected, representing more than a six-fold ratio of crown size to point 

spacing at 6.1 Pu.m
-2

. It is suggested such a ratio, relating crown diameter with LiDAR point 

spacing, may be a useful metric expressing the marginal resolution of LiDAR required to detect 

the smallest crowns in an area, taking into account LiDAR resolution and variations in crown 

size due to spacing, silviculture and age. It is still useful to express resolution in terms of pulse 

density, as this is a parameter that can be specified when planning LiDAR capture, but it is also 

instructive to think about point spacing when considering the potential for image analysis to 

detect tree crowns. On the basis of the ratio observed in this study between crown size and 

point spacing, and the inverse square relationship between spacing and density, the required 

point spacing and point density for a given minimum crown size can be estimated. Estimates 
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for two different minimum crown sizes are depicted in Figure 5.11, showing the required point 

spacings and densities, and illustrating the linear decrease in point spacing and the exponential 

decrease in point density necessary to detect larger crowns.  

Figure 5.11. The relationship between minimum crown size and point spacing required for tree 

detection. The observed ratio between minimum crown size and point spacing was used to 

estimate the required point spacing and corresponding point density for detection of different 

crown sizes. A minimum crown size of 3.2 m (left) equates to a required point spacing of 0.5 m 

and a point density of 4 points m
-2

. Halving crown size to 1.6 m (right) halves required point 

spacing to 0.3 m and increases point density by a factor of four, to 16 points m
-2
. 

5.4.3 Correlations, heritabilities and genetic gains 

In this study the effect of pulse density on correlations between crown metrics and ground 

measurements of trees, and on estimates of genetic parameters, were considered. In all cases 

reducing pulse density diminished the ability to estimate these quantities. It was observed that 

maximum accuracy of tree detection was desirable for subsequent tree-based analyses, and 
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demonstrated that maintaining estimates within 5 or 10% of original values required higher 

pulse densities for tree detection than for the other derived values evaluated (Table 5.3). This 

indicates that although tree detection accuracy falls at lower pulse densities, useable 

correlations with crown metrics, and useable estimates of genetic parameters for tree attributes 

such as height and diameter can still be obtained. As with tree detection, a marked decline in 

estimates generally occurred below 2 Pu.m
-2

, and a linear decline was observed with increasing 

pulse spacing. The observed linear relationships between accuracy and pulse spacing were used 

to determine that reductions in estimates of 5% and 10% corresponded to pulse densities of 

around 3-4 and 2-3 Pu.m
-2

 respectively. Those results support a conclusion that a pulse density 

of 4 Pu.m
-2

 should be considered a minimum for determination of correlations with crown 

metrics and estimation of genetic parameters. It is also noted that the assessment of research 

trials demands high quality data, and in practice higher pulse density would be advised to 

obtain the best possible estimates.   

5.4.4 Pulse density and pulse spacing 

The observed linearity between pulse spacing and accuracies for tree-based analyses of LiDAR 

has important implications. A linear relationship with spacing supports an exponential 

relationship with pulse density, agreeing with theoretical relationships between density and 

spacing. Those relationships were confirmed in this study, over a range of densities and 

spacings. Using tree detection as an example, results demonstrated that a fourfold reduction in 

pulse density only resulted in a doubling of point spacing and a doubling of detection error. 

Equally, results indicated that in order to halve error it is necessary to halve pulse spacing, 

requiring a four-fold increase in pulse density. The first implication of the study results is that 

accuracies decline but are relatively insensitive to moderate reductions in pulse densities down 

to a level of 2 Pu.m
-2

. The second implication is that accuracies cannot be easily increased by 

increasing pulse density, because exponential increases in density are required to make 

incremental gains in accuracy. It is therefore concluded that to achieve small gains in the 

accuracies achieved in this study, pulse densities greatly in excess of 6 Pu.m
-2

 would have been 
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required. To generalise, lower densities incur gradual but undesirable increases in error, and 

higher densities incur increasing costs for diminishing gains in accuracies. 

5.4.5 Higher resolution from new technologies 

Other researchers have noted that higher point (and thus pulse) density was more critical for 

point-based detection methods, and that those methods are able to better utilise increased point 

density, compared to raster-based methods as was used in this thesis study (Wang et al. 2016). 

They also noted that three dimensional analyses of high-density LiDAR has important potential 

benefits, notably for more complex forest types. Ongoing improvements in technologies are 

delivering LiDAR with higher pulse densities. Multi-laser LiDAR systems already exist, for 

example the Optech Pegasus incorporates two lasers, effectively doubling achieved pulse 

densities (Optech 2014). Surface models extracted from highly-overlapping imagery can be 

used to produce very high density point clouds, on the order of one hundred or more points m
-2

 

(St-Onge et al. 2015; St-Onge and Audet 2015; Wallace et al. 2016). However these point 

clouds lie solely on the upper surface of the canopy, lacking the penetration of LiDAR. 

