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Abstract

Software development processes such as the Waterfall process and Ex-

treme Programming are Project Management Methods (PMMs) which are

well known and widely used. However, conventional Project Management

(PM) lacks the process concepts expressed in PMMs, and the connection be-

tween PMMs and PM is not much explored in the literature. Our research

problem is to make this connection.

We present data models for PM and PMM, in a framework that can

articulate the PM–to–PMM relationship, illustrating with simple examples.

Tools and visualizations created in terms of our framework can make use of

the familiarity, history and context of project management tools, and the

prescriptiveness and reactivity of PMMs, and we believe these may assist the

management of complicated projects, such as IT projects.

Project Mentor, a prototype Java/XML implementation of the framework

semantics, can create and then revise a “PMM–aware” project, conforming

to a specified PMM. The PM–to–PMM connection is persistent in project

data, and we describe a visualization of the “footsteps” of a PMM in project

data that does not rely on the state of a PMM process. The visualization

can also be used by Project Mentor, to indicate the state of a PMM.

We test for possible applications of our framework with a case study and

survey of some existing project data, and conclude with a description of

further work.



Acknowledgments

Firstly, thanks to Dr Neville Churcher, my supervisor, for his ideas, criti-

cism and efforts to make this a better thesis. Dr Warwick Irwin and Dr Brent

Martin, my co–supervisor, contributed many ideas, criticisms and insights.

Anne Heffernan–Dale, Dr Robert Biddle and Dr Blair McMaster critiqued

my draft thesis. Dr Peter Heffernan gave helpful advice for my survey in

chapter 9.

vi



Table of Contents

List of Figures v

List of Tables vii

Abbreviations viii

Chapter 1: Introduction 1

1.1 Project Complexity . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Project Management (PM) . . . . . . . . . . . . . . . . . . . . 2

1.3 Project Management Methods (PMMs) . . . . . . . . . . . . . 3

1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2: Research Approach 5

2.1 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Current Approaches and their limitations . . . . . . . . . . . . 6

2.2.1 Process architectures . . . . . . . . . . . . . . . . . . . 6

2.2.2 Project architectures . . . . . . . . . . . . . . . . . . . 7

2.2.3 Connecting PMMs to Projects . . . . . . . . . . . . . . 7

2.2.4 Project Tools with Embedded PMMs . . . . . . . . . . 8

2.3 Our Proposed Solution . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 3: Project Management (PM) 13

3.1 Projects and Project Management . . . . . . . . . . . . . . . . 13

3.1.1 Defining the Problem . . . . . . . . . . . . . . . . . . . 14

3.1.2 Planning a Project . . . . . . . . . . . . . . . . . . . . 14

3.1.3 Executing the plan . . . . . . . . . . . . . . . . . . . . 16

3.1.4 Monitoring and Controlling Progress against the Plan . 16

3.1.5 Closing a Project . . . . . . . . . . . . . . . . . . . . . 22

3.2 Project Management Tools . . . . . . . . . . . . . . . . . . . . 22



3.3 Project Data Models . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Microsoft Project Data Interchange (MSPDI) Schema . 24

3.3.2 Project Management XML (PMXML) . . . . . . . . . 25

3.3.3 Planner . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.4 GanttProject . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.5 Comparing The Project Data Models . . . . . . . . . . 26

3.4 Exchanging data between project tools . . . . . . . . . . . . . 29

3.4.1 A Common Project Data Model Approach . . . . . . . 30

3.4.2 Experiments using a Model–To–Model Approach . . . 31

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 4: Project Management in Context 34

4.1 Specialist Project Knowledge . . . . . . . . . . . . . . . . . . 34

4.1.1 Hand–crafted Projects . . . . . . . . . . . . . . . . . . 35

4.1.2 Template Project Plans . . . . . . . . . . . . . . . . . 37

4.1.3 Project Management Methods (PMMs) . . . . . . . . . 39

4.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 5: Constructing a PMM Vocabulary 42

5.1 A Simple Visualization of the “Build and Fix” Method . . . . 42

5.2 Applying the Waterfall Method . . . . . . . . . . . . . . . . . 43

5.3 Extreme Programming . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 PMM Control Structures . . . . . . . . . . . . . . . . . . . . . 48

5.5.1 Comparing PMMs to PM . . . . . . . . . . . . . . . . 49

5.6 Formulating a PMM meta model . . . . . . . . . . . . . . . . 51

5.7 PMM Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Chapter 6: The PM/PMM Framework 55

6.1 Summary of the PM and PMM models . . . . . . . . . . . . . 55

6.2 A Framework that maps PMM to PM . . . . . . . . . . . . . 56

6.2.1 Constructing the Framework . . . . . . . . . . . . . . . 59

6.3 Semantics of the Framework . . . . . . . . . . . . . . . . . . . 59

ii



6.3.1 PMMs ⇒ Projects . . . . . . . . . . . . . . . . . . . . 60

6.3.2 PMM Steps ⇒ Project Tasks . . . . . . . . . . . . . . 60

6.3.3 PMM Requirements ⇒ Project Allocations . . . . . . . 60

6.3.4 PMM ResourceTypes ⇒ Project Resources . . . . . . . 62

6.3.5 Addressing Bussler’s Mapping Problems . . . . . . . . 62

6.4 Extensibility of the Framework . . . . . . . . . . . . . . . . . 62

6.4.1 PMM Extensibility . . . . . . . . . . . . . . . . . . . . 62

6.4.2 PM Extensibility . . . . . . . . . . . . . . . . . . . . . 65

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 7: Implementing the Framework 66

7.1 UML and object–oriented representation . . . . . . . . . . . . 66

7.1.1 Applying the Interpreter Pattern . . . . . . . . . . . . 66

7.1.2 Adding PMM Concepts To PM . . . . . . . . . . . . . 68

7.1.3 An Implementation–level OO Model of our Framework 69

7.2 A Relational Table Representation of the Framework . . . . . 69

7.2.1 Mapping UML to Relational Tables . . . . . . . . . . . 69

7.2.2 Procedural Code for the Relational Representation . . 72

7.3 An XML Representation of the Framework . . . . . . . . . . . 76

7.3.1 Semantics for XML data . . . . . . . . . . . . . . . . . 78

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Chapter 8: Applying the Framework to some Real Problems 80

8.1 Some Real–World Problems with Projects and PMMs . . . . . 80

8.2 Project Generation and Scenario Analysis . . . . . . . . . . . 81

8.2.1 Project Mentor . . . . . . . . . . . . . . . . . . . . . . 82

8.3 Process Visualization . . . . . . . . . . . . . . . . . . . . . . . 85

8.4 Visualizing PMM Concepts in Project Data . . . . . . . . . . 86

8.5 Creating And Editing PMMs . . . . . . . . . . . . . . . . . . 89

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Chapter 9: A Case Study and a Survey 93

9.1 Comparing Human and PMM–Generated Project Plans . . . . 93

9.1.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.1.2 Observations and Discussion . . . . . . . . . . . . . . . 94

iii



9.1.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 95

9.2 A Survey to Look For PMM Features in Projects . . . . . . . 99

9.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.2.2 Observations and Discussion . . . . . . . . . . . . . . . 101

9.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 103

9.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Chapter 10: Conclusion 106

10.1 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . 106

10.2 Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

10.3.1 Using Commercial Workflow Languages for PMMs . . . 109

10.3.2 Creating Project Metrics Using Our Framework . . . . 109

10.3.3 A Hybrid Approach to Workflow Resource Allocation . 110

10.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 114

Appendix A: Waterfall and Extreme Programming PMMs 116

A.1 The Waterfall Method . . . . . . . . . . . . . . . . . . . . . . 116

A.2 Extreme Programming . . . . . . . . . . . . . . . . . . . . . . 117

Appendix B: OO Methods and Procedural Code 122

B.1 Object–Oriented Methods . . . . . . . . . . . . . . . . . . . . 122

B.2 PM Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.3 Procedural Pseudocode . . . . . . . . . . . . . . . . . . . . . . 130

Appendix C: XML Schemata used by Project Mentor 135

C.1 TPMM Schema . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C.2 Using the Planner DTD for PMM–driven Projects . . . . . . . 142

Appendix D: Formal Verification of Project Data 148

D.1 An Alternative Approach to modelling PMMs . . . . . . . . . 148

D.2 XML Schematic Verification of PMM project data . . . . . . . 152

Appendix E: CDROM insert 155

References 157

iv



List of Figures

1.1 The project triangle . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The five steps of project management . . . . . . . . . . . . . . 2

1.3 Processes v’s Projects . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Bussler’s proposed WFMS-to-PM link . . . . . . . . . . . . . 8

2.2 The MILOS 3–tier architecture . . . . . . . . . . . . . . . . . 9

2.3 Our proposed PM↔PMM linkage . . . . . . . . . . . . . . . . 9

3.1 An example project task list . . . . . . . . . . . . . . . . . . . 15

3.2 A schedule for a resource . . . . . . . . . . . . . . . . . . . . . 17

3.3 An example Gantt chart . . . . . . . . . . . . . . . . . . . . . 18

3.4 Financial measurements of a project . . . . . . . . . . . . . . 20

3.5 A sample of XML . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Our conceptual model of project data . . . . . . . . . . . . . . 27

3.7 A Venn diagram of some PM tool data models . . . . . . . . . 28

3.8 Exchanging project data between PM tools (a) . . . . . . . . . 30

3.9 Exchanging project data between PM tools (b) . . . . . . . . 31

4.1 Applying specialist knowledge to a project . . . . . . . . . . . 34

4.2 The Microsoft Project software development template . . . . . 38

5.1 Build and Fix tasks . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Waterfall tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 Extreme Programming tasks . . . . . . . . . . . . . . . . . . . 46

5.4 Extreme Programming tasks cont’d . . . . . . . . . . . . . . . 47

5.5 Comparing Gantt charts to our visualization . . . . . . . . . . 50

5.6 PMM Step types . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Applying the Composite design pattern . . . . . . . . . . . . . 52

5.8 Linking SimpleSteps to ResourceTypes . . . . . . . . . . . . . 53

5.9 Conceptual PMM meta model . . . . . . . . . . . . . . . . . . 54

v



6.1 Linking PMMs to Projects . . . . . . . . . . . . . . . . . . . . 57

6.2 Linking PMM Steps to Project Tasks . . . . . . . . . . . . . . 58

6.3 Linking PMM Requirements to Project Allocations . . . . . . 58

6.4 Linking PMM ResourceTypes to Project Resources . . . . . . 59

6.5 Conceptual model of our framework . . . . . . . . . . . . . . . 60

6.6 Adding a new Step to the PMM model . . . . . . . . . . . . . 64

6.7 Adding customizable properties to Tasks in the PM model . . 65

7.1 The Interpreter pattern . . . . . . . . . . . . . . . . . . . . . . 67

7.2 The Interpreter pattern applied to the PMM meta–model . . . 67

7.3 An implementation–level diagram of our framework . . . . . . 70

8.1 Hiding PMM tasks in a project task . . . . . . . . . . . . . . . 81

8.2 Project scenario analysis . . . . . . . . . . . . . . . . . . . . . 84

8.3 Applying Nassi–Shneiderman diagrams to PMMs . . . . . . . 85

8.4 Mapping PMM XML to a Nassi–Shneiderman diagram . . . . 87

8.5 The Project Mentor Applet . . . . . . . . . . . . . . . . . . . 88

8.6 Visualizing PMM “footprints” in project data . . . . . . . . . 90

8.7 Classifying our tools and visualizations . . . . . . . . . . . . . 91

9.1 Comparing two project plans . . . . . . . . . . . . . . . . . . . 97

10.1 Summary of the framework . . . . . . . . . . . . . . . . . . . 106

10.2 Workflow processes “throw tasks over the fence” . . . . . . . . 111

A.1 Nassi–Shneiderman Diagram of the Waterfall PMM . . . . . . 118

A.2 Nassi–Shneiderman Diagram of Extreme Programming . . . . 121

D.1 UML diagram of the Build–and–Fix method . . . . . . . . . . 149

D.2 Relating two data modelling approaches . . . . . . . . . . . . 152

vi



List of Tables

2.1 Bussler’s mapping of WFMS (PMM) concepts to PM concepts 11

3.1 Relative sizes of some PM DTDs and XML schemata . . . . . 27

5.1 PMM resource requirements . . . . . . . . . . . . . . . . . . . 48

6.1 The semantics of mapping steps to tasks . . . . . . . . . . . . 61

6.2 Addressing Bussler’s mappings from PMM to PM concepts . . 63

7.1 Relational tables of the Build and Fix PMM . . . . . . . . . . 73

7.2 Relational tables of a project instance . . . . . . . . . . . . . . 75

7.3 Mapping UML to XML Schema . . . . . . . . . . . . . . . . . 76

7.4 Mapping our framework to XSD . . . . . . . . . . . . . . . . . 77

9.1 Comparing PMM and human–generated resources . . . . . . . 98

9.2 Measurements from our survey of project data . . . . . . . . . 102

D.1 Project record sheets for the Build–and–Fix PMM . . . . . . . 150

D.2 Comparing two data modelling approaches . . . . . . . . . . . 151

vii



Abbreviations

ACWP Actual Cost of Work Performed

API Application Program Interface

BCWP Budgeted Cost of Work Performed

BCWS Budgeted Cost of Work Scheduled

BPEL4WS Business Process Execution Language for Web Services

BPML Business Process Markup Language

CORBA Common Object Request Broker Architecture

DOM Document Object Model

DTD Document Type Definition

IDE Integrated Development Environment

INCIS Integrated National Crime Information System

JAXB Java Architecture for XML Binding

JDOM Java Document Object Model

LDAP Lightweight Directory Access Protocol

MILOS Minimally Invasive Long-term Organizational Support

MSPDI Microsoft Office Project 2003 XML Data Interchange Schema

NZS New Zealand Standard

viii



PERT Program Evaluation and Review Technique

PM Project Management

PMM Project Management Method

PMXML Project Management XML Schema

RUP Rational Unified Process

SAX Simple API for XML

SVG Scalable Vector Graphics

TPMM Tony’s Project Management Method schema

UML Unified Modelling Language

URI Uniform Resource Indicator

WBS Work Breakdown Structure

WFMS Work Flow Management System

XML Extensible Markup Language

XPDL XML Process Definition Language

XSD XML Schema Definition

XSL Extensible Style sheet Language

XSLT XSL Transform

ix





Chapter I

Introduction

1.1 Project Complexity

Large–scale project management has been practised for centuries, to the

extent that Burbridge [11] writes

one hallmark of civilization is the ability to engage in group activities

for the execution of major projects, be they tombs and temples or

manned flights into space.

With the constant increase of human knowledge, the complexity of projects

has increased as well. Some of the most complicated projects undertaken are

those involving Information Technology (IT).

Unfortunately, projects in fields such as IT suffer from well–known prob-

lems [10][33][14] [70][44][38]. Project failure is not simple to define (see, eg:

[38] p. 13 for a discussion), but notwithstanding this, the Standish Group

reported in 2001 that only 28% of IT projects were completed on time and

within budget [82], although this was an increase from the 16% of 1994 [81].

The INCIS disaster [79][88][19] is an exemplary large IT project failure, and

it had a disastrous effect on NZ Police in the late 1990s. The INCIS business

case [16] proposed that savings and income from INCIS would allow Police

to cut budgets and staff. No such cuts could be made, and other areas of

Police operation, such as property maintenance, were neglected in order to

pay for the INCIS failure [40].

As we will see in the next few sections, many attempts to improve the

success rate of IT projects have centred around providing more powerful tools

for managing projects. A central theme of this thesis will be a search for ways

to improve these tools.
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Scope Time

Resources

Figure 1.1: This “project triangle” illustrates the interdependency of the crit-
ical parameters of a project: time, cost and scope (the goals of a project).

Define
the
Problem

⇒
Plan the
Project

⇒
Execute
the Plan

⇒

Monitor and Control
Progress against the
plan

⇒

Close
the
Project

Figure 1.2: The five steps of managing a project as listed, for example, by
(Lewis [49], p7).

1.2 Project Management (PM)

A crucial change in the management of projects from the 19th century on-

wards has been the increasing importance of time and cost in project manage-

ment. Fayol’s [31] five functions of management (plan, organize, command,

coordinate, and control) form the basis of modern PM, and Gantt [37] intro-

duced methods for measuring project progress against plans.

Modern project management aims to achieve a project goal in the most

efficient way, for reasons such as increasing company profitability or reduc-

ing expenditure of public funds. Compared with the “craftsman” culture

of historic projects (where, for example, generations of one family might

work on a medieval cathedral), modern projects must be completed on time

and within budget, according to comprehensive, predefined, project plans. A

project plan consists of a list of tasks, resources, and allocations of resources

to tasks, with the aim of achieving the goal or goals of a project, and the

“project triangle” of figure 1.1 illustrates the interdependency of these three

parameters of a project. Conventional modern Project Management (PM) is

encapsulated in the five steps of figure 1.2 and, as we shall see, in the approach

of popular project management tools such as Microsoft Project [55]. Mod-

2



ern approaches to project management, such as those listed in the Project

Management Body of Knowledge [67], build on these five steps.

The basic premise of the PM approach is that a problem can be solved

by executing a plan that is formulated in advance. Once a project is started,

conventional Project Management is concerned with monitoring the progress

of a project against the plan, using various well–known methods to measure

and report on the project, such as the Critical Path method [47], Gantt charts

[37], PERT [66] and Earned Value Analysis [85]. These are all methods aimed

at assisting the project manager to keep the progress of a project as close

as possible to the pre–defined plan. When the progress of a project deviates

from a plan (often by falling behind predicted progress) the alternative so-

lutions involve altering the parameters of the project triangle of figure 1.1.

Either more or different resources can be used to keep the project tracking

the plan, or the plan can be changed to fit the actual situation of the project.

When managed according to a predefined plan, complicated projects tend

to become difficult to control, as the actual project implementation deviates

from the planned implementation. IT projects suffer especially from such

problems, because of their great complexity and other reasons such as the

use of new and untried information technology.

1.3 Project Management Methods (PMMs)

One reaction to the crisis in IT project failure has been the rise of agile

methods [52], the epitome of which is Extreme Programming (XP) [5], which

is dominated by its eponymous process, and the motto of XP is “embrace

change”. XP is the latest in a long series of IT “recipes for success”, dating

back at least to the Waterfall Method [73]. The Waterfall Method looks

something like an abstracted IT project plan (indeed, it is often applied

in a one-time-through way), but it contains the idea of re-executing tasks,

according to the success or failure of some validation test. Such a reactive

system is different to a static project plan, as used in PM. We will coin

the phrase “Project Management Methods”, or PMMs, to describe these

reactive, process–oriented methods.

If we apply a PMM to a problem and record the resulting tasks, resources

3



Processes are:
Reactive,
Prescriptive

Specify

Design

Build

Test

⇔

Projects are:
Simple, powerful,
show history & context

Figure 1.3: Both processes and projects have advantages that we may be able
to combine, by finding a way to link the two domains of knowledge.

and allocations as a project plan, we end up with a system that looks con-

ceptually like figure 1.3. Relating PMMs to projects may provide assistance

from both knowledge domains to project managers, with the familiar con-

cepts and powerful measurement and visualization tools from PM, plus the

reactivity of PMMs. PMMs could be used to automatically create and revise

projects, and to describe project data. In the next chapter, we will use this

basic premise to formulate the research problem that this thesis will address.

1.4 Overview

This thesis expands on a paper that was published at PROFES2005 [18], and

it is set out as follows: Chapter 2 describes the research problem and our

approach to it. In chapters 3, 4 and 5 we will model the problem domain. We

will describe in chapter 6 the data models and semantics of the framework

that forms the foundations of our solution. In chapter 7 we will describe

three different ways to implement the framework. Chapter 8 describes some

applications of the framework to problems that project managers face, and

chapter 9 uses a case study and a survey to test the usefulness of our solution

to the research problem. We will conclude in chapter 10 with a description

of our contribution to knowledge and possible future work.

4



Chapter II

Research Approach

In this chapter we formulate a research approach to address the issues

introduced in chapter 1.

2.1 Research Problem

We have seen in chapter 1 that conventional PM (which we will describe in

more detail in chapter 3) attempts to manage tasks and resources as closely as

possible to a predefined plan. However, a project plan does not indicate how

its particular tasks or resources were created, except perhaps for a textual

description. This is because conventional PM has no concept of why a task

or resource appears in the plan. PMMs have this descriptive power because

they use process concepts to formalise the specialist knowledge which any real

project requires; when creating a project plan, for example. A well–defined

connection between PMMs and projects may be beneficial because:

• it allows us to describe why a task or resource appears in a project

plan, according to the PMM that created the project.

• it allows us to create project plans according to any arbitrary PMM,

automatically, and at arbitrary levels of complexity.

• PMMs can be applied to projects in a consistent and explainable way.

• we can make projects more robust by giving them an ability to react

to change.

• the project data provides history and context for a PMM process.

5



• we can find the “footprints” of a PMM in project data, so we can, eg:

test conformance of a project to a PMM.

• it affords the possibility of visualizing PMM behaviour in project data.

Some of the potential applications of such a PMM-to-project connection

include:

• Automation of project creation and revision may facilitate finer–grained

definition and control of a project.

• Many different project scenarios could be analyzed, applying different

PMMs to the same goal, for example, or by varying the critical param-

eters of the project scenario.

• Project metrics could be defined in terms of a PMM. For example: the

number of iterations of a code/test loop could be tracked for excessive

iterations.

• Project data that deviated from the specification of a PMM could be

used to revise the PMM.

We will develop the above ideas in the rest of this thesis.

2.2 Current Approaches and their limitations

In our survey of the literature we found tools that used process–oriented or

project–oriented architectures, but not both together, tools that linked PM

and PMM with message–passing architectures and project tools that use an

embedded PMM.

2.2.1 Process architectures

There are many existing process modelling architectures. For example, the

development process architecture of SUKITS [89] consists of a process in-

stance level that is described by a process definition level, and a “technical

layer”, which is a finer–grained representation of processes.
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There are also many different process description languages in existence

already (eg: XML languages include BPML[8], XPDL [86], BPEL4WS [7],

etc) and work is underway on their interoperability [74][78]. However, these

languages are not specifically aimed at PMMs, and for our purposes they

neglect such important issues as resource assignment [97][75]. These archi-

tectures are also completely process–oriented, not considering PM at all.

2.2.2 Project architectures

We found that popular Project tools (described further in sections 3.2 and

3.3) used an architecture based on tasks, resources and allocations, and this

commonality allows many Project tools to exchange data—of which more in

later chapters. Tools such as IBM’s Rational Project Tracker [63] can view or

exchange tasks with the widely–used Microsoft Project tool. Similarly, the

Planner[42] project tool can import Microsoft Project XML data. However,

such facilities are a PM–to–PM link, and do not add any process concepts

to a project.

2.2.3 Connecting PMMs to Projects

Bussler [12] describes two ways to connect between Processes (in the form

of Workflow Management Systems or WFMSs) and PM, at the database

level, or at the process level. Bussler doesn’t develop the idea of a database–

level connection, but rather goes on to describe a process–level connection,

shown in figure 2.1. APIs between a PMM and a PM tool are used, with

message–passing between the PM and PMM software tools to maintain the,

largely state–based, connection. Bussler lists six additional requirements

for a workflow management system, for instance, to support the message–

passing.

The MILOS [50] system implements Bussler’s logic–level linkage between

PM and PMMs in a 3–tier architecture (figure 2.2). MILOS has a message–

based linkage to an augmented Microsoft Project, which it can use to describe

PMMs. MS Project is only able to describe the “PM concepts” of table 2.1,

but it does have the advantage of being a familiar tool for project managers.

More complete PMM description facilities are available from the MILOS

7



Interface Interface

Logic Logic

Database Database

WFMS PM

Figure 2.1: Bussler proposed linking a WFMS (equivalent to our PMMs) to
project management at the logic level.

application itself.

2.2.4 Project Tools with Embedded PMMs

Another way of linking PM and PMM domains is to embed a PMM in a

PM tool, so that the tool “acts out” the PMM, and will only allow certain

kinds of tasks in any particular circumstance. This is the approach taken by

such project management tools as Maven [51], for instance. The embedded

PMM of Maven requires that a software project must be “Maven enabled”

before the tool can be used on it. Similarly, the PAM Distributed XP tool

[91] contains embedded Extreme Programming practices, with support for a

widely–distributed team of programmers.

