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Abstract: This study investigates blood glucose (BG) measurement interpolation techniques to represent 
intermediate BG dynamics, and the effect resampling of retrospective BG data has on key glycemic control 
(GC) performance results. Many GC protocols in the ICU have varying BG measurement intervals with 
gaps ranging from 0.5 to 4 hrs. Sparse data poses problems in model fitting techniques and GC performance 
comparisons, and thus interpolation is required to assume a continuous solution.  

Retrospective data from SPRINT in the Christchurch Hospital Intensive Care Unit (ICU) (2005-2007) was 
used to analyze various interpolation techniques. Piece-wise linear, spline and cubic interpolation 
functions, which force lines through data, as well as 1st and 2nd Order B-spline basis functions, used to 
identify the data, are investigated. Dense data was thinned to increase sparsity and obtain measurements 
(Hidden measurements) for comparison after interpolation. All of the piece-wise functions performed 
considerably better than the fitted interpolation functions. Linear piece-wise interpolation performed the 
best having a mean RMSE 0.39 mmol/L, within 2 standard deviations of the BG sensor error. 

The effect of minutely vs hourly sampling of the interpolated trace on key GC performance statistics was 
investigated using the retrospective data received from STAR GC in the Christchurch Hospital Intensive 
Care Unit (ICU), New Zealand (2011-2015). Minutely sampled BG resulted in significantly different key 
GC performance when compared to raw sparse BG measurements. Linear piece-wise interpolation provides 
the best estimate of intermediate BG dynamics and all analyses comparing GC protocol performance 
should use minutely linearly interpolated BG data. 
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1. INTRODUCTION 

Glycaemic control (GC) protocols in the intensive care unit 
(ICU) use a range of different blood glucose (BG) 
measurement intervals (0.5 – 4 hours), depending on patient’s 
BG (Chase, Shaw, et al., 2008; Finfer et al., 2009; Preiser et 
al., 2009; Amrein et al., 2012; Van Herpe et al., 2013; Stewart 
et al., 2016). BG data recorded for each GC protocol has 
varying degrees of sparsity, making a fair assessment and 
comparison of glycaemic performance difficult. Particularly 
when key criteria for comparing GC protocol performance is 
percentage time within or outside a targeted BG range (Finfer 
et al., 2013). A common method to improve assessment 
fairness is to interpolate between BG measurements and 
sample the interpolated trace equally and as needed (Chase, 
Shaw, et al., 2008; Amrein et al., 2012; Van Herpe et al., 2013; 
Stewart et al., 2016). However, the most appropriate 
interpolation technique and sample rate is still unknown. 

Similarly, many insulin-glucose models use fitting techniques 
requiring approximations of these same intermediate BG 
dynamics (Bergman, Phillips and Cobelli, 1981; Mari and 
Valerio, 1997; Parker and Doyle  3rd, 2001; Hann, Chase and 
Shaw, 2006; Wong et al., 2006; Chase et al., 2007; Hovorka 
et al., 2008). Thus, interpolation of clinical BG measurements 

significantly effects model fit and ‘accuracy’. Again, many 
models use linear interpolation between BG measurements 
(Hann, Chase and Shaw, 2006; Lin et al., 2011). However, its 
accuracy in comparison to other interpolation techniques has 
not been assessed. 

This paper investigates the accuracy of 5 different 
interpolation methods that can be used to approximate the 
intermediate BG dynamics over clinically typical 2, 3 and 4 
hour measurement intervals. The effect of various sampling 
rates on the interpolated BG trace is also assessed in relation 
to the outcome of key GC performance statistics.  

2. METHODS 

2.1 Patient Data  

Patient data from Christchurch Hospital ICU, New Zealand 
patients treated with SPRINT and STAR (Chase, Shaw, et al., 
2008; Evans et al., 2012; Stewart et al., 2016). The Upper 
South Regional Ethics Committee, NZ granted approval for 
the retrospective audit, analysis and publication of the 
Christchurch patient data. For the assessment of interpolation 
techniques a representative sample of the densely measured 
SPRINT cohort was used (Chase, LeCompte, et al., 2008). For 



 
 

     

 

assessment of the effect of sampling rate on GC performance 
results the sparser STAR cohort is used. SPRINT is a paper 
based GC protocol which offers 1-2 hour measurement 
intervals and allows the time of BG measurements to be 
recorded to an hourly resolution (Chase, Shaw, et al., 2008). 
In contrast, STAR is a tablet-based GC protocol which offers 
1-3 hours measurement intervals and allows the time of BG 
measurements to be recorded to a minutely resolution (Evans 
et al., 2012; Stewart et al., 2016).  

