Modelling and Measuring Collaborative Software
Engineering

Carl Cook Neville Churcher

Technial Report TR-05/04, September 2004
Software Engineering & Visualisation Group,
Department of Computer Science and Software Engineering,

University of Canterbury, Private Bag 4800,

Christchurch, New Zealand
{carl, neville}@cosc.canterbury.ac.nz

The contents of this work reflect the views of the authors
who are responsible for the facts and accuracy of the data
presented. Responsibility for the application of the ma-
terial to specific cases, however, lies with any user of the
report and no responsibility in such cases will be attributed
to the author or to the University of Canterbury.

This technical report contains a research paper, devel-
opment report, or tutorial article which has been submitted
for publication in a journal or for consideration by the com-
missioning organisation. We ask you to respect the current
and future owner of the copyright by keeping copying of this
article to the essential minimum. Any requests for further
copies should be sent to the author.

Abstract

Collaborative Software Engineering (CSE) supports the fine-grained
real-time development of software by teams of developers located any-
where on the Internet. In this paper we describe CAISE, our CSE envi-
ronment, and explore the ways in which such environments can benefit
developers. We consider the roles of heuristic evaluation, log analysis and
visualisation in quantifying the benefits of CSE.

1 Introduction

Modern software engineering inevitably involves teams of developers collabora-
tively working on software artifacts. Challenges to success include both the size
(millions of lines of code, thousands of classes) and complexity of the software
under development.

However, increasingly, individual developers may be physically separated—
perhaps to the extent that they are in different time zones. Similarly, the soft-
ware artifacts may also be arbitrarily distributed/replicated at the developer’s
locations. Supporting effective collaboration between software engineers is it-
self a difficult problem: supporting effective collaboration between physically
separated software engineers remains an open problem.

In this paper we consider Collaborative Software Engineering (CSE), which
we define loosely as seamless, fine-grained, real-time collaboration between dis-
tributed software engineers who may be located anywhere on the Internet. In
practice, this involves the development of tools, techniques and environments
which minimise the adverse effects of collaboration with remote colleagues.

Software engineering involves teamwork and communication of many kinds.
Specific examples include:

e In agile processes, such as eXtreme Programming, pair programming re-
quires very close collaboration focussed on the same artifact. In CSE, the
pair members need not be spatially co-located.

e Development activities such as analysis, design, testing and coding may
be carried out by different combinations of individuals. CSE-mediated
discussions are potentially a valuable way for effective communication and
feedback between and within these groups.

e When correcting defects, team members may consult former team mem-
bers, currently assigned to other projects, in order to determine the ra-
tionale for some design feature which has subsequently been identified as
problematic.

e Refactoring often involves relatively minor but widespread changes. Users
who are kept informed of such activity are able to avoid potential conflicts.

In our previous work (Cook & Churcher 2003, Cook, Irwin & Churcher 2004)
we have focussed on the development of CAISE, an infrastructure for supporting
collaborative software engineering. Underlying this work is the premise that we
can draw on the work of the Computer-Supported Collaborative Work (CSCW)
community, which has enabled the development of collaborative approaches in
other fields. However, CSE differs from typical CSCW applications, such as
shared whiteboards, in several significant ways including the following:

Artifacts produced have longer lifetimes.

System integrity is more important.

The cost of repairing inconsistencies is higher.

e The number, size and complexity of artifacts is higher.

Some work has been done to measure and visualise collaborative develop-
ment at the granularity of version control systems such as CVS. One interesting
example is Palantir (Sarma & van der Hoek 2002, Sarma, Noroozi & van der
Hoek 2003) which provides a number of visualisations which help distributed de-
velopers to coordinate their efforts over the coarse-grained timescales associated
with version control systems. We follow similar principles in the development
of visualisations, over a range of granularities of artifacts and timescales, to
support CSE.

Twidale and Nichols (Twidale & Nichols 2004) have considered support for
discussions of usability issues in open source development over similar timescales.
This could be supported in real time in a CSE environment.

In this paper we consider the issues associated with modelling CSE activities,
assessing CSE systems in order to provide empirically-grounded development
and the analysis & visualisation of CSE activity. We illustrate our arguments
with examples drawn from our CAISE system.

The remainder of this paper is structured as follows. In the next section,
we discuss the relationships between CSE and CSCW systems. Our CAISE
system is presented in Section 3 and the ways in which it supports CSE are
outlined. Section 4 contains an analysis of the major activities, relationships
and collaborations which are evident in CSE. In Section 5 we develop a set
of heuristics which will enable the capabilities and effectiveness of CSE imple-
mentations to be assessed. We show in Section 6 that effective studies of both
CSE and CSE systems require detailed longitudinal studies which need to be
supported by log data. We illustrate our arguments with examples from CAISE
applications. Finally, we present our conclusions and indicate the directions our
ongoing research is taking.

2 CSE and CSCW

One approach to the problem of supporting distributed software engineering has
been the development of configuration management tools (Conradi & Westfechtel
1998) and these are routinely supported by modern IDEs. The advent of eX-
treme Programming (XP) (Beck 2001) and other agile software development
processes relies heavily on such tools. CVS in particular has enabled the pro-
liferation of web-based open source software development projects (over 86,000
are registered at SourceForge alone (SourceForge 2004, Bar & Fogel 2003)).