Therefore they might be used for raster-based analyses, as applied in this study, but will lack 

the detail utilised in point-based methods. Processing of waveform LiDAR data is still an active 

area of research, with a lack of standardised methods. One approach is to analyse the waveform 

data to extract increased numbers of discrete returns compared to standard processing by 

vendor systems, although increases are in the order of ten-fold at best (Adams et al. 2012; 

Allouis et al. 2013). Another example is a multi-laser LiDAR system able to be carried by 

unmanned aerial vehicles which can provide pulse densities over 100 Pu.m
-2

, due in part to 

multiple lasers, and to the ability to operate at lower height above ground and lower flight 

speeds, compared to systems in manned aircraft (Routescene 2015). New LiDAR systems such 

as Geiger-mode could provide pulse densities hundreds of times higher than existing systems 

but it could be some time before such systems are readily available (Lemmens 2015). The 

results of the current study indicate that incremental increases in LiDAR pulse densities might 

provide only moderate benefits, and that exponential increases in pulse densities, possible with 

some new technologies, will be required to deliver useful improvements in results from tree-
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based analyses of LiDAR. New studies with different forms of higher density LiDAR will be 

required to quantify the trade-offs between pulse densities, computational demands, operational 

costs, and achieved accuracies.  

5.5 Conclusions 

This study has provided useful insight into the effects of pulse density on tree-based analysis of 

ALS data. The effects of pulse density on tree detection, and on correlations of crown metrics 

with ground measures, have been evaluated, meeting the first two objectives: “Quantify the 

effect of reducing pulse densities on the accuracy of tree detection” and “Quantify the effect of 

reducing pulse densities on correlations between crown metrics and ground measurements of 

key tree attributes”. Effects have also been evaluated in practical terms by examining effects on 

estimates of genetic parameters, thereby meeting the third objective “Quantify the effect of 

reducing pulse densities on estimates of heritabilities and genetic gains”. The research results 

have addressed the research question “What is the effect of varying pulse density on the 

accuracy of estimates obtained from the analysis of discrete return LiDAR?” by 

quantifying effects and thereby providing practical guidance for operational applications of 

tree-based analyses of ALS. 
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Chapter 6 Summary 

The use of ALS data has already had a significant impact on international and local forest 

management and research. The development of methods to analyse ALS data at the individual 

tree level was identified as having a number of potential benefits. The research carried out in 

this thesis was aimed at developing and evaluating methods to estimate a number of key 

individual tree attributes from ALS data for plantation-grown New Zealand radiata pine, with 

the aim of advancing the international knowledge and providing methods to support innovative 

research and forest management practices. Important applications identified were in precision 

forestry and in phenotyping trees for tree growth and tree breeding research. Gaps identified in 

the international literature led to the formulation of three key research questions, with 

associated objectives, which were addressed in the research carried out. The success in 

addressing those objectives and questions is summarised below.  

6.1 Can methods be developed to estimate key attributes of 

individual trees using airborne laser scanning data? 

International literature indicated potential for crown metrics derived from ALS data to be used 

in estimating tree size attributes, and there was some limited research or discussion of 

possibilities for estimating other attributes. In the research carried out, a broad set of crown 

metrics were developed, including a number of novel metrics, to evaluate for use in estimating 

tree attributes, meeting the first objective “Derive a set of individual crown metrics from raster-

based analysis of ALS data in which individual trees have been detected”. This study was also 

the first known example where estimates for a range of key tree attributes, representing tree 

size, form, wood quality, and disease expression, were made in a single study. The best 

correlations with those ground measured attributes were determined using the crown metrics, 

meeting the second objective “Quantify correlations between LiDAR crown metrics and 

ground-based measures of tree size, form, wood quality, and disease expression”. The crown 

metrics evaluated provided strong correlations with tree size attributes, and weak or absent 

correlations for the other tree attributes. An interesting finding was a moderate negative 
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correlation between crown size, which was correlated positively with tree size, and the degree 

of disease infection. This was interpreted as reflecting reduced tree growth due to the effects of 

the disease and could offer potential for indirectly assessing the presence and levels of disease 

in individual trees and areas of trees. This also indicates genetic gains in disease resistance will 

be obtained if selecting on tree size. Results supported an affirmative answer to the research 

question, by demonstrating strong relationships between measures of crown metrics and tree 

size.   

6.2 Can methods be developed to estimate variance components of 

individual trees using airborne laser scanning data to elucidate 

the genetic and environmental drivers of tree growth? 

In the introduction, the need for tree-based analysis of ALS was established. Such methods 

could be beneficial for precision forestry applications but they were identified as being critical 

to the use of remotely sensed data, such as ALS, in research trials in general and tree breeding 

research in particular. Tree breeders have developed specialised analytical approaches in order 

to separate genetic and environmental determinants of tree growth. A need was identified to 

evaluate the ability to apply these analytical methods to individual tree metrics derived from 

ALS data to ensure the applicability of a tree-based approach in tree breeding research. The 

benefits of applying such analytical methods in tree growth research were also identified, 

supporting the development of individual tree phenotyping methods, with benefits to the next 

generation of research into tree breeding, tree growth, and wood quality, as well as supporting 

development of precision forestry methods. This led to the formulation of the objective: 

“Estimate genetic parameters for measures of tree size, form, wood quality, and disease 

expression using crown metrics and compare these with estimates from ground 

measurements”. Review of the literature and local research experience also identified that 

accurate tree detection was an important prerequisite to generating useful tree crown metrics for 

use in such research. Therefore a second objective “Evaluate the effect of errors in tree 

detection and delineation by comparing estimates of genetic parameters from automatic and 
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manual segmentation of individual trees” was posed in order to evaluate sensitivity to the 

accuracy of tree detection. Tree crown metrics were derived from an initial automated tree 

detection result, and from a manually corrected set of tree crowns. The two sets of metrics were 

then used to evaluate the ability to estimate a set of genetic parameters.  

