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Abstract

Close control of blood glucose levels significantly reduces vascular complications in
Type 1 and Type 2 diabetic individuals. Heavy derivative controllers using the data
density available from emerging biosensors are developed to provide tight, optimal
control of elevated blood glucose levels, while robustly handling variation in patient
response. A two-compartment glucose regulatory system model is developed for
intravenous infusion from physiologically verified subcutaneous infusion models
enabling a proof-of-concept clinical trial at the Christchurch Hospital Department of
Intensive Care Medicine. This clinical trial is the first of its kind to test a high sample
rate feedback control algorithm for tight glucose regulation. The clinical trial results
show tight control with reductions of 79-89% in blood glucose excursions for an oral
glucose tolerance test. Experimental performance is very similar to modelled
behaviour. Results include a clear need for an additional accumulator dynamic for
insulin behaviour in transport to the blood and strong correlation of 10% or less
between modelled insulin infused and the amounts used in clinical trials. Finally, the
heavy derivative PD control approach is seen to be able to bring blood glucose levels

below the (elevated) basal level, showing the potential for truly tight control.

1. Introduction

Diabetes is a disorder of the metabolism whereby either insufficient insulin is
produced by the beta cells in the pancreas, or the body is unable to effectively utilise
that insulin. As a result, glucose cannot be transported to the cells, leading to

dangerously high blood glucose levels. Untreated over time, high blood glucose levels



can lead to costly complications, including kidney failure, blindness, nerve damage,
heart attack and ineffectuality of the immune system. Over 120 million people are
affected by diabetes worldwide, and this number is expected to rise to 300 million by
the year 2025, with annual costs growing exponentially with the number of cases

(Thomson et al., 2001).

Figure 1 schematically shows how blood glucose levels react to a glucose input.
Blood glucose rises over the basal level of approximately 4.5mmol/L for a normal
individual and usually takes 2-3 hours to return to basal. A Type 1 diabetic individual
typically has no beta cells and cannot produce any insulin. Uncontrolled, their blood
glucose level remains high indefinitely, so an exogenous insulin input is imperative.
A Type 2 diabetic individual either produces insufficient insulin or insulin which is
ineffective in taking glucose out of the blood, hence their blood glucose returns to a
typically elevated basal level more slowly, requiring exogenous insulin in severe
cases. Both Type 1 and Type 2 diabetic individuals may also have elevated blood

glucose basal levels (Votey and Peters, 2001 and 2002).

Current treatment of Type 1 and severe Type 2 diabetes involves regular point
monitoring of the plasma glucose level and injecting insulin into the subcutaneous
tissue as required. Using a glucose monitoring system and an insulin pump or
syringe injections, all current treatments are performed manually by the patients
themselves or, in a hospital setting, under professional care. Therefore, diabetic
individuals are encouraged to regularly monitor food intake and daily activity to help

maintain blood glucose levels at an acceptable value.



Existing insulin pumps and emerging non-invasive and semi-invasive glucose
monitoring systems could be interconnected and a closed loop system realized.
Ultimately, the control unit should be able to automate 90 — 95% of a diabetic’s day-
to-day insulin care, freeing the patient from the anxieties and stress of constantly
monitoring their blood glucose regulatory system behaviour, allowing them to lead
more “normal” lives. In addition, the acquisition and storage of data on a regular

basis will provide far better input for clinicians.

Substantial research in understanding, modelling and managing diabetes has led to no
shortage of theoretical automated solutions (e.g. Doyle et al., 1995; Ollerton et al.,
1989; Kienitz et al., 1993; Fisher et al., 1991; Trajonoski et al., 1995; Cobelli et al.,
1999; Furler et al., 1985; Bergman et al., 1985; Kraegen et al., 1984; Cobelli et al.,
1982). However, due to either the complexity of the proposed implementation,
current technological limitations, models that are not physiologically verified, lack of
required data, or the cost/complexity of realising the results, these solutions do not yet
seem feasible. Several researchers have examined the analysis and automation of
insulin administration as reviewed by Lehman et al. (1996). Many of the systems
presented use the mathematics of control systems as a means of providing clinical
advice or testing the effectiveness of a new protocol (e.g. Schrezenmeir et al., 1991;
Skyler et al., 1981; Lehman et al., 1993; Boroujerdi et al., 1987; Fletcher et al., 1991).
Optimal control using grid search theory, robust H-infinity control, and variable
structure controllers have also been studied, using various models (e.g. Ollerton et al.,
1989; Kienitz et al., 1993; Fisher et al., 1991; Berger et al., 1991; Parker et al., 1996;
Naylor et al., 1995). In each case, the focus has been on controlling absolute blood

glucose excursion rather than the shape of the glucose curve. The models used



typically require either several patient specific parameters that are not generically
available and/or knowledge of glucose or exercise inputs that would not be known a
priori. Finally, none of the studies examines the impact of the far more frequent
measurements enabled by recent advances in sensing technology or the potential for

improved results enabled by these technologies.

