Visible Points on Curves over Finite Fields

Igor E. Shparlinski
Department of Computing, Macquarie University
Sydney, NSW 2109, Australia
igor@ics.mq.edu.au
José Felipe Voloch
Department of Mathematics, University of Texas
Austin TX 78712 USA
voloch@math.utexas.edu

February 19, 2013

Abstract

For a prime p and an absolutely irreducible modulo p polynomial $f(U, V) \in \mathbb{Z}[U, V]$ we obtain an asymptotic formulas for the number of solutions to the congruence $f(x, y) \equiv a(\bmod p)$ in positive integers $x \leqslant X, y \leqslant Y$, with the additional condition $\operatorname{gcd}(x, y)=1$. Such solutions have a natural interpretation as solutions which are visible from the origin. These formulas are derived on average over a for a fixed prime p, and also on average over p for a fixed integer a.

1 Introduction

Let p be a prime and let $f(U, V) \in \mathbb{Z}[U, V]$ be a bivariate polynomial with integer coefficients.

For real X and Y with $1 \leqslant X, Y \leqslant p$ and an integer a we consider the set

$$
\mathcal{F}_{p, a}(X, Y)=\{(x, y) \in[1, X] \times[1, Y]: f(x, y) \equiv a \quad(\bmod p)\}
$$

which the set of points on level curves of $f(U, V)$ modulo p.
If the polynomial $f(x, y)-a$ is nonconstant absolutely irreducible polynomial modulo p of degree bigger than one can easily derive from the Bombieri bound [1] that

$$
\begin{equation*}
\# \mathcal{F}_{p, a}(X, Y)=\frac{X Y}{p}+O\left(p^{1 / 2}(\log p)^{2}\right) \tag{1}
\end{equation*}
$$

where the implied constant depends only on $\operatorname{deg} f$, see, for example, 3, 4, 9, 11.

In this paper we consider an apparently new question of studying the set

$$
N_{p, a}(X, Y)=\left\{(x, y) \in \mathcal{F}_{p, a}(X, Y): \operatorname{gcd}(x, y)=1\right\} .
$$

These points have a natural geometric interpretation as points on $\mathcal{F}_{p, a}(X, Y)$ which are "visible" from the origin, see [2, 6, 7, 10] and references therein for several other aspects of distribution of visible points in various regions.

We show that on average over $a=0, \ldots, p-1$, the cardinality $N_{p, a}(X, Y)$ is close to its expected value $6 X Y / \pi^{2} p$, whenever

$$
\begin{equation*}
X Y \geqslant p^{3 / 2+\varepsilon} \tag{2}
\end{equation*}
$$

for any fixed $\varepsilon>0$ and sufficiently large p.
We then consider the dual situation, when a is fixed (in particular we take $a=0$) but p varies through all primes up to T.

We recall $A \ll B$ and $A=O(B)$ both mean that $|A| \leqslant c B$ holds with some constant $c>0$, which may depend on some specified set of parameters.

2 Absolute Irreducibility of Level Curves

We start with the following statement which could be of independent interest.
Lemma 1. If $F(U, V) \in \mathbb{K}[U, V]$ is absolutely irreducible of degree n over a field \mathbb{K}, then $F(U, V)-a$ is absolutely irreducible for all but at most $C(n)$ elements $a \in \mathbb{K}$, where $C(n)$ depends only on n.

Proof. The set of polynomials of degree n is parametrized by a projective space $\mathbb{P}^{s(n)}$ of dimension $s(n)=(n+1)(n+2) / 2$ over \mathbb{K}, coordinatized by
the coefficients. The subset X of $\mathbb{P}^{k(n)}$ consisting of reducible polynomials is a Zariski closed subset because it is the union of the images of the maps

$$
\mathbb{P}^{s(k)} \times \mathbb{P}^{s(n-k)} \rightarrow \mathbb{P}^{s(n)}, \quad k \leqslant n / 2,
$$

given by multiplying a polynomial of degree k with a polynomial of degree $n-k$. The map $t \mapsto F(U, V)-t$ describes a line in $\mathbb{P}^{s(n)}$ and by the assumption of absolutely irreducibility of F, this line is not contained in X. So, by the Bézout theorem, it meets X in at most $C(n)$ points, where $C(n)$ is the degree of X. Hence for all but at most $C(n)$ values of $a, F(U, V)-a$ is absolutely irreducible.