This was the first known example of using tree crown metrics from ALS to estimate genetic 

and environmental sources of variation. It was also the first known example of evaluating the 

effects of tree segmentation accuracy on the results of ALS analyses. Results showed the ability 

to accurately estimate genetic parameters for the tree size attributes and not the other attributes. 

Those results were attributed to strong correlations between crown size metrics and ground 

measurements of tree size. Results also showed the correction of an automated crown 

segmentation had a negligible effect on accuracy of estimated variance components and genetic 

parameters. This was an important finding, indicating manual correction would not be 

necessary in operational use of the methods evaluated. It was observed that strong relationships 

between crown metrics and tree attributes were more important than the effects of correcting 

the tree segmentation. 

6.3 What is the effect of varying pulse density on the accuracy of 

estimates obtained from the analysis of discrete return LiDAR? 

The resolution of ALS data necessary to derive accurate estimates from tree-based analysis is 

an important theoretical and operational consideration. Increased pulse density potentially 

yields more data for analyses, but increases the costs of data collection.  Review of the 

literature showed some studies have quantified the effects of pulse density on estimates from 

area-based analysis of LAS, but there was a lack of research for tree-based analysis. 

Investigation of the effects of pulse density were thus seen as an important issue to consider 

when evaluating tree-based analysis of ALS for forestry research and operational applications. 

The original ALS data was thinned to create data sets representing a wide range of pulse 

densities. Those data were then processed using the methodologies presented and developed in 

this thesis. The effects of reducing pulse densities were then evaluated for tree detection, 
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correlations with crown metrics, and estimates of heritabilities and genetic gains, meeting the 

three corresponding objectives defined for this phase of the research: “Quantify the effect of 

reducing pulse densities on the accuracy of tree detection”, “Quantify the effect of reducing 

pulse densities on correlations between crown metrics and ground measurements of key tree 

attributes”, and “Quantify the effect of reducing pulse densities on estimates of heritabilities 

and genetic gains”. 

The results of the investigations showed that in general an exponential decline in estimates 

occurred in relation to reducing pulse density. This was evident in reductions in accuracies 

which were initially moderate but which declined rapidly at pulse densities below 1 or 2 Pu.m
-2

. 

The accuracy of tree detection was found to be most sensitive (see Table 5.3). Overall detection 

accuracy was 90% at the unthinned pulse density of 6.1 Pu.m
-2

. Accuracy was reduced by 5% 

with a relatively small reduction in pulse density to 4.4 Pu.m
-2

. Accurate tree detection is a 

prerequisite to obtaining accurate crown metrics and a reduction to 85% in tree detection is 

seen as unsuitable for use in research or management applications for, counting or assessing 

trees. Therefore a minimum pulse density of 6 Pu.m
-2

, the highest evaluated, is recommended 

for accurate tree detection. 

Estimates of correlations and genetic parameters, evaluated for tree height and diameter, were 

slightly less sensitive, permitting a recommended minimum pulse density of 4 Pu.m
-2

. The 

exponential relationship demonstrated between estimates and pulse densities were noted as 

having two important implications: estimates decline rapidly with reducing pulse density; and 

improvements in estimates require exponential increases in pulse density.  

6.4 Conclusions 

The research carried out has used a number of novel approaches to evaluate the utility of ALS 

data for applications in precision forestry, forestry research, and tree breeding. The ability to 

derive individual tree crown metrics for New Zealand plantation-grown radiata pine using ALS 

data, a form of data which is becoming increasing available in the New Zealand forestry sector, 
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has been demonstrated. The tree crown metrics developed and evaluated in this research have 

been shown to correlate well with tree size attributes, allowing accurate estimation of these 

important measures of tree growth. The methods developed can be used to estimate tree 

heights, diameters and stem volumes using the same ALS data obtained for operational uses 

with conventional area-based analysis. The ability to partition genetic and environmental 

sources of variation in measures of tree size derived from ALS data has also been 

demonstrated. These findings have important implications for general forest inventory and in 

the assessment of research and genetics trials, where the ability to characterise trees from 

remotely sensed data can have benefits in terms of cost-savings and improved safety by 

reducing time spent on the ground in the forest. Finally, the effects of pulse density on the tree-

based analyses of the ALS data have been carried out. The research results indicate that the 

methodologies developed and presented in this thesis, namely tree-based analysis of ALS data, 

of around 6 Pu.m
-2

, using a raster-based approach to derive crown metrics, provide a 

parsimonious and effective approach to characterising individual trees.  

