

Sub-cubic Time Algorithm for

the k-disjoint Maximum Subarray Problem

A thesis

submitted in partial fulfillment

of the requirements for the Degree

of

Master of Science in Computer Science

in the

University of Canterbury

By

Sang Myung Lee

University of Canterbury

2011

Table of Contents

Acknowledgement .. 1

Abstracts ... 2

1. Introduction .. 3

2. Maximum Subarray Problem... 5

2.1 Basic Definitions .. 5

2.2 Distance Matrix Multiplication ... 6

2.3 Prefix Sum Array and Maximum Subarray Problem by Distance
Matrix Multiplication.. 8

3 A Faster Algorithm for Distance Matrix Multiplication 16

3.1 Distance Matrix Multiplication by Divide and Conquer 16

3.2 Distance Matrix Multiplication by Table-Lookup.............................. 17

4 k-Maximum Subarray Problem ... 22

4.1 k-Overlapping Maximum Subarray Problem 23

4.1.1 Tournament ... 23

4.1.2 X + Y Problem ... 24

4.1.3 The Main Algorithm .. 25

4.2 k-Disjoint Maximum Subarray Problem .. 27

5 k-Disjoint Maximum Subarray Problem ... 27

5.1 Building Up Tournaments... 27

5.2 Modified X + Y Problem ... 29

5.3 Modified DMM .. 31

5.4 Sub-cubic Algorithm .. 32

5.5 Modified Algorithm M with Space Optimization 33

5.6 Reuse of DMM ... 34

6 Concluding Remarks .. 38

References ... 39

1

Acknowledgement

The author wishes to express sincere appreciation to Professor Tadao Takaoka for

his assistance and supervision in the preparation of this manuscript. In addition,

special thanks to the staff of the college of science for their patience that allows

me to finish this work.

2

Abstracts

The maximum subarray problem is to find the array portion that maximizes the

sum of array elements in it. This problem was first introduced by Grenander and

brought to computer science by Bentley in 1984. This problem has been

branched out into other problems based on their characteristics. k-overlapping

maximum subarray problem where the overlapping solutions are allowed, and k-

disjoint maximum subarray problem where all the solutions are disjoint from

each other are those. For k-overlapping maximum subarray problems,

significant improvement have been made since the problem was first introduced.

The best known complexities of this problem are 𝑂(𝑛3 + 𝑘𝑙𝑙𝑙 𝑛), which is

cubic when k = 𝑂(𝑛3/𝑙𝑙𝑙 𝑛) and 𝑂(𝑘𝑛3�log log 𝑛 / log 𝑛), which is sub-

cubic when k = 𝑂(�𝑙𝑙𝑙𝑛 / 𝑙𝑙𝑙 𝑙𝑙𝑙𝑛).

For k-disjoint maximum subarrsy, Ruzzo and Tompa gave an O(n) time solution

for one-dimension. This solution is, however, difficult to extend to two-

dimensions. While a trivial solution of O(kn3) time is easily obtainable for two-

dimensions, little study has been undertaken to better this. This paper introduces

a faster algorithm for the k-disjoint maximum sub-array problem under the

conventional RAM model, based on distance matrix multiplication. Specifically

𝑂(𝑛3�log log 𝑛 / log 𝑛 + 𝑘𝑛2𝑙𝑙𝑙 𝑛) is achieved for the problem. This

complexity is sub-cubic when k < 𝑂(𝑛/𝑙𝑙𝑙 𝑛). Also, DMM reuse technique is

introduced for the maximum subarray problem based on recursion for space

optimization.

3

1. Introduction

Data mining is to extract useful information from a vast amount of data,

typically from a large database. Here useful information means some interesting

information that can be found only going through a large database with a

computer, which a human can never scan through with bare eyes and hands.

Suppose there is a record of monthly sales of smart phones for one year at a

retail store in some city as a one-dimensional array. The maximum subarray

(MSA) problem scans through the database to determine the array portions that

sums to the maximum value with respect to all possible array portions within the

input array, which gives seasonal trend of the sales. This sort of data mining

methods are described in [1] and [2]. Since the array elements are all non-

negative, the obvious solution is the whole array. If the mean value of the array

elements is subtracted from each array element, and consider the modified

maximum subarray problem, we can have more accurate estimation on the sales

trends. When the input array is two-dimensional, we find a rectangular subarray

portion with the largest possible sum. The two-dimensional maximum subarray

problem can be used in digital video image where every frame in it is

represented as a two dimensional array. If the mean value of the pixels of a

frame is subtracted from the each pixel value in grey-scale video image, we can

identify the brightest portion in it. Even further, if a well-established background

model is subtracted from the current video frame then the maximum subarray

problem can spot new objects in the frame and track them through the following

frames.

The maximum subarray problem was first introduced by Grenander and brought

to computer science by Bentley [3] in 1984 as an example to discuss the

efficiency of computer programs for the two-dimensional problem with an

algorithm of O(n3), and attracts attention from data mining point of view [4]. It

was later improved by Tamaki and Tokuyama [5] to a sub-cubic time algorithm

based on distance matrix multiplication (DMM), which is further simplified by

Takaoka [6].

4

This problem has been branched out into other problems based on their

characteristics. k-overlapping maximum subarray problem and k-disjoint

maximum subarray problem are those, whose detailed descriptions and known

algorithms with their results are discussed in chapter 4. For k-overlapping

maximum subarray problems where overlapping is allowed for solution arrays,

significant improvements have been made since the problem was first discussed

in [7] and [8]. Recent development by Cheng et al. [9] and Bengtsson and Chen

[10] established O(n + k log k) time algorithm, and Brodal, et. al achieved O(n

+ k) [11] for one-dimensional problem. For two-dimensions, O(n3) is possible in

[12] and [9], and lately a sub-cubic algorithm was developed by Bae and

Takaoka [13].

The goal of the k-disjoint maximum subarray problem is to find k-maximum

subarrays, which are disjoint from one another. Ruzzo and Tompa’s algorithm

[14] finds all disjoint maximum subarrays in O(n) time for one-dimension.

However, little study has been undertaken on this problem for higher

dimensions. In this paper, a new 𝑂(𝑚2𝑛�𝑙𝑙𝑙 𝑙𝑙𝑙𝑛 / 𝑙𝑙𝑙 𝑛 + 𝑘𝑚2𝑙𝑙𝑙 𝑛) time

solution for two-dimension is presented, where (m, n) is the size of the input

array. This is sub-cubic time when m = n and k < 𝑛/𝑙𝑙𝑙 𝑛.