However, although they have proved extremely valuable, tools such these can
only partially support CSE. Typically, the price paid by developers for coordi-
nation of their efforts is acceptance of extreme models of concurrent activity.

A pessimistic model uses locking to prevent shared access to artifacts: this
minimises parallel development. The underlying assumptions are effectively
those of a typical database application—that multiple users (transactions) con-
currently accessing the same artifact are likely to lead to integrity-threatening
conflicts.

By contrast, an optimistic model allows users to perform independent up-
dates to the same artifact. It concentrates on providing support for resolving
potential conflicts when updates are merged: this maximises parallel develop-
ment but risks conflicting changes which can be difficult to resolve.

Both pessimistic and optimistic approaches are found in typical configuration

management tools. Clearly, tools such as CVS have been very successful thus
far. However, we contend that neither extreme is ideally suited to fine-grained
real-time collaborative software engineering. Pessimistic techniques explicitly
force users (transactions) to be independent (i.e. unaware of each other)—far
from ideal in a team development context; optimistic techniques can lead to
unpleasant surprises when integration is eventually performed.

Neither extreme is particularly suitable for CSE. Individual changes, such
as adding a parameter to a method, may touch significant fractions of the whole
project. If users have to wait to check out all the artifacts required (which may
not necessarily be known in advance) then productivity is lowered. On the other
hand, some changes may be complex and involve modifications in several places.
If an optimistic approach requires that these be backed out because of conflicts
then it may not be easy to reproduce them.

CSCW, also known as groupware, is a generic term for software which allows
users to collaborate to perform tasks or develop artifacts (Ellis, Gibbs & Rein
1991, for example). Typical examples are shared whiteboards or text editors
which allow users at different Internet nodes to make changes and to be aware
of the locations and actions of other users.

As well as specific applications, a number of toolkits are available to sup-
port the development of suites of groupware applications. One notable example
is Groupkit, developed at the University of Calgary’s GroupLab (Roseman &
Greenberg 1996).

Central to this is the concept of floor control (Dommel & Garcia-Luna-
Aceves 1997, Munson & Dewan 1996). Floor control policies mediate the in-
terleaved actions of concurrent users. While these may be as restrictive as a
pessimistic locking scheme such as 2-phase locking, such policies are relatively
rare. Less restrictive policies include turn-taking, where users must obtain some
token or permission before they can make updates to shared artifacts.

However, the most usual policies are essentially a free-for-all, permitting
users to make potentially conflicting updates at will. The underlying assumption
is that soctal protocols will ensure that group members will consult one another
before making potentially harmful changes. In a typical CSCW environment,
users can interact via audio (telephone conference or VOIP), video and text
chat facilities as well as via the groupware applications.

In order for such approaches to be successful it is necessary for users to be
made aware of the locations, actions and intentions of others. Groupkit, for
example, provides a variety of awareness mechanisms such as multiple cursors
(telepointers) and multi-user scroll bars.

The applicability of CSCW techniques to software engineering has been
demonstrated for some specific contexts (Churcher & Cerecke 1996, Schummer
2001, for example). Early attempts typically used domain-independent CSCW
components. While this naive approach was sufficient to cope with small, sim-
ple systems (Greenberg 1989), the technology did not scale well to larger, more
complex situations (Grudin 1992, Grudin 1994) and CSCW has largely been
abandoned in such contexts.

However, our approach, which layers CSCW concepts onto a core IDE engine,
is robust and potentially much more appropriate for CSE. CAISE maintains a
single copy of all artifacts, manages syntactic and semantic models, detects and
propagates events to users and performs a variety of other functions. Client
tools are supported by a server that fully understands the components they are

manipulating and the relationships of the underlying software model.

L]
@ u%lm @ @ummm @

TextTool

Neville

LoggingTool EI

S
server CAISE Server

Figure 1: CSE

Figure 1 illustrates the high level architecture of our system. Individual
users, Carl and Neville, are located at different Internet nodes and each has a
set of development tools such as code editors and diagramming tools. These in-
dividual tools inform the CAISE server of updates they make to project artifacts.
In return, the server ensures that their local copies of artifacts are refreshed to
reflect changes made by other users as they occur.

Client Tools Parse Analysers Feedback
_I Modules
Input Rl
Events Semantic < T Ry
Model Change i Feedback
Outout Events i+ Events
inti utpu :
IE' ' | Events Ly, * - +
Event Distributor
Local Views of Model

W CAISE Server

Figure 2: CAISE architecture

3 The CAISE architecture

The client /server architecture of CAISE is presented in Figure 2 and supports the
CSE activities shown schematically in Figure 1. It comprises four core entities:
CAISE server, client tools, event propagation and semantic model.

CAISE server The server is responsible for managing all users within the soft-
ware project and their associated software artifacts. It performs many of
the functions of an IDE: maintaining a cache of artifacts, constructing a
symbol table, keeping track of references between units of code, and sup-
porting multiple languages and tools. However, the CAISE server differs
from an IDE in some significant ways: it is shared simultaneously between
multiple users and tools, allows only one ‘live’ version of artifacts, supports
collaboration as a core function and shares its full semantic knowledge with
client tools.

Central to the server is the semantic model of software. Whilst each arti-
fact is managed and stored by the server, the model stores the correspond-

ing project semantics: information such as the symbol table, references
between symbols and the list of currently unresolved references.