In conclusion the research carried out in this thesis has contributed to the international body of 

research into individual tree methods for ALS data. Methods to estimate attributes of individual 

trees from ALS data were evaluated for New Zealand plantation-grown radiata pine trees in the 

setting of genetics trials. The tree attributes included measures of tree size, form, wood quality 

and disease, representing an operationally relevant set of attributes. The methods developed 

will have applications in precision forest management and in phenotyping trees for innovative 

research into tree growth and the development of elite tree breeds.
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Appendix A Positional Error under Forest Canopy 

A.1 Introduction 

The ability to obtain accurate positional information on the ground is essential for precision 

forestry applications (Holopainen et al. 2013; Kaartinen et al. 2015) and GNSS systems are 

widely used when positional information is needed in the forest. Published accuracy statements 

by GNSS equipment manufacturers and vendors are often for idealised conditions with an 

unobstructed view of the sky (Bakula et al. 2015). Such accuracy statements are therefore of 

little relevance in forestry conditions where terrain and canopy cover can cause satellite signals 

to be blocked or attenuated, and deflections can cause multipath problems, resulting in 

increased positional error (Kaartinen et al. 2015; Smyrnaios et al. 2013; Valbuena 2014). It was 

thus seen as necessary to quantify GNSS error under New Zealand forest conditions in order to 

understand the implications for tree-based analyses of LiDAR. 

A.2 Methods 

A forest stand due for operational harvest was selected to evaluate GNSS accuracy using a 

novel approach that has not been used in the reviewed literature. The stand contained a research 

trial where treatment blocks were marked with corner pegs. The co-ordinates of 11 pegs were 

determined using a number of GNSS devices prior to harvest. Accurate reference locations 

were determined subsequently, using a mapping-grade differentially-corrected GNSS at the test 

positions, after the stand was clearfelled.  

A.2.1. Study area 

The investigation of GNSS positional error was carried out at a polycross progeny trial (R 

664/2) in compartment 327 at Kaingaroa forest in the central North Island of New Zealand. The 

trial and surrounding stand were planted in 1975, with mean tree height of 48.9 m and age 39 

years at the time of measurement. The trial and the surrounding area were flat, sloping slightly 

to the west at less than 5 degrees, with no significant topographic barriers to GNSS signals. 
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Photographs taken looking straight up from each of the test peg locations illustrate the high 

degree of canopy cover typical at the test locations within the trial (Figure A.1).  

Figure A.1. Vertical photograph showing degree of canopy cover at a test trial peg. 

Trees were located in blocks within the trial, with a grid layout of 8 by 6 trees and spacing of 5 

m x 4 m respectively. Block corners were marked with wooden pegs located in mid-row 

positions. Selected pegs were used as test positions where GNSS coordinates were collected. 

Test measurements were carried out before harvest in March and September 2014 using 

different combinations of receiver, antenna, residency time, and differential correction. Not all 

combinations of the factors were evaluated in the tests. For example, the Garmin 64S receiver 

cannot be fitted with an external antenna so this test was not made, and tests of longer 

residency time were only made with the Geo7X fitted with an external antenna to avoid 

onerous data collection time in the field. After harvest, in December 2014, reference locations 

were established at the test positions. 
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This trial was used specifically to evaluate GNSS error under canopy as it offered the 

opportunity to determine positions before and after clearfelling of the stand. Analyses in this 

thesis research were carried out using measurements of tree attributes in another genetics trial 

in Kaingaroa forest. The canopy conditions at this trial site represented a relatively high level of 

GNSS signal blocking and resultant positional error due to the mature age of the stand. 

Therefore estimates of horizontal error and precision are expected to be conservative with 

respect to younger stands 

A.2.2. GNSS equipment 

Three GNSS receivers were used in this study. The GPS Pathfinder ProXRT and Geo7X (both 

Trimble Navigation Ltd., Sunnyvale, CA, United States) are GLONASS (Russian GNSS 

satellite system) capable mapping-grade receivers able to deliver decimetre accuracy in open-

sky conditions and capable of differential correction by post-processing. The Geo7X receiver 

also incorporates Trimble Floodlight satellite shadow (multipath) reduction technology. The 

Garmin 64S receiver (Garmin International Inc. Lenexa, Kansas, United States) is a GLONASS 

capable recreational grade receiver, for which the manufacturer claims 2 - 3 m accuracy in ideal 

conditions. Fitting of an external antenna, and differential correction by post-processing, are not 

possible for the Garmin 64S. A Tornado antenna (Trimble Navigation Ltd., Sunnyvale, CA, 

United States) mounted 2 m above ground on a tripod was used for tests with an external 

antenna with the Geo7X and ProXRT receivers. The term device is used to refer to a 

combination of a GNSS receiver and antenna (internal or external). Corrections were carried 

out by post processing using Trimble GPS Pathfinder Office version 5.6 for data recorded by 

the Trimble devices.   