2.2 Interpolation techniques 

Five different interpolation techniques are investigated, which 
are separated into 2 different styles of interpolation: 

1. Piece-wise interpolation: The interpolated trace goes 
through all of the measurement points. 

2. Fitted interpolation: The interpolated trace is a 
combination of basis functions, fitted to the measured data 
points. 

2.2.1 Piece-wise interpolation techniques 

Three Piece-wise interpolation techniques are investigated, 
linear, spline and cubic interpolation. 

Linear interpolation: Data between BG measurements is 
assumed to be a linear line. Therefore the continuous BG data 
is represented by a piece-wise 1st order polynomial.  

Spline interpolation: Data between BG measurements is 
assumed to follow a spline using not-a-knot end conditions. 
Therefore, the continuous BG data is represented by a cubic 
interpolation of the spline. 

Cubic interpolation: Data between BG measurements is 
assumed to be a cubic relationship. Therefore, the continuous 
BG data is represented by a piece-wise cubic polynomial. 

2.2.2 Fitted Interpolation 

Two fitted interpolation techniques are investigated, 1st and 2nd 
Order B-spline basis function fitting. Basis function widths 
were varied to investigate the best fit.  
An example comparison of the fitted interpolation techniques 
can be seen in Figure 1. Fitted interpolation is used to try and 
incorporate an approximation of the measurement error into 
the interpolated trace and restrict overly rapid changes in the 
interpolated BG trace. 

1st Order B-spline Basis Functions: The BG interpolation trace 
is made from a linear combination of 1st Order B-spline basis 
functions. 1st Order B-spline basis functions (k = 1) are based 
off the piece-wise function defined (De Boor, 1972).  
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   (1) 

Where: 
𝑗𝑗 = 0,1,2 … 𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑊𝑊𝑗𝑗 = 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾ℎ ∗ 𝑗𝑗,  
𝑘𝑘 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, and: 

∑ ∅𝑗𝑗(𝑡𝑡)𝑛𝑛
𝑖𝑖=1 = 1 ∀ 𝑡𝑡  (2) 

The B-spline basis functions are in fixed locations, occurring 
every instance of the chosen knot width (KW), and overlap. 
The inherent property of the B-spline basis functions, Equation 
2, ensures no underlying waveform can be induced into the 
fitted data and a constant value can also be represented. 

2nd Order B-spline Basis Functions: The BG interpolation 
trace is made from a linear combination of 2nd Order B-spline 
basis functions, k = 2, based off the piece-wise function in 
Equation 1. 

Figure 1: Comparison fitted interpolation techniques (1st 
and 2nd Order B-spline basis functions). 

2.3 Interpolation Analysis 

To assess which interpolation technique best represents the 
intermediate BG dynamics, the fit of the measured and 
intermediate BG dynamics need to be considered. BG data 
points are removed from dense BG data sets before 
interpolation, and then compared to post-interpolation 
estimates for independent validation. Data was thus thinned to 
create 2, 3 and 4 hour measurement intervals, similar to what 
would be expected clinically. Removed measurements are 
referred to as ‘hidden’ measurements, and remaining 
measurements are ‘observed’ measurements. 

Removed BG measurements criteria: 

1. Could be removed without causing a gap between the 
neighbouring measurements greater than the 
measurement period being investigated (2, 3 and 4 hours). 

2. The interventions (nutrition and insulin) given to the 
patient over this period were constant. Changes that would 
only be able to be captured by a model and would not 
usually occur without a prior BG measurement. 

An example is shown in Figure 2, and Table 1 summarises the 
now sparse data. 
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Figure 2: Example of thinning data to maximize 2 hour 
measurement intervals. 

Table 1: Thinned patient data sets for each measurement 
interval to be used for evaluation of techniques. 

Measurement interval 2 hr 3 hr 4 hr 

# Patients 29 31 34 

# Observed Meas. 3296 2922 1862 

# Hidden Meas. (% 
Total) 

853 
(20.6%) 

1404 
(32.5%) 

2512 
(57.4%) 

 

A range of basis function knot widths (KW), in Equation 1, are 
tested to see which option best fits both the observed and 
hidden data. Goodness of fit was assessed by using Root Mean 
Square Error (RMSE) between the observed and/or hidden 
measurements. Errors for observed measurements are 
expected to be lower as they are used in the identification 
process. Error for hidden measurements validates the ability of 
the interpolation technique to capture the intermediate BG 
dynamics over time intervals relevant to GC protocols. The 
goodness of fit for both the observed and hidden measurements 
are then compared to the error expected from the point of care 
measurement devices used in the SPRINT study, Arkray 
Super-Glucocard™ II glucometer (Arkray, Minnesota, USA). 