In chapter 2, the basic definition of the maximum subarray problem and a

divide-and-conquer algorithm for the problem are given. In chapter 3, a faster

algorithm for the DMM using two-level divide-and-conquer and table-lookup

method is explained in detail, since the new algorithm is based on it. In chapter

4, X + Y problem is defined and its well-known algorithm is described. Also a

sub-cubic algorithm for the k-overlapping maximum subarray problem by Bae

and Takaoka [13] is explained with a brief introduction of an algorithm for the

k-disjoint maximum subarray problem. In chapter 5, which is the main chapter

of this paper, the new sub-cubic k-disjoint maximum algorithm is presented and

finally chapter 6 concludes the paper, discussing possibilities for further speed-

up.

5

The computational model in this paper is the conventional RAM, where only

arithmetic operations, branching operations, and random accessibility with k <

𝑂(𝑙𝑙𝑙 𝑛) bits are allowed and the same name k is used in two different

meanings; indexing in arrays, and the k for the k-maximum subarray (k-MSA)

problem. Also note that the terms of array and matrix are used interchangeably

in this paper.

2. Maximum Subarray Problem

2.1 Basic Definitions

As described above, the maximum subarray problem is to find the consecutive

portion of an array that maximizes the sum of array elements in the portion.

Example 2.1 Let a be given by

[3 51 −41 −57 |𝟓𝟓 𝟓𝟓 −𝟏𝟏 𝟗𝟗| −55 −71 21 21]

Then the maximum subarray is given by the portion from index 5 to index 8 with
the maximum sum 193.

In most applications, one-dimensional and two-dimensional arrays are used. In

two dimensional arrays, the MSA problem is to comput a rectangular portion in

the given two-dimensional array that maximizes the sum of array elements in it.

Example 2.2 Let b given by

�

−1 2 −3 5 −4 −8 3 −3
2 −4 −6 −8 2 −5 4 1
3 −2 9 −9 |𝟑 𝟔| −5 2
1 −3 5 −7 |𝟖 𝟐| 2 −6

�

Then the maximum subarray is given by the rectangle defined by the upper left
corner (3, 5) and the lower right corner (4, 6) with the maximum sum 19.

6

For the one-dimensional case, there is an optimal O(n) time sequential solution,

known as Kadane’s algorithm [3] and a simple extension of this solution can

solve the two-dimensional problem in O(m2n) time for an (m, n)-array (m ≤ n),

which is cubic when m = n [3]. This is done by separating the two-dimensional

array into every possible row strips, which is called strip separation, and

applying the one-dimensional Kadane’s algorithm on each strip. Also, a sub-

cubic time algorithm for two-dimentional case was obtained by Tamaki and

Tokuyama [5] by reducing the problem to DMM and showing that the time

complexities of the two problems are the same order. Takaoka simplified the

algorithm later for implementation [6] which is explained in chapter 2.3.

2.2 Distance Matrix Multiplication

We review distance matrix multiplication since it is the engine for the

algorithms in this paper.

Normally we multiply two (n, n)-matrices over real numbers using “+” and “*”.

Let C = AB where A, B and C are all (n, n) matrices. Then

𝑐𝑖𝑖 = �𝑎𝑖𝑖

𝑛

𝑘=1

∗ 𝑏𝑘𝑘 (𝑖, 𝑗 = 1, … ,𝑛)

We can define distance matrix multiplication C = AB by corresponding the

above “+” to “min” and “*” to “+” as follows

𝑐𝑖𝑖 = 𝑚𝑚𝑚1≤𝑘≤𝑛�𝑎𝑖𝑖 + 𝑏𝑘𝑘� (𝑖, 𝑗 = 1, … , 𝑛) (1)

Example 2.3 Distance Matrix Multiplication

�
1 −3 7
∞ 5 ∞
8 2 −5

� ∗ �
8 ∞ −4
−3 0 −7
5 −2 1

� = �
−6 −3 −10
2 5 −2
−1 −7 −5

�

c11 is decided by min{1+8, -3+-3, 7+5}

7

The intuitive meaning of cij is the distance of the shortest path from vertex i in

the first layer to vertex j in the third layer in the following graph. The distance

from i in the first layer to k in the second is aik and that from the second layer to

the third is bkj. The index k that gives the minimum is called the witness for cij

Figure 2.1 All Pairs Shortest Paths from i to j

In this figure 2.1, matrices A and B are to show the connection distance from

layer to layer. We can define the max version by changing the symbol “min” to

“max” in the above formula. This corresponds to longest paths from layer 1 to

layer 3. The original version is called the min version and the other one is called

max version in this paper.

To solve the k-MSA problem, we want to find up to k shortest distances from

layer 1 to layer 3 between any vertices. We use this version of extended DMM

in this paper, whereas k-DMM in [2] computes k shortest paths for each pair (i, j)

with i in layer 1 and j in layer 3, which is rather time consuming. If we solve

DMM in M(n) time in such a way that a tournament of some size becomes

available for the extended DMM within the same time complexity, then

subsequent shortest distances can be found in O(M(n)+k log n) time for k up to

O(n3), as shown in Chapters 3.

1

2

n
A B

i k j

8

We actually need at most k shortest distances in total for all DMMs used in our

k-MSA algorithm, and our requirement is that the newly designed DMM

algorithm return the next shortest distance for any pair (i, j), that is, i in layer 1

to j in layer 3, in O(log n) time.

2.3 Prefix Sum Array and Maximum Subarray Problem by Distance

Matrix Multiplication

The central algorithmic concept in the new algorithm is that of prefix sum array.

The prefix sum of a one-dimensional array a at position i, denoted by s[i], is the

sum of a[1], … , a[i]. The prefix sum array can be computed in linear time O(n)

by

s[0] ← 0;

for i ← 1 to n do s[i] ← s[i – 1] + a[i];

as 𝑠[𝑥] = � 𝑎[𝑖]𝑥
𝑖=1 , the sum of a[x…y] is computed by the subtraction of

these prefix sums as

�𝑎[𝑖]
𝑦

𝑖=𝑥

= 𝑠[𝑦]− 𝑠[𝑥 − 1]

To yield the maximum sum from a one-dimensional array, we have to find

indices x, y that maximize � 𝑎[𝑖]𝑦
𝑖=𝑥 . In prefix sum array, s[1, … , n], the

maximum subarray is defined by

For all x, y ∈ [1, … , n]

Max Sum = max 1 ≤ y ≤ n s[y] – min 0 ≤ x ≤ y-1 s[x]

Note that the notations max and min are used for operations.

9

The prefix sum array of a given two-dimensional array can be defined similarly.