A.2.3. GNSS test field surveys 

A set of 11 pegs within the trial were selected as test positions. The GNSS receiver, or external 

antenna when used, was centred over the test pegs. For the ProXRT and Geo7X receivers, 

GNSS epochs (positions) were logged at one second intervals until the number of positions 

required for the test, 300 or 500 positions, were recorded. With the Garmin 64S receiver 
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positions were recorded until the device reported 100% accuracy. The time taken for this 

averaged approximately five minutes, and was therefore considered comparable with recording 

of 300 positions with the Trimble receivers. An initial survey carried out with the ProXRT on 

28th March gave a set of locations designated as tests 8 and 9. Further tests carried out on the 

8th, 9th and 15th of September gave locations for designated test numbers 1 to 7. Key 

characteristics of the tests are described in Table A.1. 

Table A.1. Characteristics of GNSS devices and configurations tested. 

Test Receiver Mount Antenna Residency time (s) Correction 

1 Garmin 64S Hand-held Internal 300
*
 N 

2 Trimble Geo7X Hand-held Internal 300 N 

3 Trimble Geo7X Hand-held Internal 300 Y 

4 Trimble Geo7X Tripod External 300 N 

5 Trimble Geo7X Tripod External 300 Y 

6 Trimble Geo7X Tripod External 500 N 

7 Trimble Geo7X Tripod External 500 Y 

8 Trimble ProXRT Tripod External 300 N 

9 Trimble ProXRT Tripod External 300 Y 

*Points were collected until the receiver reported 100% complete, approximately 300 seconds on 

average, and therefore considered equivalent to collection of 300 epochs with the Trimble receivers. 

A.2.4. Determination of reference locations 

In preparation for the survey to be carried out after the trees were felled, the surveyed peg 

locations were permanently marked using each of four different methods. A 20 cm length of 

steel rebar was driven into the ground at the base of the post to a depth of 5 cm below the 

ground surface. A length of yellow tape attached to the rebar remained visible above the ground 

surface. The bases of three or four adjacent trees were painted with white paint facing the peg 

location. Additionally the original labelled peg post was painted white at the top. 

The trees were felled in late November 2014 and the site re-visited in early December to 

determine accurate reference locations. The original under-canopy GNSS locations were used 

as the initial guide to locating the test positions. Error on the original under-canopy locations 
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and the extensive site disruption resulting from the felling operation made the task difficult. By 

clearing debris with a spade and using a metal detector to locate the buried rebar the reference 

peg locations were identified. The re-located peg position was re-surveyed using the Geo7X 

with internal antenna, a residency time of 120 epochs and differential correction was carried 

out. This provided accurate reference locations obtained under open sky for determination of 

error on the earlier locations determined under canopy conditions. 

A.2.5. Determination of error measures 

Error was derived as horizontal error (eh) in metres, being the Euclidean distance between the 

test positions (xt, yt) and reference positions (xr, yr): 

𝑒ℎ⁡ = √(𝑥𝑡 − 𝑥𝑟)2 + (𝑦𝑡 − 𝑦𝑟)2 A.1 

Precision of positions was given by the GPS Pathfinder Office software, for tests with the 

ProXRT and Geo7X receivers (tests 2-9). Precision is computed as the standard deviation in the 

horizontal component: 

𝜎
ℎ=√

1
𝑛−1

(∑ (𝑥𝑖−𝑥̅)
2+(𝑦𝑖−𝑦̅)

2𝑛
𝑖=1 )

 A.2 

Tests for significant pair-wise differences between mean error values were carried out in R (R 

Core Team 2014) using a Tukey ‘Honest Significant Differences’ (HSD) test. Analysis of 

variance was also carried out using R in order to examine the effects of a number of factors on 

horizontal error and precision. 

Expected horizontal error can be determined at different confidence levels using the observed 

standard deviations from the different tests made. This error is expressed as the radius of a 

circle within which a given percentage of observations are expected to fall. For example 

observed GNSS positions will be expected to fall within 1.177𝜎𝐻 at the 50% probability level, 

where 𝜎𝐻 is the standard deviation of the horizontal errors. Multipliers, obtained from a two 
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dimensional Rayleigh distribution, for the four probability levels evaluated in this study were as 

follows: 50% = 1.177, 90% = 2.146, 95% = 2.447, and 99% = 3.035 (van Diggelen 2007).  

A.3 Results 

Though canopy cover was not quantified, visual inspection of the overhead photographs taken 

at each test peg location (see Figure A.1 for an example) showed the degree of canopy cover 

was uniform across all test positions. Horizontal error was calculated using Equation A.1 and 

results by test are presented in Figure A.2. Horizontal precision estimated by the Trimble® 

GPS Pathfinder® Office software is presented in Figure A.3. Results for mean horizontal error, 

and horizontal precision determined for each GNSS test (except for tests with the Garmin 64S) 

are presented in Table A.2. 
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Figure A.2. Horizontal error by GNSS test. The lower end of the box indicates the 25th 

percentile, a line within the box marks the median, the solid point marks the mean, and the upper 

boundary of the box indicates the 75th percentile. Error bars above and below the box indicate 

the nominal data range, defined as the lower and upper quartile minus and plus (resp.) 1.5 times 

the interquartile range. Points falling outside the nominal data range are represented with open 

circles. 
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Figure A.3. Horizontal precision by GNSS test. Precision estimates were not available for test 1 

with the Garmin 64S. The lower end of the box indicates the 25th percentile, a line within the box 

marks the median, the solid point marks the mean, and the upper boundary of the box indicates 

the 75th percentile. Error bars above and below the box indicate the nominal data range, defined 

as the lower and upper quartile minus and plus (resp.) 1.5 times the interquartile range. Points 

falling outside the nominal data range are represented with open circles. 

