
ar
X

iv
:0

70
4.

24
46

v1
  [

m
at

h.
N

T
] 

 1
9 

A
pr

 2
00

7 Visible Points on Curves over Finite

Fields

Igor E. Shparlinski

Department of Computing, Macquarie University

Sydney, NSW 2109, Australia
igor@ics.mq.edu.au
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Abstract

For a prime p and an absolutely irreducible modulo p polynomial
f(U, V ) ∈ Z[U, V ] we obtain an asymptotic formulas for the number of
solutions to the congruence f(x, y) ≡ a (mod p) in positive integers
x 6 X, y 6 Y , with the additional condition gcd(x, y) = 1. Such
solutions have a natural interpretation as solutions which are visible
from the origin. These formulas are derived on average over a for a
fixed prime p, and also on average over p for a fixed integer a.

1 Introduction

Let p be a prime and let f(U, V ) ∈ Z[U, V ] be a bivariate polynomial with
integer coefficients.

For real X and Y with 1 6 X, Y 6 p and an integer a we consider the
set

Fp,a(X, Y ) = {(x, y) ∈ [1, X] × [1, Y ] : f(x, y) ≡ a (mod p)}
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which the set of points on level curves of f(U, V ) modulo p.
If the polynomial f(x, y)−a is nonconstant absolutely irreducible polyno-

mial modulo p of degree bigger than one can easily derive from the Bombieri
bound [1] that

#Fp,a(X, Y ) =
XY

p
+ O

(

p1/2(log p)2
)

, (1)

where the implied constant depends only on deg f , see, for example, [3, 4, 9,
11].

In this paper we consider an apparently new question of studying the set

Np,a(X, Y ) = {(x, y) ∈ Fp,a(X, Y ) : gcd(x, y) = 1}.

These points have a natural geometric interpretation as points on Fp,a(X, Y )
which are “visible” from the origin, see [2, 6, 7, 10] and references therein for
several other aspects of distribution of visible points in various regions.

We show that on average over a = 0, . . . , p−1, the cardinality Np,a(X, Y )
is close to its expected value 6XY/π2p, whenever

XY > p3/2+ε (2)

for any fixed ε > 0 and sufficiently large p.
We then consider the dual situation, when a is fixed (in particular we

take a = 0) but p varies through all primes up to T .
We recall A ≪ B and A = O(B) both mean that |A| 6 cB holds with

some constant c > 0, which may depend on some specified set of parameters.

2 Absolute Irreducibility of Level Curves

We start with the following statement which could be of independent interest.

Lemma 1. If F (U, V ) ∈ K[U, V ] is absolutely irreducible of degree n over a

field K, then F (U, V ) − a is absolutely irreducible for all but at most C(n)
elements a ∈ K, where C(n) depends only on n.

Proof. The set of polynomials of degree n is parametrized by a projective
space P

s(n) of dimension s(n) = (n + 1)(n + 2)/2 over K, coordinatized by

2



the coefficients. The subset X of P
k(n) consisting of reducible polynomials is

a Zariski closed subset because it is the union of the images of the maps

P
s(k) × P

s(n−k) → P
s(n), k 6 n/2,

given by multiplying a polynomial of degree k with a polynomial of degree
n−k. The map t 7→ F (U, V )−t describes a line in P

s(n) and by the assumption
of absolutely irreducibility of F , this line is not contained in X. So, by the
Bézout theorem, it meets X in at most C(n) points, where C(n) is the degree
of X. Hence for all but at most C(n) values of a, F (U, V ) − a is absolutely
irreducible.

3 Visible Points on Almost All Level Curves

Throughout this section, the implied constants in the notations A ≪ B and
A = O(B) may depend on the degree n = deg f .

Theorem 2. Let f be a polynomial with integer coefficients which is abso-

lutely irreducible and of degree bigger than one modulo the prime p. Then

for real X and Y with 1 6 X, Y 6 p we have

p−1
∑

a=0

∣

∣

∣

∣

Np,a(X, Y ) − 6

π2
· XY

p

∣

∣

∣

∣

≪ X1/2Y 1/2p3/4 log p.

Proof. Let Ap consist of a ∈ {0, . . . , p−1} for which f(U, V )−a is absolutely
irreducible modulo p.