The prefix sum at position s[i][j] of a two-dimensional (m, n)-array a is the sum

of array portion a[1, … , i][1, … , j] for all i and j with boundary condition

s[i][0] = s[0][j] = 0, which can be calculated in O(mn) time.

As 𝑠[𝑖][𝑗] = ∑ 𝑎[𝑝]𝑖,𝑗
𝑝=1,𝑞=1 [𝑞], the sum of a[k…i][l…j] is computed by the

subtraction of these prefix sums as:

� 𝑎[𝑝][q]
𝑖,𝑗

𝑝=𝑘 ,𝑞=𝑙

= 𝑠[𝑖][𝑗] − 𝑠[𝑘][𝑗]− 𝑠[𝑖][𝑙] + 𝑠[𝑘][𝑙]

Figure 2.2 Sum of Subarray in Prefix Sum Array in two-dimension

To maximize the sum from a two-dimensional array, we have to find indices (k,

l), (i, j) that maximize � 𝑎[𝑝][q]𝑖,𝑗
𝑝=𝑘,𝑞=𝑙 . In prefix sum array s, the maximum

subarray is defined by

Max Sum = 𝑚𝑎𝑥𝑖=0,𝑙=0,𝑖=1,𝑖=1
𝑚−1,𝑛−1,𝑚,𝑛 {𝑠[𝑖][𝑗]− 𝑠[𝑘][𝑗] − 𝑠[𝑖][𝑙] + 𝑠[𝑘][𝑙]}

 = 𝑚𝑎𝑥𝑖=1,𝑖=1,𝑖=0
𝑚,𝑛,𝑖−1 {𝑠[𝑖][𝑗]− 𝑠[𝑘][𝑗]}−𝑚𝑖𝑛𝑖=1,𝑙=0,𝑖=0

𝑚,𝑖−1,𝑖−1 {𝑠[𝑖][𝑙] − 𝑠[𝑘][𝑙]}

l j

k

i

10

Let s*[j][k] = –s[k][j] and s*[l][k] = –s[k][l], then the above problem can further

be converted into

Max Sum = 𝑚𝑎𝑥𝑖=1,𝑖=1,𝑖=0
𝑚,𝑛,𝑖−1 {𝑠[𝑖][𝑗] + 𝑠∗[𝑗][𝑘]}−𝑚𝑖𝑛𝑖=1,𝑙=0,𝑖=0

𝑚,𝑖−1,𝑖−1 {𝑠[𝑖][𝑙] + 𝑠∗[𝑙][𝑘]}

The first part in the above is distance matrix multiplication of the max version

and the second part is of the min version. Let S1 and S2 be matrices whose (i, j)

elements are s[i][j–1] and s[i][j]. For an arbitrary matrix T, let T* be that

obtained by negating and transposing T and the resulting matrix by DMM

between T and T* is called the DMM matrix of T in this paper. Then the above

can be computed by multiplying S1 and S1* by the min version, that is min

DMM matrix of S1, multiplying S2 and S2* by the max version, that is max

DMM matrix of S2, and finally subtracting the former from the latter and taking

the maximum.

Now we review the simplified sub-cubic version in [6], which is the starting

point of the new algorithm. A two-dimensional (m, n)-array a[1, …, m][1, … , n]

of real numbers is given as input data. The maximum subarray problem is to

maximize the sum of the array portion a[k, ... , i][l, … , j], that is, to obtain the

sum and such indices (k, l) and (i, j). We suppose the upper-left corner has co-

ordinates (1, 1).

For simplicity, the given array a is assumed to be a square (n, n)-array. We

compute the prefix sums s[i][j] for array portions of a[1, … , i][1, … , j] for all i

and j with boundary condition s[i][0] = s[0][j] = 0. Obviously this can be done

in O(n2) time for an (n, n) array. The outer framework of the algorithm is given

below. Note that the prefix sums once computed are used throughout recursion.

Algorithm M: Maximum Subarray

1. If the array becomes one element, return its value.

2. Let Atl be the solution for the top left quarter.

3. Let Atr be the solution for the top right quarter.

4. Let Abl be the solution for the bottom left quarter.

11

5. Let Abr be the solution for the bottom right quarter.

6. Let Acolumn be the solution for the column-centered problem.

7. Let Arow be the solution for the row-centered problem.

8. Let the solution A be the maximum of those six.

The location of a solution subarray is defined by index pairs ((k, l), (i, j)) if the

solution is the sum of the array portion a[k, … , i][l, … , j]. The coverage of a

solution subarray is the smallest square region, determined by the above

recursive calls, in which the solution is obtained. The coverage is also defined

by index pairs of the co-ordinates of the top-left corner, and those of the bottom-

right corner. If we call the above algorithm for a[1, … , n][1, … , n], for

example, the coverage of A is ((1, 1), (n, n)), that of Atl is ((1, 1), (n/2, n/2)), and

that of Atr is ((1, n/2 + 1), (n/2, n)), etc.

Figure 2.3 Algorithm M. The solution of the coverage ((1, 1), (n, n)) is the
maximum of the six solutions, that is Atl in this figure. Atl, Atr, Abl and Abr are the

solutions of their own coverage that is (n/2, n/2)-submatrix.

Atl

Abl Acolumn

Arow

Abr

Atr
1

n/2

n

1 n/2 n

k

i

l j

12

Here the column-centered problem Acolumn is to obtain an array portion that

crosses over the central vertical line with maximum sum, and can be solved in

the following way. The row-centered problem Arow can be computed similarly.

Figure 2.4 The column-centered problem

In the Figure 2.4, We first fix k and i, and maximize the column-centered

problem by changing l and j. then the problem is equivalent to maximizing the

following for i = 1, … , n and k = 1, … , i - 1.

𝐴𝑐𝑜𝑙𝑢𝑚𝑛[𝑘, 𝑖] = 𝑚𝑎𝑥𝑖=𝑛/2+1
𝑛 {𝑠[𝑖][𝑗] + 𝑠∗[𝑗][𝑘]}−𝑚𝑖𝑛𝑙=0

𝑛/2−1{𝑠[𝑖][𝑙] + 𝑠∗[𝑙][𝑘]}

As described earlier in this section, the first part in the above is distance matrix

multiplication of the max version and the second part is of the min version. Let

S1 and S2 be matrices whose ranges are s[1, … , n][1, … , n/2 – 1] and s[1, … ,

n][n/2 + 1, … , n]. As the range of k is [0, … , n – 1] in S1* and S2*, we shift it

to [1, … , n]. Then the above can be computed by multiplying S1 and S1* by the

min version, multiplying S2 and S2* by the max version, subtracting the former

from the latter, that is, S = max S2S2* – min S1S1*, and finally taking the

maximum value from the matrix S. We will re-organize this maximizing

operation into a tournament later.