 

 



Positional Error  

154 

 

Table A.2. Mean and standard deviation of measured horizontal error and precision for the 

GNSS device tests. Values were obtained from Trimble Pathfinder Office. Precision was not 

available for test 1 with the Garmin 64S. 

Test Mean error (m) Standard deviation (m) Mean precision (m) 

1 4.6 3.4 NA 

2 3.7 1.9 6.6 

3 2.9 1.1 1.6 

4 4.1 1.7 7.1 

5 3.3 2.3 2.2 

6 2.3 1.5 4.9 

7 2.0 0.9 1.0 

8 2.6 1.1 5.8 

9 1.9 2.3 0.8 

 

The largest mean error of 4.6 m came from the Garmin 64S with an internal antenna and no 

ability to carry out correction (test 1). The smallest mean error of 1.9 m came from the ProXRT 

with an external antenna and correction by post-processing (test 9). Standard deviations 

estimated from test measurements were somewhat variable with no obvious pattern related to 

correction or device except for a higher standard deviation with the consumer grade device in 

test 1. Precision estimated for positions by the Trimble Pathfinder Office software was 

significantly better (lower values) after differential correction. Results from analysis of variance 

are presented in Table A.3. Tests examined the effects of residency time, device, test locations, 

correction, test date, and external antenna on eh and σh. 
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Table A.3. Summary of analysis of variance (ANOVA) for the horizontal error (eh) and 

horizontal precision (σh) of global navigation satellite system (GNSS) tests. 

 Horizontal error (eh)  Horizontal precision (σh) 

Source of variation Df F value Pr(>F)   Df F value Pr(>F)  

Residency 1 9.089 0.00435 **  1 5.29 0.0265 * 

Device 3 3.341 0.0239 *  2 1.149 0.323 (ns) 

Location 10 1.971 0.0462 *  10 0.039 1.00 (ns) 

Correction 1 2.980 0.0892 (ns)  1 526.9 <0.0001 *** 

Date 3 1.906 0.134 (ns)  4 7.286 <0.0001 *** 

Antenna 1 0.489 0.488 (ns)  1 0.430 0.515 (ns) 

  

Results for the Geo7X with external antenna and with 300 and 500 seconds residency time 

(tests 4, 5, 6 and 7) were analysed to determine the effects of residency time on accuracy and 

precision. Results showed a statistically highly significant effect of increasing residency time 

from 300 to 500 epochs (p=0.0044) for eh, with reductions of 44% and 39% before and after 

correction respectively. Reductions in σh were 31% and 55% before and after correction 

respectively, but they were marginally statistically insignificant (p=0.0265). 

To examine error from different devices (receiver and antenna combinations) analysis of all 

tests with residency time of 300 seconds (tests 1, 2, 3, 4, 5, 8 and 9) were made. Analysis of 

variance showed device to be significant (p=0.0239) for eh but not for σh. A Tukey HSD 

pairwise test by device revealed only a single statistically significant difference of 59% in eh, 

between the Garmin 64S with internal antenna (test 1) and the ProXRT with external antenna 

(test 9) with p=0.0205.  

Analysis of variance showed a moderately significant effect of test location (peg) within the 

trial (p=0.0462) on eh but a Tukey HSD pairwise test did not show any significant differences 

in eh between pairs of test locations (pegs). Test location did not have a significant effect on σh. 
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Results for the three devices with 300 seconds residency, before and after correction by post 

processing (tests 2, 3, 4, 5, 8 and 9) were analysed to determine the effects of differential 

correction by post processing. Analysis of variance showed no significant effect for eh and a 

highly significant effect on σh (p<0.0001), with reductions in σh averaging 75%. 

Analysis of variance showed no significant effect of survey date (p=0.1340) on eh and a highly 

significant (p<0.0001) effect on σh. A Tukey HSD pairwise test showed σh on a single survey 

date to differ significantly from the other dates. Results from the Geo7X with 300 seconds 

residency time (tests 2, 3, 4 and 5) were analysed to determine the effect of external antenna. 

Analysis of variance showed no significant effect of external antenna for eh or σh. 

In order to evaluate the relevance of the GNSS accuracy results obtained in this study it was 

necessary to consider the accuracy required to identify individual trees on the ground. This was 

done using a simple theoretical approach, taking into account variation in tree spacing at typical 

operational stand densities. In a research trial or in an idealised stand with trees located on a 

uniform grid, individual trees could be located with a position having error less than half the 

tree spacing (see Figure A.4). Trees in the trial where the tests were carried out were planted on 

a 4 by 5 m grid and accurate tree location in that situation would require positional error less 

than 2 m. 
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Figure A.4. Acceptable positional error to identify individual trees. In an idealised stand trees 

are spaced at a distance S. To correctly identify individual trees unambiguously would require 

determination of position with error lower than S/2. 