3 Visible Points on Almost All Level Curves

Throughout this section, the implied constants in the notations $A \ll B$ and $A=O(B)$ may depend on the degree $n=\operatorname{deg} f$.

Theorem 2. Let f be a polynomial with integer coefficients which is absolutely irreducible and of degree bigger than one modulo the prime p. Then for real X and Y with $1 \leqslant X, Y \leqslant p$ we have

$$
\sum_{a=0}^{p-1}\left|N_{p, a}(X, Y)-\frac{6}{\pi^{2}} \cdot \frac{X Y}{p}\right| \ll X^{1 / 2} Y^{1 / 2} p^{3 / 4} \log p
$$

Proof. Let \mathcal{A}_{p} consist of $a \in\{0, \ldots, p-1\}$ for which $f(U, V)-a$ is absolutely irreducible modulo p.

For an integer d, we define

$$
M_{p, a}(d ; X, Y)=\#\left\{(x, y) \in \mathcal{F}_{p, a}(X, Y) \mid \operatorname{gcd}(x, y) \equiv 0 \quad(\bmod d)\right\}
$$

Let $\mu(d)$ denote the Möbius function. We recall that $\mu(1)=1, \mu(d)=0$ if $d \geqslant 2$ is not square-free and $\mu(d)=(-1)^{\omega(d)}$ otherwise, where $\omega(d)$ is the number of distinct prime divisors d. By the inclusion-exclusion principle, we write

$$
\begin{equation*}
N_{p, a}(X, Y)=\sum_{d=1}^{\infty} \mu(d) M_{p, a}(d ; X, Y) \tag{3}
\end{equation*}
$$

Writing

$$
x=d s \quad \text { and } \quad y=d t
$$

we have

$$
\# M_{p, a}(d ; X, Y)=\#\{(s, t) \in[1, X / d] \times[1, Y / d] \mid f(d s, d t) \equiv a \quad(\bmod p)\}
$$

Thus $M_{p, a}(d ; X, Y)$ is the number of points on a curve in a given box. If $a \in \mathcal{A}_{p}$ and $1 \leqslant d<p$ then $f(d U, d V)-a$ remains absolutely irreducible modulo p. Accordingly, we have an analogue of (11) which asserts that

$$
\begin{equation*}
M_{p, a}(d ; X, Y)=\frac{X Y}{d^{2} p}+O\left(p^{1 / 2}(\log p)^{2}\right) \tag{4}
\end{equation*}
$$

We fix some positive parameter $D<p$ and substitute the bound (4) in (3) for $d \leqslant D$, getting

$$
\begin{aligned}
& N_{p, a}(X, Y) \\
& \qquad=\sum_{d \leqslant D}\left(\frac{\mu(d) X Y}{d^{2} p}+O\left(p^{1 / 2}(\log p)^{2}\right)\right)+O\left(\sum_{d>D} M_{p, a}(d ; X, Y)\right) \\
& \quad=\frac{X Y}{p} \sum_{d \leqslant D} \frac{\mu(d)}{d^{2}}+O\left(D p^{1 / 2}(\log p)^{2}+\sum_{d>D} M_{p, a}(d ; X, Y)\right)
\end{aligned}
$$

for every $a \in \mathcal{A}_{p}$.
Furthermore

$$
\sum_{d \leqslant D} \frac{\mu(d)}{d^{2}}=\sum_{d=1}^{\infty} \frac{\mu(d)}{d^{2}}+O\left(D^{-1}\right)=\prod_{\ell}\left(1-\frac{1}{\ell^{2}}\right)+O\left(D^{-1}\right)
$$