Acolumn

1

n

1 n/2 n

k

i

l j

13

Figure 2.5 How to solve the column-centered problem

When we do DMM for the prefix sum matrix S of an arbitrary matrix A with its

negated and transposed matrix S*, the elements of the resulting matrix, that is

called DMM matrix of S, represent the maximum or the minimum sums

depending on the version of the DMM for each of the every possible horizontal

strip on the original array A. the location of the solution is identified by the

index of the element and its witness k. For example, an element in the resulting

DMM matrix in min version whose index is (i, j) with witness k represents the

minimum sum for the strip from row j to row i and it is bounded by column 1

and column k on the original array A. In other words, the sum of all the elements

on the original array from (j, 1) to (i, k) is the minimum sum for the (j, i)-strip.

Note that the upper right triangles of the DMM matrices are not needed for

calculating MSA problem where i < j, because starting row of a strip cannot be

greater than its ending row. We call the operations of extracting a triangle

triangulation and this is effectively done by putting –∞ in the upper triangle of S.

The converted matrix of S is now called S'.

S1 S2 S2 S2S2*
S2*

*
=

S1 S1S1*
S1* * =

S2S2*-
S1S1*

–
=

n/2 1 n

Solution (maximum value)

max

min

max

min

14

Figure 2.6 The relationship between the min DMM matrix and its original
matrix a. The value of the element (i, j) in the DMM matrix is the sum of the

shaded portion of the original matrix a, that is the minimum sum for the strip.
The index (i, j) with the witness k of the DMM matrix represent the top left

corner (j, 1) and bottom right corner (i, k) of the solution in a. Note that the
upper right triangle of the DMM matrix is filled with –∞.

If n is assumed to be a power of 2 for simplicity, then all size parameters

appearing through recursion in Algorithm M are power of 2. We define the

work of computing two subarrays, Acolumn and Arow to be the work at level 0. The

algorithm will split the array horizontally and vertically into four subarrays

through the recursion to go to level 1.

Now let us analyze the time for the work at level 0. We can multiply (n, n/2) and

(n/2, n) matrices by 4 multiplications of matrices in size (n/2, n/2) and there are

two such multiplications in S = max S2S2* – min S1S1*.

Figure 2.7 We can multiply (n, n/2) and (n/2, n) matrices by 4 multiplications

of matrices in size (n/2, n/2)

j

i

DMM Matrix for a

-∞

j

i

k

Original Matrix a

i k

M1

 M2

 1

 n/2

 n

 1 n/2 n

 *
M3 M4 = M1M3 M1M4

M2M3 M2M4

15

We measure the time by the number of comparisons, as the rest is proportional

to this. Let M(n) be the time for multiplying two (n/2, n/2) matrices. At level 0,

we obtain an Acolumn and Arow, spending 16M(n) comparisons since we need

8M(n) each. Thus we have the following recurrence for the total time T(n).

T(1) = 0

T(n) = 4T(n/2) + 16M(n).

LEMMA 1 Let c be an arbitrary constant such that c > 0. Suppose M(n)

satisfies the condition M(n) ≥ (4 + c)M(n/2). Then the above T(n) satisfies T(n)

≤ 16(1 + 4/c)M(n).

Proof. The condition on M(n) means that its asymptotic growth ratio is more

than n2. If M(n) ≥ (4 + c)M(n/2) holds for T(1) from the algorithm, we assume it

also holds for T(n/2) for induction. Then

T(n) = 4T(n/2) + 16M(n) by definition

T(n) ≤ 64(1+ 4/c)M(n/2) + 4M(n) since T(n/2) ≤ 16(1+4/c)M(n/2)

T(n) ≤ 64(1+4/c)(M(n)/(4+c)) + 4M(n) since M(n) ≥ (4 + c)M(n/2)

T(n) ≤ 16(1 + 4/c)M(n)

Now suppose one or both of m and n are not given by power of 2. By

embedding the array a in the array of size (m', n') such that m' and/or n' are next

powers of 2 and the gap is filled with 0, we can solve the original problem in the

complexity of the same order.

16

3 A Faster Algorithm for Distance Matrix Multiplication

3.1 Distance Matrix Multiplication by Divide and Conquer

The engine for our problem is an efficient algorithm for DMM. Since a sub-

cubic algorithm for DMM was achieved by Fredman [15], there have been

several improvements [16], [17], [18], [19], [20], [21], [22], [23]. We review the

DMM algorithm of min version in [16] whose complexity is

𝑂(𝑛3�𝑙𝑙𝑙 𝑙𝑙𝑙𝑛 / 𝑙𝑙𝑙𝑛), that is modified and extended to the new algorithm.

The max version is similar. The recent improvements for DMM are slightly

better than [16], and it may be possible that they can be tuned for speed-up of

the k-MSA problem.

Let A and B be (n, n)-matrices whose compontes are nonnegative real numbers

and we are to compute DMM matrix C between the two matrices in min version.

Now the matrices A and B are divided into (m, m)-submatrices for N = n/m, then

Matrix C can be computed as follows:

�
𝐴11 … 𝐴1𝑁
… … …
𝐴𝑁1 … 𝐴𝑁𝑁

� �
𝐵11 . . . 𝐵1𝑁
… … …
𝐵𝑁1 … 𝐵𝑁𝑁

� = �
𝐶11 … 𝐶1𝑁
… … …
𝐶𝑁1 … 𝐶𝑁𝑁

�

𝐶 = �𝐶𝑖𝑖�, 𝑤ℎ𝑒𝑟𝑒 𝐶𝑖𝑖 = 𝑚𝑖𝑛𝑖=1𝑁 �𝐴𝑖𝑖𝐵𝑖𝑖� (𝑖, 𝑗 = 1, … ,𝑁) (2)

The product of submatrices is DMM in min version as defined in (1) and the

“min" operation in (2) is defined on the submatrices by taking the “min”

operation component-wise. Since additions and comparisons of distances are

performed in a pair, we measure the time complexity by the number of key

comparisons, and omit counting the number of additions for measurement of the

time complexity. We have N3 multiplications of distance matrices in (2). Let

us assume that each multiplication of (m, m)-submatrices can be done in T(m)

computing time, assuming precomputed tables are available. The time for

constructing the tables is reasonable when m is small. The time for min

operations in (2) is O(n3/m) in total. Thus the total time excluding table

17

construction is given by O(n3/m + (n/m)3T(m)). In the next section it is shown

that 𝑇(𝑚) = 𝑂(𝑚2√𝑚), which makes the time become 𝑂(𝑛3/√𝑚).