Prior work in tightly controlling elevated blood glucose levels using heavy derivative
control employed a physiologically verified three compartment model based on the
work of Bergman et al. (1985). The three compartments represent insulin
production/infusion dynamics, insulin transport from the subcutaneous infusion site,
and glucose input and utilisation dynamics. Performance was shown to improve as
the sensor sampling period and sensor lag decrease, and the control solution is seen to
reduce the magnitude and duration of blood glucose excursion in response to glucose
challenge more effectively than a normal human body when blood glucose levels are
measured with a sample period of 1 minute (Lam et al., 2002; Chase et al., 2002a).
Finally, optimal infusion solutions were also developed for cases in which the glucose

infusion profile is well known (Chase et al., 2002b).

The model presented here develops heavy derivative blood glucose control to a proof-
of-concept clinical trial with Intensive Care Unit (ICU) patients. An additional
benefit to using ICU patients is that they often present with elevated blood glucose
levels and tight control of these levels can reduce mortality up to 45% (Van den
Berghe et al, 2001). Related tests have been conducted into modelling glucose control

on endogenous glucose production (Simeoni et al.,, 1997). The clinical results are



compared to predicted values for verification of the simple models and control

methods employed.

2. Clinical Trials

The proof-of-concept clinical trials developed are designed to effectively simulate a
true feedback control system with a 15 minute sampling period. Prior research into
heavy derivative control has shown that a sampling period of 15-20 minutes provides
very good performance and represents a technologically realistic level of system
performance (Chase et al., 2002a; Lam et al., 2002). Hence, the 15 minute sampling
period for these trials was selected to emulate a realistic system, and at 4
measurements per hour the trials procedure will not stress the medical staff involved.
Note that the trials are conducted specifically to test the effectiveness of the heavy
derivative control methods and to verify the simulations and design that led to them.
The clinical trials are conducted on ICU patients, as they represent a highly controlled

test group who often experience elevated blood glucose levels.

Qualifying patients for the trial had to be stable, have elevated blood glucose levels
over 8 mmol/L, have an arterial line and a nasogastric feed, and be expected to remain
in the ICU for at least three days. In addition, patients with morbid obesity (BMI >
35kg/m?) or neuromuscular blockade were not considered. Ethics approval for these

trials was granted by the Canterbury Ethics Committee.

The clinical trials presented are a two-day procedure for each participant. The first

day of the trial is uncontrolled and provides data on the glucose regulatory system



response to an Oral Glucose Tolerance Test (OGTT). The second day of trials
involves active insulin control of the glucose regulatory system response to an OGTT

using the heavy derivative control algorithm.

Clinical Trial Day One:

The trial begins at 0700 hours at which time the patient is fasted for four hours.
Blood glucose readings are taken every hour to determine the basal blood glucose
level. At 1100 hours, blood is taken for C-peptide and blood insulin tests to screen for
insulin contamination and to determine the basal insulin level, respectively. The
patient is then given a 75g OGTT glucose dose via their nasogastric tube. Plasma
glucose is measured at 15-minute intervals until 1500 hours. Paired samples are taken,
with one analysed using a bedside Glucocard™ Test Strip II glucose testing kit and
the other sent to the laboratory for comparison. The error in these results is
approximately 7% for the Glucocard™ Test Strip II tests, and 3% for the laboratory
tests at typical elevated blood glucose levels (Arkray Inc., 2001; Phillips et al., 1994;
Peters et al., 1996). Note that some insulin may be infused on day one for safety or

other medical reasons.

Clinical Trial Day Two:

The procedure is repeated as per day one, however short acting soluble insulin with
0.2U/ml in 0.9% saline is infused via an intravenous cannula using a Graseby 3500
syringe pump. Plasma glucose is measured at 15 minute intervals as previously and
the insulin infusion rate is manually adjusted every 15 minutes according to the heavy

derivative control algorithm. This approach is designed to specifically test the control



algorithm by emulating feedback control, while ensuring safety by keeping a human

“in the loop”.