where the product is taken over all prime numbers ℓ. Recalling that

$$
\prod_{\ell}\left(1-\frac{1}{\ell^{2}}\right)=\zeta(2)^{-1}=\frac{6}{\pi^{2}}
$$

see [5, Equation (17.2.2) and Theorem 280], we obtain

$$
\begin{equation*}
\left|N_{p, a}(X, Y)-\frac{6}{\pi^{2}} \cdot \frac{X Y}{p}\right| \ll X Y / D p+D p^{1 / 2}(\log p)^{2}+\sum_{d>D} M_{p, a}(d ; X, Y), \tag{5}
\end{equation*}
$$

for every $a \in \mathcal{A}_{p}$.

We also remark that

$$
\begin{align*}
\sum_{a=0}^{p-1} \sum_{d>D} M_{p, a}(d ; X, Y) & =\sum_{d>D} \sum_{a=0}^{p-1} M_{p, a}(d ; X, Y) \tag{6}\\
& =\sum_{d>D}\left\lfloor\frac{X}{d}\right\rfloor\left\lfloor\frac{Y}{d}\right\rfloor \leqslant X Y \sum_{d>D} \frac{1}{d^{2}} \ll X Y / D .
\end{align*}
$$

Therefore, using the bounds (5) and (6), we obtain

$$
\begin{equation*}
\sum_{a \in \mathcal{A}_{p}}\left|N_{p, a}(X, Y)-\frac{6}{\pi^{2}} \cdot \frac{X Y}{p}\right| \ll X Y / D+D p^{3 / 2}(\log p)^{2} \tag{7}
\end{equation*}
$$

For $a \notin \mathcal{A}_{p}$ we estimate $N_{p, a}(X, Y)$ trivially as

$$
N_{p, a}(X, Y) \leqslant \min \{X, Y\} \operatorname{deg} f \ll \sqrt{X Y}
$$

Thus by Lemma 1 ,

$$
\begin{equation*}
\sum_{a \notin \mathcal{A}_{p}}\left|N_{p, a}(X, Y)-\frac{6}{\pi^{2}} \cdot \frac{X Y}{p}\right| \ll \max \{\sqrt{X Y}, X Y / p\} \ll \sqrt{X Y} \tag{8}
\end{equation*}
$$

Combining (77) and (8) and taking $D=X^{1 / 2} Y^{1 / 2} p^{-3 / 4}(\log p)^{-1}$ we conclude the proof.

Corollary 3. Let f be a polynomial with integer coefficients which is absolutely irreducible and of degree bigger than one. If $X Y \geqslant p^{3 / 2}(\log p)^{2+\varepsilon}$ for some fixed $\varepsilon>0$, then

$$
N_{p, a}(X, Y)=\left(\frac{6}{\pi^{2}}+o(1)\right) \frac{X Y}{p}
$$

for all but $o(p)$ values of $a=0, \ldots, p-1$.

4 Visible Points on Almost All Reductions

Throughout this section, the implied constants in the notations $A \ll B$ and $A=O(B)$ may depend on the coefficients of f.

To simplify notation we put

$$
\mathcal{F}_{p}(X, Y)=\mathcal{F}_{p, 0}(X, Y) \quad \text { and } \quad N_{p}(X, Y)=N_{p, 0}(X, Y)
$$

Theorem 4. Let f be a polynomial with integer coefficients which is absolutely irreducible and of degree bigger than one. Then for real T, X and Y such that $T \geqslant 2 \max (X, Y)$, we have

$$
\sum_{T / 2 \leqslant p \leqslant T}\left|N_{p}(X, Y)-\frac{6}{\pi^{2}} \cdot \frac{X Y}{p}\right| \ll X^{1 / 2} Y^{1 / 2} T^{3 / 4+o(1)}
$$

where the sum is taken over all primes p with $T / 2 \leqslant p \leqslant T$.
Proof. It is enough to consider T large enough so that f remains absolutely irreducible and of degree bigger than one for all $p, T / 2 \leqslant p \leqslant T$. As before we have