The advantage of such tools is the comprehensive support they provide for

users of a particular PMM: Maven automates such practices as unit testing

and a code repository, and PAM provides sophisticated facilities to support

a geographically separated Extreme Programming team. These tools do not

allow an alternative PMM to the one chosen, so that it would be difficult or

impossible to use PAM or Maven to support the Waterfall Method, without

altering the tools.

2.3 Our Proposed Solution

We propose a data–modelling solution to the research problem. Bussler’s

logic–level link between PM and PMM is workable, but linking the two do-
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Figure 2.2: Figure 1 from [50]: the MILOS 3–tier architecture, which uses
CORBA [15] for the PM/PMM linkage.

Interface Interface
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WFMS (PMM) PM

Figure 2.3: Our proposed PM↔PMM linkage, operating at the database level.
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mains at the database level, as illustrated in figure 2.3, has these advantages:

• The connection between PM and PMM data is persistent, so that the

PMM cannot be “lost” from the project data.

• It is possible to integrate extant PM and PMM tools which have no

existing connection with, or “knowledge” of, each other.

• The PMM can be used to describe PM data so that, eg: visualization

of PM data in terms of a PMM becomes possible.

• Implementations of the connection are not limited to a specific archi-

tecture or software tool.

To investigate these possibilities, we will formulate a data model framework

that links PM and PMM. There are several database technologies used in

PM tools that could be explored for this purpose. For example: Microsoft

Project Server is based on Microsoft SQL server. Microsoft supplies example

scripts to extract data from the SQL server database of PM data for re-

porting purposes [56] [54]. Another database technology is XML (eXtensible

Markup Language [93][96][9][3]), and there are published XML schemata for

PM data; PMXML [68], for instance. Microsoft offers an XSL style sheet

for reporting unfinished tasks from Microsoft Project 2002 XML data [53].

To accommodate as many different database technologies as possible, it is

desirable to create a framework that is independent of any particular one.

Bussler identifies a number of mapping problems from the PMM domain

(that Bussler calls a “Work Flow Management System” or WFMS) to the

PM domain, and we reproduce Bussler’s list in table 2.1. We will address

Bussler’s list in the creation of our proposed framework.

2.4 Conclusion

In this chapter we have briefly described current work and then introduced

the research problem to be addressed in the rest of this thesis. In the next

chapter, we will describe and model the project (PM) domain, and then
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WFMS
(PMM)
concept

PM
Concept

Mapping Problems

Composite &
elementary
workflow

Task In PM, elementary and composite tasks are
not distinguished by type but by their
position relative to each other.

N/A Tasks have
duration

No mapping since duration of tasks is
managed in PM only. If a workflow step has
a duration attached to it, this can be
mapped.

Sequence
Conditional
Branching
Parallel
Branching
Recursion
Loops

N/A
N/A

End–to–begin
N/A

Parallel
Branching
N/A
N/A
Begin-to-begin

End-to-end

PM does not support conditional branching,
recursion or loops. However, conditional
branching, loops and recursion can be
dynamically imitated during execution (see
Section 3.4). WFMSs in general do not
support begin–to–begin or end–to–end
relationships.

Users, groups,
roles, etc,
together with
complex
assignment
rules.

Resource PM does know about resources as
individuals. No role resolution or more
sophisticated resource assignment can be
specified. Since all assignments boil down to
individual users and only these have
capacities, complex rules are not addressed
within project management.

N/A Resources
have capacity
and load

No mapping problem since capacity and
load are managed by PM only. In case the
definition of resources within a WFMS
includes capacity, it can be mapped to the
PM.

Data and
Dataflow

N/A Data are not relevant for scheduling.
However, explicit data flow within a
workflow type might add dependencies
between tasks. In this case additional
end–to–begin dependencies have to be
introduced where data flow adds
dependencies.

Application
integration

N/A PM is not concerned with application
integration.

Table 2.1: Table 1 from [12]: Bussler’s mapping of workflow management
system (PMM) concepts to PM concepts at the “logic level”.
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illustrate the basic commonality of some common PM software tools we ex-

amined, by examining their database schemata: Can one PM tool exchange

data with another? What are the common features, and can they be summa-

rized in a generic PM model? In later chapters, we analyze how PMMs work,

and how they can be represented. After that, we explore the question of how

we can link Project and PMM data, and still maintain a strong informational

coupling between the two domains, as envisaged in this chapter.
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Chapter III

Project Management (PM)

In this chapter we will describe how project management is supported

by common software tools. The project data stored by software tools reflect

concepts essential to project management such as tasks, resources and allo-

cations. To model these essential features of project data, we will use the

common features of data models used by some example software tools, test-

ing our ideas by transforming project data from one model to another. The

resultant data model of essential PM concepts will be used in later chapters

to formulate our solution to the research problem.

3.1 Projects and Project Management

A project is generally [49][67] realised as a series of tasks that take place

over a fixed period of time, in order to achieve a specified, unique, goal. For

example: the production of thousands of identical refrigerators in a factory

is not a project, but the design of a new model of refrigerator is. Project

management is the technique used to keep a project tracking a predefined

plan as closely as possible. We shall see in chapter 4 that there are disadvan-

tages to this approach, such as the difficulty of coping with changes to the

project plan almost always required in any real project. However, Project

Management allows the straightforward production of project budgets and

time lines and the visualization of project progress, eg: with a Gantt chart.

The five stages of project management we illustrated in figure 1.2 on

page 2 are: defining the problem, planning a project, executing the plan,

monitoring and controlling progress against the plan and closing a project.

There are many variations on this basic approach to PM: the Project Man-

agement Body of Knowledge [67] gives several examples of a “project life
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cycle”, and for defence systems acquisition [26] there are steps of Concept

and Technology Development, System Development and Demonstration (ie:

prototyping), Production and Deployment, and ongoing Support. For con-

struction projects, there is Feasibility, Planning and Design, Construction

and Turnover and Startup. All of these approaches differ in detail, but are

fundamentally similar in that they contain project definition, planning, exe-

cution, control and closure activities, that we describe in detail in the next

sections.

3.1.1 Defining the Problem

A project is initiated to achieve a specified goal. The initiator of a project,

or “Sponsor” [61][79], specifies the goals for the project to achieve (known as

the project “scope”), and often provides the resources (as requested for the

project) to achieve the goals. A suitable sponsor for a project would be the

CEO of a company.

3.1.2 Planning a Project

Having been set a goal to achieve, a project team will plan the tasks required

to achieve it. Some of the tasks in the list may have predecessors that set an

ordering. The tasks will have estimates of work and required resources, and

so once the list of tasks and task ordering has been drawn up, not only will

the resource requirements be known, but each resource will have a schedule

of tasks it will be allocated to. These tasks, resources and allocations are

codified in a project plan, a document consisting of, essentially:

• A list of tasks, which have attributes such as a name, description, per-

centage complete, start time and estimated work, such as figure 3.1

shows. Tasks may have an ordering set by direct or indirect predeces-

sors, so that one task must finish before another can start1. A set of

small tasks can be aggregated to form a larger–scale summary task,

that derives such properties as its task length from the smaller tasks.

1 or start before another task can finish, or start at the same time, or finish at the same
time
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Figure 3.1: A list of tasks for a project produced by the Planner[42] project
tool. Sub–tasks are indented from their summary tasks, and the cost of tasks
is worked out by multiplying the amount of work estimated for the task by
the cost of the resources assigned. The costs are not assigned any particular
currency, although many project tools can do so.
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• A list of resources, which have name, cost (of the resource) and de-

scription attributes.

• The allocations of resources to tasks.

A project plan will contain at least the above concepts, but additions may

be made to the project plan, often to facilitate advanced reporting of compli-

cated projects. For example: such schemes as a Work Breakdown Structure

(WBS), a hierarchical classification of tasks such as that used by the US mil-

itary [57], may be used to classify tasks according to their specificity, or type

of resource requirements. So–called “milestone” tasks are used to establish

a task that must complete, often by a preset deadline.

The project plan may bring to light issues with the project such as a

lack of sufficient resources to execute all of the tasks scheduled in a certain

time. The plan may require revision to deal with the issue—tasks could be

rescheduled or more resources allocated, for example.

3.1.3 Executing the plan

The project plan specifies which tasks are to be executed, and when, and so

the project begins with the first task(s) scheduled on the plan: the resources

allocated to the task(s) are directed to the activities specified by each task.

Subsequent tasks will be executed according to their start time, or other

constraints such as predecessor tasks. In this way the project proceeds, as

specified by the plan, until all tasks are completed.

Not all the entities in a project need access to the complete plan—

resources need only be concerned with the tasks they are allocated to, for

instance. Because there is a project plan with tasks and estimated lengths,

resources and allocations, it is possible to produce a schedule of task–related

activities for each resource, as shown in figure 3.2.

3.1.4 Monitoring and Controlling Progress against the Plan

Project progress is measured by monitoring the progress of each task, as it

is executed. Each task in the project plan has a “completeness” attribute

that changes from zero up to 100 percent. The rate of completion of tasks
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Figure 3.2: A schedule of resource utilization produced by the Planner project
tool.

is monitored with reference to the estimates in the project plan. Because

a Project plan consists of tasks, resources and allocations, it is possible to

estimate and measure the time and cost, used and remaining, of a project at

any point during its execution. Project progress is measured against time,

eg: with a Gantt chart, or cost, using such methods as earned value analysis.

Gantt Charts

Gantt charts ([37], p82) have been used for almost 100 years. Their popular-

ity is due to their powerful features for visualizing the history and progress

of a Project. If we refer to the example of figure 3.3, we can see the features

of a modern Gantt chart:

A list of tasks down the left hand side of the chart. A modern addition to

Henry Gantt’s original chart are summary tasks, that aggregate a list

of sub–tasks. Summary tasks derive such attributes as task length and

start time from the tasks they aggregate.

A time line along the chart. Calendar time progresses from the left to the
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Figure 3.3: An example Gantt chart from the freeware Planner project man-
agement program.

right of the chart. In western culture, weekends are usually not work

times, so they are grayed out by default and tasks are broken across

them.

Task bars filled in to indicate the percentage completion. The task bar

begins at the time the task is scheduled to begin, and ends at the task

finish time. The bar is filled in to indicate an estimate of the task

completeness.

Predecessor arrows These arrows indicate the sequence in which tasks

must be completed: an arrow is drawn to a task from its required

predecessor. In modern projects, predecessors are of four types:

Start–to–start : two tasks must start together.

Start–to–finish : one task must start before the predecessor finishes.

Finish–to–start : one task must start after the predecessor finishes.

Finish–to–finish : two tasks must finish together.
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There may be a time lag included in a predecessor. This lag is included

in the task schedule as a required delay after a task has finished.

Critical path The Critical Path Method [47][17] identifies the time required

to complete a project by adding the durations of the longest sequence

of tasks (the “critical path”). Tasks not on the critical path may be

delayed as long as they don’t impact on the project duration: this is

the “slack time”. Tasks on the critical path may be highlighted by a

software tool (not shown in figure 3.3).

Milestones Milestones are like tasks in that they can be included in a chain

of predecessors, but instead of having work associated with them they

are a constraint to indicate that all their predecessor tasks must have

completed. Milestones might have a fixed date associated, or they

might simply be part of a sequence of tasks. Normally the name and/or

description of the milestone is used to describe what they indicate (eg:

“Design step complete”).

Measuring Project Progress with Earned Value Analysis

Earned value analysis as outlined by, for example: Lewis ([49], pp92–4) mea-

sures project progress by accounting for the cost of a project in either dollar

value or hours of work. Projected costs for the project plan are compared

with actual expenditure, using three values:

• budgeted cost of work scheduled (BCWS). This is the cost of tasks

according to the project plan.

• budgeted cost of work performed (BCWP). This is the planned cost of

work for tasks that have been performed.

• actual costs of work performed (ACWP). This is the actual cost of work

for tasks that have been performed.

Two metrics are derived from these values:

• Cost difference = BCWP – ACWP
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Figure 3.4: Time and cost: How the financial measurements of BCWS,
BCWP and ACWP indicate the financial progress of a project.

• Schedule difference = BCWP – BCWS

Project progress is calculated by graphing the cumulative values for BCWS,

BCWP and ACWP. At any point a project may be on schedule, ahead of

schedule (the schedule difference is positive), or behind schedule (the schedule

difference is negative), underspent (cost difference is positive) or overspent

(cost difference is negative), see figure 3.4.

Project control is achieved by interpreting the differences. Lewis lists

three situations:

1. ACWP is close to BCWP and larger than BCWS: extra resources have

been assigned to the project, at budgeted rates.

2. ACWP is close to BCWP, and below BCWS: the project is either

under–resourced, or slow to get started for other reasons. The INCIS

project showed this behaviour during the first year.

3. ACWP is below BCWS and BCWS is below BCWP: the project is

ahead of schedule and underspent. Labour estimates may have been

padded, or the project might be unexpectedly easy to carry out.

Lewis ([49], p94) suggests acceptable differences for earned values of 3–5%

for well–defined work such as construction, 10–15% for research and devel-

opment, and “the sky is the limit” for pure research. For IT, where our
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examples are drawn, Fenton [32] finds that estimating software costs is un-

reliable by factors of up to 200%, and Collins ([14], p23) lists a number of

well–known software disasters and mentions that many of these could have

been successes, if the costs of the new systems had been calculated metic-

ulously and then multiplied by three (Collins’ emphasis). These two large

figures indicate the difficulty of estimating the costs of, and controlling, very

complicated projects such as IT projects.

Keeping projects on track

Project management tools and techniques such as Gantt charts and earned

value analysis are used to monitor deviation from the project plan. For ex-

ample: the INCIS [79] project budget initially was underspent because of dif-

ficulties beginning the implementation, but later INCIS overspent its budget

by a substantial amount (approximately three times the original estimates)

as the project team desperately tried to get the software working.

Actual progress of a project may be on schedule, or run ahead of planned

progress, or the project may progress more slowly than planned. The three

ways of dealing with this situation are related to three facets of project man-

agement shown in figure 1.1 on page 2. More resources, if available, can

be allocated to the task in an attempt to speed it up, although compli-

cated projects such as IT projects may not be helped with such an approach

[10][33][14]. Secondly, the estimated length of tasks can be changed, so that

the schedule of the project is changed. The third alternative is to change

the scope (the goals) of the project by deleting the task from the project

and dropping the requirement that it satisfied. In such a scenario, we are

faced with the requirement to change a project plan that, ideally, should not

change. The project manager must make these decisions of how to revise the

project.

Even if a risk management technique similar to NZS4360 [60] [1] is applied

to the project plan, and tasks adjudged especially risky have risk mitigation

or avoidance built in (eg: the work estimated for risky tasks is increased by

some factor to account for anticipated slippage), there is still the likelihood

that the actual project progress will deviate from the planned progress. Such
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a risk–management approach also has a so–called opportunity cost2. Assist-

ing the project manager revise a project is a research problem that will be

further addressed in later chapters.

3.1.5 Closing a Project

A project might be closed in a number of ways. Ideally, a project is closed

when the last task is 100% complete. However, a project might also be closed

when either time or resources run out, or if the project progress has deviated

too far from that planned. Projects terminated for lack of time or resources

or poor progress are often failures, and their unachieved goals must be either

abandoned or used to initiate another project.

Activities associated with successful project closure might be the hand

over of the project results to an organization, for ongoing management. For

example: an electrical appliance might be designed with a project team, but

the design would be handed over to an appliance factory for production,

after–sales support, etc.

3.2 Project Management Tools

Project Management software supports the creation, measurement and man-

agement of projects described above. For example: we have illustrated

project concepts in figures 3.1 to 3.3 with screen shots from the freeware

tool Planner [42]. Software tools such as Planner and Microsoft Project help

a project manager deal with:

• Recording the tasks, with associated resource requirements and work

estimates, etc, required to achieve the project goal.

• Recording the resources available to, or required for, the project and

describing their availability with a calendar.

• Allocating resources to tasks, so that limited resources can be allocated

in the most efficient way; normally the highest utilization. Allocations

2 Opportunity cost is the cost of extra resources assigned to a project that turn out not
to be needed.
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may be made under the control of the Project Manager, or automat-

ically according to an algorithm. Project tools can produce individu-

alized schedules for each resource in the project, and flag times when

resources are over-allocated (ie: used more than 100%) for the project

manager.

• Scheduling of tasks and scheduling of allocations according to project

and resource calendars.

• Providing template plans that can be filled in with task and resource

information, and changed to suit the goals at hand. For example: tem-

plates are included with Microsoft Project for such projects as software

development, construction and product introduction.

• Visualizing project history and status with a Gantt chart or other tool

such as a PERT [66] chart.

• Summarizing project costs in various ways; according to a Work Break-

down Structure, for example.

• Summarizing actual progress against estimated project progress.

Software tools can usually present many different views of a project, such

as a list of tasks, a list of resources, or a project visualization such as a

Gantt or PERT chart. The user interface is typically some kind of direct–

manipulation interface, so that the attributes of a task can be listed by

double–clicking on a task. Since project management has existed in its mod-

ern form for decades, it is no surprise that the software tools associated

with it have not changed fundamentally, and Gray and Larson ([39], p 379)

wrote in 2000: “Differences among [project management] software in the last

decade have centered on improving “friendliness” and output that is clear

and easy to understand.”
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<?xml version="1.0"?>

<project name="New fridge design" company="Ace Appliances"

manager="F. Johnsen">

<tasks>

<task id="1" name="Brainstorming session"

note="Initial ideas session" work="43200">

</task>

...

</tasks>

<resource-groups/>

<resources/>

<allocations/>

</project>

Figure 3.5: A sample of XML from a file produced by the Planner program
representing a simple project. The project element, demarcated by tags, is the
root XML element and has an attribute, “name”, that has the value “New
fridge design”. The project element contains a task list in which one task is
visible. Potential lists of resource groups, resources and allocations of tasks
to resources are empty.

3.3 Project Data Models

Many of the software tools discussed in section 3.2 can store project data

in XML [93] for which there are published XML schemata [95]. Project

Management tools generate XML for a variety of reasons: Planner [42] uses

an XML format as its native storage for project data, as shown in figure 3.5.

Microsoft Project [55] generates XML [58] for connectivity with the .NET

architecture, and PMXML [68] is a vendor–independent XML schema for

transporting Project data, developed by a consortium. We examined the

XML schemata for a number of project software tools, looking for common

features.

3.3.1 Microsoft Project Data Interchange (MSPDI) Schema

This XML schema was developed by Microsoft for Project 2002 and later

versions, and is used to export XML data from the Microsoft Project software

tool, normally saved in a proprietary format. Because of the popularity
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of Microsoft Project, many other project management tools can import or

export MSPDI data—Planner can import MSPDI data, for example. MSPDI

is the largest of the project schemata that we studied, because it has many

extra elements added to the basic project data model. For example: ten

different baseline plans can be stored (a baseline is a snapshot of a project

plan).

3.3.2 Project Management XML (PMXML)

A consortium headed by Pacific Edge Software Inc. and including NASA and

Oracle created PMXML in 2000.

PMXML is a published standard, but only the X Schema Definition and

brief documentation is publicly available; tools to use the standard are pro-

prietary, such as the Project Office Connector for Microsoft Project 2002, a

bi-directional PMXML–based interface for Project 2002. PMXML appears

to be languishing as a standard3, but it is an example of a data model for

project data that attempts to be universal, and for this reason the Open

Project Management Exchange Format project (OPMEF [2]) have consid-

ered the use of PMXML.

3.3.3 Planner

Planner uses XML for its native data file format, and the document type

definition (DTD [28]) of this format is distributed with the (free) Planner

software4 [42]. The Planner data model is stripped down to the basics, con-

sisting of little more than a project with tasks, resources and allocations of

resources to tasks, and a project calendar.

3 Rainer Volz [87] writes:

PMXML is defined and built–in into some systems, at least at Pacific Edge Software
and Primavera Systems, but there is not much information about its details, the
goals and timeliness for its further development.

4 The Planner DTD version 0.6 distributed with Planner version 0.13 doesn’t describe
all the XML data that the Planner software actually writes: the Task element definition
in the DTD is missing the attributes work-start and priority, and the Resource

definition is missing a short-name attribute.
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Planner lacks many of the facilities of the more complicated software

tools. For example: Microsoft Project and PMXML can process costs in a

variety of foreign currency units. Planner uses no currency, only a numeric

cost. Microsoft Project and PMXML can assign resources to tasks for limited

periods of time, less than the total duration of the task. In Planner, this is

not possible: allocations have no associated duration and so the allocation

is for the entire length of the task. To achieve the effect of an allocation for

a limited duration, it would be necessary to split the task into two or more

sub–tasks of the desired allocation duration, and assign the resource to one

or more of these. Planner has been maintained as an open software project

for several years, and is distributed with the Fedora 6 Linux distribution, for

example.

3.3.4 GanttProject

Ganttproject [84] is a Java application that has a similar appearance to other

Project tools such as Planner or Microsoft Project. It is a very simple tool,

lacking many of the extra facilities of more complicated project tools, but still

containing the common features of tasks, resources and allocations, and be-

cause of its simplicity, Ganttproject is interesting to examine. Ganttproject

reads and writes XML data, and the DTD is distributed with the software,

which has been maintained for a number of years as an open–source project.

3.3.5 Comparing The Project Data Models

As shown in table 3.1, project software tools differ greatly in their complex-

ity, and in the complexity of the data that they store. Our analysis of the

facilities and XML schemata used for the tools Microsoft Project, Planner

and GanttProject, and the public XML schema PMXML, shows that project

tool data models essentially reflect the basic project management concepts

described in this chapter: A project is made up of tasks, resources and allo-

cations of resources to tasks.

We have modelled these essential concepts and their relation to each

other in figure 3.6. The larger schemata have more elements and attributes

than figure 3.6 because they offer more project reporting and analysis. For
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Figure 3.6: Our conceptual UML [35] model of the data in the Project do-
main. Our model reflects the essential concepts of Projects and Project Man-
agement, found in all the example tools we studied.

Schema Name Schema size Element defns Attribute defns

Planner DTD 6 kB 27 725

GanttProject DTD 1324 B 10 23
MSPDI 2002 151 kB 405 0
PMXML 1.0 44 kB 399 18

Table 3.1: Relative sizes of the DTDs and XML schemata discussed. Plan-
ner makes use of XML attributes where the other schemata declare elements
instead—Microsoft Project uses no attributes at all.

example: MSPDI contains fields to store a customized Work Breakdown

Structure, but Planner XML does not. PMXML allows many projects to be

grouped together, but the other data models do not. Instead of the simple

DTD used by Planner, Microsoft uses an XML Schema [95] defining a vast

number of elements, where other schemata might use attributes associated

with the elements. There is also a good deal of strong type definition in

the MSPDI and PMXML schemata, something lacking in the Planner and

GanttProject DTDs. Differences such as those above are reflected in the

numbers of table 3.1, and figure 3.7 illustrates some of these differences.
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Figure 3.7: A Venn diagram illustrating some of the differences between the
data models of PMXML, MSPDI, GanttProject [84] and Planner. The Plan-
ner data model is a subset of both of the larger models because it represents
nearly the smallest data model that can usefully describe project data.

Implementing Project Data Models

Different project tools implement their project data model in different ways.

For example: in section 3.1.2 we mentioned the idea of a summary task.

Microsoft Project represents summary tasks by assigning each Task element

a WBS (Work Breakdown Structure) element, the content of which assigns the

Task a place in the WBS hierarchy6. Planner represents the SummaryTask

relationship by nesting Task elements in an XML tree, so that the XML file

structure reflects the nesting of SummaryTasks. PMXML uses a third way:

each Task element has a ParentTaskID and a IsSummary element, so that

the hierarchy of SummaryTasks is built up by storing the identifiers of parent

tasks.

Extending Project Tool Data Models

The above schemata also include extra user–defined fields for user–specified

data. An example of such usage might be to include a “sign off” attribute for

5 Includes attributes left out of the DTD.

6 The result of this implementation decision is that the Work Breakdown Structure
defines the Task nesting for the project
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each task: none of the data models discussed above include such an attribute,

but the attribute could be included with a user–defined field. Even though

the project tools would not support any semantics associated with the user–

defined fields, external uses of the XML data are possible because XML is an

open format and the structure of the data is described with XML schemata

and DTDs. In our example, we could use an external tool to report tasks

that were complete but not signed off. We will make use of this openness

of XML data in later chapters, where we describe an implementation of our

solution to the research problem.

Another example of using user–defined fields would be to simulate some

of the functionality of the more complicated project tools in a simpler tool.