The first patients presented here employ controllers created using patient specific
parameters determined from their uncontrolled (day one) OGTT test results. Later
patients would ideally use an “average” set of parameters and resulting control gains
for which the model used best represents the average OGTT response for that type of

patient.

3. Mathematical Modelling of the Glucose Regulatory System

To implement tight glucose control using an automated insulin infusion system for
patients in an ICU requires a simple model of the glucose regulatory system. The
model must account for intravenous insulin infusion. It must also capture the

fundamental dynamics of the rise and fall of blood glucose that it is desired to control.

3.1 Model

The initial physiologically verified model employed originated from the work of
Bergman et al. (1985), and was used in the development of heavy derivative control
for subcutaneous insulin infusion (Lam et al., 2002). This three-compartment model
utilises the concept of a remote compartment for the transport of insulin from the
subcutaneous infusion site to its utilisation in the blood to reduce blood glucose levels.
Patients in the ICU have direct arterial/venous lines (AV Fistula) that bypass the

subcutaneous layer present in the three compartment model. To capture the essential



dynamics, only two compartments are therefore needed. The first to model the rate of
insulin uptake into the blood and the second to model the level of blood glucose
including insulin mediated transport of glucose from the blood. Therefore, two

equations can be written for plasma glucose and insulin concentration, respectively.

G=-p,G-p,I(G+G,)+Pt) 1)
I=-n(l+1,)+ult)/V, (2)
where :

G = concentration of the plasma glucose above the basal level (mmol L)

Gp = basal level for plasma glucose concentration (mmol L)

1 = concentration of the plasma insulin above basal level (mU L

I = basal level for plasma insulin concentration (mU L

P = exogenous glucose infusion rate (mMol L min™)

u(t) = exogenous insulin infusion rate (mU min™")

Vi = insulin distribution volume (L)

DI = fractional clearance of glucose at basal insulin (min™)

D4 = insulin sensitivity (L mU” min™)

n = first order decay rate constant for insulin in plasma (min™)

The parameters, p; and p, may be varied to represent different conditions of the
glucose regulatory system. The parameter py is the insulin sensitivity ratio between p;
and p, in Bergman et al (1985), and couples the blood insulin level to the rate of
glucose utilization by the body, representing the simplest possible dynamic between

these two compartments. Additional model dynamics linking the two compartments in



Equations (1) and (2) may be required, however any missing dynamics are expected

to have little effect on the ability to derive an effective controller.

More specifically, the rise of the glucose concentration is most significant in the first
30-60 minutes where the heavy derivative controller has greatest effect. Hence, this
rise is not significantly affected by p, if the insulin infused by the controller in this
time frame is not large, such as during the first day of the clinical trial method. It is
this rise that the heavy derivative control is focused on limiting, while the subsequent
drop with its negative slope is little affected (Lam et al, 2002). Note that the value of
p+will impact the glucose level if significant exogenous insulin is present, such as on

the controlled second day of the clinical trials.

3.2 Heavy Derivative Control Input

The controller determines the amount of exogenous insulin infusion rate at every 15
minute sample time, so u(?) is a discrete function. The specific controller employed is

a heavy derivative proportional-derivative (PD) controller defined:

u(t) = max(0, Up * (1 + K,*(G+Gprime) + Ks*dG/dt)) 3)

G, =G,—G, “)

prime

Here U is the basal infusion level, typically 1U/hr, Gpine is an offset term so that a

patient with a high basal glucose level, G, can have their glucose level controlled to a
lower target blood glucose level, G, , by increasing G.ime. For heavy derivative

control the proportional gain K, is 20-50 times smaller than the derivative gain K,
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(Lam et al., 2002). The max function with argument “0” ensures that negative insulin
demands are treated as a zero input. This zero input demand typically occurs during
the fall of blood glucose where additional insulin is not desired to avoid

hypoglycemic episodes (Lam et al, 2002).