Language-specific parsers transform source code into a representations
more suitable for exchange and further processing. Upon source file mod-
ification by a client tool, the server generates a corresponding parse tree
in order to update its semantic model and inform users. The parse tree
is also delivered to interested client tools, allowing them to update their
local models and project views.

The server uses language-specific analysers to process the updated parse
trees, generating corresponding semantic model updates. Analysers un-
derstand both the structure of the parse tree and the semantic model, and
perform the task of updating the model to reflect the difference between
the old and new parse trees.

User-defined feedback modules are invoked by the server following changes
to the semantic model, or user events that suggests a client has changed
location in an artifact. Feedback modules inspect the current state of the
model and generate client-specific messages for tools to respond to.

All user events (such as a change of location in an artifact), change events,
feedback events and user communication events (such as chat messages)
are collated by the server. Whilst these events, where relevant, are dis-
tributed to client tools, the server also appends them to the event log. The
event log is available to clients and can be used for a variety of purposes,
such as playback of the project development, inspection of specific events,
mining for patterns of usage, and metrics gathering. Some examples are
given in Section 6.

In addition to the set of events, the event log also stores data about all
project users and tools, together with all declared symbols. This data
augments the individual event data contained in the log, providing the
event log viewer with a considerable amount of information related to the
editing of artifacts and the resultant changes to the semantic model.

Client tools CAISE clients are software engineering tools that conform to the
CAISE client API. Each client tool has a local model—in the case of a
text editor, this will typically be the set of source file artifacts in the
software project. When remote changes occur, the tools are notified by
the CAISE server and in turn update their own models and corresponding
views. For example, a UML class diagramming tool could have a local
model that takes into account only the classes belonging to a particular
set of packages. This tool would only update its local model when remote
updates to specific classes occur.

Event propagation The actions of client tools and the reactions of the CAISE
server are bound together by the event model. When tools create, open
or modify an artifact, input events are generated and delivered to the
server. The server then responds to the events, typically by updating the
semantic model—at which point change events may be generated. Finally,
user-defined feedback events may also be generated in response to specific
change and input events. Once all events have been collated, they are

delivered to the appropriate listeners such as code editors and real-time
visualisation/project management tools.

Semantic model There are several sources of information within the CAISE
architecture. The authoritative state of the software project is repre-
sented by the semantic model, which has been described elsewhere (Irwin
& Churcher 2003)). This includes the complete syntactic structure of the
projects, represented by the current set of parse trees.

Parse trees hold the explicit structure of all declarations and statements
within a software project. Additionally, modification information for each
element is stored in the parse tree. For example, if a parse tree contains
(amongst other things) a method declaration, it is possible to inspect the
creation date of the method, plus any semantic change information such
as a changed return type or an addition of a local variable.

An API exists to inspect and append the semantic model. A visualisation
tool, for example, might inspect the model to generate a visualisation of
the project’s current class structure. Similarly, a project management tool
might inspect the model periodically to produce a metrics report.

In a more reactive manner, event listeners can be instantiated within client
tools, which respond to given events. For example, a real-time project
management tool might listen to model change events and raise a warning
when a class appears to be in a state of conflict between several developers.

To view the full history of the project, the event log may be inspected.
The declared symbols extracted from the event log may then be looked up
in the semantic model if required, providing vast information about the
symbol declarations and related components.

3.1 The Java editor tool

An example client tool within the CAISE architecture presented in Figure 3.
This tool represents a Java code editor currently opened by user ‘Neville’. This
editor allows any number of participating users to construct and maintain a
Java-based program collaboratively and in real-time. Three main components
are identified within this tool:

Editor panel: (labeled ‘A’ in Figure 3) a synchronous groupware widget that
allows multiple distributed users to edit a given buffer at the same time.
As the CAISE architecture supports the propagation of user input events
to interested listeners in real-time, all editors maintain identical copies of
the artifact buffer.

User tree: (‘B’) provides context awareness for each tool user, and is par-
ticularly useful within the editor. Whilst the editor only knows how to
display and support the modification of text files, the user tree provides a
dynamic model-centric view of the software project—independent of the
actual source files being edited.

Client panel: (‘C’) provides information related to the artifacts within the
software project, such as the artifact editors and viewers, file sizes and
modification dates. The client panel also provides an area for the display

ava Text Editor, [Neville/cosc416 connected fo

File

Default Package
? BookTitle

public class Room £

|

private Ytring roomlumber; r_lﬂ Tiral
private 5tring building = "Unassigned”; 9 @ addiuthar
i Ccanl
| ® Roaorm
aublic String getNunber(d { & Meville
return roomNumnber; -] Lecturer
b & Tony

puplic STring getBuildin
return building;

-

[+

Artifacts || Useps

Project Files Current File Yiewers Current File Editor
Course.java | al]
Test.java Modification Date
BookTitle.java YWed Sep 01 1423811 NZSE
Room.java Creation Date |
CourseOffering.java Wed Sep 01 14:34:12 NZ§
= = Current File 5ize

Delete File L 407 bytes]

File 'Room.java' saved

Figure 3: A CAISE session

of customised feedback messages from the server. It is also used to send
chat and voice messages to other users.

The three components listed above are part of the CAISE client widgets
package; all such widgets can be used within any Java application.