For example, we mentioned that MSPDI contains fields to store a customized

WBS, but Planner XML does not. However, we could add a customized WBS

to Planner with a user–defined field.

3.4 Exchanging data between project tools

The data models examined above were created without reference to each

other. However, because of the essential similarity between these data mod-

els, it is possible to exchange project data between the tools that use them. A

simple tool may have to throw away data associated with the more advanced

features of a complicated tool: Microsoft Project calculates and stores values

for earned value analysis that Planner cannot represent, for example. The

result is that information is lost, but provided that the simpler tool can use

the essential concepts we have identified in figure 3.6, the resultant project

data will still be useful for project management. A similar situation applies

when a more complicated project tool imports project data from a simpler

tool, but in this case many of the data fields in the more complicated model

will have to be left empty, or with default values.

One way of implementing the transforms is with XSL transforms [96].

Any XML document can be transformed, both representationally and struc-

turally, using an XSL transform that maps XML elements, attributes and

structures from one form to another. In our case, transforming XML data

from one project data model to another involves not only changes in the
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Figure 3.8: Exchanging the essential concepts of project data (Tasks, Re-
sources, Allocations, etc) between various PM tools, by transforming the data
to and from a Common Project Data Model.

XML document elements, attributes and structure, but also the conversion

of, for example: date and time formats.

3.4.1 A Common Project Data Model Approach

One approach to exchanging project data is illustrated in figure 3.8. In this

case, a central model is defined, and transforms to and from every other data

model are defined. This method has the advantage that only 2*N transforms

are needed for N tools. Such efforts as the Open Project Management Ex-

change Format will use this approach of creating a universal project manage-

ment data model to “create an open standard format for exchanging project

management data”. Similarly, and as we have seen, PMXML was created as

a standard XML format for exchanging project data.

The results of this approach depend on how the “Common Project Data

Model” is formulated: If the model reflects a common subset of all the data

models (as our model of figure 3.6 does), then much data will be discarded at

each exchange. If the model aggregates all the concepts in the tools then it

will be huge, and will probably require augmenting for each new tool found—

and this may require changing every other transform for every other tool.

For the purposes of generating project data the approach of using a min-

imal common data model has an important advantage: If we are able to

generate project data (say: from a PMM) in terms of this model, then we
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Figure 3.9: Exchanging project data between various PM tools, by transform-
ing from every data model to and from every other one. Each transform can
be tailored to result in the least loss of information, but requires N*(N-1)
transforms for N tools.

will be able to generate project data usable by any project tool that can

import the minimal common data model.

3.4.2 Experiments using a Model–To–Model Approach

Another way of exchanging project data is simply to transform the data

directly from the model of one tool to that of another, as illustrated in

figure 3.9. We used this approach to examine the transformation of project

data between Microsoft Project, PMXML and Planner, as described in the

following sections.

Transformation of MSPDI to Planner XML

Planner includes the facility to import MSPDI, and then save it in Planner’s

native XML data format. Little structural transformation is involved: the

root element of both schemata is a project, for example. The great differ-

ence in complexity between the two schemata requires that the information

associated with the vast amount of extra data stored by Microsoft project

be discarded from the Microsoft Project XML file. This is in the order of

95% of the file for a typical project, but often much of this extra data has

null or default values, and only the fundamental project concepts of tasks,

predecessors, resources and allocations are set up by the user. For this rea-
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son, it is still possible to produce a useful representation of a project stored

in MSPDI format in Planner, with the above fundamental project concepts

intact. One or two screen shots in this thesis, such as figure 4.2 on page 38,

were generated from project plans transformed in this way.

Transformation of Planner XML to MSPDI

The Microsoft Project schema is vastly more complicated than that of Plan-

ner, so that even the file for an empty project is over 7 kB in size, containing

over 200, mostly empty, elements. The majority of the extra information

does not exist in Planner, and so it must be created in the form of elements

which are either empty or which contain default values. We wrote an XSL

transform to map Planner projects to MSPDI, along these lines. Projects

created and saved from Planner could be then transformed to the MSPDI

format, and read into Microsoft Project.

Transformation of PMXML to Planner XML

We did not have direct access to any PMXML–capable project tools. How-

ever, the PMXML web site made available the PMXML schema and sample

project data files. We wrote an XSL transform to transform the PMXML

project data to Planner XML. As for MSPDI, a large amount of project data

had to be discarded. However, a recognizable project could be read in to

Planner from the transformed PMXML project data. PMXML has the odd

feature of not using predecessors directly, instead there is a TaskOrderID

attribute to order tasks. However, it is possible to order tasks using the start

and finish times stored with each task in PMXML, and so these tasks were

transformed to Planner tasks set to start and finish at the specified times.

3.5 Conclusion

In this chapter we have briefly described project management (PM), how PM

works, and how it is supported by project management tools. We have also

described how projects are structured and measured, and how such tools as

Gantt charts provide history and context for a Project. The project tools
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we examined use a fundamentally similar data model of tasks, resources and

allocations that we described, and will use again in later chapters. This

similarity allows the exchange of the most important project information

between project tools using, for example: XSLT. In the next chapter, we will

examine how projects are created and changed.
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Chapter IV

Project Management in Context

In this chapter we describe how project plans are formulated and changed.

To do this, project management is informed by the knowledge of the par-

ticular domain the project is working in. We use a simple example to il-

lustrate the situation when a project instance is produced and changed by

hand, by filling in a template, or by following a Project Management Method

(PMM)—a kind of “project recipe” that attempts to formalize the specialist

knowledge used for a project.

4.1 Specialist Project Knowledge

Any project works in the context of some domain of knowledge, such as

building construction, software engineering, etc. A project requires specialist

knowledge to create the project plan (this knowledge could be encapsulated

in a template plan, for example, as we describe in section 4.1.2) and then to

manage the project once it is underway.

This specialist project knowledge is obtained by augmenting the judge-

Project Plan

Domain–
specific
knowledge

Task Task Task . . .

Project Outputs

Figure 4.1: Applying specialist knowledge to a project.
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ment of the project team with the knowledge of individuals skilled in the

area in which the project is undertaken, and this is conceptually shown in

figure 4.1. An example of the application of specialist knowledge is that

estimating the work required for a particular task requires domain–specific

knowledge of the kind of work involved in the task.

We have seen in chapter 3 that a project plan consists of a list of tasks,

etc, that has the aim of achieving a defined goal in a limited time frame. In

the following sections we list the methods of applying specialist knowledge

to projects to create and/or change a project plan.

To illustrate the various ways of applying specialist knowledge to create

a project plan, we will use a simple example. A software project was chosen

for the example because not only do project management techniques apply

to it, but also specialist software engineering PMMs such as the Waterfall

Method can be applied.

The initial goal of the project as requested by the customer is to create

a “hello world” program. The program then displays “goodbye world” when

a button is pressed. The customer then adds an unforeseen complication

to this simple goal: when they see the program working, they ask for the

functionality of the program to appear in a browser window, rather than as

output from a command–line.

4.1.1 Hand–crafted Projects

One way of applying specialist knowledge to projects is to manually apply

the skill and experience of the project team. The team follows the procedure

illustrated in figure 1.2 on page 2 to create a project plan, and then to manage

the project to a conclusion. Software tools can assist the project team,

but something these tools cannot do is encapsulate the specialist knowledge

needed for creating and managing a project. If we were to manually apply

conventional PM to the production of the “Hello World” program then we

might formulate a project plan similar to this:

Project start: May 11, 2004, 10am.

Task 1: Initiate the “Hello World” project. Requires a Customer
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Task 2: Specify the “Hello World” program. Requires a Customer and a

Programmer

Task 3: Implement the “Hello World” program. Requires a Programmer

and a computer

Task 4: Test the “Hello World” program. Requires a Customer, a Program-

mer and a computer

In the case of our example, we are in a quandary when the acceptance test

of task 4 fails: the plan does not admit this possibility. Perhaps a “Change

the program as needed” task could have been included in the original plan

after task 4, but that might not be enough—a complete re–implementation

might be required, for instance. Extra tasks, resources and allocations may

be inserted into a real project, and so there is deviation from the plan.

Conventional PM provides tools to report on the amount of variance of real

progress from the project plan, as we described in chapter 3, but the project

manager must decide for themselves how to change the project plan.

Software tools for conventional PM can automate the production of project

reports, and make the revision of plans less laborious. However, they do not

assist with decisions about how to change the plan.

In the case of our example, we might decide to simply restart the project.

A restarted project might benefit from the initial attempt, but in our simple

example the first project is a dead loss. If the second acceptance test passes,

we would end up with a project plan as follows:

Project start: May 11, 2004, 10am.

Task 1: Initiate the “Hello World” project. Requires a Customer

Task 2: Specify the “Hello World” program. Requires a Customer and a

Programmer

Task 3: Implement the “Hello World” program. Requires a Programmer

and a computer
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Task 4: Test the “Hello World” program. Requires a Customer, a Program-

mer and a computer

Task 5: Restart the “Hello World” project. Requires a Customer

Task 6: Specify the “Hello World” web page. Requires a Customer and a

Programmer

Task 7: Implement the “Hello World” web page. Requires a Programmer

and a computer

Task 8: Test the “Hello World” web page. Requires a Customer, a Pro-

grammer and a computer

The last four tasks were not planned for, but were required to be added

to the project in order to achieve a successful result.

4.1.2 Template Project Plans

Although project tools cannot automatically create a project plan to achieve

a specified goal, they do allow the use of template plans so that a project

manager can quickly and conveniently create a project plan. A template is

a project plan that requires a project manager to “fill in the blanks”, with

estimates of the work required for tasks and lists of actual resources. The

template will normally be augmented with some textual description to indi-

cate how to use it, and what goal it is for: it may be titled “Template plan for

moving house”, for instance. Resources could have some indication of their

function added as a name (“Seller’s Lawyer”) or description (“The seller’s

conveyancing lawyer”). Because project tools lack the ability to store spe-

cialist project knowledge, it’s necessary to add these descriptions to indicate

how to use the template.

Microsoft provides a generic software project plan template with Mi-

crosoft Project, illustrated in figure 4.2. The template consists of a number of

specified tasks and resources that have names and/or descriptions that look

like they belong to a software project. The project manager can use this

template quite well if they have some knowledge of software projects. They
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Figure 4.2: The Microsoft Project software development template, exported
as MSPDI XML and imported into Planner for display.

must have this knowledge because some skilled interpretation is required to

fill in the template. Documentary descriptions might be available with the

template to advise the project manager how best to use it.

For our “Hello World” example, filling in the template results in a project

plan that looks like a software project. However, we have no clue about how

appropriate our use of the template really is. Are all the tasks in the template

needed for our simple goal, for instance? Human interpretation is required to

decide this. The template also provides no specific advice about what to do

if the actual progress begins to deviate from the plan: should we restart the

project, or insert tasks into the project to accommodate the changes? These

are not faults with Microsoft Project, or the template. The PM domain, in

which this software tool works, works best when a project proceeds according

to a predefined project plan. Although templates can be useful for creating

these project plans, there is still a reliance on the project team’s skill to

create a workable project plan and successfully manage the project.
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4.1.3 Project Management Methods (PMMs)

Project templates contain textual descriptions of the kinds of tasks and re-

sources required for a particular goal, and this suggests a strategy for de-

scribing specialist project knowledge: If we take these textual descriptions,

then we can create a kind of “project recipe”, that tells us about the kinds

of tasks and resources needed to achieve a specified goal. We will call this

“recipe” a Project Management Method, or PMM.

A simple way to describe PMMs is to write them down in English as a

series of steps. Steps are not project tasks: they are a specification for a

task, and can be used again and again, as opposed to a one-use task. For our

example, we will use a simple method described by Schach ([76], pp 64–5) to

write a small software program according to a customer’s specification:

The name of the method is “Build and Fix”.

1. The Customer and Programmer initiate the project, and then

2. Iterate the following sequence of tasks until the Customer accepts

the program in step 2c, or they halt the project:

(a) The Customer specifies the program to the Programmer.

(b) The Programmer implements the program.

(c) The Programmer presents the program to the Customer for

acceptance.

Following the above description results in tasks with resources allocated,

in a similar way to a project plan, but there is a crucial difference between

applying a PMM and creating a project plan or using a template plan: the

PMM reacts to the state of the project to control the production of tasks,

depending on the outcome of particular steps on the PMM.

In our simple example, the Build and Fix method cycles through the

main sequence of steps and results in the production of a “Hello World”

program. At the acceptance test, the customer rejects the program, but

decides to continue the project. The Build and Fix method then requires a

re specification of the project (as a “Hello World” web page) and a second
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implementation and acceptance test, which now passes. The resultant project

consists of the following sequence of tasks:

Project start: May 11, 2004, 10am.

Task 1: Initiate the “Hello World” project. Requires a Customer

Task 2: Specify the “Hello World” program. Requires a Customer and a

Programmer

Task 3: Implement the “Hello World” program. Requires a Programmer

and a computer

Task 4: Test the “Hello World” program. Requires a Customer, a Program-

mer and a computer

Task 5: Specify the “Hello World” web page. Requires a Customer and a

Programmer

Task 6: Implement the “Hello World” web page. Requires a Programmer

and a computer

Task 7: Test the “Hello World” web page. Requires a Customer, a Pro-

grammer and a computer

Following the PMM has resulted in a series of tasks that achieve the

desired goal. The resultant project tasks are quite similar to those of our

hand–crafted project plan of section 4.1.1. The crucial difference is that the

PMM specified what tasks were to be added, so that the project was revised

in a controlled way. We could say what tasks had to be added (tasks 5–7),

and why (because the acceptance test failed, and the customer decided to

continue the project). This is a capability that project plans, even template

plans, do not have.

One objection to the above approach is that the use of a PMM to drive

the project results in a plan that always changes, although the changes are

always constrained. Iterative PMMs such as XP [5] can work around this
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limitation, by guaranteeing to deliver a working system no matter when the

project is halted (eg: by budget limitations). However, in this case the

project scope is not fixed in advance.

4.2 Observations

Our simple example has illustrated the requirement that any real project

has for specialized knowledge. We have tried three ways of applying this

knowledge to a project, and shown that two of them: hand–crafting a project

plan and using a template, rely to a large extent on the skills and experience

of the project team and/or the template designer to create a workable plan.

When we were faced with changing requirements from the customer, both the

hand–crafted and template–driven project plans required ad–hoc revisions to

produce a successful result.

The third way of creating a project plan, using a PMM, was different to

the first two, because the PMM specified how to create the project instance.

When the customer’s requirements changed, the PMM specified how to cope

with this situation. A PMM is not a guarantee of project success, but in situ-

ations where the project has to change (eg: if the requirements are changed),

a PMM can assist a project manager to revise the project.

4.3 Conclusion

In this chapter we have introduced the concept of applying specialist knowl-

edge to projects, and described three different ways of applying this knowl-

edge: manually, using a project template, and by using a Project Manage-

ment Method (PMM). We have then briefly described PMMs, and in chapter

5 we will analyze PMMs more closely, using the example project described

in this chapter.
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Chapter V

Constructing a PMM Vocabulary

In this chapter we use the example project of chapter 4 to analyze the

application of three Project Management Methods (PMMs) of increasing

complexity. The resulting project instances are illustrated using a simple

two–dimensional visualization that shows the PMM steps executed against

time. These examples are then used to draw some general conclusions about

the PMMs, that will be used to create a PMM data model.

5.1 A Simple Visualization of the “Build and Fix” Method

In section 4.1.3 we produced a project instance using Schach’s “Build and

Fix” method. The resultant project is visualized in figure 5.1, with the

project tasks represented in a graph. The vertical dimension is the names of

the steps used by the PMM and associated with each task, and the horizontal

dimension is time, showing the chronological sequence of tasks. Required

Time =>
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World", then "Goodbye
World" when a key is
pressed

Write the 
program.

Specify

Implement

Test
Customer
satisfied with
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Display "Hello World"
in a web browser, then 
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a button on the page is
pressed.
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end
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Initiate the
project.Initiate
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Figure 5.1: The history of tasks for the project produced by applying the
“Build and Fix” method to the simple example.

42



resources, such as programmers, are listed against their associated steps.

This visualization is similar to a Gantt chart, that plots tasks against time,

but in this case we are plotting PMM steps against time, so that in figure 5.1

two diagonals occur, when the PMM loops around and repeats the same set

of steps. Because it lists only tasks, a Gantt chart would interpret each task

as unique, and therefore would show this sequence of tasks as one diagonal

(as shown later in figure 5.5). Our visualization is able to show how project

tasks relate to PMM steps, and we will make use of this property to formulate

some observations about PMMs.

Recognizing features The successful completion of the project results in

the production of a working web page which satisfies the customer require-

ments. This is a different goal to that originally specified—writing a “Hello

World” program—and the project steps had to be repeated to accommodate

this. In figure 5.1 the PMM iterates twice through the sequence of project

steps, terminating when the customer is satisfied.

The application of the sequence of PMM steps produces a characteristic

diagonal pattern of tasks. Repeating the steps results in the sequence of

tasks beginning again from the first (topmost) step. Our visualization thus

shows two distinctive control structures:

Sequence The Build and Fix steps follow each other in a sequence, and so

do the resultant tasks.

Iteration At the acceptance test, the decision is made whether to continue

to the next step, or go back and repeat the PMM from this or an earlier

step.

In section 5.5 we will describe more control structures, but first we will

apply two more realistic PMMs to our simple example: the Waterfall Method

and Extreme Programming.

5.2 Applying the Waterfall Method

We now apply Royce’s waterfall method [73] to the example project. This

method uses a sequence of six steps ([76], pp 65–70), and we describe it in
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Figure 5.2: Visualizing the application of the Waterfall method to produce
project tasks. In our example the method restarts in part (c), when the initial
implementation does not pass the customer’s acceptance test.
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appendix A. The waterfall method has well–known disadvantages ([24], Ch

4), for example: no implementation is produced until close to the end of the

project.

The Waterfall method has extra specification and design steps that are

meant to ensure that the customer, and programmers, understand exactly

what the implementation is going to produce. However, for this example,

let us assume that the customer is happy with the initial specification and

design stages of the project, but that when they see the program working

they request the program be changed to a web page. Hence, two sequences

of tasks are generated when the PMM iterates twice through, as shown in

figure 5.2.

When the Waterfall method, with its long sequences of steps, is applied to

the example project, many more tasks are produced than the simpler Build

and Fix method. The extra design and specification steps should have en-

sured that the method didn’t need to iterate again, but since they did not the

impact of the initial rejection of the “Hello World” program is higher. More

work has to be re–done, and this larger project results in the accomplishment

of the same final goal, the production of a “Hello World” web page.

5.3 Extreme Programming

Let us now apply the Extreme Programming method [5] to the project. This

method is described in appendix A. The list of tasks shown from the appli-

cation of Extreme Programming is shown in figure 5.3. In our example, this

characteristically iterative method produces many loops, with their associ-

ated tests.

The only released software that results from the application of XP is

a web page—there is no stand alone program as created by the first two

methods. This is because of the XP practice of breaking up projects into

small parts (“user stories”) that can be implemented independently. When

the customer sees the implementation of the first feature and says that it

is wrong (in figure 5.3 (b)), the project is halted and redesigned at that

point, not after the software is released. Such early customer feedback is

a valuable feature of XP, which has the recommendation “release early and
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Figure 5.3: Applying the Extreme Programming method to produce a project
instance.
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Figure 5.4: Applying the Extreme Programming method to produce a project
instance, cont’d

release often”.

Another result of the creation of user stories is that it allows the parallel

application of tasks during the test–driven implementation step, where the

implementation of stories one and two are undertaken simultaneously.

5.4 Observations

In sections 5.1, 5.2 and 5.3, we have described three PMMs and used a simple

visualization to show the project instances they produce when applied to a

simple example. The visualizations illustrate the following:

Different PMMs produce different project instances All the PMMs

produce different project instances for the same goal. The build–and–fix

method produces a small and simple project instance in section 5.1 that ac-
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Resource Types Identified

PMM Customer Program-
mer(s)

Systems
Analyst

QA Team

Build and Fix * *
Waterfall * * * *
Extreme
Programming

* needs 2+

Table 5.1: Resource requirements of the various PMMs in the simple example
project.

complishes the simple project with the fewest tasks. The larger and more

complicated Waterfall and XP PMMs produce larger project instances. How-

ever, for large projects the build–and–fix method lacks the formal control

mechanisms, such as test–driven programming, of the more complicated

PMMs.

Different PMMs have different patterns of resource usage Project

tasks require resources of particular types, and this is illustrated in table 5.1,

showing resource types identified by the three PMMs in the example.

The table shows that the resource requirements depend on the type of

PMM chosen to run the project. Certain PMMs require particular resources

or personnel allocated to particular tasks, for instance: the Waterfall method

requires software quality assurance personnel to validate each major phase

in the project, whereas the simple Build and Fix method requires only a

customer and programmer.

5.5 PMM Control Structures

We have described several PMMs and then applied them to a simple example

project. By applying a simple two dimensional visualization of the resultant

tasks, we can discern the following features of PMM control flow:

PMMs use sequences of steps The “specify, implement, test” sequence

of the Build and Fix method is a sequence of steps, which relates to the
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generic PM concept of precedence, in that certain steps must be performed

one after the other. A sequence of tasks may also be an artifact of iteration,

for example: iterating the “code and test” loop of the XP PMM produces

a sequence of tasks, although the associated control structure was not a

sequence of steps.

PMMs use selection In figure 5.3 (a), a decision is made whether to have

a “design spike” or not. The result of the decision is negative, and so the

only step we see in the figure is the decision, not the “design spike” , which

was not selected to occur. PMMs require decisions to be made at certain

points, and these decisions control which steps or tasks are produced by the

PMM and which appear, or do not appear, in the project instance.

PMMs use repetition The first PMM examined in the example consisted

of a simple list of steps which produced a sequence of tasks. However, the

Extreme Programming PMM is intrinsically iterative and makes use of a

regular cycle of software releases to inform the customer about the current

state of the project, by deploying the software. This leads to the concept

of an iterator which unrolls a loop in the PMM, producing one or more

sequences of tasks over time.

PMMs Use Concurrency The unsequenced tasks of the XP method

shown in figure 5.3 (c) have a control flow which forks and then synchro-

nizes two sequences of tasks, at the software release step.

PMMs nest control structures The characteristically iterative Extreme

Programming PMM produces not only loops, but also loops within loops.

Figure 5.3(b) shows the code for “Story 1” failing its unit test, with a resul-

tant re–writing of the code and a re–running of the test. This minor loop

happens within the main release loop of figure 5.3(b).

5.5.1 Comparing PMMs to PM

Figure 5.5 illustrates the basic PMM control structures in our simple visual-

ization, and compares this to the Gantt chart representation used in PM. The
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Figure 5.5: Comparing Gantt charts with the simple PMM visualization to
show the fundamental control structures of PMMs.
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Step

RepeatStep

SequencedStepWhileStep SelectionStep

SimpleStepUnSequencedStep

Figure 5.6: UML defining as PMM Steps the different kinds of control struc-
tures we identified.

difference is especially noticeable for repetition, which re–visits the same step

twice in the visualization, but produces what looks like one long sequence

in the Gantt chart. The application of the selection construct may require

that some PMM steps (of the path not selected for) are never performed,

and so do not appear in the visualization. For reasons such as those above,

PMM control structures cannot be represented by PM software tools such as

Planner, even though these tools can still represent the tasks resulting from

the application of a PMM.

5.6 Formulating a PMM meta model

To construct a model that can express PMMs, we will use the unified mod-

elling language (UML), and begin by modelling the various control struc-

tures we identified in the previous sections. These control structures reflect

the programming constructs identified by Boehm and Jacopini [6]: sequence,

selection and repetition. The authors found that computer programs could

be represented by an arbitrary nesting of these control structures. With the

addition of concurrency [77], we can similarly represent PMM control flows

with an arbitrary nesting of sequence, selection, repetition and concurrency.

Figure 5.6 illustrates the PMM step types we define to describe the following

control structures:

SequencedStep for a step that applies a sequence of steps.

UnSequencedStep for a step that applies steps concurrently.
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Step

RepeatStep

SequencedStepWhileStep SelectionStep

SimpleStep

1..*

CompositeStep

UnSequencedStep

Figure 5.7: Applying the Composite design pattern to allow the arbitrary
nesting of PMM control structures.

SelectionStep for a step that applies a step selected from a set of alterna-

tives.

WhileStep and RepeatStep for a step that applies steps repetitively. The

WhileStep applies a test before applying any steps, the RepeatStep

applies the test after applying the steps.