For an integer d, we define

Mp,a(d; X, Y ) = #{(x, y) ∈ Fp,a(X, Y ) | gcd(x, y) ≡ 0 (mod d)}.

Let µ(d) denote the Möbius function. We recall that µ(1) = 1, µ(d) = 0
if d > 2 is not square-free and µ(d) = (−1)ω(d) otherwise, where ω(d) is the
number of distinct prime divisors d. By the inclusion-exclusion principle, we
write

Np,a(X, Y ) =

∞
∑

d=1

µ(d)Mp,a(d; X, Y ). (3)

Writing
x = ds and y = dt,
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we have

#Mp,a(d; X, Y ) = #{(s, t) ∈ [1, X/d]× [1, Y/d] | f(ds, dt) ≡ a (mod p)}.

Thus Mp,a(d; X, Y ) is the number of points on a curve in a given box. If
a ∈ Ap and 1 6 d < p then f(dU, dV ) − a remains absolutely irreducible
modulo p. Accordingly, we have an analogue of (1) which asserts that

Mp,a(d; X, Y ) =
XY

d2p
+ O

(

p1/2(log p)2
)

. (4)

We fix some positive parameter D < p and substitute the bound (4) in (3)
for d 6 D, getting

Np,a(X, Y )

=
∑

d6D

(

µ(d)XY

d2p
+ O

(

p1/2(log p)2
)

)

+ O

(

∑

d>D

Mp,a(d; X, Y )

)

=
XY

p

∑

d6D

µ(d)

d2
+ O

(

Dp1/2(log p)2 +
∑

d>D

Mp,a(d; X, Y )

)

for every a ∈ Ap.
Furthermore

∑

d6D

µ(d)

d2
=

∞
∑

d=1

µ(d)

d2
+ O(D−1) =

∏

ℓ

(

1 − 1

ℓ2

)

+ O(D−1),

where the product is taken over all prime numbers ℓ. Recalling that

∏

ℓ

(

1 − 1

ℓ2

)

= ζ(2)−1 =
6

π2
,

see [5, Equation (17.2.2) and Theorem 280], we obtain

∣

∣

∣

∣

Np,a(X, Y ) − 6

π2
· XY

p

∣

∣

∣

∣

≪ XY/Dp+Dp1/2(log p)2+
∑

d>D

Mp,a(d; X, Y ), (5)

for every a ∈ Ap.
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We also remark that

p−1
∑

a=0

∑

d>D

Mp,a(d; X, Y ) =
∑

d>D

p−1
∑

a=0

Mp,a(d; X, Y )

=
∑

d>D

⌊

X

d

⌋⌊

Y

d

⌋

6 XY
∑

d>D

1

d2
≪ XY/D.

(6)

Therefore, using the bounds (5) and (6), we obtain

∑

a∈Ap

∣

∣

∣

∣

Np,a(X, Y ) − 6

π2
· XY

p

∣

∣

∣

∣

≪ XY/D + Dp3/2(log p)2. (7)

For a 6∈ Ap we estimate Np,a(X, Y ) trivially as

Np,a(X, Y ) 6 min{X, Y } deg f ≪
√

XY .

Thus by Lemma 1,

∑

a6∈Ap

∣

∣

∣

∣

Np,a(X, Y ) − 6

π2
· XY

p

∣

∣

∣

∣

≪ max{
√

XY , XY/p} ≪
√

XY . (8)

Combining (7) and (8) and taking D = X1/2Y 1/2p−3/4(log p)−1 we conclude
the proof.

Corollary 3. Let f be a polynomial with integer coefficients which is abso-

lutely irreducible and of degree bigger than one. If XY > p3/2(log p)2+ε for

some fixed ε > 0, then

Np,a(X, Y ) =

(

6

π2
+ o(1)

)

XY

p

for all but o(p) values of a = 0, . . . , p − 1.

4 Visible Points on Almost All Reductions

Throughout this section, the implied constants in the notations A ≪ B and
A = O(B) may depend on the coefficients of f .

To simplify notation we put

Fp(X, Y ) = Fp,0(X, Y ) and Np(X, Y ) = Np,0(X, Y ).
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Theorem 4. Let f be a polynomial with integer coefficients which is abso-

lutely irreducible and of degree bigger than one. Then for real T , X and Y
such that T > 2 max(X, Y ), we have

∑

T/26p6T

∣

∣

∣

∣

Np(X, Y ) − 6

π2
· XY

p

∣

∣

∣

∣

≪ X1/2Y 1/2T 3/4+o(1),

where the sum is taken over all primes p with T/2 6 p 6 T .