More detailed information related to the CAISE architecture and associated
tools is available elsewhere (Cook & Churcher 2003, Cook et al. 2004).

4 Understanding CSE

In order to assess both the benefits of CSE in general and the quality of the
CAISE implementation in particular, several distinct aspects of systems such as
CAISE need to be considered.

Architecture: CAISE employs a client-server architecture whereas replicated
systems are more common in conventional CSCW applications. Although
some research has been done on principles for evaluating architectures (Tvedt,
Costa & Lindvall 2004, for example), this aspect is not currently a pri-
mary concern for us. The major factor in determining our architecture
choice is the need to be able to support the throughput needed in order
to propagate and coordinate user updates to artifacts.

Infrastructure: A CSE environment should provide a means of adding new
tools, languages and server facilities. CAISE provides an extensible frame-

work for both client tools (e.g. adding a new kind of diagramming tool)
and server applications (e.g. responding to the changing semantic model).
In addition, a set of widgets such as the user tree is available.

Usability: Individual tools, such as editors and diagrammers, must have suf-
ficient features that professional developers will be prepared to use them.
Both taskwork-oriented features, such as formatting and searching, and
teamwork-oriented features, such as awareness indicators, must be avail-
able.

In order to determine the most effective ways to use CSE we need to de-
velop an understanding of what actually takes place in (collaborative) software
engineering.

Design patterns for software engineering (Gamma, Helm, Johnson & Vlissides
1995), based on Alexander’s concepts from the architectural domain (Alexander,
Ishikawa, Silverstein, Jacobson, Fiksdahl-King & Angel 1977, Alexander 1979)
have been remarkably successful. Their success has led to efforts to assem-
ble pattern languages for other fields. Martin and Sommerville (Martin &
Sommerville 2004) have identified a number of patterns which reflect the ways
in which groups of people interact to perform tasks. Examples include Artifact
as an audit trail and Collaboration in small groups: further detail is available
at http://polo.lancs.patterns and http://polo.lanc.pointer.

In an analogous manner, we are working to identify patterns more specific
to CSE.

As a first step, we identify several interaction modes, each characterised by
the degree of coordination required (teamwork) and the nature of the activity
(taskwork):

Private: A user effectively withdraws from the group temporarily, typically
to convince herself of the viability of a change before revealing it to the
others. Such a user may require the rest of the project to appear frozen in
time. Ideally, it should be possible to re-integrate the change rather than
having to repeat it publicly.

Independent: Users are located in regions of code whose semantic relation-
ships are sufficiently weak that they can safely assume independence. Fre-
quent communication is unnecessary and project integrity is not threat-
ened by independent updates. An example might involve user A editing a
GUI (view) class to alter a menu, user B editing a customer record (model)
class and user C adding a new package which does not yet interact with
other classes.

Follow the leader: One user takes others on a guided tour. An example would
be to show others the details of a recently completed change. Strict What
You See Is What I See (WYSIWIS) might be used to coordinate views,
particularly if all users are using the same tool. However, in a more relaxed
scenario, users would navigate individually, guided by audio commentary
and gestures.

Action/Reaction: Stronger constraints exist as users become closer in phys-
ical, logical or semantic terms. For example, if user A changes the type

of a parameter in a method definition in class C1 then another user edit-
ing class C2 may need to update calls to that method. Changes made
by a user (the actions) to aspects such as the number and type of class
properties, the parameters and return types of methods or the inheritance
and interface structure will require responses (reactions) from other users
whose work is potentially affected. Awareness mechanisms can alert users
to possible threats (e.g. another user is editing a superclass). Collabora-
tion support mechanisms, such as text or audio channels and gestures, can
then be employed to discuss and resolve the issues.

Meélée: Several users are making (potentially-) conflicting changes to a set of
artifacts and these will be in a state of flux for a period. Such changes
would typically be negotiated in advance, and mediated throughout, by
infrastructure features such as an audio channel.

5 Heuristics

As is the case for other kinds of groupware, and for software engineering in
general, it is important to maintain a balance between development of CSE
infrastructure and ongoing evaluation. If too long is spent performing detailed
analyses of prototype systems then not only are results likely to be of marginal
use but also the development process is likely to be delayed or misled. On the
other hand, to ignore evaluation is to risk failure because development is not
guided and informed by empirical work.

Evaluating systems and techniques with typical user groups on realistic prob-
lems is difficult, time consuming and expensive. Various approaches have been
developed.

User trials are particularly suited to evaluating Human-Computer Interface
(HCI) and usability aspects. These would be most useful towards the end of
our project when a full range of industrial strength tools is available. At that
point we will wish to quantify such factors as the relative merits of alterna-
tive feedback/feedthrough mechanisms and the balance between the benefits of
awareness of others and the potential distractions from one’s own tasks.

Field studies and case studies are long term undertakings conducted in re-
alistic industrial environments in order to determine the domain-specific tasks
which must be supported and to observe how particular systems are used in
practice. As well as being expensive in terms of both time and cost they also
have difficulties such as provision of control groups: consequently, they are most
useful when the systems to be evaluated are at a mature level. In our case, these
will be valuable to explore the patterns of collaboration amongst users and the
effectiveness of individual techniques on particular categories of tasks.