3.2 Distance Matrix Multiplication by Table-Lookup

In this section it is explained how to multiply the (m, m)-submatrices Aik and Bkj

for Cij in (2). Now the matrices Aik and Bkj are renamed by A and B for simplicity

of explanation and the maxrix A and B is further divided in the following way.

Let M = m/l, where 1 ≤ l ≤ m. Matrix A is divided into M (m, l)-submatrices

A1, ... , AM from left to right, and B is divided into M (l, m)-submatrices B1, ...,

BM from top to bottom. Note that Ak are vertically rectangular and Bk are

horizontally rectangular.

Figure 2.4 matrix Aik and Bkj are further divided into m/l submatrices.

Then the product C = AB can be given by

𝐶 = 𝑚𝑖𝑛𝑖=1𝑀 𝐶𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝐶𝑖 = 𝐴𝑖𝐵𝑖 (3)

It is shown later, AkBk can be computed in O(l2m) time, assuming that a

precomputed table is available. Thus the above C in (3) can be computed in

O(m3/l + lm2) time. Setting l = √𝑚 yields 𝑂(𝑚2√𝑚) time.

A1 A2 ….. AM

B1

B2

BM

 AMBM (m, m) *

BM
= AM

Aik (m, m) Bik (m, m)

l

l

(m, l)

(l, m)

18

Figure 2.5 DMM by Divide-and-Conquer

We define a u/l-tournament. Let us find k minima from m (n, n)-matrices X1, … ,

Xm for general m and n. The right-hand side of 𝑋 = 𝑚𝑖𝑛𝑡=1𝑚 𝑋𝑡 is to take

minimum values of matrices component-wise. The elements at the same index (i,

j) in each matrix are organized into a lower tournament through the index t, then

the n2 roots of those tournaments, which give X, are also organized into an upper

tournament. k minima of those matrices can be drawn from the root of the upper

tournament in this structure. We call this tournament structure a u/l- tournament.

Now for the extended DMM algorithm, the “min" operation in (2) for each (i, j)

is reorganized into a u/l-tournament within the same asymptotic complexity as

that of DMM, by the substitution Xk = AikBkj . As C in (2) is regarded as an (N,

N)-matrix of (m, m)-matrices, we organize a tournament of N2 roots of these u/l-

tournaments. We note that the matrix C in (3) can be updated by the next

minimum in some AkBk in O(M) = O(m/l) time by sequential scanning, that is,

without a tournament structure.

From this construction, we can find the next minimum for the extended DMM

in O(log n) time, since the next minimum in AkBk in (3) can be found in O(1)

time, as is shown next. Note that O(m/l) is absorbed in O(log n).

Cij

Ai1B1j Ai2B2j AikBkj

AmBm

AmBm

AmBm

…

…

lower tournament

Min value in Cij

by lower tournament

Sequential
scanning

19

Now the matrices Ak and Bk in (3) are renamed again by A and B to show how to

compute AB, that is,

𝑚𝑖𝑛𝑟=1𝑙 �𝑎𝑖𝑟 + 𝑏𝑟𝑖�, 𝑓𝑙𝑟 𝑖 = 1, … ,𝑚; 𝑗 = 1, … ,𝑚 (4)

Note that we do not form tournaments for this “min” operation.

We assume that the lists of length m, (a1r – a1s, … , amr – ams), and (bs1 – br1, … ,

bsm – brm) are already sorted for all r and s (1 ≤ r < s ≤ l). The time for sorting

will be mentioned later. Let Ers and Frs be the corresponding sorted lists. For

each r and s, we merge lists Ers and Frs to form list Grs. In case of a tie, we put

an element from Ers first into the merged list. Let Hrs be the list of ranks of air –

ais (i = 1, … , m) in Grs and Lrs be the list of ranks of bsj – brj (j = 1, … , m) in Grs.

Let Hrs[i] and Lrs[j] be the ith and jth components of Hrs and Lrs respectively.

Then we have Grs[Hrs[i]] = air – ais and Grs[Lrs[j]] = bsj – brj.

The lists Hrs and Lrs for all r and s can be made in O(l2m) time, when the sorted

lists are available. We have the following obvious equivalence for r < s.

air + brj ≤ ais + bsj ⇔ air – ais ≤ bsj – brj ⇔ Hrs[i] ≤ Lrs[j]

Fredman [15] observed that the information of ordering for all i, j, r and s in the

rightmost side of the above formula is sufficient to determine the product AB by

a precomputed table. This information is essentially packed in the three

dimensional space of Hrs[i](i = 1, … , m; r = 1, … , l; s = r + 1, … , l), and

Lrs[j](j = 1, … , m; r = 1, … , l; s = r + 1, … , l). This can be regarded as the

three-dimensional packing.

In [16] it is observed that to compute each (i, j) element of AB, it is enough to

know the above ordering for all r and s. This can be obtained from a

precomputed table, which must be obtained within the total time requirement.

This table is regarded as a two-dimensional packing, which allows a larger size

20

of m. leading to a speed-up. In [19] and [21], a method by one-dimensional

packing is described.

For simplicity, we omit i from Hrs[i] and Lrs[i], and define concatenated

sequences H[i] and L[i] of length l(l – 1)/2 by

H[i] = H1,2 … H1,lH2,3 … H2,l … Hl,l–1

(5)

L[i] = L1,2 … L1,lL2,3 … L2,l … Ll,l–1

For integer sequence (x1, … , xp), let h(x1, … , xp) = x1µp-1 + … + xp-1µ + xp. Let

h(H[i]) and h(L[i]) be encoded integer values for H[i] and L[i], where p = l(l –

1)/2 and µ = 2m. The computation of h for H[i] and L[i] for all i takes O(l2m)

time. By consulting a precomputed table table with the values of h(H[i]) and

h(L[j]), we can determine the value of r that gives the minimum for (4) in O(1)

time. For all i and j, it takes O(m2) time. Thus the time for one AkBk in (3) is

O(l2m), since l2 = m and M such multiplications take O(Ml2m) = O(lm2) time,

since M = m/l.

To compute table[x][y] for any positive integers x and y, x and y are decoded

into sequences H and L, which are expressed by the right-hand sides of (5). If

Hsr > Lsr for s < r or Hrs < Lrs for r < s, we can say r beats s in the sense that air +

brj ≤ ais + bsj if H and L represent H[i] and L[j]. We first fix r and check this

condition for all such s. We repeat this for all r. If r is not beaten by any s, it

becomes the table entry, that is, table[x][y] = r. If there is no such r, the table

entry is undefined. There are O(((2m)l(l–1)/2)2) possible values for all x and y, and

one table entry takes O(l(l – 1)/2) time. Thus the table can be constructed in

O((l(l – 1)/2)(2m)2l(l – 1)/2) = O(cm log m) time for some constant c. Let us set m =

log n / (log c log log n). Then we can compute the table in O(n) time.