The fundamental reason for using heavy derivative control, where the derivative gains
are significantly higher then the proportional gains, is to control the shape of the
blood glucose response rather than its specific magnitude. This approach is an
inherently safer method of control than attempting to strictly control just the
magnitude of the glucose response. Temporarily high blood glucose levels are not
dangerous in the majority of people. However, a hypoglycaemic drop in blood
glucose below 3.5-4 mmol/L is dangerous even for a short period of time. Heavy
derivative control safeguards against this eventuality by infusing no insulin when the
blood glucose level is dropping steeply, a precursor to a hypoglycaemic episode. This
behaviour arises from the much larger derivative feedback gain used and the negative
blood glucose slope combining to demand a negative infusion u(?). Similarly, it also
enables much faster response to rapidly increasing blood glucose levels seen in the
first 30-60 minutes of the OGTT. This discussion is summarised schematically in

Figure 3.

3.3 Glucose Infusion Model

The model output is highly dependant upon the exogenous glucose infusion, P(?),

particularly on day one when there is little or no exogenous insulin infusion.

However, glucose uptake into the blood from the stomach is highly patient specific.
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To capture the exponential rise and slightly slower exponential fall in blood glucose
for an OGTT a lognormal function is used for P(?) as it captures the essential

physiological behaviour.

P(1) = x,exp(-x, (log(x;t) - X4)2) + X5 ®)

where constants x; to Xs are determined so that the area under the curve is equivalent
to 34 mmol/L, a value obtained by converting the 75g OGTT glucose dose on the
assumption that the patient has the glucose evenly distributed in a 12L fluid volume.
In addition, the peak of the P(z) curve is set to occur at approximately 80% of the
patients blood glucose peak from day one of the clinical trial to account for patient
specific rates of uptake. This assumption is made so that the simulated and actual
exogenous glucose uptake rates for the uncontrolled OGTT will be similar,
simplifying the process of fitting patient specific parameters from the day one trial

data.

Lognormal or similarly shaped exponential functions for glucose uptake have been
used by Trajanoski and Wach (1998), Erzen et al (2000), and Kienitz and Yoneyama
(1993), and are shown schematically in basic texts (Guyton, 1996). Other authors use
exponential functions starting at an elevated glucose level to model OGTT uptake
(Fisher and Teo, 1989; Fisher, 1991). Deutsch et al. (1990) define glucose uptake
profiles that are effectively trapezoidal approximations of a lognormal shape. Finally,
Callegari et al (2002), Furler et al (1985), Ollerton (1989) and others avoid this
modelling issue by modelling glucose uptake as the result of a constant, steady state

infusion where it is a therefore constant. However, this constant input does not
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capture the transient dynamics of the glucose-regulatory system that it is desired to
control. It should also be noted that Bergman et al (1985), among others, present
OGTT glucose response data that is lognormal in its fundamental shape for normal

individuals and has a similar exponential rise for Type 1 diabetic individuals.

It is therefore important to note that the assumed form of the glucose input, P(?), in the
absence of other choices, also means that the modelled glucose response for the
uncontrolled day one trial will be essentially lognormal in shape since the transient
response is zero with G(0) = G, used. To truly simulate a glucose input from a meal
or OGTT challenge, a form for the glucose input must be assumed and the lognormal
shape captures the essential exponential data found in clinical data. As a result, the
model fitted to the day one trial data will have a generically lognormal form. This
choice therefore leads to the loss of some smaller dynamic effects that may be present,
but still captures the essential blood glucose rise and fall on which the controller being
tested acts (Lam et al, 2002). Note that significant exogenous insulin would change

this lognormal shape, as seen on day two of the clinical trials.

3.4 Determining Patient Specific Parameters

The system model given by Equations (1) and (2) is patient specific and must be

adapted to each patient before a controller can be developed for that patient. Hence,

controller design is accomplished in three fundamental steps:

1. Data from an uncontrolled OGTT is gathered from the patient (day one).
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2. The patient specific parameters, p; and p4, in the uncontrolled model are
obtained via an unconstrained optimisation problem so that the model output
approximates the fundamental dynamics of the patient's uncontrolled OGTT
curve.

3. Using the patient specific parameters, heavy derivative control gains are

developed using a second unconstrained optimisation problem.

Fitting the patient specific parameters from day one of the trial is done in three basic
steps. First, the blood glucose peak time is obtained from the data and a glucose input
model, P(t), is created for that patient. This patient specific input will dominate the
glucose response of the uncontrolled, day one model with little or no exogenous

insulin input.