In order to gain the most from costly evaluations it is important to be able
to address the issues of assessing systems which are in early stages of develop-
ment. This allows the developers to use results to improve the system rather
than simply quantify its performance. A range of so-called ‘discount’ evaluation
techniques have been developed to achieve this. These include heuristic evalua-
tion (Nielsen & Molich 1990, Nielsen 1992, Nielsen & Landauer 1993), in which
small groups of evaluators seek violations of a given set of heuristics. Results
suggest that these techniques can be very effective in detecting faults, thereby

10

enabling them to be corrected earlier in the development cycle.

A set of heuristics for evaluation of groupware has recently been proposed (Baker,
Greenberg & Gutwin 2001, Baker, Greenberg & Gutwin 2002). We summarise
them here and indicate briefly how they relate to specific CAISE features.

Cscwi Provide the Means for Intentional and Appropriate Verbal Commu-
nication. CAISE provides text chat and an audio channel. External
systems, such as telephone conferencing and web cams, may also be
used.

Cscwii Provide the Means for Intentional and Appropriate Gestural Commu-
nication. CAISE provides a user tree (see Figure 3) which indicates
the location (scope) of each user. Individual tools may supplement
this by implementing features such as telepointers.

Cscwiii Provide Consequential Communication of an Individual’s Embodiment.
Currently implemented via the user tree.

Cscwiv Provide Consequential Communication of Shared Artifacts (i.e. Arti-
fact Feedthrough). Client tools’ buffers remain synchronised to reflect
changes to the underlying artifacts. Individual tools may implement
features such as colour-coding for the age of updates.

Cscwv Provide Protection. The default access policy in CAISE is to rely on
social protocols while clients provide features such as the ability to
undo changes.

Cscwvi Management of Tightly and Loosely-Coupled Collaboration. The user
tree and client panel enable users to assess activities of interest. Feed-
back, tailored to reflect the users’ interests, is used to alert users to
potential conflicts.

Cscwvii Allow People to Coordinate Their Actions. Communication channels
and other feedback mechanisms support coordination.

Cscwviii Facilitate Finding Collaborators and Establishing Contact. The CAISE
session management tools, such as the user tree, indicate which users,
tools and artifacts are currently active.

It is useful to distinguish taskwork, task-specific actions, and teamwork, ac-
tions specific to group performance of tasks. Collaboration Usability Analysis
(CUA) (Pinelle & Gutwin 2002, Pinelle, Gutwin & Greenberg 2003) provides
a technique for modelling domain-specific tasks in order to form a basis for
heuristic evaluation.

5.1 Heuristics for CSE evaluation

We see heuristic evaluation as a valuable complement to other techniques for
evaluating CSE systems, particularly for infrastructure and capability assessment—
the areas in which we most desire experiment-driven feedback during develop-
ment.

11

CSEi

CSEii

CSEiii

CSEiv

CSEv

CSEvi

CSEvii

CSEviii

Support multiple views of artifacts. A given Java class may be represented in different ways by
individual client tools such as a text editor, folding editor, user tree or UML class diagrammer.
Changes made to the underlying artifact by any tool should be reflected appropriately in each
view. CAISE tools send updated artifacts to the server. In return, they receive syntax trees
corresponding to artifacts which have been updated by others.

Support Degree of Interest based feedback/feedthrough. Central to software engineering activ-
ities such as refactoring and comprehension is the notion of the neighbourhood (context) of
a particular component or change (focus). The neighbourhood indicates the most relevant
components to be taken into account from the viewpoint of the focus. For example, when
modifying a method the neighbourhood might include the method itself, the methods it invokes
& is invoked by, its host class and its parent class. This focus+context concept is familiar in
visualisation. One common approach is the use of fisheye-view techniques (Furnas 1986, Sarkar
& Brown 1994) to de-emphasise features not in the neighbourhood of the focus. When CAISE
clients update artifacts, events are generated whose foci are located at the corresponding parse
tree nodes. CAISE tailors feedback according to the neighbourhood of such nodes, determined
by the semantic model, use preferences and specific client capabilities.

Support fine-grained integrity. CSE requires more powerful approaches than simple CSCW
applications in order to reflect the semantic and syntactic structures implied by the source code
or other artifacts. CAISE uses parse trees as the basis for the semantic model it maintains.

Support multiple physical and logical granularities. Physical granularity levels reflect physical
partitioning (URL, directory, file, line, ...) while logical granularity levels (package, class,
method, block, statement, expression, ...) reflect syntactic structure.

Support deep syntactic- & semantic-based awareness € feedback. The generic CSCW heuristics
address issues such as notification of changes in the location of other users. In CSE, it is also
important to be aware of changes at a semantic level (e.g. method foo() has been deleted from
class Bar) or altered relationships involving components and users (e.g. another user is editing
a method which the method you are editing overrides). CAISE clients are notified of changes to
the semantic model (including inferred relationships) and can reflect these as appropriate.

Support semantic relationships. Updates to artifacts lead to indirect, and often subtle, changes
in semantic relationships (extends, overloads, overrides, calls, uses, ...) which should be indi-
cated to users.

Support private work and re-integration. Users can work against a snapshot of the project state
and make experimental changes which will not be seen by others. In CAISE this simply involves
client tools temporarily detaching from the server.