SimpleStep for a step that specifies some kind of project activity.

To allow the arbitrary nesting of PMM control structures, we now apply

the Composite design pattern ([36] pages 163–173) to our PMM step types.

This pattern provides a tree–structured decomposition of an arbitrary nest-

ing of different kinds of objects—in our case, PMM steps. Applying the

Composite pattern to PMM steps produces the UML of figure 5.7. The ab-

stract class CompositeStep is used to indicate that the abstract class Step

may be a SimpleStep or an arbitrary nesting of other Steps.

SimpleSteps specify activities that require various kinds of resources to

complete. We will define a ResourceType class that does not list literal re-

sources, but instead defines what kind of resource is needed by a SimpleStep.

Many different SimpleSteps might need many different ResourceTypes, ie:

this is a many–to–many relationship, and so we must create an association

class; Requirement, to reflect this relationship, shown in figure 5.8.
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*

1
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Figure 5.8: Linking SimpleSteps to ResourceTypes with a Requirement class
to reflect the many–to–many relationship.

Finally, a PMM begins by applying a main Step. This relationship is

shown in figure 5.9, that also combines all the other features of a PMM we

identified above.

5.7 PMM Behaviour

The UML of figure 5.9 describes PMM concepts, but it does not describe

the behaviour of a PMM when it is applied to a goal. Applying a PMM to

a goal results in the creation of a project that contains tasks, resources and

allocations. We can briefly describe how this happens, as follows:

Apply the PMM. Applying a particular PMM to a chosen goal results in

the creation of a project that will list the resultant tasks.

Apply PMM Steps. Beginning with the first PMM step, the control flow

of the PMM steps constrains the production of project tasks. SimpleSteps

produce a single project task, SequencedSteps produce sequences of

project tasks, and so on.

Specify Resources. The completion of a project task requires that one or

more resources be used. PMM ResourceTypes specify the different

resource types needed for each task resulting from the application of a

SimpleStep.
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1
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Figure 5.9: UML diagram of PMM concepts, formulated from our observa-
tions of PMM behaviour.

To specify PMM behaviour in more detail, we will first create a detailed

description of the connection between our PMM and PM models. This will

be done in chapter 6.

5.8 Conclusion

In this chapter we have used a simple example project to illustrate the op-

eration of three Software Engineering PMMs. Using a simple visualization,

we can find concepts of sequence, selection, repetition and concurrency in

PMMs, and have used these observations to formulate a conceptual model

of PMMs. In the next chapter, we will link this model to our PM model of

chapter 3, to create a framework that links projects and project management

methods.
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Chapter VI

The PM/PMM Framework

In this chapter we will connect the PM and PMM models previously

described to create a linked framework. We propose this framework as a so-

lution to the research problem posed in chapter 2: the creation of a database–

level connection between PM and PMMs.

6.1 Summary of the PM and PMM models

In chapters 1 and 3 we showed how PM, as supported by common tools,

uses a one–shot approach to achieve a desired goal. A static project plan

is formulated that describes a project that has tasks with allocations of

resources. Project progress is monitored against this static plan, with the

aim being to minimize the deviation of actual project progress from the plan.

We then showed how the data models of some common PM tools were similar

enough that we could, for example: usefully exchange project data between

Microsoft Project and Planner, and created a meta–model of the essential

common features of these data models (figure 3.6 on page 27).

In chapter 5 we showed that a PMM is a kind of “project recipe” that can

be used repeatedly, as opposed to a one–shot Project plan, and that applying

a PMM to achieve a desired goal creates tasks, resources and allocations, that

can be considered as a Project instance. We then described PMM control

flow in terms of an arbitrary nesting of sequence, selection, repetition and

concurrency, and applied the Composite design pattern to produce a meta–

model to represent PMMs (figure 5.9 on the preceding page).

We described PMM behaviour as the production of a project with tasks,

resources and allocations. Because one PMM can be applied repeatedly,

there is a one–to–many mapping from the PMM domain to the PM domain.
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We can describe this mapping between PMMs and PM in more detail by

considering that:

• one PMM may map to many Projects

• one PMM Step may map to many Project Tasks

• one PMM ResourceType may map to many Project Resources

• one PMM Requirement may map to many Project Allocations.

In the next sections, we will create a detailed model of these mappings,

and use them to link the PMM and PM models in a framework.

6.2 A Framework that maps PMM to PM

Our requirements for the framework we propose are as follows:

Firstly, the research problem posed in chapter 2 is to link PM and PMM

data so that, for example, projects can be described by a PMM. To address

this problem, we will create a framework that maps our PMM model of chap-

ter 5 to our PM model of chapter 3—the “database level” linkage described

by Bussler [12].

Secondly, we wish the framework to be general purpose, so that potentially

any kind of PMM and PM tool can be linked together, provided that the

data can be described by our framework1. Consequently, PMM tools created

using our framework will be generalized, not only in the PMMs they can

describe, but also in the PM tools they can exchange data with. To be

general purpose, we also require our framework to be independent of any

particular architecture, such as J2EE, .NET, etc.

1 Such a requirement is known to Software Engineering as separation of concerns: In
our case we wish to keep PMM concerns on the PMM side of the framework, and PM
concerns on the PM side of the framework.
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PMM Project*

1

Figure 6.1: Linking PMMs (left) to Projects (right).

Thirdly, we wish to make the framework extensible, so that new concepts

can be added as necessary.

In section 6.1 we identified four relationships that map PMM data to PM

data. We will now consider each of these mappings in more detail.

PMMs ⇒ Projects

When a PMM is applied to a goal, a Project instance is created. This happens

every time that a PMM is applied. We show the PMM–to–project link in

figure 6.1.

PMM Steps ⇒ Project Tasks

We must be able to record any kind of Step to Task mapping that may

occur in our framework. Steps may contain other Steps, and to reflect this

nesting we will make use of a common device in the PM tools we studied,

the SummaryTask. SummaryTasks provide a handy way of hiding details of

project tasks, by “rolling up” a series of SimpleTasks into one SummaryTask.

We will take the mapping of a PMM Step to many Project Tasks described

previously, and subdivide it as follows:

• one PMM SimpleStep may map to many Project SimpleTasks

• one PMM CompositeStep may map to many Project SummaryTasks.

This use of project SummaryTasks allows us to map PMM Steps composed

of Steps to project Tasks composed of Tasks, and so reflects the nesting of

PMM Steps in a corresponding nesting of Project Tasks This relationship is

shown in figure 6.2.
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Figure 6.2: Linking PMM Steps (left) to Project Tasks (right).
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SimpleTask

Requirement
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1

*

1
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Figure 6.3: Linking PMM Requirements (left) to Project Allocations (right).

PMM Requirements ⇒ Project Allocations

Any SimpleStep may have associated Requirements for ResourceTypes

that we will map to Allocations of Project Resources, as shown in fig-

ure 6.3.

We have chosen to link SimpleSteps to Requirements. Another option

would have been to link Steps to Requirements, but this would have caused

semantic ambiguity: what would such a construct mean for any steps nested

within a CompositeStep? Should they inherit the Requirements of their

parent, for example? In practice, we found that we could implement our

choice without loss of generality of the data model.

PMM ResourceTypes ⇒ Project Resources

We classify Project Resources as having a particular ResourceType, which

is used to specify what kind of Resource is given an Allocation to a Task.

This relationship is shown in figure 6.4.
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Figure 6.4: Linking PMM ResourceTypes (left) to Project Resources (right).

6.2.1 Constructing the Framework

Having described the mappings from the PMM domain to the PM domain,

we can now model a framework that links the PMM and PM domains at

the database level of Bussler’s taxonomy, as we proposed in chapter 2. This

framework model is shown in figure 6.5.

Our framework reflects the PMM–to–PM relationship in its objects, so

that, for example: there is a one–to–many mapping from PMM Requirements

to project Allocations, and PMM ResourceTypes to project Resources.

A more subtle record of the PMM–to–PM relationship is in the structure

of our framework, where the relationships between mapped objects are pre-

served. For example, there is a one–to–many relationship between PMM

ResourceTypes and Requirements, and also between project Resources

and Allocations, as shown in figure 6.3. In this way, there is a mapping

not only of PMM objects to project objects, but also of PMM object rela-

tionships to project object relationships. We make use of this mapping of

relationships in an implementation of the framework described in chapter 8,

where we use project data to record the state of an active PMM.

6.3 Semantics of the Framework

In the previous sections we created mappings from the PMM model to the PM

model. Semantic constraints are made on these mappings by the behaviour

of their respective PMM classes. In the following sections we describe these

semantics.
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Figure 6.5: Bringing all our PMM–to–PM mappings together: a conceptual
model of our framework that links PMMs (left) to projects (right).

6.3.1 PMMs ⇒ Projects

When a PMM is applied to achieve a particular Goal, a Project instance is

created, and the PMM main Step then controls the production of the first

Project Task.

6.3.2 PMM Steps ⇒ Project Tasks

As we showed in chapter 5, every PMM Step exhibits a certain behaviour

when we record the Project Tasks that it creates. These behaviours are

varieties of sequence, selection and repetition, as illustrated in table 6.1.

Because CompositeSteps may contain Steps in an arbitrary nesting, the Steps

so contained map to Tasks that reflect this nesting.

6.3.3 PMM Requirements ⇒ Project Allocations

A PMM SimpleStep may have Requirements for particular ResourceTypes.

These Requirements are recorded as Project Allocations of Resources (of

the specified ResourceType) to the Task associated with the PMM Step.
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PMM Steps Semantics of Steps
contained

Map to Project Tasks

SequencedStep Sequentially A SummaryTask containing
a sequence of Project Tasks
that reflect the ordering of
the set of Steps contained
in the SequencedStep

UnSequencedStep In parallel A SummaryTask containing
an unordered set of Project
Tasks that reflect the set of
Steps contained in the
UnSequencedStep

RepeatStep Repetitively. The
number of repetitions
is controlled by a test
at the bottom of the
loop

A SummaryTask containing
a repeated sequence of
Project Tasks that reflect
the Step contained in the
RepeatStep.

WhileStep Repetitively. The
number of repetitions
is controlled by a test
at the top of the loop.

A SummaryTask containing
a repeated sequence of
Project Tasks that reflect
the Step contained in the
WhileStep.

SelectionStep One or no steps are
selected, according to
an expression in the
SelectionStep.

A SummaryTask containing
zero or one selected Task.

SimpleStep Never contains Steps One Project SimpleTask

Table 6.1: The semantics of mapping different kinds of PMM Step to Project
Tasks.
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6.3.4 PMM ResourceTypes ⇒ Project Resources

Many different algorithms exist for the allocation of resources to tasks; [75]

describes 43 patterns, for example. We could use any of these patterns

for assigning Resources to Tasks. For example: one very simple resource

allocation pattern is: If a Resource of a given ResourceType exists in a

Project then it is used for all allocations of the given ResourceType. If

such a Resource does not exist in a Project instance then it is created and

allocated.

6.3.5 Addressing Bussler’s Mapping Problems

Having formulated our framework, we can test how well it addresses Bussler’s

list of mapping problems (table 2.1 on page 11). Table 6.2 summarizes how

our framework concepts and semantics address the requirements of Bussler’s

mapping problems.

6.4 Extensibility of the Framework

The principle of separation of concerns provides us with powerful tools to

extend the Framework: we can extend the PMM side with little or no effects

on the PM side, and vice–versa.

6.4.1 PMM Extensibility

The complex behaviour of PMMs is confined to two areas: there is the se-

mantics of PMM Steps, which act to constrain the structuring of Project

Tasks, and there is the allocation of Project Resources of a particular PMM

ResourceType.

The most likely part of the PMM model to require extension is the

Resource allocation model. In section 6.3.4 we illustrated resource allo-

cation with a very simple model: if a suitable Resource does not exist in a

Project instance then it is created. Many more effective methods of resource

allocation than this exist, and these allocations can be done in two basic

ways: The allocation is made at the time a Project Task is created, or the

allocation is deferred. Resource allocation could be made by some completely
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WFMS/PMM
concept

Project
Concept

Bussler’s Framework Mapping

Composite and
elementary
workflow

Task SimpleSteps map to SimpleTasks,
CompositeSteps map to
SummaryTasks.

N/a Tasks have
duration

Duration of tasks is set in the PM
domain.

Sequence End-to-
begin

Sequences of Steps map to Tasks with
Predecessors.

Conditional
Branching

N/a Control flow of SelectionSteps
determine the tasks that appear in the
project.

Parallel
Branching

Parallel
Branching

UnSequencedSteps map to parallel
Tasks.

Recursion N/a No recursion is available, but recursive
algorithms could be changed to an
in–line form.

Loops N/a WhileSteps and RepeatSteps map to
sequences of Tasks.

N/a Begin–to–
begin

Begin–to–begin and end–to–end Task
Predecessors can be specified in
SequencedSteps.

N/a End–to–end
Users, groups,
roles, etc,
together with
complex
assignment rules.

Resource Assignment rules of arbitrary
complexity can be applied because our
framework maps ResourceTypes to
Resources and Requirements to
Allocations.

N/a Resources
have
capacity and
load

Resource attributes are visible to
PMMs.

Data and
Dataflow

N/a Dataflow dependencies between PMM
Steps can be mapped to Tasks with
Predecessors.

Application
integration

N/a The “database level” connection of
our framework can connect and
integrate applications.

Table 6.2: How our framework addresses Bussler’s mapping of workflow man-
agement system (PMM) concepts to PM concepts, at the “database level”.
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Figure 6.6: Adding a new Step to the PMM model.

separate process, using, for example: the allocation patterns that Russell [75]

identifies.

One unfortunate consequence of mapping nested PMM Steps to nested

Project Tasks might be the formation of parallel inheritance hierarchies [34].

However, our approach mitigates against the worst disadvantage of parallel

hierarchies; that the creation of a new class in one hierarchy requires the

creation of a new class in the other. Because all kinds of PMM CompositeStep

map to Project SummaryTasks, we can add new CompositeSteps with new

behaviour types to the PMM model, and not require the addition of new

kinds of Project Tasks. Hence, the PM side of the Framework is unaffected

by the addition of new kinds of PMM behaviour, and our framework has a

clear path for such extensions, by adding new PMM Step types with new

behaviours, as we illustrate in figure 6.6. For example: we have two kinds of

PMM repetition step, although only one is strictly necessary. The WhileStep

we define has a test at the top of the loop, whereas the RepeatStep has the

test at the bottom. Either repetition step could be combined with a selection

step to synthesize the behaviour of the other repetition step, but we avoid

this complexity by defining both step types.
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Figure 6.7: Adding customizable properties to Tasks in the PM model.

6.4.2 PM Extensibility

One of the more likely areas of extension to be required for the PM model is

for more description of the PM objects: Tasks, Resources and Allocations.

Our Framework already requires some attributes added to the basic PM

model: we wish to record at least the PMM objects associated with Project

objects, and we will discuss this more in section 7.1.2. Many PMM tools dec-

orate the basic PM model with such concepts as Work Breakdown Structure.

These additions are implemented as attributes added to the PM model, and

some PM tools allow customizable attributes to be added to the basic de-

scriptions of PM objects. Figure 6.7 illustrates the addition of customizable

properties to Project Tasks, for example.

6.5 Conclusion

In this chapter, we have linked our PMM and PM models together in a

framework that we propose as a solution to the research problem of chapter

2. The semantics of the PMM–to–PM mapping is defined by the behaviour of

PMMs, Steps, ResourceTypes and Requirements. The Software Engineering

principle of Separation of Concerns allows us to extend the frameworks PM

and PMM models in a simple and logical way.
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Chapter VII

Implementing the Framework

In chapter 6 we formulated UML classes and semantics that describe our

framework at a conceptual level. In this chapter we will flesh out this con-

ceptual description to the implementation level, and discuss different repre-

sentations of our framework using three well–known meta–languages: unified

modelling language (UML), extensible markup language (XML) and struc-

tured query language (SQL).

7.1 UML and object–oriented representation

We have used the Unified Modelling Language (UML) for the derivation

of our framework. UML is the standard object modelling language, and it

can be mapped to object–oriented languages such as Java. Figure 6.5 on

page 60 is a conceptual, or high–level, UML model of the framework that

must be fleshed out with attributes and methods to be implemented. These

methods, and the attributes they require, can be derived from the semantics

of the framework described in chapter 6, but first these semantics must be

modelled. The next sections show how we applied an object–oriented pattern

to do this.

7.1.1 Applying the Interpreter Pattern

In chapter 5, we used the Composite pattern ([36] pp 175–184) to formulate

the PMM meta–model, and one result from this is that our PMM descriptions

constitute a defining grammar for the Interpreter pattern ([36] pp 243–255).

Figure 7.1 illustrates the interpreter pattern. This result provides a straight-

forward way of applying a PMM to a goal, by creating an Interpreter for our

PMM data model.
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<<interface>>

AbstractRule

+interpret(Context)

Terminal
+interpret(Context)

CompositeRule

+interpret(Context)

*

Figure 7.1: The Interpreter pattern. A Composite pattern, as used for our
PMM meta–model, can be used as the abstract syntax tree of an Interpreter
([36], p 255).

<<interface>>

Step

+myBehaviour(Context)

SimpleStep

+myBehaviour(Context)

CompositeStep

+myBehaviour(Context)

*

SequencedStep

+myBehaviour(Context)

UnSequencedStep

+myBehaviour(Context)

SelectionStep

+myBehaviour(Context)

WhileStep

+myBehaviour(Context)

RepeatStep

+myBehaviour(Context)

Figure 7.2: The Interpreter pattern applied to the PMM meta–model. Poly-
morphism of the myBehaviour() method implements the different behaviours
of the PMM Steps.

Applying the Interpreter pattern to the behaviour of PMM Steps results

in the model of figure 7.2. For this model, we have mapped Interpreter

CompositeRules to PMM CompositeSteps, and the Interpreter Terminal to

the PMM SimpleStep. The interpret() method from the Interpreter pat-

tern is mapped to myBehaviour() methods for each kind of PMM Step. The

context for the myBehaviour() method is provided by a pTask variable: this

is a Task that will be the parent of every Task created by the myBehaviour()

method.

A way to start the Interpreter is required, and this will happen when a
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PMM is applied to a goal. We will create a PMM applyToGoal() method

that, beginning with the PMM main Step, applies a PMM to a specified

goal.

Finally, associated with SimpleSteps are one or more Requirements for

ResourceTypes. To allocate Project Resources to Tasks mapped from the

SimpleStep, we will create an allocResource() method for the Requirement

class,

By applying the Interpreter pattern to the PMM model, we can perform

a depth–first walk of the tree of Steps that describe a PMM, to invoke the

semantics of a PMM applied to a goal. In appendix B, we describe in detail

the methods required to implement the semantics of the framework, when

applying a PMM to a goal.

7.1.2 Adding PMM Concepts To PM

In chapter 3 we derived a conceptual model of the basic common concepts

in the PM domain that fits straightforwardly into the data models used by

many common project tools (figure 3.6 on page 27). Our framework allows us

to record PMM concepts in project data, and to do this we must augment our

basic project data model. To make a project “PMM aware” in terms of our

framework, it’s necessary to augment our project data model with attributes

to record the relationships crossing from the PMM side to the project side

of the framework, as follows:

• the Project class gains PMM and Goal attributes, to record the PMM

and goal for the project.

• The Task class gains a taskType attribute that relates it to the PMM

Step.

• the Resource class gains a resourceType attribute.

This augmented project data could be stored in the data model of an exist-

ing project tool in a number of ways. For example: many project tools make

available user–defined attributes, (or, alternatively: attributes for English–

language descriptions) for projects, tasks and resources, that could be defined
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for our purpose. If the project data model has no customization available at

all, the augmented attributes could be stored in external data to record the

PMM–to–project associations.

7.1.3 An Implementation–level OO Model of our Framework

If we augment the conceptual description of our framework with the PM

attributes described above, and the methods and attributes described in

appendix B, then we can create an implementation–level UML description

of our framework—figure 7.3 on the next page illustrates. This description

could be used to describe the classes and methods of a Java or similar object–

oriented implementation of our framework.

7.2 A Relational Table Representation of the Framework

Although we have used the UML to design one implementation of our frame-

work, we are not limited to an object–oriented implementation. We might

have to implement the framework using a project tool that uses a relational

database [13] to store project data, and the following sections describe how

to do this.

7.2.1 Mapping UML to Relational Tables

UML object–oriented data model concepts are a superset of the concepts

represented with relational databases, but it is possible to map an object–

oriented data model to relational tables by such techniques as using a “type”

field to mimic inheritance. We mapped our UML framework description to

relational tables as follows:

• Each type of PMM Step is assigned a separate table, whilst maintaining

a unique Step ID across all step tables. This is to allow references to

any step type to be unique, required by the polymorphism of steps in

our PMM model. A similar strategy is used for project SimpleTasks

and SummaryTasks.

• Each OO class attribute is a field in the table representing the class,
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Figure 7.3: An implementation–level UML diagram of our framework, including methods and attributes, that links PMMs
(a) to projects (b). In the bottom left half are example UML Object diagrams of the Build and Fix PMM (c), and a
corresponding project instance (d) created using Build and Fix.
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Method1: PMM

name = ”Build and fix”

Step1: SequencedStep

name = ”main-step”
descr = ”Main PMM sequence”
cardinalityExpr = ”1”
seqKind = ”FS”

main step

Step2: SimpleStep

name = ”Project Initiation”
descr = ”Start the project”

Step3: RepeatStep

name = ”Project Implementation”
descr = ”Implementation loop”
ctrlExpr = ”Did Step7 succeed?”

contains (1st)

contains (2nd)

Step4: SequencedStep

name = ”Build/fix seq”
descr = ”implementation”
seqKind = ”FS”

contains

Step5: SimpleStep

name = ”Specify”
descr = ”Specify the program”

Step6: SimpleStep

name = ”Write”
descr = ”Write the program”

Step7: SimpleStep

name = ”Acceptance”
descr = ”Acceptance test”

contains (1st)

contains (2nd)

contains (3rd)

Rtype1: ResourceType

name = ”Programmer”

Rtype2: ResourceType

name = ”Customer”

Project1: PMMproject

name = ”Hello1”
startdate = ”15/3/05 13:00”
whatPMM = ”Build and Fix”
goal = ”Write Hello World”

Task1: SummaryTask

descr = ”Main sequence”
taskType = ”Step1”

startTime = ”13:00”
duration = ”85 mins”

topTask

Task2: SimpleTask

descr = ”Start the project”
taskType = ”Step 2”

startTime = ”13:00”
duration = ”5 mins”
percentComplete = 100

Task3: SummaryTask

descr = ”Implementation loop”
taskType = ”Step3”

startTime = ”13:05”
duration = ”80 mins”

summary

summary

Task4: SummaryTask

descr = ”implementation”
taskType = ”Step4”

startTime = ”13:05”
duration = ”40 mins”

summary

Task5: SimpleTask

descr = ”Specify the program”
taskType = ”Step5”

startTime = ”13:05”
duration = ”5 mins”
percentComplete = 100

Task6: SimpleTask

descr = ”Write the program”
taskType = ”Step6”

startTime = ”13:10”
duration = ”30 mins”
precentComplete = 100

Task7: SimpleTask

descr = ”Acceptance test”
taskType = ”Step7”

startTime = ”13:40”
duration = ”5 mins”
percentComplete = 100

summary

summary

Resource1: Resource

name = ”Programmer”
myType = ”Rtype1”

Resource2: Resource

name = ”Customer”
myType = ”Rtype2”

predecessor

predecessor

predecessor

Cal1: Calendar

availability = ”9-5 Mon-Fri”

Req1: Requirement

allocExpr = ”Rtype1”

Req2: Requirement

allocExpr = ”Rtype2”

Allocs4-10: Allocation

Alloc1-3: Allocation

Task8: SummaryTask

descr = ”implementation”
pmmStepID = ”Step4”

startTime = ”13:45”
duration = ”40 mins”

Task9: SimpleTask

descr = ”Specify the program”
taskType = ”Step5”

startTime = ”13:45”
duration = ”5 mins”
percentComplete = 100

Task10: SimpleTask

descr = ”Write the program”
taskType = ”Step6”

startTime = ”13:50”
duration = ”30 mins”
percentComplete = 100

Task11: SimpleTask

descr = ”Acceptance test”
taskType = ”Step7”

startTime = ”14:20”
duration = ”5 mins”
precentComplete = 0

summary

predecessor

predecessor

summary

summary

predecessor

Allocs11-12: Allocation

summary

(c) PMM instance (d) Project instance

71



so that the SimpleStep.name attribute maps to a name field in the

SimpleStep table.