Second, the noisy patient data are fitted to a second lognormal function with emphasis
on capturing the blood glucose rise in the first 30-60 minutes and the overall
fundamental rise and fall dynamics of the day one blood glucose data. This second
step is not the standard approach used in the minimal model literature when
determining insulin sensitivity or other parameters from an intra-venous glucose
tolerance test (IVGTT). As noted with the creation of a glucose input model, P(?),
some non-fundamental dynamics are ignored in the process. However, this approach
eliminates the difficulty in finding converged solutions to the optimisation/fitting
problem, which can be very difficult with limited (16 points), noisy data as in this
case. It also provides a function to which the model parameters can be fitted,
providing effectively more points in the area of interest, the rise of blood glucose,

rather than evenly spread points. It bears repeating that this approach is non-standard
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due to the use of the glucose input function, P(z), and its impact on the uncontrolled
model dynamics for day one, as well as the desire to only capture the fundamental

shape of the response, particularly over the first 60 minutes.

The third step uses the function fitted to the day one data to find the parameters p; and
P+ Vvia unconstrained optimisation using a penalized quadratic objective function

defined:

R = (Gmodel - Gpatient )T (Gmodel - Gpatient) + e—pIC + e—p4C (6)

where the first term is a vector dot product designed to minimise the difference
between the model output, G model , and curve fitted experimental data, G patient » at the

same time points. The parameter C is a large positive constant, defined to ensure that
p1 and p, remain positive. This approach enables more points to be used in total and
notably in the regions of interest. Typically, several extra time points around the peak
of the glucose response curve are used to ensure the rise and inflection of the glucose

curve is adequately captured for controller design.

Again, the limitations of the model and the parameters as fitted in this fashion are
such that it is only useful for capturing the fundamental dynamics and for control
design focused on the blood glucose rise in response to the OGTT input. It should also
be noted that this optimisation problem is non-convex and therefore multiple starting

points were tested to ensure that the best (lowest value of R) potential fit was obtained.

3.5 Determining Control Gains
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Once the patient specific model has been created, a controller can be developed to
regulate the patient’s glucose level. The control gains are determined by minimising a
penalized, quadratic objective function that minimises the area between the controlled
glucose response and the target glucose level, G,. As a result it seeks to minimise the
overall blood glucose excursion rather than a particular peak value or final value. The
penalty terms are similar to those in Equation (6) and constrain the gain values to be
positive. This optimisation-based approach is employed for simplicity to efficiently

search a large potential solution space.

4. Clinical Results

Clinical trials were performed on four ICU patients meeting the study requirements
Table 1 gives the patient age, condition, insulin levels, basal and peak glucose levels,
and patient specific parameters resulting from day one of the trial. Table 1 shows that
the four patients display a diverse range of glucose responses from a relatively flat
response to an extremely volatile reaction. Patients 3 and 4 display relatively low and
high insulin levels respectively, although the very high levels for patient 4 were
obtained with a partially contaminated sample from the insulin infusion line and are
assumed to be higher than the actual value. Conversely, patients 1 and 3 are in the
normal range of 5 - 80 pmol/L. None of the patients had an exceptionally high or low

body mass index per the study requirements.

The insulin sensitivity values, p,, are of the same order or higher than existing data for

sub-cutaneous delivery (Bergman et al, 1981, Avogaro et al 1989). However, sub-

16



cutaneous infusions can be subject to up to 20% losses in transportation (Kraegen and
Chisholm, 1984) and are also highly variable in effective delivery of all sub-
cutaneous infused insulin to blood plasma (Home et al, 1982). These losses would be
accounted for in this type of model by a reduced sensitivity value, p,, and for IV
infusion such higher values as used in these trials might be expected. These higher
values in comparison to IVGTT data might also be a result of the method of fitting
and in particular the use of several starting points for this non-convex optimisation

problem.

It should be noted that ICU patients, while often sedated and in a highly controlled
state, are actually extremely diverse in the causes and dynamics of their
hyperglycaemia. ICU patients experience elevated blood glucose levels due to the
stress of their condition, as well as due to any explicitly diagnosed Type 1 or Type 2
diabetes. As a result their response to an OGTT glucose challenge can vary extremely,
as noted in Table 1, due to equally extreme variations in insulin levels, effective
insulin utilization, glucose absorption, and a variety of other factors. In contrast, the
dynamics of a "pure" Type 1 diabetic are far easier to model and, in response to
glucose challenge, far easier to predict than those of hyperglycaemic ICU patients in
general. Hence, the ICU patient tests presented represent a fairly extreme test of the

ability of the models and control systems developed.