Support builds at different temporal granularities. A rapidly evolving project, where developers
make interleaved changes, could potentially spend much of its time in a broken state in which
many components are unable to compile. CSE systems must accommodate artifacts that are
temporarily un-parsable and projects that have unresolved code references. CAISE propagates
modification events to users directly accessing the same artifacts, ensuring that their views
are synchronised at short timescales. The underlying semantic model is updated only when
syntactic correctness is restored, so that on a coarser timescale, other users always build against
a correct version.

Figure 4: CSE Heuristics

12

The heuristics and task modelling techniques proposed for CSCW (Baker
et al. 2001, Baker et al. 2002, Pinelle & Gutwin 2002, Pinelle et al. 2003) are
somewhat generic. We aim to extend these in two ways.

Firstly, we see merit in establishing additional domain specific heuristics for
CSE since this differs in many ways from the typical CSCW application area.

Secondly, we advocate analysis and visualisation of CAISE logs. This allows
us to mimic many of the beneficial aspects of case studies.

However, we contend that logs can also reveal a great deal about collabo-
ration patterns, system performance, task complexity and many other factors.
In particular, they can indicate where refinement or extension of heuristics is
appropriate, thereby improving the quality of subsequent heuristic evaluations.

Our current set of CSE-specific heuristics, to be considered alongside the
generic CSCW heuristics discussed earlier, appears in Figure 4. A brief rationale
for the inclusion of each heuristic is given, together with a brief indication of its
relevance to the current CAISE version.

Heuristic evaluation, based on the combination of both sets, leads to the
identification and classification of problems and issues with CSE, CSE imple-
mentations and specific tools.

As an example, a problem identified in our current version as a violation
of heuristic Cscwiii is “The user tree shows user location well, but does not
indicate the transition from the previous location, making it difficult to decide
what changes in location have occurred.” Similarly, a problem identified in
our current version as a violation of heuristic CSEvV is “Semantic feedback is
predominantly delivered via text messages. A metaphor more tightly coupled
to the artifact representation would be more effective.”

6 Visualising CSE

In this section, we consider the use of visualisations based on analysis of CAISE
event logs. Such visualisations can provide valuable information about such
things as patterns of collaboration, user activity profiles and sequences of oper-
ations in refactoring. This both complements and informs heuristic evaluations.

Empirical data from logs helps ensure that the sets of heuristics used are
valid, representative and complete. Such data guides the ongoing process of
refining sets of heuristics. In return, heuristics suggest patterns which should
be observable in event logs.

CAISE incorporates an XML-based logging facility which records data about
such things as users & tools, events resulting from user activity and the arti-
facts affected. Server-side tools may process the logs in real-time in order to
obtain information, such as cumulative activity indicators, for propagation to
users. Alternatively, logs may be processed off-line in order to perform detailed
analyses.

The potential uses of (even relatively unsophisticated) visualisations in group-
ware have been recognised (Begole, Tang & Hill 2003). The pipeline-based tech-
niques we have developed for software and information visualisation (Irwin &
Churcher 2002, Churcher, Irwin & Cook 2004) are applicable to CAISE event
log visualisation.

Figure 5 shows a typical log visualisation pipeline. Firstly, XSLT or other
filters select and process the required data. In subsequent stages, layout tools

13

produce 2D or 3D visualisations which are then rendered for user exploration.
These may be as varied as spreadsheet graphics or virtual worlds.

Event
Log

Figure 5: Visualising log data

The event logs conform to a DTD, http://www.cosc.canterbury.ac.nz/
dtd/CAISEEventLog.dtd, enabling validation to be performed. Filters, typi-
cally implemented in XSLT, extract and format the data required for specific
visualisations.

Tony.

Session
= =)

(a) Events originated by each user (b) Events of each type originated by each
user

Figure 6: Treemaps showing events in a CAISE session

We will illustrate the visualisation process with some analyses of log data
from a CAISE session of approximately 30 minutes, involving four users working
on a project consisting of ten java classes.

Figure 6 shows two views of a visualisation based on treemaps (Johnson &
Shneiderman 1991): in this case the pipeline ends with one of our own tools.
The log is transformed into a tree representing a hierarchy of events structured
thus: session — user— event type. Similarly, other structures (e.g. component —
event type — user may readily be obtained. Figure 6(a) shows that two users,
Neville and Wal, are responsible for most of the events generated in the session.
Figure 6(b) provides additional information about the proportion of events of
each type resulting from individual users’ actions. In this case, it can be seen
that Carl and Wal have a greater proportion of feedback events than the other
users. From this information we can deduce that Tony was the least active user
in this session (in fact he left before it ended); Neville and Wal were responsible
for the bulk of the coding done during the session; Carl and Wal collaborated
most closely (i.e. concurrently edited the same artifacts) while Neville and Wal
worked more independently.

Figure 7 illustrates some temporal analysis options for the same data set.
In this case the pipeline ends with a file readable by Excel. Figure 7(a) shows
the number of events generated by the activity of each user during a 100 second

14

Event Distribution -

Tmchat

O Feedback
400 oChange
m Client

2

E 300 - m Artifact

fir

MR
o n} ﬂﬂ

Time

(a) All events per user (b) Events by type

Figure 7: Temporal analysis

interval as well as the overall totals. Peaks and lulls in activity can be seen
clearly. In Figure 7(b) the events are broken down by type, irrespective of the
user responsible for their generation. Again patterns are evident. Most events in
this session are Artifact events, since significant text entry is occurring; Client
events are mainly associated with location changes within artifacts; Change
events arise from semantic changes such as altered inheritance relationships and
are associated with Feedback events which alert other users to the changes.