2.2 Sampling Analysis 

To assess which sampling rate of the pre-determined, 
interpolated BG trace best captures GC performance, key GC 
performance statistics are compared with various sampling 
intervals (1, 60 minute and raw measured data points). 

The statistics assessed are: 

• BG mean, median and standard deviation. 
• Percentage of time in the targeted range (4.4-8.0 mmol/L) 
• Percentage of time BG < 2.2 mmol/L, BG <4.4 mmol/L 

and BG >10 mmol/L. 

All sampling of the interpolated BG trace starts from the first 
BG measurement and is therefore heavily dependent on the 
interpolation technique used.  

3. RESULTS 

3.1 Piece-wise Interpolation 

Figure 3 shows the cohort hidden RMSE for the 3 different 
piece-wise interpolation techniques (Linear, Spline and 
Cubic). Linear interpolation performed the best followed 
closely by cubic interpolation. The longer the measurement 
interval interpolated, the worse the fit provided. 

Figure 3: Piece-wise interpolation RMSE of hidden 
measurements. 

3.1 Fitted Interpolation 

Figure 4 presents the cohort RMSE, for both hidden and 
observed measurements, as the knot width (KW) is increased 
on the 1st order B-spline basis functions. RMSE of observed 
measurements increased with KW and the RMSE of hidden 
measurements decreased as the KW increased.  

Figure 4: 1st Order B-spline basis functions fitted 
interpolation RMSE of observed and hidden 

measurements. The thick black dashed line provides a 
reference to Figure 3.  
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Table 2: Glycaemic control performance results of the STAR Cohort using different sampling intervals. 

Sampling Interval Raw Measurements Hourly Minutely 
P-Values 

Raw vs. 
Hourly 

Hourly vs. 
Minutely 

Number episodes 286 286 286 - - 
Cohort Statistics      
Mean BG 6.92 6.73 6.71 - - 
Median BG 6.80 [5.90 - 7.90] 6.61 [5.96 - 7.40] 6.60 [5.95 - 7.38] - - 
Std Dev BG 1.29 1.23 1.23 - - 
% time < 2.2 mmol/L 0.04328 0.00456 0.00941 - - 
% time < 4.4 mmol/L 2.62 1.35 1.32 - - 
% time 4.4-8.0 mmol/L 74.32 83.30 83.78 - - 
% time > 10 mmol/L 7.13 4.10 3.88 - - 
Per-patient Statistics      
Mean BG [IQR] 6.84 [6.50 - 7.42] 6.66 [6.36 - 7.21] 6.64 [6.31 - 7.14] <0.01 0.38 
Median BG [IQR] 6.70 [6.30 - 7.20] 6.50 [6.14 - 6.90] 6.49 [6.14 - 6.87] <0.01 0.80 
Std Dev BG [IQR] 1.43 [1.08 - 1.98] 1.17 [0.85 - 1.65] 1.07 [0.79 - 1.51] <0.01 0.08 
% time < 2.2 mmol/L 0.00 [0.00 - 0.00] 0.00 [0.00 - 0.00] 0.00 [0.00 - 0.00] 0.18 0.18 
% time < 4.4 mmol/L 0.00 [0.00 - 5.34] 0.00 [0.00 - 1.79] 0.00 [0.00 - 1.49] <0.01 0.09 
% time 4.4-8.0 mmol/L 81.50 [66.67 - 90.00] 88.42 [77.42 - 94.44] 88.80 [77.89 - 95.52] <0.01 0.37 
% time > 10 mmol/L 2.78 [0.00 - 8.70] 1.22 [0.00 - 5.56] 0.78 [0.00 - 4.48] <0.05 0.56 

Figure 5 presents the same results for the 2nd order B-spline 
basis functions.  

Figure 5: 2nd Order B-spline basis functions fitted 
interpolation RMSE of observed and hidden 

measurements. The thick black dashed line provides a 
reference to Figure 3. 

3.2 Sampling interval 

The prior analysis shows linear interpolation provided the best 
approximation of BG data. Using linear interpolation, the 
effect of sampling rate on STAR cohort results was 
investigated. Table 2 shows results are significantly skewed if 
resampling is not used, and slight variations in some results 
can be observed if interpolated BG is sampled more 
frequently. 

4. DISCUSSION 

4.1 Piece-wise interpolation performance 

Figure 3 shows all the piece-wise interpolation techniques 
performed extremely well in capturing intermediate BG 
dynamics. Linear interpolation performed the best with an 
average RMSE of 0.39 mmol/L, over all measurement 
intervals assessed. As the measurement interval assessed 
increased, so did the hidden RMSE. This result is likely due to 
the greater time for the intermediate BG dynamics to deviate 
from the interpolated trace, as expected.  