• Relationships are represented by an attribute in the table, eg: the

parentStepID field is used to represent the parent–child relationship

of PMM steps.

• The SequencedStep table has an ordering field that is used to order

the child steps, because relational queries do not necessarily preserve

any kind of row ordering.

We designed relational tables, shown in tables 7.1 and 7.2, to represent our

framework. We have populated the tables with data to represent the Build

and Fix PMM, and a project instance created from this PMM.

7.2.2 Procedural Code for the Relational Representation

Relational tables cannot store any of the semantics that we describe in ap-

pendix B. These must be implemented as program code that manipulates the

tables. The code is procedural, not object–oriented, and so object–oriented

patterns such as the Interpreter are not directly applicable to procedural

code. However, we can use strategies to map the object–oriented framework

semantics to procedural pseudocode that manipulates relational tables, as

follows:

• Object initializers are mapped to a procedure that is used whenever a

new row is created in the table to which we mapped the object class.

• Object methods are mapped to procedures that manipulate the rela-

tional tables.

We used the above strategies to create pseudocode that applies a selected

PMM to create a project instance, for a specified goal, listed in appendix

B.3. This pseudocode was desk–checked, using the PMM in table 7.1 to

create the project instance in table 7.2.
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Project Management Method
id name description mainStepID

1 Build and Fix Simplest possible PMM 1

SequencedStep
id name description seqKind ordering parentStep

1 main step main seq “FS” 2,3 null
4 build/fix seq inner loop seq “FS” 5,6,7 3

SimpleStep
id name description milestone parentStep

2 Initiation Project setup activities false 1
5 Specify Specify the program false 4
6 Implement Write the program false 4
7 Accept Customer Acceptance Test false 4

RepeatStep
id name description ctrl expression parentStep

3 Implementation impl loop Did step 7 pass? 1

ResourceType
id name description

1 Programmer Writes programs
2 Customer Sets requirements

Requirements
simple–
StepID

resource–
TypeID

2 1
2 2
5 1
5 2
6 1
7 1
7 2

Table 7.1: Relational tables to represent the Build and Fix PMM, equivalent
to the UML implementation diagram of figure 7.3(a). The data in the tables is
equivalent to the UML object diagram of figure 7.3(c). We omit the unused
relational tables for WhileSteps, UnSequencedSteps and SelectionSteps that
are similar in form to the SequencedStep and RepeatStep tables shown above.
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PMMproject
id name descr main

Task
startdate Default

cal
what
PMM

goal

1 Hello A test
project

1 August
22,
2007 1pm

1 Build &
Fix

Create
“Hello
World”

SummaryTask
id name descr startTime duration parent taskType

1 main-step 13:00 85 mins — 1
3 Project Impl 13:05 80 mins 1 3
4 Build/Fix seq 13:05 40 mins 3 4
8 Build/Fix seq 13:45 40 mins 3 4

SimpleTask
id name descr start

Time
duration parent

ID
%
com-
plete

mile
stone

task
Type

2 Project
initiation

13:00 5 mins 1 100 false 2

5 Specify
program

13:05 5 mins 4 100 false 5

6 Write
program

13:10 30 mins 4 100 false 6

7 Acceptance
Test

13:40 5 mins 4 100 false 7

9 Specify
program

13:45 5 mins 8 100 false 5

10 Write
program

13:50 30 mins 8 100 false 6

11 Acceptance
Test

14:20 5 mins 8 100 false 7

Predecessor
taskID predecessor

taskID
pType lag

3 2 “FS” 0
6 5 “FS” 0
7 6 “FS” 0
8 4 “FS” 0
10 9 “FS” 0
11 10 “FS” 0
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Resource
id name descr calendarID resourceType

1 Programmer Ace Computer
Services

1 1

2 Customer Acme Inc 1 2

Calendar
id availability

1 9am to 5pm
Mon–Fri

Allocation
thisTask usesA

2 1
2 2
5 1
5 2
6 1
7 1
7 2
9 1
9 2
10 1
11 1
11 2

Table 7.2: Relational tables equivalent to the UML implementation diagram
of figure 7.3(b). The tables contain a project instance created with the Build
and Fix PMM of table 7.1, equivalent to the UML object diagram of figure
7.3(d).
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UML
construct

XSD entity

Classes An <xsd:complexType> that defines an
<xsd:element>

Attributes An <xsd:attribute>

One-to-one &
one-to-many
associations

<xsd:element> groups contained in <xsd:element>s.
Alternatively, association attributes or association ele-
ments may be used to record the ID of associated ele-
ments. The association elements may be contained in
a root-level element, or in one of the elements of the
association.

Many–Many
Relations

Association elements, as above.

Generaliza-
tion
(Inheritance)

The <xsd:complexType> of the parent class is used
as the base type of an <xsd:extension> in an
<xsd:complexType> that defines the child elements
(classes). An xsd:choice construct is used to refer to
the child elements in an abstract way.

Abstract
classes

An <xsd:complexType abstract=true> is used to de-
fine a base type for use with <xsd:extension>.

Enumerated
types

<xsd:enumeration> values for an <xsd:restriction> on
a base type.

Methods No direct representation. Methods are implemented as
program code associated with objects that are mapped
from XML data.

Table 7.3: Mapping the UML to XML Schema (XSD) representation.

7.3 An XML Representation of the Framework

XML [93] is an important and widely–used data representation that, for ex-

ample, is used by the Planner and GanttProject PM tools for their native

data storage format, and Microsoft Project can export XML data, as we

described in chapter 3. We can map UML classes to XML, as proposed in

[29] for instance. Table 7.3 lists the mappings we used when creating the

“TPMM” XML schema ([21], listed in appendix C), from the UML descrip-

tion of figure 7.3(a).

Using these mappings, OO classes such as SimpleStep, RepeatStep and
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OO Classes XSD entities
Step <typeBaseStep> abstract type
SimpleStep <SimpleStep> element
Step.name name attribute of the <typeBaseStep> abstract

type
Task <typeBaseTask> abstract type
SimpleTask <SimpleTask> element
SimpleTask.name name attribute of the <SimpleTask> element

OO relationships XSD relationships
SimpleStep to <SimpleStep> containing a
Requirement <Requirements> element, containing >= 1

<Requirement> elements
etc. . .

SimpleStep and
WhileStep

generalize to
abstract Step

<typeBaseStep> abstract type generalizes
<typeSimpleStep> and <typeWhileStep> that
define <SimpleStep> and <WhileStep>

elements.

Table 7.4: How we mapped some of the classes and relationships from our
framework of figure 7.3 to an XML Schema description.
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ResourceType were transliterated to XML elements of the same name. OO

attributes such as SimpleStep.name were transliterated to an XML name

attribute attached to the <SimpleStep> element. OO relationships such as

the one–to–many relationship from SimpleStep to Requirement were imple-

mented by nesting inside the <SimpleStep> element a <Requirements>

element. This element contains one or more <Requirement> elements. OO

generalization of PMM Step types was transliterated to a <typeBaseStep>

that had the abstract attribute set. An <xsd:extension> was then ap-

plied to the <typeBaseStep> to produce a <typeCompositeStep> that

could contain one or more <xsd:group> elements that contained the PMM

step types generalized. The <typeCompositeStep> is also abstract. It was

further extended to final types <SequencedStep> and <SelectionStep>.

We also created an abstract <typeUnaryStep> that could contain one and

only one PMM step, and was extended to final types <RepeatStep> <WhileStep>

and <UnSequencedStep>. Table 7.4 summarizes some of these mappings.

In a similar way, we can map the PM data model of figure 7.3(b) to an XML

schema for project data.

The TPMM schema closely mirrors the OO classes, attributes and rela-

tionships from which it was derived, and it is quite prescriptive, so that a

<WhileStep> is allowed to contain one and only one of the steps extended

from <typeBaseStep>, for example. A simpler and more permissive XML

schema or DTD might allow any number of steps to be so contained. The

resultant XML may be ambiguous and difficult to interpret, however. We

used TPMM to write PMM descriptions for a prototype implementation of

our framework that is described in chapter 8.

7.3.1 Semantics for XML data

Similarly to a relational representation, the XML schemata above do not

include the semantics our framework requires, and they must be implemented

as program code. One way of implementing these semantics would be use

the strategy suggested in table 7.3, and map the XML data to objects that

have methods associated with them in some object–oriented language. A

technology such as the Java Architecture for XML Binding (JAXB [45])
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would be suitable for such an implementation. The object–oriented methods

of section B.1 could then be applied to objects representing the XML data

of PMMs and projects.

Another way of implementing the semantics of our framework is to take

a much more “XML–oriented” approach. In this case, the data is manipu-

lated in a way much closer to the logical structure of an XML tree of nodes

with attributes. Such an approach relies on procedural code to manipulate

the XML data, similarly to the approach used for relational tables in section

7.2.2, but rather than creating rows in tables and fields in rows, we create

elements and attributes in a tree of XML data. This XML–oriented approach

is simple to implement because our framework is based on the intrinsically

tree–structured Composite pattern, and so the XML tree structure quite

easily reflects the relationships in both project and PMM data. For an im-

plementation, we require some fairly direct interface to the XML data such as

Java/DOM [27] that provides us with methods for creating and manipulating

XML elements and attributes. We used this strategy for an implementation

described in chapter 8.

7.4 Conclusion

In this chapter, we have produced three different implementation–level de-

scriptions of our framework, using UML, relational tables and XML. This is

possible because our framework is independent of any particular representa-

tion. In the next chapter, we will describe a Java/XML–based implemen-

tation of the framework, and also some visualizations of PMM and project

data. These applications of our framework use the data–level linkage that it

makes between PMMs and projects.
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Chapter VIII

Applying the Framework to some Real Problems

In chapters 1 and 2, we outlined some of the difficulties raised, and oppor-

tunities afforded, by the application of PMMs to projects. In this chapter

we first describe some specific problems and opportunities raised by project

managers, during discussions about the application of PMMs to projects.

Our framework supports the creation of tools and visualizations that we will

then describe, with examples, to address these problems.

8.1 Some Real–World Problems with Projects and PMMs

During the course of this thesis, we informally discussed project management

and PMMs with IT project managers who had 10 or more years of experience,

including industry practitioners from small and large enterprises, project

management tutors and academics. A half–dozen or so project managers

raised issues for which our framework could support software tools. These

included:

• Project generation and scenario or “what–if” analysis is laborious with

project tools.

• The complexity of PMMs makes them difficult to describe and follow.

• PMMs are difficult to apply to projects, because of the mismatch be-

tween PMM and project data. For example: the potentially iterative

Waterfall method is still often used in IT projects, but as a strictly

once–through project template, rather than a PMM. The “software

project” template included with Microsoft Project works similarly.
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• When PMMs are applied to projects, they have to be “hidden” in the

project data. For example: a project manager we spoke to assigned one

long project task for the operation of an iterative PMM, so that the

tasks generated by the PMM were not recorded (figure 8.1). Similarly,

the code development part of the the software development template

packaged with Microsoft Project 2003 consists of one task that takes

three weeks. Compare this code development task to, say: the applica-

tion of Extreme Programming (XP) to a software development project.

For each software feature, XP would require the code development to

run through at least one, and probably several, code/test cycles, each

of which consists of several tasks that would probably be in the region

of hours or days, rather than weeks. The Microsoft Project template

glosses over this complexity.

Project task

PMM tasks

Figure 8.1: Hiding PMM tasks in a project task—only one project task is
recorded because of the difficulty of recording PMM information with conven-
tional project tools.

8.2 Project Generation and Scenario Analysis

One of the more laborious aspects of using the PM tools we studied is the

creation of a project plan. When creating a project plan from scratch, the

project manager is required to manually enter project task information, the

relationships between tasks, the project resource information and finally as-

signments of resources to tasks. Any revision to the plan requires manual

alterations in a similar way. Scenario analysis, involving the generation of

project data for many different situations, multiplies this labour.

There is recognition of these problems, and some PM tools have facili-

ties available to automate project creation: Some project tools can import

81



resource information from, eg: an LDAP [48] directory server maintaining

employee information for a company, if such is available. Template plans are

also available for a limited range of project types—but as we have pointed

out in chapter 3, templates do not assist with the revision of a plan.

8.2.1 Project Mentor

To address the problem of easily generating project plans, and especially the

problems of applying a PMM to a project, we wrote a Java applet; “Project

Mentor” [20], that uses the data framework of figure 7.3 on page 70, imple-

mented as XML schemata. Designing Project Mentor was also a good test

of how implementable our framework actually is. Project Mentor uses both

the PM and PMM sides of our framework, and also the semantic connection

between them. The appearance of Project Mentor is shown in figure 8.5 (at

the bottom—the visualization on the top will be described in section 8.3).

Project Mentor applies a PMM to a specified goal, and automatically gener-

ates Projects, tasks, resources and assignments under the control of a project

manager.

In section 7.3 on page 76, we described how we mapped our framework to

XML schemata. PMM descriptions for Project Mentor are written with the

XML schema TPMM, and we used this schema to write a small library of

PMM descriptions, including the Waterfall method [73], Extreme Program-

ming [5] and the Rational Method [71]. These PMMs, available at [20], were

used to generate projects with Project Mentor.

For recording the “PMM aware” project data described in section 7.1.2

on page 68, we could have mapped the PM model of our framework to a

custom XML schema, but we chose instead to use an existing project XML

DTD that closely matches our frameworks PM model. Using an existing

DTD allows Project Mentor to generate “PMM aware” project data that

can be viewed and manipulated with an existing software tool, even though

this tool was not designed with reference to any PMM concepts. The data–

level connection between PM and PMM data that our framework makes

this possible. Appendix C.2 lists this DTD, used in the Planner project

tool [42], and describes how we augmented it with PMM attributes, as per
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section 7.1.2. There are some disadvantages with using the Planner DTD.

DTDs do not provide abstract types and inheritance, for example, so the data

model as implemented is less descriptive then an XSD description we could

have derived from our UML PM model. Also, there are specific problems

with the Planner DTD such as the ambiguity of the <property> element.

However, the advantage of using an existing tool for dealing with project

data outweighed these minor problems.

We used the “XML–oriented” approach of section 7.3.1 to implement the

PMM semantics of chapter 6 as Java code, that interacts with PMM and

PM data stored in DOM [27] trees reflecting the above XML schemata. The

Java code is procedural code that directly manipulates these DOM trees.

When started, Project Mentor first queries for the location of a project

instance. If the project does not contain the location of a PMM then a PMM

is queried for, and the PMM is applied from its initial step to a goal that

the user specifies. If the project does contain the location of a PMM, then

Project Mentor loads this PMM description and reconstructs the state of the

PMM process from the project data, then continuing with the application of

the PMM. This is possible because the relationship between PMM and PM

data in our framework is sufficiently close that Project Mentor can make use

of the project data it produces as an XML serialization of the PMM process

state. To record the process state, we indicate which project tasks are active

in terms of the PMM1. Project Mentor may be interrupted at any time, by

typing “q” in response to a query from the applet. The project instance

created up to that point can later be used as the initial project instance for

starting Project Mentor, which will then carry on applying the PMM to the

goal originally specified by the user, and stored in the project instance. When

Project Mentor terminates, either by being interrupted or when a PMM has

finished, project data is loaded into a web browser window by the applet to

be saved for viewing or manipulation with Planner.

Project Mentor allows the application of PMMs to projects, but it still

relies on project management tools to deal with project–level attributes, such

as task length: Project Mentor assigns a default task length of one day, and

1 In the Planner DTD, we do this by setting the task priority to 9999
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PMM 1

Goal
PMM 2

Project 1

Project 2b

PMM n Project n

Project 2a

Project 2c

scenario a

scenario b

scenario c

Figure 8.2: Scenario analysis: Generating different project instances for the
same goal, using different PMMs and control flows. Each PMM can be ap-
plied to many different scenarios (in this case, PMM 2 is applied three dif-
ferent ways), by operating the control flow of the PMM in different ways.

relies on the use of the Planner project tool to customize task length. One

alternative way of setting task length might be to add a taskLength attribute

to the PMM SimpleStep class, that was then used to set the length of every

project Task generated from the SimpleStep. This approach could fit in

with the strategy employed by such PMMs as Extreme Programming. XP

has hard deadlines pre–set in its steps, such as a regular (say) fortnightly

release cycle.

Scenario Analysis

Project managers can make use of the powerful features of both PMMs and

project management tool, for easily generating project instances when, eg:

analysing many different project scenarios. Scenario analysis using a project–

generation tool like Project Mentor is illustrated in figure 8.2. Using a library

of PMMs with Project Mentor, generation of projects for many different

PMMs and project scenarios becomes possible.
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A

B

C
A B C

Sequence Selection Repeat-until While-do Concurrency

Figure 8.3: How we applied the elements of Nassi–Shneiderman diagrams
to represent from left to right: a SequencedStep, SelectionStep, RepeatStep,
WhileStep and UnSequencedStep.

8.3 Process Visualization

To address the problem of comprehending PMMs and their application, we

investigated their visualization and animation. Project schedules, tasks and

the assignment of resources to tasks can be visualized in a project instance

using, for example: the Gantt chart display of a PM tool. However, the

process control flow that PMMs use is quite abstract and difficult to visual-

ize, and it is more dynamic than a project plan. For example: our Project

Mentor implementation appears to the user as a “black box”, that asks ques-

tions and then produces a project instance. Software engineers have similar

problems when trying to understand computer programs (Dijkstra [25] ob-

served in 1968 that “our intellectual powers are rather geared to master static

relations and that our powers to visualize processes evolving in time are rel-

atively poorly developed”), and systems have been created to visualize and

animate program control and data structures (eg: [69][72][62]). Wiggins [90]

reviews many of these systems, and concludes that “While it seems to be the

consensus that animations are helpful, as yet no study has substantiated that

fact”. It may be that visualization and animation of PMMs would be useful

for project managers, but we could find little written about this topic, and so

we investigated ways of visualizing and animating PMMs and PMM–driven

projects with process visualizations.

Much of the descriptive capabilities of a PMM lie in its control flow

structures. To visualize this control flow, we examined some methods of vi-

sualizing process control flow, such as flowcharts and the related UML action

diagrams, etc. One example visualization is that of chapter 5, that we used
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to track the progress of a PMM and illustrate control sequences. Our simple

visualization quickly becomes quite bulky when tracking a large number of

steps, but we found that Nassi–Shneiderman (NS) diagrams [59] can provide

a compact visualization of PMMs and PMM activity. NS diagrams are a

well–known visualization of process control structures that map straightfor-

wardly to the PMM control structures we define, as shown in figure 8.3. We

applied NS diagrams to our simple implementation. First, we created NS

representations of the PMMs we had described. An XSL transform, “pmm-

tosvg.xsl” [23], was written to convert PMMs described using our TPMM

schema to SVG [83] graphics files representing a NS diagram of the PMM, as

figure 8.4 illustrates. An SVG viewer, such as a web browser with an SVG

plugin, can then view the NS diagrams.

Next, we tried animating the NS diagrams to illustrate the flow of control

in a PMM. As each step is applied, that step is highlighted in a NS diagram

of the PMM. This animation was created by making pmmtosvg.xsl produce,

in addition to the basic NS diagram of a PMM, an NS diagram for each PMM

step, with that step highlighted. These files are used by our Project Mentor

Java applet when it is passed a parameter; “ANIMATE”. When animating

a PMM, the applet pops up a browser window and loads SVG files produced

by pmmtosvg.xsl into the window, for each PMM step as it is applied. Figure

8.5 illustrates one step of the Waterfall PMM being animated using an NS

diagram in this way.

8.4 Visualizing PMM Concepts in Project Data

Section 8.3 described an animation of control flow for PMMs. Visualization of

PMM control flow in project data might also be useful for project managers,

so that the pattern of application of the PMM in the project data can be

made obvious. Some conventional workflow systems have the ability to export

tasks to project tools, but when this is done, process information is lost, so

that it is impossible to relate the project data to the process that produced it.

Using our framework, a project instance can be augmented with attributes

indicating which PMM step each project task was produced by. The project

data then acts in an analogous way to the execution trace of a computer
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<PMM name="Build And Fix">

<SequencedStep name="main-step" seqKind="FS" id="1">

<SimpleStep name="Project Initiation" id="2"/>

<RepeatStep name="Project Implementation" id="3"

ctrlExpr="Customer Acceptance Test outcome">

<SequencedStep name="Build/fix seq" seqKind="FS" id="4">

<SimpleStep name="Specify the program" id="5"/>

<SimpleStep name="Write the program" id="6"/>

<SimpleStep name="Customer Acceptance Test" id="7"/>

</SequencedStep>

</RepeatStep>

</SequencedStep>

</PMM>

Figure 8.4: Moving from an XML representation of a PMM (simplified for
illustration) to a Nassi–Shneiderman (NS) diagram representing the same
PMM steps. We created the above Nassi–Shneiderman diagram by using batik
[4] to render an SVG graphic, that was produced by applying pmmtosvg.xsl
to the XML file with our description of the Build And Fix PMM.
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Project Mentor

What is the URI of a Project Instance?
What is the URI of a PMM?
What is the Goal of this project?
Step (live): main-step
Step (live): Project Initiation
Step (live): Requirements Gathering
Step (live): RG-seq
Step (live): RG Activities
Step (live): Document RG
Step (live): RG V+V
Redo Requirements Gathering: Loop again
(Y/N)?

N

Figure 8.5: The Project Mentor applet (bottom) using a Nassi–Shneiderman
diagram [59] (top) to visualize the application of the Waterfall method. PMM
steps in the Nassi–Shneiderman diagram are highlighted to illustrate the ac-
tive step.
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program, and it becomes possible to visualize the history of the application

of a process, as we examine project data. For example: we could highlight

the steps in a PMM visualization that correspond to project tasks.

To test the feasibility of this approach, we made more use of the NS

diagrams described in section 8.3. We altered two of the XSL transforms

(html1 gantt.xsl planner2html.xsl, available at [22]) that Planner version 0.13

uses to export project data as HTML files. We added Javascript [30] to the

HTML files to pop up an extra browser window that displays SVG files

produced by pmmtosvg.xsl. As the mouse is moved over task names in the

Gantt chart of project data on the HTML page, corresponding PMM steps

in a Nassi–Shneiderman diagram are highlighted. Figure 8.6 illustrates.

8.5 Creating And Editing PMMs

Our framework affords the possibility of creating tools that manipulate PMM

descriptions. For example: because we can represent our PMM language as

an XML schema, it is possible to use one of the many available XML schema–

sensitive editors [65] such as Xeena [43] to create and revise PMMs. When

writing PMMs for Project Mentor, our personal preference is to use the XML

mode of gvim[64], but a schema–sensitive editor constrains the user to only

adding XML tags that are allowed by an XML schema, in the context the

user is editing. Such general–purpose editors are very XML–oriented, so that

the user is often dealing directly with XML tags, in some kind of tree–based

view (because the basic architecture of XML documents is a tree). For editing

PMMs, we could create a graphical tool based on, say: Nassi–Shneiderman

diagrams, using a direct–manipulation interface. The user would manipulate

a NS diagram representing the PMM they wished to edit, while the tool

dealt with the PMM data. Such a tool would relate closely to the NS–based

visualizations we previously described, so that if a project manager found it

necessary to “tweak” a PMM–generated project by adding or changing tasks

(something that we will see does happen, in chapter 9), the visualization of

section 8.4 would highlight exactly which area of the PMM these changes

related to. The PMM could then be revised to reflect the project tweaking,

as appropriate.
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- Planner file:///sfs/.linuxmnt/moa.cosc.canterbury.ac.nz:iruwyfths5a2siesaj39uab...