Finally, Figure 8 shows the specific artifacts (Java source files) modified by
each user during the session. In this case, the pipeline produces a file for the
popular dot layout tool (Gansner & North 1999). In a dynamic version of this
graph, edges are added and removed to reflect the current session state.

The visualisations presented in this section, although they contain consider-
able amounts of useful information, are still relatively simple. We are developing
a range of more sophisticated visualisations, both for analysis purposes and for
inclusion in client tools. An example is the use of colour to indicate attributes,
such as time since last edit or last user to edit) lines of code in a text edi-
tor. Another example is the provision of feedback about the rate of change of
components.

7 Conclusions & further work

In this paper, we have described collaborative software engineering, reported on
the current state of our CAISE implementation and investigated approaches for
understanding and evaluating CSE applications.

We have considered several approaches to evaluation of CSCW applications
in general, and CSE in particular, and have explored the benefits offered by
heuristic evaluation techniques. CSE-specific heuristics have been developed in
order to enhance the effectiveness of heuristic evaluation in the CSE domain.

The symbiotic relationship between heuristics and empirical data obtained
from event logs has been developed. In order to achieve the goal of improv-
ing CSE implementations, it is necessary to employ heuristics which accurately
reflect the processes and practices occurring in realistic CSE use. Problems
identified using such heuristics are likely to directly relevant in the CSE do-

15

Wal

%
C8999
N4 N

Carl

V

A

V

C9058

A

@, - co108
Tony

> 4
C8988 @

Figure 8: Artifacts accessed

main. However, not all relevant scenarios are readily accessible to heuristic
evaluators. Analysis and visualisation of empirical data obtained from event
logs complements heuristics, highlighting patterns and issues at various levels
of detail.

As our CAISE implementation matures, we expect to make greater use of
both heuristic evaluation and log visualisation to assess the state of our current
version and to steer ongoing developments.

Our work on event modelling and logging is particularly helpful as we refine
the APIs for development of CAISE client tools.

We believe that the increased understanding of CSE which results from our
empirical work will help us, and other CSE researchers, to improve the quality
of CSE infrastructure implementations. In addition, it will assist in the design
of more effective client tools for supporting collaborating software engineers.

References

Alexander, C. (1979), The Timeless Way of Building, Oxford University Press.

16

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I. &
Angel, S. (1977), A Pattern Language: Towns, Buildings, Construction,
Oxford University Press.

Baker, K., Greenberg, S. & Gutwin, C. (2001), Heuristic evaluation of groupware
based on the mechanics of collaboration, in M. Little & L. Nigay, eds, ‘En-
gineering for Human-Computer Interaction: Proc ECHI 2001°, Vol. 2254
of Lecture Notes in Computer Science, Springer-Verlag, Toronto, Canada,
pp- 123-139.

Baker, K., Greenberg, S. & Gutwin, C. (2002), Empirical development of a
heuristic evaluation methodology for shared workspace groupware, in ‘Pro-
ceedings of the 2002 ACM conference on Computer supported cooperative
work’, ACM Press, pp. 96-105.

Bar, M. & Fogel, K. (2003), Open Source Devlopment with CVS, 3rd edn,
Paraglyph Press.

Beck, K. (2001), Extreme Programming Explained: Embrace Change, Addison-
Wesley.

Begole, J. B., Tang, J. C. & Hill, R. (2003), Rhythm modeling, visualizations
and applications, in ‘Proceedings of the 16th annual ACM symposium on
User interface software and technology’, ACM Press, pp. 11-20.

Churcher, N. & Cerecke, C. (1996), groupCRC: Exploring CSCW support for
software engineering, in J. Grundy & M. Apperley, eds, ‘OZCHI'96’, IEEE
Press, University of Waikato, Hamilton, New Zealand, pp. 62—68.

Churcher, N., Trwin, W. & Cook, C. (2004), Inhomogeneous force-directed lay-
out algorithms in the visualisation pipeline: From layouts to visualisations,
in N. Churcher & C. Churcher, eds, ‘InVis.au 2004: Proceedings of the Aus-
tralasian Information Visualisation Symposium’, Vol. 35 of Conferences in
Research and Practice in Information Technology, ACS, Christchurch, New
Zealand.

Conradi, R. & Westfechtel, B. (1998), ‘Version models for software configuration
management’, ACM Comput. Surv. 30(2), 232-282.

Cook, C. & Churcher, N. (2003), An extensible framework for collaborative
software engineering, in D. Azada, ed., ‘APSEC 2003: Proceedings of the
10th Asia-Pacific Software Engineering Conference’, IEEE Press, Chiang
Mai, Thailand, pp. 290-299.

Cook, C., Irwin, W. & Churcher, N. (2004), Towards synchronous collaborative
software engineering, in ‘Proc APSEC2004: 11th Asia Pacific Software
Engineering Conference’, Busan, Korea.

Dommel, H.-P. & Garcia-Luna-Aceves, J. J. (1997), ‘Floor control for multime-
dia conferencing and collaboration’, Multimedia Syst. 5(1), 23-38.

Ellis, C., Gibbs, S. & Rein, G. (1991), ‘Groupware: Some issues and experi-
ences’, Communications of the ACM 34(1), 38-58.