Tree spacing can be quite variable in typical New Zealand forest stands, being affected by 

variations in tree spacing at planting, subsequent thinning and windthrow. An extensive set of 

tree locations manually digitised by experienced operators on images (D. Pont 2015, pers. 

comm.), generated during earlier work on development of tree detection methods (Pont et al. 

2015b), were used to fit a linear model to estimate minimum tree spacing from stand density. 

The model used to estimate minimum tree spacing Dmin in metres from mean tree spacing S in 

metres is: 

𝐷𝑚𝑖𝑛 = 0.4038𝑆 − 0.0642 A.3 

where mean tree spacing S is derived from stand density in stems per hectare D: 
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𝑆 =
100

√𝐷
 

A.4 

This model reflects the fact that some trees within a stand will be closer together than others 

due to variable spacing, and the shorter distance estimated by the model (Dmin) is a better 

estimate of the accuracy required to locate trees than the mean distance between trees (S). Table 

A.4 presents tree spacing estimates across a wide range of stand densities that would be 

encountered in New Zealand plantation forest stands. The table shows that minimum tree 

spacing values estimated from the empirical model are lower than the mean spacing estimated 

from stand density. In order to separate two trees at the minimum spacing, positional error must 

be less than half that distance. For example at 400 stems ha
-1

 mean tree spacing is 5 m and half 

that distance (2.5 m) represents a simplistic estimate of the desired accuracy to identify 

individual trees at that stand density. The model was then used to estimate a minimum spacing 

of 2 m for stands at 400 stems ha
-1

, half that distance (1 m), being a more realistic estimate of 

the accuracy needed to locate individual trees.  

Table A.4. Estimated mean and minimum tree spacing, with corresponding half distances, at 

different stand densities. 

 Tree spacing (m) 

Stand density (Stems ha
-1

) Mean Half mean Minimum Half minimum 

1200 2.9 1.5 1.1 0.6 

1000 3.2 1.6 1.2 0.6 

800 3.5 1.8 1.4 0.7 

600 4.1 2.1 1.6 0.8 

400 5.0 2.5 2.0 1.0 

200 7.1 3.6 2.8 1.4 

100 10.0 5.0 4.0 2.0 

 

The probabilistic nature of GNSS error, discussed in the introduction and detailed in van 

Diggelen (2007), means that even stricter error tolerances are required to ensure individual trees 

could be identified to a given confidence level. For individual tree analysis of ALS a 99% 



Positional Error  

159 

 

confidence level would be desirable, implying GNSS error could result in one tree in a hundred 

being incorrectly identified. The standard deviations of our test observations (Table A.2) were 

used to estimate the radii of circles expected to contain 50%, 90%, 95%, and 99% of GNSS 

positions, presented in Table A.5.  

Table A.5. Radii of circles estimated to include given percentages of GNSS positions for 

different test devices.

 Error radius at given probability level (m) 

Test 50% 90% 95% 99% 

1 4.0 7.3 8.3 10.3 

2 2.2 4.1 4.6 5.8 

3 1.3 2.4 2.7 3.3 

4 2.0 3.6 4.2 5.2 

5 2.7 4.9 5.6 7.0 

6 1.8 3.2 3.7 4.6 

7 1.1 1.9 2.2 2.7 

8 1.3 2.4 2.7 3.3 

9 2.7 4.9 5.6 7.0 

 

A.4 Conclusions 

Results have shown that mean error of the best GNSS device tested exceeded target levels 

significantly (by 35%) even at the lower end of the stocking range (200 stems ha
-1

). For a 

desired 99% confidence level in positional estimates, error of a mapping grade receiver with an 

external antenna and 500 seconds residency time is estimated to be 2.7 m, which is two and 

five times higher than necessary at the lower and higher ends of expected stand densities (200 

and 1200 stems ha
-1

 respectively). It is concluded that GNSS error under mature New Zealand 

forest canopy conditions exceeds desired accuracy levels for individual tree location by a 

significant margin. 

This study has shown that the method of using GNSS measurements before and after felling of 

the stand is an effective approach for quantifying the effects of canopy cover and other factors 
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on GNSS accuracy. Results confirm the general findings of other researchers that the degree of 

canopy cover and residency time are the principal effects on accuracy. Further research would 

be useful to quantify error in different conditions, focusing on canopy cover, related principally 

to stand age and density, and to evaluate a wider range of residency times. 

This study has also confirmed the observation of some other researchers that precision values 

reported by GNSS devices and software are not useful indicators of horizontal error. These 

precision values have contributed to a general belief that GNSS accuracy is better than it is in 

fact, particularly under forest canopy conditions. The individual tree-level analyses of ALS to 

be carried out in the planned research require methods to identify individual trees accurately. 

This capability is also required to utilise tree-based methods in operational precision forestry. 