1 of 1 04/21/2006 05:15 PM

Unnamed Project

Start: April 10, 2006
Finish: April 12, 2006
PMM: file:/home/cosc/staff/ajd41/.netbeans/work/pmm/Waterfall.xml
Goal: test
Report Date: April 11, 2006

Gantt Chart

Tasks

Resources

This file was generated by Planner

WBS Name Work Week 15, 2006 Week 16, 2006 Week 17, 2006
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

1 main-step 3d 
1.1 Project Initiation 1d Cust
1.2 Requirements Gathering 2d 
1.2.1 RG-seq 2d 
1.2.1.1 RG Activities 1d Cust, Syst

1.2.1.2 Document RG 1d QA T

1.2.1.3 RG V+V 1d Cust, QA T

WBS Name Start Finish Work Priority Complete Cost
1 main-step Apr 10 Apr 12 3d 
1.1 Project Initiation Apr 10 Apr 10 1d 0%
1.2 Requirements Gathering Apr 11 Apr 12 2d 
1.2.1 RG-seq Apr 11 Apr 12 2d 
1.2.1.1 RG Activities Apr 11 Apr 11 1d 0%
1.2.1.2 Document RG Apr 11 Apr 12 1d 0%
1.2.1.3 RG V+V Apr 12 Apr 12 1d 0%

Name Short name Type Group Email Cost
Customer Cust Work 0
QA Team QA T Work 0
Systems Analyst Syst Work 0

Figure 8.6: Visualizing PMM “footprints” in project data. The “RG V+V”
PMM step is highlighted as the user mouses over a corresponding task in a
Gantt chart of the project. The Gantt chart was created as an HTML page,
using planner2html.xsl.

90



(a) PMM meta-model (c) Project meta-model

(b) PMM data (d) Project data

PMM design
tools and

visualizations

Project design 
tools and

visualizations

PMM-to-project
tools and

visualizations

-PMM descriptions,
-PMM libraries

-Project instances,
-Project templates

Figure 8.7: How tools and visualizations fit into the meta–models and data
in our framework of chapter 6.

8.6 Conclusion

In this chapter, we have listed some problems found with conventional project

management, especially when PMMs are applied to projects. We have then

illustrated, with examples, how our framework affords the creation of tools

and visualizations that address these problems. To recap:

• The difficulty of project generation and scenario analysis is addressed

in section 8.2.

• The complexity of PMMs is addressed in sections 8.3, 8.4 and 8.5.

• The difficulties of applying PMMs to projects are addressed in sections

8.2, 8.3 and 8.4.

Figure 8.7 uses our framework to categorize the tools and visualizations we

have described in this chapter:

• Data itself may be usable as a tool, such as PMM descriptions (b) and

project templates (d).

• Software project tools such as Microsoft Project cross quadrants (c)

and (d), since they produce project data constrained by a meta–model.

• Our Project Mentor tool of section 8.2 similarly uses quadrants (c) and

(d), and also quadrants (a) and (b), because it makes use of PMM

descriptions.
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• The PMM editors discussed in section 8.5 and the process visualization

of section 8.3 are described by quadrants (a) and (b).

• The project data visualization of section 8.4 uses quadrants (b) and

(d).

In chapter 9 we will describe a case study and a survey that tests our frame-

work against some extant project data.
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Chapter IX

A Case Study and a Survey

In this chapter, we present two tests we applied to explore how useful the

concepts in our framework might be to project managers.

The test, and the way that we chose, is to examine some published project

plans, and look for features that indicate the application of PMM ideas that

we can relate to our framework.

First, we describe a case study that compares how a project manager

applies a PMM to a goal with how our Project Mentor implementation simi-

larly applies a PMM. Next, we describe a survey that attempted to find PMM

features in project data, what level of project complexity project managers

normally work with, and any features that indicate the application of PMM

ideas we can relate to our framework.

9.1 Comparing Human and PMM–Generated Project Plans

To show how our framework provides a context for the analysis of a project

in terms of a PMM, and to illustrate some of the difficulties encountered by

project managers when applying a PMM to a project, we undertook a case

study to compare a PMM–generated project plan to a project plan created

by a human project manager, who used a similar PMM.

9.1.1 Method

We used our framework as the context for a comparison of PMM features in

an existing plan for an IT project, created with reference to the Rational Uni-

fied Process (RUP), to a plan generated with Project Mentor, also using RUP

and with a similar goal. We observed how many tasks in the PMM–generated

plan were present in the human–generated plan, and in what order, how the
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project resources were assigned to the tasks, and the general descriptiveness

of the project plans.

For the case study, we created a description of the RUP PMM with refer-

ence to an IBM/Rational “RUP best practices” document [71]. The human–

generated plan was examined and tasks were manually classified according to

the steps in our RUP PMM. For instance: RUP calls for phases of Inception,

then Elaboration, Construction and Transition, and so we looked for major

tasks with similar names and the above ordering in the project plan.

We then used our RUP description and Project Mentor to generate a

project plan with a similar goal and control flow to the human–generated

plan. For example: there were no code–writing iterations in the human–

generated plan, although an “iteration planning” task was included, therefore

we did not create any iterations in the generated plan. We compared the

PMM–generated plan to the human–generated plan, and compared the plans

for the existence of tasks mandated by the PMM, and the ordering of the

tasks.

9.1.2 Observations and Discussion

Figure 9.1 illustrates how we went about the comparison described above:

Where equivalent tasks (by the author’s reckoning) were present in the human

generated plan (a), we have marked the tasks in the generated plan (b) with

an asterisk and the task name from plan (a). Some tasks in plan (a) were

in a different part of the plan than our RUP PMM specified, and we have

annotated these in plan (b) with the name of the RUP phase from plan (a)

that they came from.

Tasks

Classification of the tasks in the human–generated plan was relatively straight-

forward because the task names corresponded well to the step names in our

RUP PMM (our Project Mentor implementation defaults to naming project

tasks with their corresponding PMM step name for similar reasons of clar-

ity). All of the PMM–required tasks classified in the human–generated plan

could be mapped to our PMM–generated plan, but the human–generated
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plan lacked many tasks that it should have had, according to our PMM de-

scription. Some of the tasks of the human–generated plan were also in the

wrong RUP phases, ie: they were out of sequence, so that, for example: the

task of capturing supplementary requirements was in the Inception phase of

the human–generated plan, when the RUP description we used specified that

this task should be in the Elaboration phase.

Resources

The human–generated plan had relatively anonymous resource names, mak-

ing it difficult to ascertain what kind of resources the project required. The

“resource type” aspect of the RUP PMM had been lost from the original

project. To remedy this, we produced table 9.1, that relates the original

project resources to the PMM ResourceTypes listed in our PMM–created

project. We were able to tabulate the PMM ResourceTypes against project

resources because we were able to collate similar tasks in both projects, as we

described in section 9.1.2. Having done this, we could see that certain sets

of resources were assigned to tasks for which our PMM specified particular

sets of ResourceTypes, summarized in table 9.1 (c). For example: we can

see that each of the project resources M1, M2 and P1 are assigned, with no

assistance, to Feature construction, and so are expected to fill the roles of

Customer test team, Systems analyst, Data Analyst and Programmer Team,

which might be a bit of a stretch for one person. Also, there is a risk cre-

ated by having programmers test their own code. Ideally, a different person

should be assigned to test the code.

9.1.3 Conclusions

The results of our case study lead us to believe that our framework may

assist project managers, by providing tools and visualizations that make the

application of PMMs to projects less laborious, and project plans easier to

revise. We found obvious correspondence between the tasks of the both the

human and PMM–generated plans, so that the four RUP phases of Incep-

tion, Elaboration, Construction and Transition existed in both plans, and in

the same order. The human–generated plan quickly moved on to implemen-
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(a) the original manually created RUP project plan
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(b) the RUP project plan generated by Project Mentor.

Figure 9.1: Two screen shots of Planner comparing Gantt charts of a manually–generated plan to a plan generated with
our Project Mentor tool.
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Project
Re-
source

Assigned to
project tasks

equivalent
PMM–
generated
tasks

PMM resource types
required

E1, J1,
P1

OECD Vision,
Risk List, Test
List,
Supplementary
Specs, S/W
Architecture
document, etc

Vision
document,
Initial
use–case
model, Initial
risk
assessment,
Project
iteration plan,
etc

Users, Stakeholder
representative, Customer
representatives, Customer
test team, Data analyst,
Programmer team, Project
manager, Software
accountant, Software
architect, Software testing
team, Systems analyst, Use
case designer

E1, P1 OECD E1 Setup
Framework, E4
Web Services

Executable
architectural
prototype

Data Analyst, Programmer
team, S/W Architect,
Systems analyst

E1, M1,
P1

OECD Dynamic
Content, C1 Save
Requests, C6
Attach new
Service, C6 Action
Requests

Feature
construction

Customer test team,
Programmer Team,
Software Testing Team

M1 C5 Contact
Centre—Pack
Requests

Feature
construction

Customer test team,
Systems analyst, Data
Analyst, Programmer Team

M2 C7 Change
Requests

Feature
construction

Customer test team,
Systems analyst, Data
Analyst, Programmer Team

P1 C8 PCR
Integration, Pack
Requests

Feature
construction

Customer test team,
Systems analyst, Data
Analyst, Programmer Team

M2, P1 C4 Course DB
features, etc

Feature
construction

Customer test team,
Systems analyst, Data
Analyst, Programmer Team

M2, Z1 OECD C9 Addr
Table data
migration,
Transcripts

Feature
construction

Customer test team,
Programmer Team,
Software Testing Team

W1 OECD Web
Enrolment pages
(static), Timetable
load and display
(static)

Executable
architectural
prototype

Systems analyst, Data
Analyst, Programmer Team,
Software architect

Table 9.1: Tabulating resources and tasks against the equivalent PMM–
generated tasks and resources. This table shows how many resources had
to be “Jacks of all trades” in the human–generated project.
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tation, without much planning and designing, missing out and re–ordering

PMM steps along the way. This re–ordering of steps is significant because

it is unlikely that we have simply misinterpreted the human–generated plan

when we classified its tasks. Instead, we speculate that the human project

designer has altered the RUP PMM for their own purposes. Apart from the

tasks being in a different order, the PMM–generated plan is larger and more

prescriptive than the human–generated plan.

Table 9.1 is used to indicate skill sets that particular people or groups of

people in the original project are expected to have, according to our PMM.

It is then possible to ascertain whether particular groups of people should be

retrained or augmented by skills of the specified type.

Our framework provided the context for this case study because it relates

PMM data to project data. Because we were able to find traces of PMM

information in the human–generated plan, we were able to meaningfully re-

late the human–generated project data to our PMM–generated project data.

For this case study we had to apply a lot of interpretation to the two sets of

project data, but our framework affords the possibility of formally testing the

conformance of project data to a PMM, using XML schemata for example.

Appendix D describes how we used such an approach to schematically verify

project data produced by our Project Mentor prototype implementation.

9.2 A Survey to Look For PMM Features in Projects

Our case study of section 9.1 showed that project managers can and do

make use of PMMs, and that we can find traces of the application of a

PMM in project data. We decided to survey some project data, looking for

features that we could relate to PMM concepts. The sample of project data

we surveyed was drawn from plans produced using Microsoft Project, and

published on the internet1.

We wanted to test whether PMM ideas were already used by project

managers, who might thus benefit from tools and visualizations produced

in the context of our framework, that assist them to apply and visualize

1 a Google search for Start Finish Duration Work Cost filetype:mpp produces
nearly 10,000 hits at the time of writing
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PMMs. To do this, we measured the occurrence of the following features

that we relate to PMM ideas:

• A milestone is a task type that tries to act like a PMM control struc-

ture, because it specifies a test or sign–off that should complete for the

project to proceed. If a milestone is not completed then the project

should be revised—more tasks might have to be inserted, or work might

have to be discarded. An ordinary project in this situation suffers from

the problems that we describe in chapters 2 and 4, but applying a PMM

can assist the project manager to revise the project plan, because such

a milestone test can be related to the flow of control of a PMM.

• Microsoft Project makes available a “recurring task” facility. This is

a task that is set to recur at a set interval for a set number of times,

and it is a PMM–like feature, similar to the WhileStep or a RepeatStep

that we define in our framework, but lacking the control flow—the task

simply recurs for a preset number of times. However, a recurring task

introduces the idea of tasks that repeat into projects, and so they relate

to the repetition concept of PMMs.

• Tasks with predecessor tasks could relate to a PMM sequence or repe-

tition structure, as we describe in figure 5.5 on page 50.

In addition to the above PMM features, we looked for features that in-

dicated that projects could benefit from the increased automation and de-

scriptive capabilities that our framework affords. In chapter 8 we described

how, because of the difficulty of manually recording all the detailed tasks in

a project, project managers may “hide” PMM information in project tasks

(illustrated in figure 8.1 on page 81).

If the shortest task length of the projects we survey is relatively large—in

the order of days rather than hours or minutes—then this may indicate a

similar under–recording of project complexity, since the shortest task length

in a project indicates roughly the level of detail to which a project plan works.

The number of resources in a project may also give an indication of project

complexity: we speculated that a large project, over time, would use dozens
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of different resources, and a project with only a few resources would either

not be expected to do much work, or to have under–represented the number

of resources.

9.2.1 Method

We used a sample of 116 Microsoft Project files, gathered from such insti-

tutions as city councils, universities and health services—see appendix E for

the files. The project files were converted to XML by hand, using Microsoft

Project. We created an XSL transform, mspstats.xsl, to gather the following

measurements from the XML files:

• Number of tasks

• Shortest Task Length, in minutes

• Number of resources

• Number of predecessors/number of tasks

• Number of milestones/number of tasks

• Number of recurring tasks/number of tasks.

9.2.2 Observations and Discussion

Our observations are summarized in table 9.2. The distributions of our mea-

surements were quite skewed and long–tailed. For this reason, we used the

median and upper and lower quartiles for analyzing the measurements, be-

cause they are relatively resistant to the statistical outliers that may be

present in our measurements. We will discuss each measurement in turn.

Number of tasks The median number of tasks (54), and even the maxi-

mum (760), is lower than we expected for recording the real number of tasks

in projects. We speculated that the largest projects would consist of thou-

sands of tasks.
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Measurement Lower
quartile

Median Upper
quartile

Number of tasks 26 54 126
Shortest Task Length,
minutes

0 0 480

Shortest non-zero Task
Length, minutes

420 480 480

Number of resources 1 5 16
Number of
predecessors/number of tasks

11% 57% 74%

Number of milestones/number
of tasks

0.3% 9% 18%

Number of recurring
tasks/number of tasks

0% 0% 0%

Table 9.2: The measurements from our survey of project data.

Shortest Task Length, minutes The most common shortest task length

is zero minutes, but this is because the milestone tasks that most projects

have are given a zero duration by Microsoft project. We found that for the

vast majority of projects, the shortest non-zero task length was 480 minutes,

or one working day. This is the default task length when a new task is created

in Microsoft Project 2003, and we found a cluster of 63 measurements on 480

minutes. Only a few projects recorded shorter minimum task lengths, down

to 12 minutes.

Number of resources This measurement is also unexpectedly low, with

quartiles of one, five and 16. A project plan with one or zero resources

probably under–describes a project, and yet 25% of projects fell in this range.

Number of predecessors/number of tasks More than half the tasks in

most projects have predecessors, indicating that many project task lists are

quite structured.

Number of milestones/number of tasks The average percentage of

milestones in a project is 9%, indicating that project managers do make use
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of this facility. The percentage of milestone tasks in a project is always likely

to be fairly small, since a milestone is the culmination of a series of earlier

activities.

Number of recurring tasks/number of tasks Recurring tasks were not

used in significant amounts. It may be that this facility is not often useful,

or is too complicated to use routinely, or project managers were simply not

aware of it.

9.2.3 Conclusions

Our measurements of the number of tasks and resources, and the shortest

non-zero task length, indicate that many project plans are not intended to

be exhaustive specifications of a project, below the level of tasks one day

long. We speculate that the reason for this is that it would be very laborious

to record absolutely every task and resource for a project plan, even if the

project manager used a template plan. A very detailed plan would in any

case have to be constantly and extensively revised, if it were to record every

twist and turn of the real progress of a project.

Our framework affords the use of PMMs to automatically create and re-

vise project plans that are much more prescriptive than the manually–created

plans our survey found. Tasks could be realistically specified down to the level

of hours, for example. Very specific plans, created from very large PMMs,

may be useful for micro–managing projects where very detailed project con-

trol and tracking is possible and desirable. Large IT projects might be one

area for applying such prescriptiveness, because of their poor track record

for success, and the amenability of software development technology such as

IDEs to instrumentation. On the other hand, a very prescriptive PMM would

not suit the high–level style of project planning adopted in the majority of

projects we surveyed. For this style of project management PMM designers

may want to deliberately keep their PMMs quite simple and be a summary

of the PMM, rather than a description of every last detail.

We found that project plans often include some kind of test or control,

in the form of milestone tasks. When a milestone fails, a project manager

is thrown back on their own skills to revise a project plan, as we showed in
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chapter 4. Our framework augments project data with PMM concepts, so

that milestones could be translated to PMM control structures, rather than

simply being a test that “has to pass”. Such PMM–driven projects may thus

be less fragile because a PMM specifies the revision of a project, according

to its control structures.

Our survey indicated that the PMM–like feature of recurrent tasks added

to Microsoft Project is not much used. Our framework allows an approach

to augmenting projects with PMMs that may be more acceptable to project

managers, since it does not require project tools to have more features added

in order to use PMMs. Instead, a PMM can manipulate a project in isolation

from the project tool, and so, for example: a project manager does not have

to deal directly with a PMM. Where it is necessary for project managers

to deal with PMMs and relate them to projects, our framework affords the

creation of visualizations to assist them, such as those we described in chapter

8. To summarize our findings from the survey:

• Project plans appear frequently to be more a summary of a project,

than an exact description.

• We identified situations where tools operating in the context of our

framework could be useful to project managers. For example: we could

use a PMM to automate aspects of creating project plans that are more

detailed than human–generated plans. Also, project milestones could

be translated to PMM control structures that assist the revision of a

project plan, rather than a project manager having to manually revise

a project plan when a milestone fails.

• Project managers appear not to use advanced features such as recur-

rent tasks in Microsoft Project. Our framework has the advantage of

augmenting projects with PMM concepts, without requiring project

tools to be augmented with more features.
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9.3 Conclusion

The case study showed that our framework is an effective context for testing

the PMM conformance of a project, and revising either the project or the

PMM in the light of the conformance test. The survey showed that project

managers do make use of PMM–like features such as milestones, and that

project managers may benefit from a PMM–driven project that assists them,

say: when a project milestone fails. We also found in both the survey and

case study that PMM–driven projects can be more complete and descriptive

than most manually–created projects. Project managers may benefit from

this extra detail in a PMM–driven project, or alternatively PMM designers

might have to be careful not to be over–prescriptive when creating PMMs.
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Chapter X

Conclusion

In this chapter we summarize our contributions to knowledge. We then

recap how we addressed the research problem of chapter 2, and conclude with

directions further work could take.

10.1 Our contributions

The main contribution to knowledge of this thesis has been our framework,

that consists of a generalized description of the PMM and PM domains, and

the connection between them, shown in figure 10.1. The top two quadrants

of figure 10.1 are the data models that we derived for PMMs and PM, and

these models describe data in the bottom two quadrants. Our framework

makes a semantic link between PMMs and PM, by linking PMMs, Steps and

Resource Types to Projects, Tasks and Resources.

The generalized, database–level connection between PM and PMM that

we have created with our framework affords the creation of tools, metrics and

visualizations for PMM and project data, even for project tools originally

Project
data model

Project
Management Method

data model

Project
Management Method

data

Project
data

Semantic link

Meta
model

Figure 10.1: Summary of the concepts in our framework.
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created without reference to our framework, and we have described some

prototype examples of these in chapter 8. Many advantages accrue from our

framework:

• Our Project Mentor tool applies our framework and can create projects,

according to a chosen PMM, in a much less laborious way than man-

ually creating than. This automated approach eases analysis of many

different project scenarios, for example.

• Not only is project creation less laborious, it is more repeatable. The

most suitable PMM for a particular goal can be selected from a library

of PMMs, and consistently applied. The decision support available

to a project manager using a suitable PMM may reduce the risk of a

project.

• Our framework connects PMMs to projects, and we can use it to cre-

ate visualizations of PMMs, as they are applied or post–hoc. Project

Mentor can make use of Nassi–Shneiderman (NS) diagrams to indicate

the operation of the PMM it is applying. We also implemented an

XSL transform to create post–hoc visualizations of PMM application

in project data, again using NS diagrams.

10.2 Recap

Projects fail, sometimes in expensive and catastrophic ways. The research

problem we proposed in chapter 2 was to create a data–level connection

between the domains of project management (PM) and project management

methods (PMMs), so we can create software tools and visualizations, etc, that

use both the reactivity and prescriptiveness of PMMs, and the simplicity,

history and context of PM. We believe that these tools can assist project

managers to create projects that are more robust, less laborious to manage,

and less dependent on highly skilled individuals for success.

By analyzing the domains of PM (in chapter 3) and PMMs (in chapters

4 and 5), we have created data models that describe them both. In chapter

6 we then created a framework that links PM data to PMM data using
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well–defined semantics, that we derived by examining the action of PMMs

when applied to a project goal. Our framework is general–purpose, and

independent of any particular software architecture, as we showed in chapter

7. Implementation–level descriptions of the framework and its semantics are

in appendices B and C. In table 2.1 on page 11, Bussler [12] identifies a

number of mapping problems from the PMM domain to the PM domain.

We formulated solutions to these problems, and table 6.2 on page 63 lists

how our framework addresses Bussler’s list.

Our framework of figure 10.1 affords the creation of software tools and

visualizations that move easily between the two domains, making use of the

best features of both. Some example applications of our framework are de-

scribed in chapter 8. Because our framework is data–based, project data

can be directly related to PMMs in a number of ways. Our Project Men-

tor implementation, for example, stores PMM state directly as project data

that represents the serialized PMM process. A PMM can be interrupted and

restarted at any time. We created visualizations of PMMs using process vi-

sualizations (Nassi–Shneiderman diagrams). Because our framework relates

PM data directly to PMM data, it allows us to visualize PMM activity in

project data, post–hoc and without reference to any PMM state.

Once we had created data models for projects and PMMs, and a frame-

work that related them together, we were able to look for PMM–related

features in a survey of project data, described in chapter 9. We looked for

the use of such features as project milestones, because projects augmented

with tools that use PMMs might assist the project manager revise a project

when, say, a milestone fails to pass.

Our survey also brought to light the summary aspect of many project

plans. Because our framework affords the creation of tools that automate

project creation and revision, tools produced using our framework may be

able to assist project managers with more fine grained management of projects.

Our case study provided some insight as to how a project manager applied

a PMM to a realistic situation: the PMM was customized for the project,

with steps re–ordered or left out. Our framework allows us to point out

the discrepancies between the project data and either say what it “should”

be or, alternatively, to indicate how to customize a PMM by, for example:
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indicating what steps to leave out or re–order.

10.3 Future Work

10.3.1 Using Commercial Workflow Languages for PMMs

The applications of our framework described in chapter 8 use a PMM de-

scription language that was created by a simple transcription of our UML

model of PMM data to TPMM, a custom XML schema. This was done

partly to test our PMM data model, but also because of a deficiency in the

many commercial workflow languages that we might have used to describe

PMMs. During our background work for this thesis, we examined some com-

mercial workflow languages such as BPML [8], BPEL4WS [7] and XPDL

[94]. We found that these industry standard workflow languages have little

or no support for representing resource requirements. Russell, et al [75] find

that BPEL4WS has no support at all for resource allocation, for example.

We expect that these commercial workflow languages could express the

control flow of PMMs, because workflow is similar to the control flow of

PMMs. Provided that some way of describing resource requirements for a

workflow language could be found, the language could be used to write PMM

descriptions. One way of doing this might be to augment the workflow lan-

guage with resource descriptions: Workflow activities could have resource

requirements added to them. A workflow system that executes a language

such as BPEL4WS could then be augmented with resource allocation algo-

rithms. Alternatively, a “resource broker” process might be used to allocate

resources to workflow activities, according to their requirements.

Provided the resource description and allocation problems above can be

solved, we could create an implementation of our framework that used a

commercial workflow language for describing and applying PMMs.

10.3.2 Creating Project Metrics Using Our Framework

Our framework links PMM data to project data, and so we can derive PMM–

related metrics for project tasks and resources, because PMMs, steps and

resource types used to generate project data are related to each project, task
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and resource. If we record project tasks at a fine level of detail; perhaps by

instrumenting the tools that are required for the tasks, we could compare

very closely the real progress of a project with the planned project, or use

such information for deriving project metrics. Even if such a comparison is

done post–hoc, it may provide valuable information to a project manager.

A library of PMM “best practices” could be built up, to document the most

effective ways of applying a PMM, for example.

An example metric could be the number of iterations of a code–test cycle

for implementing a software feature. If the iterations exceeded say, five, then

something may be wrong with either the specification or the implementation

of the software feature, and it should be reviewed.