17

Furnas, G. (1986), Generalised fisheye views, in ‘Proc ACM SIGCHI 86 Con-
ference on Human Factors in Computing Systems’, pp. 16-23.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995), Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley.

Gansner, E. R. & North, S. C. (1999), ‘An open graph visualization system and
its applications to software engineering’, Software—Practice and Experi-
ence 30(11), 1203-1233.

Greenberg, S. (1989), The 1988 Conference on Computer-Supported Coopera-
tive Work: Trip Report, in ‘SIGCHI Bulletin’, Vol. 20 of 5, ACM, pp. 49—
55. Also published in Canadian Artificial Intelligence, 19, April 1989.

Grudin, J. (1992), Why CSCW Applications Fail: Problems in the Design
and Evaluation of Organizational Interfaces, in D. Marca & G. Bock, eds,
‘Groupware: Software for Computer-Supported Cooperative Work’, IEEE
Press, Los Alamitos, CA, pp. 552-560.

Grudin, J. (1994), Groupware and social dynamics: Eight challenges for develop-
ers, in ‘Communications of the ACM’, Vol. 37 of 1, ACM Press, pp. 92-105.

Irwin, W. & Churcher, N. (2002), XML in the visualisation pipeline, in D. D.
Feng, J. Jin, P. Eades & H. Yan, eds, ‘Visualisation 2001’, Vol. 11 of Con-
ferences in Research and Practice in Information Technology, ACS, Sydney,
Australia, pp. 59-68. Selected papers from 2001 Pan-Sydney Workshop on
Visual Information Processing.

Irwin, W. & Churcher, N. (2003), Object oriented metrics: Precision tools and
configurable visualisations, in ‘METRICS2003: 9th IEEE Symposium on
Software Metrics’, IEEE Press, Sydney, Australia, pp. 112-123.

Johnson, B. & Shneiderman, B. (1991), Tree-maps: A space-filling approach
to the visualization of hierarchical information structures, in G. Nielson &
L. Rosenblum, eds, ‘proc. Visialization '91’, IEEE Computer Society Press,
Los Alamitos, CA, pp. 284-291.

Martin, D. & Sommerville, I. (2004), ‘Patterns of cooperative interaction: Link-
ing ethnomethodology and design’, ACM Trans. Comput.-Hum. Interact.
11(1), 59-89.

Munson, J. P. & Dewan, P. (1996), A concurrency control framework for collab-
orative systems, in ‘Computer Supported Cooperative Work’, pp. 278-287.
*citeseer.ist.psu.edu/munson96concurrency.html

Nielsen, J. (1992), Finding usability problems through heuristic evaluation, in
‘Proceedings of the SIGCHI conference on Human factors in computing
systems’, ACM Press, pp. 373-380.

Nielsen, J. & Landauer, T. K. (1993), A mathematical model of the finding of
usability problems, in ‘Proceedings of the SIGCHI conference on Human
factors in computing systems’, ACM Press, pp. 206—213.

18

Nielsen, J. & Molich, R. (1990), Heuristic evaluation of user interfaces, in ‘Pro-
ceedings of the SIGCHI conference on Human factors in computing sys-
tems’, ACM Press, pp. 249-256.

Pinelle, D. & Gutwin, C. (2002), Groupware walkthrough: adding context to
groupware usability evaluation, in ‘Proceedings of the SIGCHI conference
on Human factors in computing systems’, ACM Press, pp. 455-462.

Pinelle, D., Gutwin, C. & Greenberg, S. (2003), ‘Task analysis for groupware
usability evaluation: Modeling shared-workspace tasks with the mechanics
of collaboration’, ACM Trans. Comput.-Hum. Interact. 10(4), 281-311.

Roseman, M. & Greenberg, S. (1996), ‘Building real-time groupware with
GroupKit, a groupware toolkit’, ACM Trans. Computer-Human Interac-
tion 3(1), 66-106.

Sarkar, M. & Brown, M. (1994), ‘Graphical fisheye views’, Communications of
the ACM 37(12), 73-84.

Sarma, A., Noroozi, Z. & van der Hoek, A. (2003), Palantir: Raising aware-
ness among configuration management workspaces, in ‘Proc ICSE2003:

25th International Conference on Software Engineering’, Portland, Oregon,
pp. 444-454.

Sarma, A. & van der Hoek, A. (2002), Palantir: Coordinating distributed
workspaces, in ‘Proc COMPSAC 2002: 26th Computer Software and Ap-
plications Conference’, Oxford, England, pp. 1093-1097.

Schummer, T. (2001), Lost and Found in Software Space, in ‘34th Annual Hawaii
International Conference on System Sciences’, IEEE, Maui, Hawaii.

SourceForge (2004), ‘SourceForge.net Home Page’, http://sourceforge.net/.

Tvedt, R. T., Costa, P. & Lindvall, M. (2004), Evaluating software architec-
tures, in M. Zelkowitz, ed., ‘Architectural Issues’, Vol. 61 of Advances in
Computers, Academic Press, New York, pp. 2—43.

Twidale, M. & Nichols, D. (2004), Usability discussions in open source develop-
ment, Working Paper 08/2004, Department of Computer Science, Univer-
sity of Waikato, Hamilton, New Zealand.

19