If r is beaten by i participants, the rank of r becomes i + 1. Let ri be at rank i.

Then we fill the (x, y) entry of table', table' [x, y], by h(r1, … , rl) with p = l.

That is, using this function h, we encode not only the winner, but second winner,

21

third winner, etc., into the table elements. This can also be done in O(n) time, by

a slight increase of constant c in the previous page.

To prepare for the extended DMM, we extend equation (4) in such a way that cij

is the l-tuple of the imaginary sorted sequence, (𝑎𝑖𝑟1 + 𝑏𝑟1𝑖, … ,𝑎𝑖𝑟𝑙 + 𝑏𝑟𝑙𝑖), of

the set {air + brj | 1 ≤ r ≤ l}. Note that we do not actually sort the set. The

leftmost element of cij, that is, the minimum, participates in the tournament for

“min" in (3). If cij = (x1, x2,…, xl) and x1 is chosen as the winner, cij is changed to

(x2,…, xl, ∞), etc. As k can be up to O(n3), many of cij will be all infinity towards

the end of computation.

This can be implemented by introducing an auxiliary matrix C'. When we

compute DMM, we compute C', where c' ij = table' [h[H[i]), h(L[j])] =h(r1,…,

rl). Each rk (k = 1,…, l) is obtained in O(1) time. The elements of the sorted list

of c'ij is delivered by decoding C' [i, j] one-by-one when demanded from up-

stream of the algorithm.

Example 3.1

𝐻 = �
 _ 4 5
 _ _ 6
 _ _ _

� , 𝐿 = �
 _ 3 2
 _ _ 9
 _ _ _

�

m = 5, 2m = 10, h(H) = 456, and h(L) = 329. Since H1,2 > L1,2 and H2,3 < L2,3, the
winner is 2, that is, table[456, 329] = 2. Also we see table' [456, 329] = 231,

since H[1, 3] > L[1, 3].

We note that the time for sorting to obtain the lists Ers and Frs for all k in (3) is

O(Ml2 mlogm). This task of sorting, which we call presort, is done for all Aij and

Bij in advance, taking O((n/m)2(m/l)l2m log m) = O(n2l log m) time, which is

absorbed in the main complexity. Thus we can compute k shortest distances in

O(M(n) + k log n) time.

22

4 k-Maximum Subarray Problem

Once the maximum sum is found, finding k-maximum sums is a natural

extension. The k-maximum subarray (k-MSA) problem is to obtain the

maximum subarray, the second maximum subarray, … , the k-th maximum

subarray in sorted order for k up to O(n4). In many applications we need to find

up to k-th maximum. For example, suppose the database is for a geographical

distribution of customers, and we need to post flyers to the most loyal customers.

The identified rectangle region for posting may not be very suitable due to road

construction, etc. then we need the second or third alternative. This problem can

be further defined by two such problems. One is the general case where physical

overlapping of portions is allowed, and the other is only for disjoint portions. In

this chapter, the k-maximum subarray problem where physical overlapping is

allowed is called k-overlapping maximum subarray problem, and the other one

where the overlapping is not allowed is called k-disjoint maximum subarray

problem. We consider the general problem first.

Let M(n) be the time complexity for DMM for an (n, n)-matrix. The problem is

solved by Bae and Takaoka in O(M(n)+k log n) time for the general problem

with an (n, n)-array, where 𝑀(𝑛) = 𝑂(𝑛3�log log 𝑛 / log 𝑛) in [13], which is

explained in detail in the following chapter.

Preceding results for the one-dimensional problem are O(kn) by Bae and

Takaoka [7], 𝑂�min�𝑛√𝑘,𝑛𝑙𝑙𝑙2𝑛�� by Bengtsson and Chen [8], O(n log k) by

Bae and Takaoka [12], O(n + k log n) by Bae [24], Cheng, et. al. [9], Bengtsson,

et. al. [10], O(n log n + k) expected time by Lin, et. al. [25], and O(n + k) by

Brodal, et. al. [11]. Obviously we can solve the two-dimensional problem by

applying the one-dimensional algorithm to all O(n2) strips of the array, resulting

in the time complexity multiplied by O(n2). For the algorithms specially

designed for the two-dimensional case, we have 𝑂(𝑘𝑛3�log log 𝑛 / log 𝑛) by

[12] and O(n3 + k) by [11]. The last is for k maximum subarrays in unsorted

order.

23

These results are mainly based on extension of optimal algorithms for the one-

dimensional problem to the two-dimensional problem. The result of the

algorithm in this chapter and [12] show an extension of an optimal algorithm in

one dimension to two dimensions does not produce optimal solutions for the

two-dimensional problem.

4.1 k-Overlapping Maximum Subarray Problem

We review the sub-cubic algorithm by Bae and Takaoka [13], with which the

new algorithm for k-disjoint maximum subarray problem shares the same basic

structure.

4.1.1 Tournament

The main technique in this paper is tournament. Specifically we reorganize the

structure of the maximum subarray algorithm based on divide-and-conquer into

a tournament structure, which serves as an upper structure. We also reorganize

the DMM algorithm into a tournament, which works as a lower structure.

Through the combined tournament, the maximum, second maximum, etc. are

delivered in O(log n) time per subarray.

An r-ary tournament T is an r-ary tree such that each internal node has r internal

nodes and some external nodes as children, or some external nodes only as

children. It also has a key, which originates from itself if it is an external node,

or is extracted from one of its children if it is an internal node. Each external

node has a numerical datum as a key. External nodes can be regarded as

participants of the tournament. A parent has the minimum of those keys of its

children. We call this a minimum tournament. A maximum tournament is

similarly defined. In other words a parent is the winner among its children. The

external nodes form the leaves of the tree. We form a complete r-ary tree as far

as internal nodes are concerned. Also a node maintains some identity

information of the winner that reached this node, such as the original position of

the winner, etc. The key and this kind of information eventually propagate to the

root, and the winner is selected. The size of the tournament, defined by the

24

number of nodes, is O(n), if there are n external nodes.