The Nassi–Shneiderman visualization of project data we described in

chapter 8 can assist a project manager to define suitable metrics for a par-

ticular PMM. For example: a constantly–cycling sequence of steps would be

made obvious by the visualization, as activity for a sequence of tasks would

be centred on a single loop in the PMM. Figure 8.6 on page 90 illustrates our

visualization highlighting the requirements gathering loop in the Waterfall

method. If this same step had been highlighted several times already then

there may be cause for concern about the number of iterations of this step.

We can also apply project metrics to PMMs, so that we could, for example

measure the relative costs of particular PMMs. The application of a number

of PMMs to the same goals could be simulated, as we did in chapter 5, and

the resultant project costs measured. This could be done for a number of

different project scenarios.

10.3.3 A Hybrid Approach to Workflow Resource Allocation

As we mentioned in section 10.3.1 above, commercial workflow languages do

poorly when it comes to dealing with resources. The result of this situation

is illustrated in figure 10.2: the relationship between task production and re-

source allocation is quite loose, and resource allocation may be a completely

separate process that follows the production of tasks. Russell, et al1, de-

scribe 43 patterns for how these resource allocation processes work, which

1 See also http://is.tm.tue.nl/research/patterns/
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Process Resources

Figure 10.2: Workflow processes “throw tasks over the fence”. Tasks are
produced and then handed out to resources for execution.

are variations on:

• directly allocating resources to tasks.

• allocating resources via roles, or some other resource attribute similar

to the ResourceType attribute defined in our framework.

• allocation via some kind of resource broker system; tasks might be

“auctioned” to resources, for instance.

These patterns are strategies to cope with the stream of tasks produced by

a workflow system. Because the allocation of resources to workflow tasks is

done as the workflow unfolds, workflow systems produce problems such as:

• Unpredictable behaviour of workflow, and of allocations.

• Overloading of resources.

• Lack of history and context: resources operate in isolation from the

workflow.

• Because tasks are “thrown over the fence”, it is difficult to re–order or

otherwise change tasks to better fit resource availability.

The patterns Russell defines attempt to deal with these kinds of problems,

by defining such behaviours as delaying the start of tasks, reallocating tasks

to less–loaded resources, etc.
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Our Project Mentor implementation of our framework can and does use a

“traditional” workflow approach to resource allocation. We allocate resources

to tasks depending on a ResourceType attribute, or role. However, our

framework makes a close link between processes and projects, and so we can

also make use of some project–domain strategies for resources allocation, in

addition to the process–oriented approach that traditional workflow uses.

Hence we can make use of reactive and prescriptive processes and also the

simplicity, history and context of projects, when allocating resources in our

framework.

When it is applying a PMM, Project Mentor produces “chunks” of project

plan (say, by listing all the tasks in a sequence), and so we know what

tasks and resources will be required in the near future of the project. To go

further into the future, we could also estimate how PMM control steps will

go and plan even further ahead. After these “chunks” of project plan are

produced and recorded in a project plan, allocation of resources to tasks can

be manipulated using PM tools—for example: Planner can change resource

allocations in projects produced by Project Mentor. Once we are working in

the project domain, we can apply PM resource allocation methods to these

“chunks” of project plan.

In the project domain, resources are directly allocated to tasks. However,

because a project plan has available to it the project history and future

context, project planning has available to it ways of allocating resources that

workflow systems do not:

• Workflow systems can delay the start of tasks, but our framework pro-

vides the context to delay tasks with reference to critical path require-

ments of projects, so that we know the latest or earliest possible start

for tasks, before progress is impacted.

• Workflow systems can re–order tasks, but our framework provides the

context of a project plan, so we know it is OK to re–order unsequenced

tasks, for instance.

• We can split tasks (eg: between 2+ resources, or halt/restart a task)

in the context of a project plan, and know what the impact will be.
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Our framework has available yet another way of dealing with resource

allocation problems. Project Mentor can roll back the project plan to some

arbitrarily saved state, and begin again. Such an approach is required, even

for workflow systems, because some number of workflow tasks might fail to

complete. To cope with this situation, BPML and BPEL4WS have the idea

of “compensation” activities. However, it is up to the workflow programmer

to programme the compensation activity.

The design of Project Mentor not only allows the above “compensation”

approach, but we can also take a snapshot or checkpoint of the state of a

PMM, by serializing the state to a project instance. Having done this, we

can carry on with a re–activated PMM, and roll it forward to plan the near

future. If we decide that this particular “chunk” of the project is unsatis-

factory, we can re–start the PMM from our snapshot and start again, with

different control inputs to the PMM. The advantages we gain from this hybrid

approach to resource allocation and project creation include:

• More context for delaying, re–ordering or splitting tasks.

• We know better what we can change in the project plan before impact-

ing on progress.

• We can apply project–domain algorithms eg: for resource levelling.

• We can try and plan the future (by running workflow into the future).

• We can use scenario analysis by trying many different project plans for

a goal.

Project Mentor was initially created to bring the power of workflow to

project planning. However, we believe that project planning strategies can

also benefit workflow, and improve resource allocation and task creation

strategies. Ordinary workflow approaches have some difficulties with re-

source allocation, and the Project Mentor approach may solve some of these

problems.
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10.4 Concluding Remarks

This thesis has taken a data–modelling approach to try and find ways to

improve the control of complicated projects such as IT projects. We propose

a framework that links data from projects to project management methods

(PMMs), so that projects can make use of the familiarity, history and context

of project management (PM) tools, as well as the prescriptiveness and re-

activity of PMMs. The data–modelling approach has advantages over other

architectures such as message–passing, because our framework is generalized

and extensible, and PMM data added to project data is persistent. Project

tools can be augmented with PMM concepts, even though they may not have

been designed to use them. To demonstrate the possibilities, we have cre-

ated prototypes of some of the tools and visualizations that our framework

affords. We used a case study and a survey to test whether project managers

make use of PMM concepts, and, since they do so, tools, metrics and visual-

izations created in the context of our framework may assist the management

of complicated projects.
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Appendix A

Waterfall and Extreme Programming PMMs

In chapter 5 we applied two PMMs; the Waterfall Method and Extreme

Programming to a simple example project. This appendix describes PMMs

using text, and using Nassi–Shneiderman diagrams [59].

A.1 The Waterfall Method

First described by Royce [73], the Waterfall Method consists of the following

steps:

Requirements gathering. Requirements are determined by the client,

and then validated by a software quality assurance team (SQA).

Specifications are produced in the form of documents stating what the

program has to do. The requirements are validated by a SQA team and then

signed off (agreed to) by the client. A software project management plan is

drawn up, with time and cost estimates for the production of the software.

This plan is also validated by a SQA team.

Design. The specifications are used to produce the design for the software—

how the software will work rather than what it will do. Acceptance tests for

the software are also produced. In the light of the design activities, faults

with the specifications may become apparent, requiring revisions to both de-

sign and specifications. These changes to specification must be documented

and signed off by the customer and the SQA team.

Implementation. This step constitutes the production of code, or the

realization of the design. Once again, the implementation step may bring
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to light faults in the specification and design of the program, resulting in

changes to the specification, design and implementation, similar to changes

produced during the specification step. These changes must also be signed

off by the customer.

Once the program is completed, SQA team and the client sign off the

program according to the agreed acceptance tests.

Integration and deployment. The completed software is installed on

the client’s computer systems and integrated into the business organization.

The client must agree and sign off that the installation is complete—this

agreement can be difficult to obtain!

Maintenance. Once the completed system is installed, any further changes

to the system constitute maintenance. Eventually, the maintenance may be

substantial enough to require a complete new software project.

In the above description, and as originally envisaged by Royce, failure

of any validation and verification step may require the Waterfall method to

restart from an earlier step. Figure A.1 illustrates our interpretation of the

Waterfall process1.

A.2 Extreme Programming

Extreme Programming (XP) [5][46] is a modern software engineering method

that is extremely iterative, and aims to “release early and often” updates to

the software being developed. XP comes with a number of rules and practices:

Schedule: The schedule of the project is closely managed, and normally

there are regular releases of software according to a schedule of a few days

up to a fortnight.

Test–Driven Programming: Before any code is written to implement a

user requirement, a test for the code (unit test) and test for the customer

1 This Nassi–Shneiderman Diagram was produced using the “nassi” LATEXstyle, cf figure
A.2 that was produced directly from our SVG visualization of a PMM
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Figure A.1: The control flow of the Waterfall PMM.
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(acceptance test) is written.

Pair Programming: Programmers work in pairs on the same task, pro-

viding a constant review of the code.

Refactoring: As a result of the constant review of the code, refactoring

(rewriting the software) is a frequent activity, on the grounds that it is good to

frequently rewrite code, and rewriting will simplify and improve the code. For

example, one goal for object–oriented projects would be to increase cohesion

and reduce coupling of software modules.

The code must always build: It is a requirement that each incremental

change to the project produces a usable and running system, so that the all

code is always integrated.

The XP method applies the above rules and practices to the following

steps:

System Architecture The system architecture, around which the initial

code will be written, is designed. The architecture provides a starting point

for the implementation of the first release, then the following sequence is

iterated to produce software releases until the customer decides to finish the

project:

Release Planning This is carried as follows:

• User requirements are written down as “user stories”, typically

on a small card, and these provide the specifications for the cod-

ing. The client decides which stories have the highest priority for

implementation.

• User stories are broken down into tasks of a few hours length.

• The programming team estimates the length and difficulty of the

tasks, and the customer decides which stories are most important

for this release of the software.
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Implementation: The following steps iterate frequently within a release,

and may take place in parallel as tasks are implemented.

• A “design spike” may be required, where the whole implementa-

tion team discusses a problematic code feature. The result may

be the subdivision of the feature, or it may be moved down in

priority for implementation.

• The first action of an implementation task is the creation of a

test case (unit test) for the code implementing the task. Tests

are created with consultation between the programmer and the

customer.

• The code is implemented and tested with the unit test, which has

to run correctly to pass.

• The customer decides the acceptance, or not, of implemented

features—they may respecify a feature once they see it in op-

eration.

• A feature is not implemented successfully until it is integrated into

the current software release, and all unit tests for the release run.

Release: Features that have been implemented are released to the customer,

strictly according to the preset release schedule.

Termination: The project may be stopped after any release, because the

software must pass all tests to be released.

Figure A.2 illustrates our interpretation of the Extreme Programming

PMM that we created for Project Mentor. The diagram was produced us-

ing batik [4] to render an SVG graphic produced using pmmtosvg.xsl [23].

Pmmtosvg.xsl was applied to the XML file containing our description of the

Extreme Programming PMM.
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Figure A.2: Nassi–Shneiderman Diagram of the Extreme Programming pro-
cess.
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Appendix B

OO Methods and Procedural Code

In chapter 6 we formulated semantics for our framework, linking PMM

to PM data. These semantics were described at the conceptual level, and

they can be fleshed out by considering an implementation using a specific

architecture. Because the concepts of our framework were described with

object–oriented UML, we will begin with an object–oriented implementation

description.

B.1 Object–Oriented Methods

We can take the Interpreter pattern that we used in chapter 7 and write down

object–oriented pseudocode for object initializers and the myBehaviour()

methods that we described. First we describe the PMM methods so created,

and then section B.2 describes the PM methods.

PMM.applyToGoal(aGoal: text)

Parameters

aGoal is a description of a project Goal to achieve.

Body

new PMMproject(aGoal, this)

parentTask = Task.getTask(this.mainStep, NULL, "UNSEQ", NULL)

this.mainStep.myBehaviour(parentTask)
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SimpleStep.myBehaviour(pTask: Task)

Parameters

pTask is ignored, but required for the polymorphic myBehaviour() method.

Body

For each Requirement associated with this Requirement.allocResource(pTask)

SequencedStep.myBehaviour(pTask: Task)

Parameters

pTask is the Task that will be the parent of all Tasks created here.

Body

predTask = NULL

For each Step in this.contains

predTask = Task.getTask(Step, pTask, Step.seqKind, predTask)

Step.myBehaviour(predTask)

UnSequencedStep.myBehaviour(pTask: Task)

We are able to implement concurrent behaviour as threads (lightweight pro-

cesses) for two reasons. Firstly, there is no communication between each

thread. Secondly, each new thread produces a new branch in our tree of

project data. Third, there are no user variables, and only the control flow of

the immutable PMM is used to drive the process.

Parameters

pTask is the Task that will be the parent of all Tasks created here.
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Body

for this.cardinalityExpr new Thread

parentTask = Task.getTask(this.contains, pTask, "UNSEQ", NULL)

Step.myBehaviour(parentTask)

Thread.join()

RepeatStep.myBehaviour(pTask: Task)

Parameters

pTask is the Task that will be the parent of all Tasks created here.

Body

parentTask = NULL

repeat

parentTask = Task.getTask(this.contains, pTask, "FS", parentTask)

this.contains.myBehaviour(parentTask)

until (this.ctrlExpr == FALSE)

WhileStep.myBehaviour(pTask: Task)

Parameters

pTask is the Task that will be the parent of all Tasks created here.

Body

parentTask = NULL

while (evaluating this.ctrlExpr == TRUE)

parentTask = Task.getTask(this.contains, pTask, "FS", parentTask)

this.contains.myBehaviour(parentTask)
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SelectionStep.myBehaviour(pTask: Task)

Parameters

pTask is the Task that will be the parent of all Tasks created here.

Body

selectedStep = (the result of evaluating this.mapExpr)

parentTask = Task.getTask(selectedStep, pTask, "UNSEQ", NULL)

selectedStep.myBehaviour(parentTask)

Requirement.allocResource(aTask: SimpleTask)

Implements a simple resource-allocation mechanism: allocate to the given

SimpleTask the first Resource we find with the correct resourceType. If

none found then create an appropriate Resource.

Parameters

aTask is the SimpleTask for which we will be allocating Resources.

Body

For each Requirement found by evaluating this.allocExpr

aResource = the first Resource found where (Resource.ResourceType

== aResourceType)

If (aResource == NULL) aResource = new Resource(aResourceType)

new Allocation(aResource, aTask)

B.2 PM Methods

In the following sections, we describe initializers for project data created

using the “PMM project” model formulated in section 7.1.2:
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PMMproject(aGoal: text, aPMM: PMM)

This is the initializer for a PMMproject.

Parameters

aGoal is a description of a project goal to achieve.

aPMM is the PMM that will be applied to the project goal.

Body

goal = aGoal

defaultCal = new Calendar("9am to 12pm and 1pm to 5pm, Monday to

Friday") This will be the default calendar.

name = a name for the PMMproject.

startDate = the current time

whatPMM = aPMM

Task.getTask(aStep: Step, pTask: Task, pType: text, predTask:

Task)

Returns a SimpleTask or SummaryTask, as appropriate.

Parameters

aStep is a PMM Step.

pTask is a parent Task.

pType is the type of predecessor.

predTask is a predecessor Task, or NULL for no predecessor.
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Body

if (aStep is SimpleTask) return new SimpleTask(aStep: Step, pTask: Task,

pType: text, predTask: Task);

else return new SummaryTask(aStep: Step, pTask: Task, pType: text,

predTask: Task);

SimpleTask(aStep: Step, pTask: Task, pType: text, predTask:

Task)

This is the initializer for a SimpleTask

Parameters

aStep is a PMM Step.

pTask is a parent Task.

pType is the type of predecessor.

predTask is a predecessor Task, or NULL for no predecessor.

Body

name = aStep.name

descr = aStep.descr

milestone = aStep.milestone

taskType = aStep

percentComplete = 0

startTime = calculate from predecessor startTimes and durations.

duration = a default of one day.
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parent = pTask

if (predTask != NULL) myPred = new Predecessor(predTask, pType)

SummaryTask(aStep: Step, pTask: Task, pType: text, pred-

Task: Task)

This is the initializer for a SummaryTask

Parameters

aStep is a PMM Step.

pTask is a parent Task, or NULL for the top-level Task

pType is the type of predecessor

predTask is a predecessor Task, or NULL for no predecessor

Body

name = aStep.name

descr = aStep.descr

taskType = aStep

startTime = calculate from predecessor startTimes and durations.

duration = the the sum of the Task durations contained by this task.

parent = pTask

if (predTask != NULL) myPred = new Predecessor(predTask, pType)

Predecessor(predTask: Task, pType: text)

This is the initializer for a Predecessor.
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Parameters

predTask is a predecessor Task, or NULL for no predecessor.

pType is a string from the set ”UNSEQ”, ”FS”, ”SS”, ”SF”, ”FF”. This is a

specifier for the sequence type of the predecessor for the Task created:

either no sequence, finish-to-start, start-to-start, start-to-finish, finish-

to-finish.

Body

pTask = predTask

pType = pType

lag = 0 default of zero lag.

Resource(rType: ResourceType)

This is the initializer for a Resource.

name = rType.name

calID = the default Calendar.

myType = rType

Allocation(aRes: Resource, aTask: Task)

This is the initializer for an Allocation.

thisTask = aTask

usesA = aRes

129



Calendar(listOfTimes: text)

This is the initializer for a Calendar.

availability = listOfTimes

B.3 Procedural Pseudocode

In section 7.2 we describe how to implement our framework using relational

tables. These tables require procedural code rather than the object–oriented

methods described above. Here is a description of how to apply PMMs

described using relational tables:

1. Create the Project Instance

(a) Create a set of empty tables similar to those of table 7.2.

(b) Create a new row in the Project table, and set the fields in the

row as follows:

id set to a unique identifier generated for the project.

name set this to a suitable name for the project.

descr set this to a suitable description for the project.

start date set this to the current time, unless the project is to

begin at some other, specified, time.

whatPMM set to the name of the PMM used for the project, from

the PMM table.

goal set to the specified goal for the project.

(c) In the Calendar table, record a row with the the id field set to a

unique identifier. Set the availability field to 9am to 12pm and

1pm to 5pm, Monday to Friday. This will be the default calendar

for the project.

2. Begin applying the PMM starting with the PMM Step identified

by the mainStep field in the PMM table and record a a SimpleTask table

row, if it is a SimpleStep, otherwise record it as a SummaryTask table
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row. Set the Project mainTask field to the id of this first task. The

child Steps of this Step are then applied, then their children, and so on,

in a depth–first walk of the PMM Steps.

3. Record Tasks, Resources and Allocations in the project instance.

• Whenever a row is recorded in the project SummaryTask table,

fields in the row recorded are set in this way:

id is a unique identifier generated for each task.

name is set from the name of the associated PMM Step.

descr is set to an empty string.

startTime is set to the start time of the project, plus the the sum

of the task durations which precede this task.

duration is set to the sum of the durations of the tasks summa-

rized.

parentID set to the parent taskID.

taskType is set from the PMM Step identifier; id.

• Whenever a row is recorded in the project SimpleTask table, fields

in the row recorded are set in this way:

id is a unique identifier generated for each task.

name is set from the name of the associated PMM Step.

descr is set to an empty string.

startTime is set to the start time of the project, plus the the sum

of the task durations which precede this task.

duration is set to a default estimate of one day.

parentID set to the parent taskID.

percentComplete is set to zero.

milestone is set from the Step milestone field.

taskType is set from the PMM Step identifier; id.

• The semantics of project task creation is specified by the name of

table in which each PMM Step is found, as follows:
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SimpleStep

(a) Record a row in the SimpleTask table.

(b) i. Search the PMM Requirements table for rows having the

id of this SimpleStep.

ii. For each row found, search the project Resource table for

resources having the same resourceType attribute.

iii. If such a resource is not found, then record a new row in

the project Resource table. Set the attributes of this row

as follows:

id set to a unique identifier for the resource.

name set initially to the PMM resourceType name field.

descr set initially to an empty string.

calendarID set initially to the Project defaultCal.

resourceType set to the id of the resourceType.

iv. The association of task to resource is then recorded in the

thisTask and usesA attributes of a row in the Allocation

table of the project instance.

SequencedStep

(a) Record the SequencedStep as a row in the project SummaryTask

table.

(b) Record each child PMM Step contained by the SequencedStep

as a SimpleTask table row, if it is a SimpleStep, otherwise

record it as a SummaryTask table row.

(c) Record rows in the Predecessor table to record the sequence

of steps that is listed in the ordering field of the SequencedStep.

Set the the predecessor taskID to the ID of the predeces-

sor task of each task id. Set the pType from the seqKind

attribute of the PMM SequencedStep to describe the kind of

step sequence; finish–to–start, finish–to–finish, start–to–finish

or start–to–start (FS/FF/SF/SS).
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UnSequencedStep

(a) Record the UnSequencedStep as a row in the project SummaryTask

table.

(b) For a number of times set by the cardinalityExpr expres-

sion, record the PMM Step child of this UnSequencedStep

as a SimpleTask table row, if it is a SimpleStep, otherwise

record it as a SummaryTask table row.

RepeatStep

(a) Record the RepeatStep as a row in the project SummaryTask

table.

(b) Record the PMM Step child of this RepeatStep as a SimpleTask

table row, if it is a SimpleStep, otherwise record it as a

SummaryTask table row.

(c) If this is not the first iteration of the loop, record a row in the

project Predecessor table with the predecessor taskID set

to the ID of the task generated in the previous loop, and the

taskID set to the ID of the task generated in this loop. Set

the predecessor type to finish–to–start and the lag to zero.

(d) If the result of the RepeatStep control expression is “fail-

ure”, repeat this sequence beginning from step 3b, otherwise

control flow of this RepeatStep ends.

WhileStep

(a) Record the WhileStep as a row in the project SummaryTask

table.

(b) If the result of the WhileStep control expression is “fail-

ure”, then control flow of this WhileStep ends.

(c) Record the PMM Step child of this WhileStep as a SimpleTask

table row, if it is a SimpleStep, otherwise record it as a

SummaryTask table row.

(d) If this is not the first iteration of the loop, record a row in the

project Predecessor table with the predecessor taskID set

to the ID of the task generated in the previous loop, and the
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taskID set to the ID of the task generated in this loop. Set

the predecessor type to finish–to–start and the lag to zero.

(e) repeat this sequence beginning from step 3b.

SelectionStep

(a) Record the SelectionStep as a row in the project SummaryTask

table.

(b) Use the mapExpr to identify a child Step that is then recorded

as as a SimpleTask table row, if it is a SimpleStep, otherwise

it is recorded as a SummaryTask table row.
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Appendix C

XML Schemata used by Project Mentor

This appendix lists the XML schemata used by Project Mentor.