4.1 Patient 1

The 67 year old female subject had been in the ICU for three days suffering from

kidney failure. The kidneys can remove up to 30% of effective insulin, so kidney
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failure is an “insulin sparing” condition and is one reason for the flatter uncontrolled
day one response in Table 1 (Charpentier et al., 2000). The patient was on a dialysis
machine on day one of the trial, however it was removed for day two. The patient had
high fluid levels which would have affected the glucose absorption dynamics of her
body. C-peptide tests were unavailable until after the test was completed, however
the basal insulin level of 70 pmol/L was slightly higher than expected, though still in
the normal range. The patient was therefore both hyperglycaemic and somewhat

hyper-insulinaemic.

Figure 4 shows the measured and model predicted glucose response for day one
(uncontrolled) and day two (controlled). The measured data is presented with the 7%
error associated with GlucoCard™ II measurements. The summary in Table 2 shows
that both the magnitude and duration of blood glucose excursion from the basal level
are reduced by at least 50%. The target sub-basal glucose level was not reached over
the period of the trial, as the derivative control was not effective when the tail of the
curve flattens off. The desire to drive the glucose concentration down to a target level
below the patient’s basal level is an example of the need for gain scheduling or a

modified control approach in this flat response regime.

Overall, the automated algorithm provided rapid, effective control of the OGTT input
with no additional insulin in comparison to normal protocols. The predicted response
was an extremely good match for the measured data. The difference in day one and
day two basal levels is primarily due to changes in feeding and insulin administration
over the night between the tests, and is repeated, to some extent, with each patient.

Finally, the patient’s blood glucose concentration began to increase steadily back to

18



10 mmol/L over the 2-3 hours after the test when hospital staff returned to their
regular sliding scale protocol showing the need for, and efficacy of, this type of

automated approach.

4.2 Patient 2

The 48 year old male tetraplegic with Acute Respiratory Distress Syndrome (ARDS)
had been in the ICU for 72 days. The patient exhibited extremely variable response to
most medications and this experience was reiterated during the trial. Due to the
patient’s extremely high glucose levels and staff experience, a basal insulin infusion
of 2 U/hour, rather than the normal 1 U/hour, was maintained throughout fasting and

the trial on day one, and accounted for in the modelling process.

As shown in Figure 5 the patient’s glucose absorption profile was much faster on day
two compared to day one. The slow absorption on day one is attributed to delayed
gastric emptying. The patient was aspirated and had an empty stomach on day two
resulting in more rapid absorption of the glucose dose. The response on day two also
shows the effect of an insulin accumulation dynamic, which becomes apparent after
200 minutes, with the reasonably constant glucose level dropping with no increase in

insulin infusion.

Laboratory tests gave basal insulin levels of 59 pmol/L (day one) and 63 pmol/L (day

two), which are relatively normal. This result implies the patient was not effectively

utilising the insulin in the body similar to a Type 2 diabetic response, allowing his
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glucose levels to reach a peak of 24.5 mmol/L during the uncontrolled oral glucose

tolerance test on day one.

Local hospital protocol generally sets the insulin infusion rate at a maximum of 6 U/hr.
Due to the high glucose levels and its rapid rise following the OGTT dose, the control
algorithm commanded up to 37 U/hr for a given 15 minute period. Figure 6 shows
the insulin infusion profile for patient 2. The insulin infusion profile demanded by the
heavy derivative control algorithm in response to the OGTT dose was efficient in
returning the patient swiftly to the basal level. The result is a profile which looks
much like an insulin injection combined with a steady infusion. Therefore, the
automated infusion profile from the heavy derivative control algorithm matches the
current treatment approach of injections for meals on top of steady basal infusion
(Lam et al., 2002; Chase et al., 2002a; Gonzalez-Michaca et al., 2002; Boland et al.,

1999; Pickup et al, 2002).