4.2 Fitted interpolation performance 

From Figures 4-5 there is a trade-off of the fit of the 
interpolated trace, between the hidden and observed 
measurements. In general, as KW is increased, the RMSE on 
the observed data points is increased and the RMSE on the 
hidden data points is decreased. The 150 minute knot width 1st 
order B-spline basis functions provided the best compromise 
of fit to the observed (mean RMSE 1.07 mmol/L) and hidden 
(mean RMSE 0.80 mmol/L) measurements. The 150 minute 
2nd order B-spline basis functions also provided the best 
compromise of fit to the observed (mean RMSE 1.06 mmol/L) 
and hidden (mean RMSE 0.64 mmol/L) measurements. 
Overall, the 2nd order B-spline basis function interpolation 
provided the best fit to both observed and hidden 
measurements. 
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4.3 Optimal Interpolation 

From the results it can be seen that the piece-wise interpolation 
techniques provided a better approximation of the hidden 
measurements, and inherently have no fitting error to the 
observed measurements, in comparison to the fitted 
interpolation techniques. Thus, the trade-off of fit between the 
observed and hidden measurements resulted in a much larger 
RMSE overall compared to the piece-wise interpolation 
techniques. The SPRINT cohort BG measurements were 
measured using a Super Glucocard II (Arkray, Minnesota, 
USA), which has a standard deviation of measurement error 
ranging from 0.15–0.56 mmol/L, depending on the BG value 
(Arkray, 2007). Only the linear and cubic piece-wise 
interpolation techniques provided a RMSE within this 
measurement error.  

4.4 Sampling Analysis 

The raw BG results were at minutely and hourly intervals, 
using linear interpolation. Table 2 clearly shows there are 
significant differences in key results using raw measurement 
and interpolated BG result for both cohort and per-patient 
metrics. The most significant impact is on percentage of time 
statistics; 81.5% vs ~88% of time BG within 4.4-8.0 mmol/L, 
per-patient P < 0.01; 2.78% vs ~1.0% of time BG > 10 
mmol/L, per-patient P < 0.05. A significant difference can also 
be seen in the BG mean and median results (mean BG of 6.84 
vs ~6.65 mmol/L, P < 0.01, and median BG of 6.7 vs ~6.49 
mmol/L, P < 0.01). The discrepancy is largely due to the 
varying measurement frequency in and out of band for the 
given GC protocol, inherently causing higher numbers of raw 
measurements to occur outside of the targeted band than 
within.  

Only a small benefit is observed from sampling the 
interpolated trace more frequently (minutely). The largest 
difference between minutely vs hourly interpolated results in 
Table 2, occurred in the percentage of time BG > 10 mmol/L 
measurements (0.78% vs 1.22%, P = 0.56). This result could 
be due to the hourly sampling of the interpolated trace 
truncating the measured peaks seen in the minutely sampling, 
which is important especially when considering the number of 
patients within the hyper- and hypo- glycaemic region (BG > 
10 mmol/L and < 4.44 mmol/L). A negligible difference in BG 
mean, median was seen in Table 2. However, a slight 
difference could be seen in the standard deviation of BG 
between sampling rates (1.17 vs 1.07, P = 0.08). 

4.5 Limitations 

The SPRINT protocol has measurement intervals of 1-2 hrs 
(Chase, Shaw, et al., 2008). As per protocol, the SPRINT data 
is denser in regions where a patient is variable or out of the 
target band. Thus, the measurements removed (hidden 
measurements) to make the data sparse are more likely to be 
removed from more variable and higher (BG > 6.1 mmol/L) 
BG regions. Hence, the hidden measurement error is a stronger 
validation test, but will likely have higher BG measurement 

error associated with it than if more stable periods were 
included. The results are thus conservative. 

The number of observed and hidden BG measurement varies 
as the measurement interval assessed is increased, due to the 
data needing to be denser to assess smaller measurement 
intervals. However, there is still a significant amount (20.6%) 
of data for assessment of the 2 hour measurement interval to 
provide a fair assessment of the BG interpolation techniques. 

5. CONCLUSIONS 

Overall the linear piece-wise performed the best out of all 
interpolation techniques (mean RMSE 0.39 mmol/L), 
providing the best estimate of the intermediate BG dynamics. 
The fitted interpolation techniques failed to capture the hidden 
BG measurements without providing a poor fit to the observed 
measurements. Thus linear interpolation provides the best 
estimate of intermediate BG dynamics. 

There is a significant difference in key GC performance 
statistics when comparing raw to resampled interpolated 
measurements, especially when the GC protocols being 
investigated have varying measurement frequency depending 
on BG. Therefore, for fair comparison of a GC protocol’s 
performance, minutely resampled linear interpolation of BG 
results should be used. 
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