C.1 TPMM Schema

TPMM (”Tony’s PMM schema”) is the schema we created to describe PMMs,

derived from the UML description of PMMs on the left hand side of our

framework.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.cosc.canterbury.ac.nz/tony.dale/schemata/TPMM.xsd"

xmlns:tpmm="http://www.cosc.canterbury.ac.nz/tony.dale/schemata/TPMM.xsd"

targetNamespace="http://www.cosc.canterbury.ac.nz/tony.dale/schemata/TPMM.xsd">

<xsd:annotation>

<xsd:documentation xml:lang="en">

Tony’s Project Management Method (TPMM) schema

</xsd:documentation>

</xsd:annotation>

<xsd:annotation>

<xsd:documentation xml:lang="en">

This schema will validate the following

stand-alone objects: PMM (Project Management Method)

</xsd:documentation>

</xsd:annotation>

<!-- == Global Elements ===================================== -->

<xsd:element name="PMM">

<xsd:annotation>

<xsd:documentation xml:lang="en">This is the root PMM document.
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All following objects are contained in a PMM.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:annotation>

<xsd:documentation xml:lang="en">

A PMM contains one and only one main step, then a collection

of ResourceTypes, and name and description attributes.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:group ref="tpmm:stepKinds" minOccurs="1" maxOccurs="1"/>

<xsd:element name="ResourceTypes" type="tpmm:typeResourceTypes"

minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="descr" type="xsd:string" use="optional"/>

</xsd:complexType>

</xsd:element>

<!-- == Complex types ======================================= -->

<xsd:group name="stepKinds">

<xsd:annotation>

<xsd:documentation xml:lang="en">

This is a group that is shorthand for all the different kinds

of Step elements we can list:

</xsd:documentation>

</xsd:annotation>

<xsd:choice>

<xsd:element name="SimpleStep" type="tpmm:typeSimpleStep"/>

<xsd:element name="SequencedStep" type="tpmm:typeSequencedStep"/>

<xsd:element name="UnSequencedStep" type="tpmm:typeUnSequencedStep"/>

<xsd:element name="SelectionStep" type="tpmm:typeSelectionStep"/>

<xsd:element name="RepeatStep" type="tpmm:typeRepeatStep"/>

<xsd:element name="WhileStep" type="tpmm:typeWhileStep"/>

</xsd:choice>

</xsd:group>
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<xsd:complexType name="typeBaseStep" abstract="true">

<xsd:annotation>

<xsd:documentation xml:lang="en">

A basic PMM Step from which we derive all other Steps:

</xsd:documentation>

</xsd:annotation>

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="id" type="xsd:long" use="required"/>

<xsd:attribute name="descr" type="xsd:string" use="optional"/>

</xsd:complexType>

<xsd:complexType name="typeSimpleStep">

<xsd:annotation>

<xsd:documentation xml:lang="en">

A PMM SimpleStep:

</xsd:documentation>

</xsd:annotation>

<xsd:complexContent>

<xsd:extension base="tpmm:typeBaseStep">

<xsd:annotation>

<xsd:documentation xml:lang="en">

A SimpleStep may need Resources, so we may have a

Requirements element containing one more more

Requirement elements, and an attribute to indicate

whether PMM Tasks derived from this SimpleStep

should be milestone Tasks.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="Requirements" type="tpmm:typeRequirements"

minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

<xsd:attribute name="milestone" type="xsd:boolean"

use="optional"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>
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<xsd:complexType name="typeCompositeStep" abstract="true">

<xsd:annotation>

<xsd:documentation xml:lang="en">

A CompositeStep may contain one or more Steps:

</xsd:documentation>

</xsd:annotation>

<xsd:complexContent>

<xsd:extension base="tpmm:typeBaseStep">

<xsd:group ref="tpmm:stepKinds" minOccurs="1"

maxOccurs="unbounded"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="typeUnaryStep" abstract="true">

<xsd:annotation>

<xsd:documentation xml:lang="en">

A UnaryStep is a CompositeStep that contains only one Step:

</xsd:documentation>

</xsd:annotation>

<xsd:complexContent>

<xsd:restriction base="tpmm:typeCompositeStep">

<xsd:group ref="tpmm:stepKinds" minOccurs="1" maxOccurs="1"/>

</xsd:restriction>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="typeRepeatStep">

<xsd:annotation>

<xsd:documentation xml:lang="en">

A RepeatStep loops one Step with a test (ctrlExpr) at the bottom:

</xsd:documentation>

</xsd:annotation>

<xsd:complexContent>

<xsd:extension base="tpmm:typeUnaryStep">

<xsd:attribute name="ctrlExpr" type="xsd:string" use="required"/>

</xsd:extension>

</xsd:complexContent>
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</xsd:complexType>

<xsd:complexType name="typeWhileStep">

<xsd:annotation>

<xsd:documentation xml:lang="en">

A WhileStep loops one Step with a test (ctrlExpr) at the top:

</xsd:documentation>

</xsd:annotation>

<xsd:complexContent>

<xsd:extension base="tpmm:typeUnaryStep">

<xsd:attribute name="ctrlExpr" type="xsd:string" use="required"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="typeSelectionStep">

<xsd:annotation>

<xsd:documentation xml:lang="en">

A SelectionStep uses the mapExpr to select zero or one Step

from the set of Steps contained:

</xsd:documentation>

</xsd:annotation>

<xsd:complexContent>

<xsd:extension base="tpmm:typeCompositeStep">

<xsd:attribute name="mapExpr" type="xsd:string" use="required"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="typeSequencedStep">

<xsd:annotation>

<xsd:documentation xml:lang="en">

The steps in a SequencedStep are instantiated to project Tasks

with predecessors of type seqKind, in XML document order:

</xsd:documentation>

</xsd:annotation>

<xsd:complexContent>

<xsd:extension base="tpmm:typeCompositeStep">

<xsd:attribute name="seqKind" type="tpmm:enumSeqType"
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use="required"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="typeUnSequencedStep">

<xsd:annotation>

<xsd:documentation xml:lang="en">

The step in an UnSequencedStep is instantiated to N project Tasks,

where N is a number obtained from the cardinalityExpr.

</xsd:documentation>

</xsd:annotation>

<xsd:complexContent>

<xsd:extension base="tpmm:typeUnaryStep">

<xsd:attribute name="cardinalityExpr" type="xsd:string"

use="required"/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="typeRequirements">

<xsd:annotation>

<xsd:documentation xml:lang="en">

The Requirements element is contained in a Step element, and

contains zero or more Requirement elements:

</xsd:documentation>

</xsd:annotation>

<xsd:sequence minOccurs="0">

<xsd:element maxOccurs="unbounded" name="Requirement"

type="tpmm:typeRequirement"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="typeRequirement">

<xsd:annotation xml:lang="en">

<xsd:documentation>

A Requirement has an allocExpr that gives us the ID number

of required ResourceTypes.

</xsd:documentation>
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</xsd:annotation>

<xsd:attribute name="allocExpr" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="typeResourceTypes">

<xsd:annotation>

<xsd:documentation xml:lang="en">

The ResourceTypes element is contained in the root PMM element,

and contains zero or more ResourceType elements.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence minOccurs="0">

<xsd:element maxOccurs="unbounded" name="ResourceType"

type="tpmm:typeResourceType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="typeResourceType">

<xsd:annotation>

<xsd:documentation xml:lang="en">

The ResourceType element specifies project Resources that

are required by SimpleTasks:

</xsd:documentation>

</xsd:annotation>

<xsd:attribute name="id" type="xsd:long" use="required"/>

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="descr" type="xsd:string" use="optional"/>

</xsd:complexType>

<!-- == Enumerations ======================================== -->

<xsd:simpleType name="enumSeqType">

<xsd:annotation>

<xsd:documentation xml:lang="en">

These are the types of sequence allowed in a SequencedStep:

FF: finish-to-finish

FS: finish-to-start

SS: start-to-start

SF: start-to-finish

</xsd:documentation>
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</xsd:annotation>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="FF"/>

<xsd:enumeration value="FS"/>

<xsd:enumeration value="SS"/>

<xsd:enumeration value="SF"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

C.2 Using the Planner DTD for PMM–driven Projects

Similarly to TPMM, we could have derived a custom XML schema for project

data from our UML model. However, as we noted in chapter 3, our PM

model defines concepts found in many existing PM tools. We decided to use

the XML schema from the Planner project tool [42] for our Project Mentor

implementation, because such an approach allows us to use Planner to view

and manipulate project data, saving some implementation effort.

Planner, like many other project tools, provides custom properties that

can be assigned to projects, tasks and resources. We have used these proper-

ties to augment the Planner DTD with the PMM–to–PM linking attributes

required by our framework. Project Mentor, our implementation of the

framework, uses a minimal (Planner) project instance to begin applying a

PMM. The minimal project (”emptyproj.xml”) is a nearly empty project

that contains a default project calendar, and also defines the following cus-

tom properties:

Project Properties:

PMM The URI of the PMM we used for the project.

Goal Textual description of the project goal.

Task Properties:

stepID The ID of the PMM step used to create the task.
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priority This is actually an XML attribute of the Task element, that we

have used instead of a custom property. Project Mentor sets the task

priority to 9999 to identify tasks that are active, for the purpose of

recording the active PMM state in a Planner project. Active tasks are

associated with active PMM steps, and so when the PMM is reapplied

to the project by Project Mentor, the active state of the PMM can be

reconstructed.

Resource Properties:

resourceType The ID of the PMM ResourceType used to create this Re-

source.

Planner DTD The Planner DTD version 0.6 distributed with Planner

version 0.13 doesn’t describe all the XML data that the Planner software

actually writes: the Task element definition in the DTD is missing the at-

tributes work-start and priority, and the Resource element is missing

the short-name attribute. We have augmented the Planner schema, listed

below, with these attributes.

<?xml version =’1.0’ encoding=’UTF-8’?>

<!--

This is the XML DTD used by Planner version 0.13 with the attributes

left out by the distributed Planner DTD.

-->

<!ELEMENT project (properties*,phases?,calendars?,tasks?,

resource-groups?,resources?,allocations?)>

<!ATTLIST project mrproject-version CDATA #REQUIRED

name CDATA #REQUIRED

company CDATA #IMPLIED

manager CDATA #IMPLIED

project-start CDATA #REQUIRED

calendar CDATA #IMPLIED

phase CDATA #IMPLIED>
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<!ELEMENT properties (property*)>

<!--

Note: A mistake in the format design led to this suboptimality. A

"property" tag can be both a property declaration and a property

value. When it’s a declaration, all attributes except "value"

are required and allowed, and only "name" and "value" are required

and allowed. We’ll fix this for the new GSF based xml format.

-->

<!ELEMENT property (list-item*)>

<!ATTLIST property name CDATA #REQUIRED

type

(date|duration|float|int|text|text-list|cost) #IMPLIED

owner (project|task|resource) #IMPLIED

label CDATA #IMPLIED

description CDATA #IMPLIED

value CDATA #IMPLIED>

<!ELEMENT list-item EMPTY>

<!ATTLIST list-item value CDATA #REQUIRED>

<!ELEMENT phases (phase*)>

<!ELEMENT phase EMPTY>

<!ATTLIST phase name CDATA #REQUIRED>

<!ELEMENT predecessors (predecessor*)>

<!ELEMENT constraint EMPTY>

<!ATTLIST constraint type CDATA #REQUIRED

time CDATA #REQUIRED>

<!ELEMENT predecessor EMPTY>

<!ATTLIST predecessor id CDATA #REQUIRED

144



predecessor-id CDATA #REQUIRED

type (FS|FF|SS|SF) "FS"

lag CDATA #IMPLIED>

<!ELEMENT tasks (task*)>

<!ELEMENT task (properties?,constraint?,predecessors?,task*)>

<!ATTLIST task id CDATA #REQUIRED

name CDATA #REQUIRED

note CDATA #IMPLIED

effort CDATA #IMPLIED

start CDATA #REQUIRED

end CDATA #REQUIRED

work-start CDATA #IMPLIED

duration CDATA #IMPLIED

work CDATA #IMPLIED

percent-complete CDATA #IMPLIED

priority CDATA #IMPLIED

type (normal|milestone) "normal"

scheduling (fixed-work|

fixed-duration) "fixed-work">

<!ELEMENT resource-groups (group*)>

<!ATTLIST resource-groups default_group CDATA #IMPLIED>

<!ELEMENT group EMPTY>

<!ATTLIST group id CDATA #REQUIRED

name CDATA #REQUIRED

admin-name CDATA #IMPLIED

admin-email CDATA #IMPLIED

admin-phone CDATA #IMPLIED>

<!ELEMENT resources (resource*)>

<!ELEMENT resource (properties?)>

<!ATTLIST resource id CDATA #REQUIRED
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name CDATA #REQUIRED

short-name CDATA #IMPLIED

email CDATA #IMPLIED

type (1|2) #REQUIRED

group CDATA #IMPLIED

units CDATA #REQUIRED

note CDATA #IMPLIED

std-rate CDATA #IMPLIED

ovt-rate CDATA #IMPLIED

calendar CDATA #IMPLIED>

<!ELEMENT allocations (allocation*)>

<!ELEMENT allocation EMPTY>

<!ATTLIST allocation task-id CDATA #REQUIRED

resource-id CDATA #REQUIRED

units CDATA #IMPLIED>

<!ELEMENT calendars (day-types,calendar*)>

<!ELEMENT day-types (day-type*)>

<!ELEMENT day-type (interval*)>

<!ATTLIST day-type id CDATA #REQUIRED

name CDATA #REQUIRED

description CDATA #REQUIRED>

<!ELEMENT interval EMPTY>

<!ATTLIST interval start CDATA #REQUIRED

end CDATA #REQUIRED>

<!ELEMENT calendar (default-week,overridden-day-types?,days?,calendar*)>

<!ATTLIST calendar name CDATA #REQUIRED

id CDATA #REQUIRED>

<!ELEMENT default-week EMPTY>

<!ATTLIST default-week mon CDATA #IMPLIED
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tue CDATA #IMPLIED

wed CDATA #IMPLIED

thu CDATA #IMPLIED

fri CDATA #IMPLIED

sat CDATA #IMPLIED

sun CDATA #IMPLIED>

<!ELEMENT overridden-day-types (overridden-day-type*)>

<!ELEMENT overridden-day-type (interval*)>

<!ATTLIST overridden-day-type id CDATA #REQUIRED>

<!ELEMENT days (day*)>

<!ELEMENT day (interval*)>

<!ATTLIST day date CDATA #REQUIRED

type CDATA #REQUIRED

id CDATA #IMPLIED>
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Appendix D

Formal Verification of Project Data

This appendix describes and compares an alternative data modelling ap-

proach that we could have used to construct a PM–to–PMM mapping. Our

approach, based on the meta–relationship, can be used to construct XML

schema files that test the conformance of project data to a PMM. We de-

scribe an XSLT transform that translates PMM XML files, written using

TPMM, to XML schema files that can perform this verification function.

D.1 An Alternative Approach to modelling PMMs

It is possible to take an approach to modelling the “Project/PMM Universe”

that is strictly based on generalization [80], or the meta–relationship. This

approach is used for the Ripple metadata tool [92], for instance. By following

a path of meta–relationships, we can derive a data model for recording project

data from a PMM description. In terms of the object–oriented model: object

instances at one level become class definitions for the level below or, in terms

of relational tables table rows in the PMM description become table headings

for recording project data. The result of this abstraction is a project data

model specific to the PMM, which records project data in terms defined by

the PMM used to produce it. This approach was applied via XML, as follows:

1. PMMs are described using XML Schema: PMM steps (sequence, se-

ries and repetition), control structures and resource requirements are

described.

2. Project tasks are recorded as XML data, constrained by the PMM XML

schema to conform to the PMM, with start/stop times and resources

assigned.
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Figure D.1: UML diagram of the Build–and–Fix method represented directly
as classes.

For example, we produced the UML model of figure D.1 by abstracting a

project instance from the Build–and–Fix PMM:

1. The customer and the programmer initiate the project, and then

2. Iterate the following sequence of steps until the customer accepts the

program or halts the project:

(a) The customer specifies the program to the programmer

(b) The programmer writes the program with a computer

(c) The programmer and the customer test the program with a com-

puter

Instead of specifying steps, figure D.1 specifies tasks. We represent the

semantics of the Build and Fix PMM with the “next–task” relation that

constrains the sequence of of the PMM–specified tasks, “Specify, Implement,

Acceptance” This model could be translated to an XML schema, or to re-

lational tables, using the strategies of chapter 7. Another expression of this

data model is as printed forms, and suitable forms, specifically tailored for

recording the Build–and–Fix PMM, are shown in table D.1. The form has a

number of “N.A.” fields that are not to be used, but are an artifact of storing

different step types together. This is done to constrain the order of the tasks.
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Build and Fix Project
Step Name start length Customer

Name
Programmer
Name

Project
Initiation

Step
Name

start length Cust.
Name

Prog.
Name

Com-
puter

Pass
(Y/N)

Specify
Program

N.A. N.A.

Write
Program

N.A. N.A.

Accep-
tance
Test
Specify
Program

N.A. N.A.

Write
Program

N.A. N.A.

Accep-
tance
Test
(etc. . . )

Table D.1: Example project record sheets for the Build–and–Fix PMM created
using the approach of section D.1. The forms intrinsically constrain which
tasks can be recorded to conform to the PMM.
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Concept Data–oriented Process–oriented

PMM
description
language

one one

Project
description
language

Many specific schemata One general schema

Relationship
between the two
languages

Meta–relationship Process instantiation
relationship

Cardinality of
above
relationship

one PMM language to
many project languages

one PMM language to
one project language

Relationship
between project
and PMM data

PMM is intrinsic in the
project description, so
that project data can be
recorded without
reference to the PMM

PMM description is
required to create and
interpret project data.

Instantiation of
PMM

PMM is instantiated as
a schema

PMM is instantiated as
a process

Project
description
integrity check

schema–oriented;
impossible to record
faulty data.

Process–oriented; a
process must check
project data integrity
against PMM
description.

Table D.2: Comparing the two data modelling approaches

The meta–relationship approach produces data models which are specific

to particular PMMs, so that PMM semantics and associated software tools

are specific to a particular PMM, and the the project instance data intrinsi-

cally has a particular PMM associated with it. Such an approach is used by

the Maven [51][41] project tool set, and so a software project must be “Maven

enabled” before the tools can be used on it. Maven automates such practices

as unit testing, CVS checkin and checkout of code, etc—but does not allow

alternative practices for software engineering, so it would be impossible to

use Maven for the Build–and–Fix PMM, for example. Table D.2 summarizes

the differences between the two approaches.
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(6) XSD: PMM
Specific Project

Meta-Model

(1) XSD: PMM
Meta-Model

(2) XML: PMM
instances

(7) XML: Project
instances

(d) describes

describes

(3) XML: Project
instances

Data models using 
process relationship

(4) XSD: Generalized
Project Data

(c) XSLT

(b) XSLT

(a) Process
Instantiation

describes

(5)  XSD: PMM
Meta-Model

Data models using 
meta relationship

Steps, requirements,
sequence, selection,
repetition
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allocations, times

Project data 
is recorded

describes *

*

**

*

Figure D.2: Relating the two data modelling approaches, how they map
PMMs to project instances, and how to map one to the other. The mod-
els are described either with XSD (XML schemata), or XML defined by those
schemata. The −→* symbols depict a one–to–many mapping.

D.2 XML Schematic Verification of PMM project data

Using the process–oriented data modelling approach, we have created a gen-

eral XML schema for describing PMM data; figure D.2 (1). Data described

by this model; figure D.2 (2), can be instantiated using a process; figure D.2

(a), to produce project data in terms defined by a generalized schema; fig-

ure D.2 (4). The process maps PMM semantics; steps, requirements, etc, to

attributes in the project data; figure D.2 (3).

Compare this to the meta–relationship data modelling approach of section

D.1: we create PMM descriptions using XSD as the PMM language, shown in

figure D.2 (6). This schema can itself be constrained by a schema; figure D.2

(5), that restricts the XSD language: PMM sequences, for instance, constrain

tasks to a specified sequence.

The process–oriented approach abstracts both the PMM and the project

data models, so that in object–oriented terms, the difference between this

approach and the process–oriented approach to PMM descriptions is this:

The process–oriented approach relates PMM steps to project tasks using an

attribute on each task that records the PMM step which created it, because
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the project data model is a general one. By comparison, the metadata ap-

proach relates PMM steps to project tasks by naming each (PMM–specified)

task class, because every PMM creates a different model for project data.

We used the alternative approach described above to verify project data

produced using the PM/PMM framework. We wrote an XSLT transform;

“pmmtoxsd.xsl”, to implement the transformation of figure D.2 (b), that

changes a PMM description from the process–oriented model used by Project

Mentor to the schema–oriented model. The resultant XML schema; figure

D.2 (6), constrained project data; figure D.2 (7), to conform to a particular

PMM, that was now embedded in the schema. Also embedded in this schema

are project concepts of tasks, resources, allocations and times.

The project data produced by Project Mentor, that realises figure D.2

(a), conforms to a generalized data model; figure D.2 (4). In our imple-

mentation, the data model used is the Planner XML schema, augmented by

custom properties to contain the PMM–specific attributes, such as the PMM

step associated with each task. An XSLT transform to implement figure D.2

(c); “mrptopmm.xsl”, was written to transform the Planner data into XML

conforming to the XML schemata of figure D.2 (6). The XML project data

produced by Project Mentor was then schematically verified against this gen-

erated XML schemata for a number of PMMs, figure D.2 (d). The sequence

of steps used was:

1. Create a PMM description P.XML using the TPMM schema.

2. Transform P.XML to schema P.XSD using pmmtoxsd.xsl.

3. Use Project Mentor to create some project data D.XML using the PMM

description P.XML.

4. Transform D.XML to D.XML’ using mrptopmm.xsl.

5. Edit the XML files to set XML namespaces correctly.

6. Use P.XSD to verify D.XML’.
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Using this approach, it was possible to verify that project data produced

with Project Mentor conformed to an XML schema that was generated from

the PMM that Project Mentor used. A number of logic errors in Project

Mentor were brought to light by this exercise: project tasks were wrongly

ordered in some circumstances, for instance. The result was that the D.XML’

file produced in these cases did not verify against the P.XSD schema.
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Appendix E

CDROM insert

This appendix contains a CDROM, the contents of which are:

• Listings of the XML schemata used by Project Mentor, the implemen-

tation of our framework.
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• An HTML page with the Project Mentor applet ready to run with the

above PMMs and visualizations.

• The source code for Project Mentor.

• A small library of Project Management Methods written in terms of

our framework, using our TPMM schema.

• Nassi–Shneiderman visualizations of the PMMs.

• Files used for our survey and our case study.
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Descriptions Interoperability. Journal of Computing and Information

Technology CIT 12, 2 (2004), 151–157.

[75] Russell, N., van der Aalst, W., ter Hofstede, A., and Ed-

mond, D. Workflow Resource Patterns: Identification, Representation

and Tool Support. In CAISE 2005 (Porto, Portugal, 2005).

[76] Schach, S. R., Ed. Object–Oriented and Classical Software Engineer-

ing. McGraw–Hill, New York, 2002.

[77] Schachter, V. How Does Concurrency Extend the Paradigm of Com-

putation? The Monist 82, 1 (Jan. 1999), 37–57.

164



[78] Shapiro, R. A Comparison of XPDL and BPML and

BPEL4WS. In http: // www. ebpml. org/ A Comparison of XPDL

and BPML BPEL. doc (Aug. 2002), Cape Visions Ltd.

[79] Small, D. F. Ministerial Inquiry into INCIS. In http: // www.

justice. govt. nz/ pubs/ reports/ 2000/ incis rpt/ index. html

(Wellington, Oct. 2000), NZ Justice Department.

[80] Smith, J., and Smith, D. Database Abstractions: Aggregation and

Generalization. ACM Transactions on Database Systems 2, 2 (June

1977), 105–133.

[81] The Chaos Chronicles. In http: // www. standishgroup. com (1994),

The Standish Group.

[82] Extreme Chaos. In http: // www. standishgroup. com (2001), The

Standish Group.

[83] SVG. Scalable Vector Graphics Full 1.2 Specification. In http: // www.

w3. org/ TR/ SVG12/ (Apr. 2005), The W3C Consortium.

[84] Thomas, A., and Barashev, D. GanttProject, a Project Man-

agement Tool. In http: // ganttproject. sourceforge. net/ (2006),

Sourceforge.

[85] US Air Force. Performance Measure for Selected Acquisitions. US

Department of Defence Instruction 7000.2, 1967.

[86] van der Aalst, W. Patterns and XPDL: A Critical Evaluation of

the XML Process Definition Language. http://www.citi.qut.edu.

au/pubs/ce-xpdl.pdf.

[87] Volz, R. PMXML—a XML standard for project manage-

ment. In http: // www. vrtprj. com/ content/ istandards/ pmxml

en. html (June 1st 2002).

165



[88] Waitai, R. Inquiry into CARD and INCIS. Justice and Law Reform

Committee, Wellington, Oct. 1999.

[89] Westfechtel, B. Models and Tools for Managing Development Pro-

cesses, vol. 1646 of Lecture Notes in Computer Science. Springer, Berlin,

London, 1999.

[90] Wiggins, M. An Overview of Program Visualization Tools and Sys-

tems. In Proceedings of SIGCSE (1998), ACM Press, pp. 194–200.

[91] Williams, M. M. Extending the Frontier of the Extreme Pro-

gramming Software Engineering Process. Master’s thesis, Univer-

sity of Canterbury, http://www.cosc.canterbury.ac.nz/research/

reports/MastTheses/2004/mast 0402.pdf, 2004.

[92] Wilson, R. P. RIPPLE : A metadata repository. Master’s thesis,

University of Canterbury, Computer Science Department, 1992.

[93] XML. Extensible Markup Language: XML. In http: // www. w3. org/

xml (Feb. 1998).

[94] XPDL. XML Process Definition Language. In http: // www. wfmc.

org/ standards/ docs/ TC-1025 10 xpdl 102502. pdf (Oct. 2002),

Workflow Management Coalition.

[95] XSD. XML Schema Definition. In http: // www. w3. org/ 2001/

XMLSchema/ (Feb. 2001), The W3C Consortium.

[96] XSL. Extensible Stylesheet Language. In http: // www. w3. org/

Style/ XSL/ (1999), The W3C Consortium.

[97] zur Muehlen, M. Resource Modeling in Workflow Applica-

tions. In http: // www. workflow-research. de/ Publications/

PDF/ MIZU-WF99. PDF (1999), Technical Report, University of Muen-

ster, Germany.

166