Proof. It is enough to consider T large enough so that f remains absolutely
irreducible and of degree bigger than one for all p, T/2 6 p 6 T . As before
we have
∣

∣

∣

∣

Np(X, Y ) − 6

π2
· XY

p

∣

∣

∣

∣

≪ XY/Dp + Dp1/2(log p)2 +
∑

d>D

Mp(d; X, Y ). (9)

where

Mp(d; X, Y ) = #{(x, y) ∈ Fp(X, Y ) | gcd(x, y) ≡ 0 (mod d)}.

We also remark that
∑

T/26p6T

∑

d>D

Mp(d; X, Y ) =
∑

d>D

∑

T6p6T

Mp(d; X, Y )

=
∑

d>D

∑

16s6X/d

∑

16t6Y/d

∑

T/26p6T
p|f(ds,dy)

1.
(10)

Let Z be set of integer zeros of f in the relevant box, that is

Z = {(u, v) ∈ Z
2 : 1 6 x 6 X, 1 6 y 6 Y, f(u, v) = 0}.

It is easy to see that #Z ≪ min(X, Y ) 6
√

XY . Indeed, it is enough to
notice that since f(U, V ) is absolutely irreducible, each specialization gy(U) =
f(U, y) with y ∈ Z and hx(V ) = f(x, V ) with x ∈ Z is a nonzero polynomials
in U and V , respectively. (Under extra, but generic, hypotheses, one can
invoke Siegel’s theorem, which gives #Z = O(1) but this does not lead to an
improvement in our final bound.) Denoting by τ(k) the number of integer
divisors of a positive integer k, we see that for each (u, v) ∈ Z there are at
most τ(u) = Xo(1) (see [5, Theorem 317]) pairs (d, s) of positive integers with
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ds = u, after which there is at most one value of t. Thus for these triples
(d, s, t), we estimate the inner sum over p in (10) trivially as T .

To estimate the rest of the sums, as before, we denote by ω(k) the number
of prime divisors of a positive integer k and note that ω(k) ≪ log k. Thus for
(u, v) 6∈ Z we can estimate the inner sum over p in (10) as ω(|f(ds, dy)|) =
(XY )o(1). Therefore

∑

T/26p6T

∑

d>D

Mp(d; X, Y ) 6
∑

d>D

∑

16s6X/d
16t6Y/d
(ds,dt)∈Z

∑

T/26p6T

1 +
∑

d>D

∑

16s6X/d
16t6Y/d
(ds,dt)6∈Z

∑

p|f(ds,dy)

1

6 #ZXo(1)T + (XY )o(1)
∑

d>D

∑

16s6X/d
16t6Y/d
(ds,dt)6∈Z

1

= (XY )1/2+o(1)T + (XY )1+o(1)D−1.

We now put everything together getting

∑

T/26p6T

∣

∣

∣

∣

Np(X, Y ) − 6

π2
· XY

p

∣

∣

∣

∣

≪ XY/D log T + DT 3/2(log T )2 + T (XY )1/2+o(1) + (XY )1+o(1)D−1,

and take D = X1/2Y 1/2T−3/4 getting the result.

Corollary 5. Let f be a polynomial with integer coefficients which is abso-

lutely irreducible and of degree bigger than one. If XY > T 3/2+ε for some

fixed ε > 0, that

Np(X, Y ) =

(

6

π2
+ o(1)

)

XY

p

for all but o(T/ log T ) primes p ∈ [T/2, T ].

5 Remarks

Certainly it would be interesting to obtain an asymptotic formula for Np,a(X, Y )
which holds for every a. Even the case of X = Y = p would be of inter-
est. We remark that for the polynomial f(U, V ) = UV such an asymptotic
formula is give in [8] and is nontrivial provided XY > p3/2+ε for some fixed
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ε > 0. However the technique of [8] does not seem to apply to more general
polynomials.

We remark that studying such special cases as visible points on the curves
of the shape f(U, V ) = V − g(U) (corresponding to points a graph of a
univariate polynomial) and f(U, V ) = V 2 − X3 − rX − s (corresponding to
points on an elliptic curve) is also of interest and may be more accessible
that the general case.
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