Note that the zero infusion at 45 minutes in Figure 6 is due to a sensor error that
reported 8.4mmol/L when a laboratory result reported 11.6mmol/L. The control
algorithm therefore did not infuse any insulin due to the erroneous large negative
slope reported. Laboratory data was higher than the GlucoCard data, although still
not inline with the data points only 15 minutes either side of the sensor error.
Inadvertently, this result shows the robustness of the controller, as the effects of this
low data point on the derivative term were compensated for in the next change in

insulin infusion rate.
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Figure 7 shows the measured and predicted results from day two of the trial using a
glucose input profile that accounts for the faster glucose absorption on day two and in
which an accumulation dynamic is approximated. Withholding a portion of the
commanded insulin input for 75 minutes approximates the accumulation dynamic
well enough to determine if a better match to the trial data can be obtained. The
predicted curve and measured data match much better in this case due to the change in
glucose absorption rates and the additional dynamic. Overall, this figure shows the
need for the accumulator dynamic to account for the delayed action of insulin, as well
as the robustness of the heavy derivative control approach to absorption rate and time.
The latter result is due to the heavy derivative controller’s emphasis on controlling the
shape of the glucose response rather than its magnitude, making it robust to the

specific time or rate of glucose absorption (Lam et al., 2002).

4.3 Patient 3

The 75 year old male patient had been in the ICU for 2 days suffering from an
intracerebral bleed resulting from a head injury. Uncontrolled patient data in Figure 8
shows that the patient behaves as a Type 1 diabetic, although records stated that it had
not been diagnosed. The extremely high glucose levels and extended, almost
permanent period of excursion from the basal glucose level are similar to a Type 1
diabetic response to an OGTT and the laboratory tests for insulin level supported this

assumption with a value of 3 pmol/L.

The day two measured data in Figure 8 also shows an accumulation dynamic. To

approximate this dynamic the addition of a 75 minute delay on a portion of the insulin
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infusion, as with patient 2, resulted in an output that was more closely aligned with
the controlled patient data than the original model prediction. Although this
approximation does not exactly model the accumulation and delay in the utilisation of
insulin, it further confirms the need for this dynamic in the model. Overall, the peak
excursion from the basal level is reduced from 6.7 mmol/L to 2.7 mmol/L, a reduction
of 59.7%. The duration of blood glucose excursion was cut to two hours from the

much greater than four hour excursion in the uncontrolled case.

4.4 Patient 4

The fourth patient was a 59 year old female, suffering from sepsis and infection, who
had been in the ICU for three days after being transferred from another hospital as the
infection progressed. Figure 9 shows an almost flat glucose response curve in the day
one trial. This flat curve along with the higher than normal glucose level implies the
patient was both hyperglycaemic, due to the elevated blood glucose level, and
hyperinsulinaemic. With the lack of a significant increase in glucose levels from
basal, and hence the low derivative values impacting the heavy derivative PD
controller output, the level of infusion was effectively constant on day two of the trial.
The sub-basal target glucose level was chosen to be 1 mmol/L below the basal level
on day two of the trial at 5.4 mmol/L. The control algorithm proved to be very
efficient at obtaining this level, even with the very low proportional control
component of the controller. Figure 9 shows an initial dip in the measured data and
simulation output on both controlled and uncontrolled data that can be attributed to

delay in glucose uptake.

4.5 Summary
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A comparison between the predicted insulin infusion profile and actual insulin profile
for day two of the trials were made as a means for determining the effectiveness of the
modelling methods. Table 2 shows that the total insulin infused over four hours
differed from the predicted insulin infusion total by no more than 12%, with an
average error of approximately 3% over the four trials. This strong correlation
between the test and simulation results for such a diverse variety of patients helps to
validate the fundamental models and methods employed. Many of the differences,
where the model tends to undershoot, can be attributed to either one of two factors.
The first is the discrete 0.2 U/mmol discrete insulin infusion level verses exact
analogue values available in the model. The second is that for large doses, such as
was seen with patient 2, some insulin may be “lost” along the length of the Graseby

infuser tubing.

To obtain a better estimate of the control effectiveness, the excursion is quantified as
the sum of the area of the blood glucose curve, using the measured data, above the
basal glucose level as illustrated in Figure 10. The ratio between the controlled and
uncontrolled excursion areas from the clinical trial data is used to determine the
overall effect of the control algorithm. The reduction in the glucose basal level on
day two of the trial measures the improvement obtained as the controller aims for the
lower target basal glucose level. Table 3 summarises the excursion reduction and
basal reduction ratios. For all four patients the excursion from basal blood glucose
level has been reduced by 79% to 89%, and the basal glucose level has been reduced