If we use a binary tournament for sorting, the identity can be the position of the

data item in the original array. We can build up a minimum tournament for n

data items in O(n) time. After that, successive k minima can be chosen in O(k

log n) time. This can be done by replacing the key of the winning item at the

bottom level, that is, in a leaf, by ∞ and performing matches along the winning

path spending O(log n) time for the second winner, etc. Thus k minima can be

chosen in O(n + k log n) time in sorted order. If k = n, this is a sorting process in

O(n log n) time, called the tournament sort. We use a similar technique of

tournament in the k-MSA problem.

4.1.2 X + Y Problem

Let X and Y be lists of n numbers. We want to choose k smallest numbers from

the set Z = {x + y | (x ∈ X) ∩ (y ∈ Y)}. We organize a tournament for each of X

and Y in O(n) time. Let the imaginary sorted lists be X = (x1, … , xn) and Y = (y1,

… , yn). Actually they are extracted from the tournaments as the computation

proceeds. We successively take elements from those sorted lists, one in O(log n)

time. Obviously x1 + y1 is the smallest. The next smallest is x1 + y2 or x2 + y1. Let

us have an imaginary two-dimensional array whose (i, j)- element is xi + yj . As

the already selected elements occupy some portion of the top left corner, which

we call the solved part, we can prepare a heap to represent the border elements

adjacent to the solved region. By keeping selecting minima from the heap, and

inserting new bordering elements, we can solve the problem in O(n + k log n)

time. See the figure below for illustration. If we change the tournaments from

minimum to maximum, we can find k maxima in the same amount of time. Also

with similar arrangements, we can select k largest or smallest from X – Y = {x –

y | (x ∈ X) ∩ (y ∈ Y)} in the same amount of time. We use this simple algorithm

rather than sophisticated ones such as [26], since these two are equivalent in

computing time for k minima in sorted order.

25

 y1 y2 y5 y6

x1 x1+y1 x1 + y2

x2 x2+y1

x3

Figure 4.1 Hatched part is in priority queue. If x2+y5 is chosen with delete-
min, it is moved from the hatched to the solved part, and x3+y5 and x2+y6 are

inserted to the heap

4.1.3 The Main Algorithm

When we solve the maximum subarray problem of a two-dimensional (n, n)-

array with Algorithm M in chapter 2.3, within the same asymptotic time

complexity, we organize a four-ary tournament along the four-way recursion as

internal nodes, and the two sub-problems; column-centered and row-centered as

external nodes, in Algorithm M.

Algorithm M: Maximum Subarray

1. If the array becomes one element, return its value.

2. Let Atl be the solution for the top left quarter.

3. Let Atr be the solution for the top right quarter.

4. Let Abl be the solution for the bottom left quarter.

5. Let Abr be the solution for the bottom right quarter.

6. Let Acolumn be the solution for the column-centered problem.

7. Let Arow be the solution for the row-centered problem.

8. Let the solution A be the maximum of those six.

When we make the four-ary tournament along the execution of Algorithm M,

we copy necessary portions of the given prefix sum array s for the six sub-

problems from line 2 to 7 and while solving the column-centered and row-

centered problems by DMM for the maximum sum, the two sub-problems are

organized into tournaments as described in chapter 3. The total overhead time

and space requirement for this part are O(n2 log n). Suppose the maximum

26

subarray was returned at level 0, whose coverage and location are ((K, L), (I, J))

and ((k, l), (i, j)). If this array is a single element, that is, returned at the bottom

of recursion, i.e., line 1 of the algorithm, we put –∞ at the leaf, and reorganize

the tournament for the second maximum subarray towards the root along the

winning path. The necessary time is O(log n). If the maximum subarray is not

from the bottom of recursion, it must be from one of Acolumn or Arow of some

coverage at some level. As those two problems are organized into a tournament

each, they can return the second maximum in O(log n) time. The coverage and

location information can identify which of the two produced the winner. We can

reorganize the tournament along the winning path from this second maximum

towards the root. Thus the k-maximum subarray problem can be solved in

O(M(n) + k log n) time, where 𝑀(𝑛) = 𝑂(𝑛3�log log 𝑛 / log 𝑛).

Figure 4.2 Column Centered Problem

Let us assume K = 1, I = n, L = 1, and J = n without loss of generality. Also

assume A was obtained from Acolumn, which is in turn obtained from S', that is,

the lower triangle of S = maxS2S2* – minS1S1*. We rewrite this equation as S =

Q – P, where P = minS1S1* and Q = maxS2S2*. We assume that S[i, k] for some

k < i gives Acolumn with the witnesses l and j for P and Q respectively. We need to

find the next value for S'. To do so, we need to find the next minimum value for

P[i, k] and next maximum for Q[i, k] with witnesses different from l and j. As is

shown in the chapters 3, the next value for P[i, k] and Q[i, k] are returned in

1

 k

 i

 n

 X Y

n
 1

27

O(log n) time. Then using the X + Y algorithm, we can choose the next value for

S[i, k] in O(log n) time, which is delivered to the tournament for S' where other

elements are intact. See Figure 4.2 for illustration. Thus the next value for the

chosen one of the above two problems, Acolumn and Arow, can be found in O(log n)

time.

We observe at this stage that any DMM algorithm, that can deliver successive

minimum distances from layer 1 to layer 3 in the context of Chapter 2.2 in

O(log n) time, can be fitted into the framework of our algorithm

4.2 k-Disjoint Maximum Subarray Problem

k-disjoint maximum subarray Problem is to find the maximum subarray portion

up to k-th without overlapping each other. The best known results for the

disjoint case are the straightforward O(kM(n)), which is sub-cubic for small k

such as 𝑘 = 𝑜(�𝑙𝑙𝑙𝑛 / 𝑙𝑙𝑙 log 𝑛), where M(n) is the time for DMM, and O(n3

+ kn2 log n) by Bae and Takaoka [27] for larger k. The new algorithm presented

in the following chapter achieves sub-cubic time for this problem.

5 k-Disjoint Maximum Subarray Problem

5.1 Building Up Tournaments

After we find the maximum subarray, we want to find the next maximum

subarray from the remianing portion. That is, we want to find k-disjoint

maximum subarrays. As the general problem, in which the overlapping is

allowed, Algorithm M and tournaments play the main roles in this algorithm for

k-disjoint maximum subarray problem. While it is solving the maximum

subarray problem with Algorithm M, a four-ary tournament are organized along

the four-way recursion as internal nodes, with the two local u/l-tournaments for

the column-centered and row-centered problem for each internal node as

external nodes. Once the maximum sum is found and the tournaments are

organized, the X + Y problem takes part in the algorithm for the next maximum.