$$
\begin{equation*}
\left|N_{p}(X, Y)-\frac{6}{\pi^{2}} \cdot \frac{X Y}{p}\right| \ll X Y / D p+D p^{1 / 2}(\log p)^{2}+\sum_{d>D} M_{p}(d ; X, Y) \tag{9}
\end{equation*}
$$

where

$$
M_{p}(d ; X, Y)=\#\left\{(x, y) \in \mathcal{F}_{p}(X, Y) \mid \operatorname{gcd}(x, y) \equiv 0 \quad(\bmod d)\right\}
$$

We also remark that

$$
\begin{align*}
\sum_{T / 2 \leqslant p \leqslant T} \sum_{d>D} M_{p}(d ; X, Y) & =\sum_{d>D} \sum_{T \leqslant p \leqslant T} M_{p}(d ; X, Y) \\
& =\sum_{d>D} \sum_{1 \leqslant s \leqslant X / d} \sum_{1 \leqslant t \leqslant Y / d} \sum_{\substack{T / 2 \leqslant p \leqslant T \\
p \mid f(d s, d y)}} 1 . \tag{10}
\end{align*}
$$

Let \mathcal{Z} be set of integer zeros of f in the relevant box, that is

$$
\mathcal{Z}=\left\{(u, v) \in \mathbb{Z}^{2}: 1 \leqslant x \leqslant X, 1 \leqslant y \leqslant Y, f(u, v)=0\right\}
$$

It is easy to see that $\# \mathcal{Z} \ll \min (X, Y) \leqslant \sqrt{X Y}$. Indeed, it is enough to notice that since $f(U, V)$ is absolutely irreducible, each specialization $g_{y}(U)=$ $f(U, y)$ with $y \in \mathbb{Z}$ and $h_{x}(V)=f(x, V)$ with $x \in \mathbb{Z}$ is a nonzero polynomials in U and V, respectively. (Under extra, but generic, hypotheses, one can invoke Siegel's theorem, which gives $\# \mathcal{Z}=O(1)$ but this does not lead to an improvement in our final bound.) Denoting by $\tau(k)$ the number of integer divisors of a positive integer k, we see that for each $(u, v) \in \mathcal{Z}$ there are at $\operatorname{most} \tau(u)=X^{o(1)}$ (see [5, Theorem 317]) pairs (d, s) of positive integers with
$d s=u$, after which there is at most one value of t. Thus for these triples (d, s, t), we estimate the inner sum over p in (10) trivially as T.

To estimate the rest of the sums, as before, we denote by $\omega(k)$ the number of prime divisors of a positive integer k and note that $\omega(k) \ll \log k$. Thus for $(u, v) \notin \mathcal{Z}$ we can estimate the inner sum over p in (10) as $\omega(|f(d s, d y)|)=$ $(X Y)^{o(1)}$. Therefore

$$
\begin{aligned}
\sum_{T / 2 \leqslant p \leqslant T} \sum_{d>D} M_{p}(d ; X, Y) & \leqslant \sum_{d>D} \sum_{\substack{1 \leqslant s \leqslant X / d \\
1 \leqslant t \leqslant Y / d \\
(d s, d t) \in \mathcal{Z}}} \sum_{T / 2 \leqslant p \leqslant T} 1+\sum_{\substack{d>D}} \sum_{\substack{1 \leqslant s \leqslant X / d \\
1 \leqslant t \leqslant Y / d \\
(d s, d t) \notin \mathcal{Z}}} \sum_{p \mid f(d s, d y)} 1 \\
& \leqslant \# \mathcal{Z} X^{o(1)} T+(X Y)^{o(1)} \sum_{\substack{d>D}} \sum_{\substack{1 \leqslant s \leqslant X / d \\
1 \leqslant t \leqslant Y / d \\
(d s, d t) \notin \mathcal{Z}}} 1 \\
& =(X Y)^{1 / 2+o(1)} T+(X Y)^{1+o(1)} D^{-1}
\end{aligned}
$$