12% to 41%.
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Finally, the accumulator dynamic noted in the clinical results has three potential
causes. The first is the physiological battle between the body's desire to return to its
(elevated) basal level and the controller's attempts to reduce it, as best seen at the end
of the response in Figure 4. Second, the demand for insulin in the blood is secondary
to those of the brain and liver, leading to the possibility that meeting these latter
demands first causes a reduction in useful insulin in the blood and a later over
reaction (Cherrington et al., 2002; Toschi et al., 2002). Finally, it is believed that
insulo-penic, or very low insulin level, patients can develop lipo-toxicity, suppressing
insulin release from any active beta cells. Therefore, when exogenous insulin is
infused and blood glucose drops, these beta cells are freed to release endogenous
insulin not initially modelled (Del Prato et al, 2002; Xiao et al., 2002; Sobngwi et al.,
2002). In this last case, additional tests to determine the ratio of C-peptide levels and
insulin levels following the test could be compared to the same ratio taken prior to the
test to check for a rise in the endogenous insulin produced. Further tests will help
clarify the specific causes of this dynamic, and improve the models and clinical trial

methods employed.

5. Conclusions

These trials have proven very successful at illustrating the effectiveness and potential
of automated insulin administration and the heavy derivative approach to active
insulin control.  The first four proof-of-concept clinical trials approved have
succeeded in the creation and validation of an intravenous insulin infusion model and
in demonstrating tight, actively controlled blood glucose level regulation. The heavy

derivative control approach employed has been demonstrated to be as effective in
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practice as it was in simulation, with reductions in blood glucose excursion of up to

89% and basal glucose level reductions of up to 41%.

The four trials have shown a high level of correlation between the simulation model
and the patient results verifying the fundamental models and methods.
Demonstrations of the control algorithm’s robustness to glucose absorption rate and
absorption profile have been made. However, the results have also clearly
demonstrated the need for additional dynamics in the intravenous glucose regulatory
system model to accommodate the effects of insulin accumulation in the system. The
need for gain scheduling or a two-stage controller to bring elevated blood glucose
levels to a lower basal value as blood glucose derivative values become negligible in

the tail of the OGTT response has also been noted.

Finally, model specific results include the development and validation of a simple
glucose regulatory system model for the intravenous infusion of insulin. A method of
rapidly identifying patient specific parameters from curve fitted experimental patient
data using unconstrained optimisation was presented. The clinical trial results show
that the modelling methods employed, while not standard, did effectively capture the
fundamental dynamics operated on by the simple controller tested, however, as noted,

some potentially important dynamics may have been ignored in the process.

Future work will be directed toward improving the models and methods employed
with an overall goal of even tighter, more robust control. A major focus will be
developing better optimisation and fitting methods to reduce the reliance on fitted data,

rather than the sparse data collected. In particular, modified trials that rely more on
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insulin challenges rather than glucose challenges will alleviate the need for modelling

P(t) and having to therefore assume some form of the response.
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Patient Specific
Basal Peak Insulin Parameters
Patient | Age Condition Glucose Glucose Level Diabetic Type
(mmol/L) (mmol/L) | (pmol/L) Pi )Z
(min™") | (L/mU/min)
. Hyperglycaemic,
1 67 Kidney 9.5 11.5 70 0.1549 0.0317 and
Failure . . .
hyperinsulinemic
ARDS, 4
2 48 Tetraplegic 12.5 24.5 59 0.0187 1.1x10 Type 2
3 75 Head Injury 13.8 22.1 3 0.0074 0.0036 ~Type 1
Hyperglycaemic,
4 59 Sepsis 10.8 11.8 295 0.1 0.0025 and
hyperinsulinemic
Table 1: Patient Summary and Day One Results
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Model

Day two clinical

Percentage difference

Patient | predicted total trial total between predicted
insulin (U) insulin (U) and infused (%)
1 4.50 4.43 - 1.55
2 38.24 42.65 11.53
3 4.90 4.50 -8.16
4 8.90 9.80 10.11

Table 2: Comparison between predicted insulin and trial insulin infused
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Day one - OGTT Day two — Clinical Trial
Patient Gy Gy Gitinal Ay/A,
(mmol/L) A (mmol/L) Az (mniol/ﬁ) Gutinan/ Go
1 9.6 292 7.2 60 6.1 0.85 0.21
2 12.5 1524 11.6 172 6.9 0.59 0.11
3 13.1 1082 11.1 196 7.9 0.71 0.18
4 10.8 170 6.4 23 5.6 0.88 0.14

Table 3: Comparison of Glucose Excursion for Controlled vs Uncontrolled Data
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