Results show currently available GNSS devices used in forestry applications cannot deliver 

sufficient accuracy to reliably identify individual trees in New Zealand forest conditions.
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Appendix B Dissemination of Research 

The research in this thesis was aimed at developing and evaluating methods to characterise 

individual trees using remote sensing for applications in precision forestry, in New Zealand and 

internationally. Results of the research have been presented at a number of national and 

international forums, and have provided the basis for an upcoming invited keynote speech at an 

international conference. These outputs, comprising a total of 5 presentations at international 

conferences, 3 presentations at national conferences, a technical report, and 9 presentations to 

New Zealand forestry sector groups and governmental agencies, are evidence of the novelty, 

relevance, and impact of the research. 

B.1 International conferences 

Dungey, H., S, Pont, D., Li, Y., Wilcox, P., L, Telfer, E., J, Watt, M., S, Jefferson, P., A. 

(2013). Novel remote sensing phenotyping platform and genomic selection will boost 

the delivery of genetic gain of radiata pine in New Zealand. In, Forest Genetics 2013. 

Whistler, British Columbia, Canada, 22-25 July. 

Pont, D., Morgenroth, J., & Watt, M.S. (2013). Tree-based analysis of ALS to estimate tree size 

and quality. In, MeMoWood - Measurement Methods and Modelling Approaches for 

Predicting Desirable Future Wood Properties. Nancy, France, 1-4 October. 

Telfer, E. J., Pont, D., Dash, J., Dungey, H.S., & Moore, J.R. (2015) Whole forest modelling: 

Reconstructing the past, present and future performance of trees with big data. Paper 

presented at Queenstown Research Week, QMB Computational Genomics Satellite 

meeting. Queenstown, New Zealand, 3-4 September. 

Pont, D. (2016). The use of LiDAR for Phenotyping Trees. Keynote paper at the international 

conference: Forest Genetics for Productivity, the next generation, Rotorua, New 

Zealand, 14-18 March. 

Pont, D., Watt, M.S., Morgenroth, J., &  Dungey, H. (2016). Correlating tree size and quality 

with crown metrics from airborne laser scanning. In, WoodQC – Modelling Wood 

Quality, Supply and Value Chain Networks. Quebec, Canada, 12-17 June. 
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B.2 National conferences 

Pont, D., Watt. M.S., Dash, J., & Brownlie, R. (2014). Remote Sensing for Phenotyping. 

Presented to the: Forest Owners Association, Forest Growing Research Conference 

“More income, less risk”, Rotorua, New Zealand, 29-31 October. 

Pont, D., Dungey, H., Watt, M.S., Morgenroth, J., & Stovold, G. (2015). Can we remotely 

sense phenotypic information from genetics trials? Presented at the: Second Annual 

Conference of the GCFF research programme - “First glimpse at results”, Christchurch, 

New Zealand, 24-25 March. 

Pont, D., Watt, M.S., Morgenroth, J., Dungey, H., & Stovold, G. (2015). Phenotyping from 

remote sensing. Presented to the Radiata Pine Breeding Company, Rotorua, New 

Zealand, 21 May. 

B.3 Technical reports 

Pont, D., Watt, M.S., Morgenroth, J., Dungey, H., Brownlie, R.K., & Stovold, G. (2015). 

Locating individual trees within a forest genetics trial. (GCFF TN-06). Rotorua, New 

Zealand; Growing Confidence in Forestry’s Future. 

B.4 Research presentations 

Pont, D., Watt, M.S., & Paul, T. (2013). LiDAR and remote sensing. Presented to a 

representatives of the Ministry for the Environment, Rotorua, New Zealand, 18 

December. 

Pont, D., Dash, J., & Watt, M.S. (2014). Remote Sensing. Presented to representatives of 

Ballance Agri-Nutrients, Rotorua, New Zealand, 4 February. 

Pont, D. (2014). Remote Sensing and LiDAR. Presented to representatives of the NZ Drylands 

Forest Initiative, Rotorua, New Zealand, 12 March. 

Pont, D. (2014). Tree-Level Analysis of Aerial LiDAR for Phenotyping. Presented at School of 

Forestry, University of Canterbury during Mid-thesis defence, Christchurch, New 

Zealand, 28 April. 

Pont, D., & Graham, B.P. (2014). Remote sensing and phenotyping platform and UAVs, big 

data and informatics. Presented to Callaghan Innovation, Rotorua, New Zealand, 31 

July. 
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Pont, D. (2015). Remote Sensing and new tools for forest managers. Presented to Minister of 

Parliament, Hon. Todd McClay, Rotorua, New Zealand, 23 April. 

Pont, D. , Watt, M.S., Morgenroth, J., Dungey, H., & Stovold, G. (2015). Phenotyping from 

remote sensing, first steps. Presented to Representatives of the Forest Owners 

Association, Rotorua, New Zealand, 6 May. 

Pont, D. (2015). Remote sensing and new tools for forest managers. Presented to Member of 

Parliament, Fletcher Tabuteau, Rotorua, New Zealand, 31 July. 

Pont, D., Dungey, H., Watt, M.S., Morgenroth, J., & Stovold, G. (2016). Genetic parameters 

from airborne LiDAR. Presented to Growing Confidence in Forestry's Future Technical 

committee quarterly meeting, Rotorua, New Zealand, 16 February.

 