We now put everything together getting

$$
\begin{aligned}
\sum_{T / 2 \leqslant p \leqslant T} \mid & \left.N_{p}(X, Y)-\frac{6}{\pi^{2}} \cdot \frac{X Y}{p} \right\rvert\, \\
& \ll X Y / D \log T+D T^{3 / 2}(\log T)^{2}+T(X Y)^{1 / 2+o(1)}+(X Y)^{1+o(1)} D^{-1},
\end{aligned}
$$

and take $D=X^{1 / 2} Y^{1 / 2} T^{-3 / 4}$ getting the result.
Corollary 5. Let f be a polynomial with integer coefficients which is absolutely irreducible and of degree bigger than one. If $X Y \geqslant T^{3 / 2+\varepsilon}$ for some fixed $\varepsilon>0$, that

$$
N_{p}(X, Y)=\left(\frac{6}{\pi^{2}}+o(1)\right) \frac{X Y}{p}
$$

for all but $o(T / \log T)$ primes $p \in[T / 2, T]$.

5 Remarks

Certainly it would be interesting to obtain an asymptotic formula for $N_{p, a}(X, Y)$ which holds for every a. Even the case of $X=Y=p$ would be of interest. We remark that for the polynomial $f(U, V)=U V$ such an asymptotic formula is give in [8] and is nontrivial provided $X Y \geqslant p^{3 / 2+\varepsilon}$ for some fixed
$\varepsilon>0$. However the technique of [8] does not seem to apply to more general polynomials.

We remark that studying such special cases as visible points on the curves of the shape $f(U, V)=V-g(U)$ (corresponding to points a graph of a univariate polynomial) and $f(U, V)=V^{2}-X^{3}-r X-s$ (corresponding to points on an elliptic curve) is also of interest and may be more accessible that the general case.

Acknowledgements.

This work began during a pleasant visit by I. S. to University of Texas sponsored by NSF grant DMS-05-03804; the support and hospitality of this institution are gratefully acknowledged. During the preparation of this paper, I. S. was supported in part by ARC grant DP0556431.

References

[1] E. Bombieri, 'On exponential sums in finite fields', Amer. J. Math., 88 (1966), 71-105.
[2] F. P. Boca, C. Cobeli and A. Zaharescu, 'Distribution of lattice points visible from the origin', Comm. Math. Phys., 213 (2000), 433-470.
[3] C. Cobeli and A. Zaharescu, 'On the distribution of the \mathbb{F}_{p}-points on an affine curve in r dimensions', Acta Arithmetica, 99 (2001), 321329.
[4] A. Granville, I. E. Shparlinski and A. Zaharescu, 'On the distribution of rational functions along a curve over \mathbb{F}_{p} and residue races', J. Number Theory, 112 (2005), 216-237.
[5] G. H. Hardy and E. M. Wright, An Introduction to the theory of numbers, The Clarendon Press, Oxford University Press, New York, 1979.
[6] M. N. Huxley and W. G. Nowak,'Primitive lattice points in convex planar domains', Acta Arith., 76 (1996), 271-283.
[7] W. G. Nowak, 'Primitive lattice points inside an ellipse', Czechoslovak Math. J., 55 (2005), 519-530.
[8] I. E. Shparlinski, 'Primitive points on a modular hyperbola', Bull. Polish Acad. Sci. Math., 54 (2006), 193-200.
[9] M. Vajaitu and A. Zaharescu, 'Distribution of values of rational maps on the \mathbb{F}_{p}-points on an affine curve', Monathsh. Math, 136 (2002), 81-86.
[10] W. Zhai, 'On primitive lattice points in planar domains', Acta Arith., 109 (2003), 1-26.
[11] Z. Zheng, 'The distribution of zeros of an irreducible curve over a finite field', J. Number Theory, 59 (1996), 106-118.