28

Figure 5.1 Column centered problem with a hole over Y

In the overlapping problem, successive minima and maxima for X and Y are

selected in O(log n) time for the next value of X + Y. In other word, the X +Y

problem played the role of glue between the four-way recursion tree of upper

tournament structure and the u/l-tournament trees of the lower DMM

tournament structures. When we require successive maximum subarrys to be

disjoint, the previous choice becomes a hole in the array a, which affect various

nodes in the tournament tree upward and downward.

Suppose the column centered solution at location ((k, l), (i, j)) in the coverage

((K, L), (I, J)) is chosen as the maximum subarray. Then the DMM solutions for

the strips that intersect with the solution strip in the same coverage are all

removed from further consideration. If a hole is created in another coverage like

in Figure 3, the tournaments in affected coverages need to be modified. In the

figure, the tournament for Y at position h (beginning of the hole) and to the right

must be removed. After all modifications on the tournament trees are done, we

can finalize the next winner of the whole tournament tree in a bottom up fashion.

Note that the total number of affected strips in all layers on the four-way

recursion is O(n2). In the following sections, we show that a modification on a

strip can be done in O(log n) time so that the selection of the next winner can be

done in O(n2 log n) time.

L

 k

 i

 I

 X Y

J
 K

j

l h

29

5.2 Modified X + Y Problem

We extend the X + Y problem to a modified X + Y problem, where some portion

of X or Y is removed each time the maximum or minimum is found. More

specifically X and Y are organized into tournaments, keeping the original order

from left to right in which X and Y are given. Each node of either tree has two

key values; one by which a winner is chosen and the other the position index of

the key. We express those two key values by key(v) and pos(v) of node v, and

also its content of node v, c(v), is defined by c(v) = (key(v), pos(v)). The tree for

X is cut from left, whereas that for Y is cut from right. X is organized into a min-

tournament (Y is into a max-tournament), where the winner at each node is

determined by the min (max) key. A left cut at i is to cut the tree from position i

to the left and a right cut is similarly defined. We perform a left cut on the tree

for X and right cut on the tree for Y. The trees are a mixture of heap and binary

search tree; vertically key follows the heap property and horizontally pos

follows the binary search tree property. An example of a maximum tournament

tree is shown in Figure 5.2 and 5.3.

Figure 5.2 A max-tournament tree. Key 8 at position (index) 6 is the winner.

(6, 1) (4, 2) (1, 3) (5, 4) (2, 5) (8, 6) (7, 7) (3, 8)

(6, 1) (5, 4) (8, 6) (7, 7)

(6, 1) (8, 6)

(8, 6)

30

Figure 5.3 After a right cut performed after the index 5. Key 6 at position

(index) 1 is the new winner. The changed keys and indices are written in bold.

A rightcut at position i = 6 results in the following tree. The key value 6 at

position 1 is the next winner. See Figure 5. A node in the tree consists of two

key values, pointer to the parent, the left child and that to right child. The left

child and right child of v are denoted by left(v) and right(v). Cutting the left

(right) child is to set the pointer to the left (right) child to nil. The parent of node

v is denoted by parent(v). The update of the tree takes place along a zig zag path

from the bottom towards the root.

Algorithm : right cut //Left cut can be defined symmetrically

Perform binary search from the root for position of i, pos(i), at the bottom;

v = the leaf node representing position i;

if v is the right child of its parent then let v go to the left child;

while v is not the root do begin

while v is a left child of its parent do begin

c(parent(v)) = c(v);

v = parent(v);

Cut the right child of v;

end;

while v is the right child of its parent do begin

v = parent(v);

c(v) = c(max(left(v); right(v)));

(6, 1) (4, 2) (1, 3) (5, 4) (2, 5) (8, 6) (7, 7) (3, 8)

(6, 1) (5, 4) (2, 5) (7, 7)

(6, 1) (2, 5)

(6, 1)

31

end

end

/** function max(u, v) is to take the node with maximum key **/

If there are n elements in the tree, this algorithm runs in O(log n) time and O(n2)

strips are affected. If we use the naive DMM algorithm based on the definition

of 𝑚𝑖𝑛𝑖=1𝑛 {𝑎𝑖𝑖 + 𝑏𝑖𝑖}, we can maintain two tournements for X and Y in each

strip, and we can achieve O(n3 + kn2 log n) time for our problem. Our final goal

is to organize a multi-level tournament based on the sub-cubic algorithm for

DMM.

5.3 Modified DMM

Modification of tournament trees for equations (2) and (3) can be done with the

technique in the previous section. We describe the modification for equation (4)

in this section. We describe the right cut with table look-up. In chapter 3.2, the

sorted order of participants are encoded in table'. Instead we encode the ranks of

participants. We fill the (x, y) entry of table', table'[x, y], by h(w1, … ,wl) with p

= l, where wi is the rank of participant i. Note that (w1, … ,wl) is the inverse

permutation of (r1, … , rl), that is, using [.] for indexing, r[w[i]] = i. The right

cut of (w1, … , wl) at position k is to give (w1, … , wk–1), that is, items at position

to the right of k inclusive of k are cut off. The result is returned from the

enhanced table with another dimension of k, T[h(H1, … ,Hl), h(L1, … ,Ll), k] =

h(w1, … , wk–1), in O(1) time.

Example 2 m = 5, 2m = 10, h(H) = 456, and h(L) = 329. Since H1,2 > L1,2 and

H2,3 < L2,3, the winner is 2, that is, table[456, 329] = 2. Also we saw table'[456,

329] = 231, since H[1, 3] < L[1, 3] in Example 1. Now by the new definition

table0[456, 329] = 312, that is. the rank of 1 is 3, etc. If we cut at position 3, we

have table'[456, 329, 3] = 21, from which we can retrieve winners 2 and 1 in

this order. A simple cut would give 31, which is normalized to 21.

With the right cut operations in Chapter 5.2 and Chapter 5.3, we can perform the

modification of the tournaments of X and Y at any coverage ((K, L), (I, J)). Let

32

the index h be the leftmost index of the hole (not h-function), be given by h = (L

+ J)/2 + (i – 1)m + (j – 1)l + k. Then the portion from position k to the right in

the bottom part is cut, the portion from position j to the right is cut and the

portion from position i to the right is cut to update Y in this coverage. The left

cut operations for X are similarly defined. The cut off operations for one

coverage takes O(log n) time. After one hole is created by deleting the next

maximum subarray, there are O(n2) strips over affected levels of recursion,.

Thus the time for updating tournaments for a next subarray, we spend O(n2 log n)

time, resulting in O(kn2 log n) time for the k-maximum subarrays.

5.4 Sub-cubic Algorithm

By Algorithm M with modified X + Y problem and modified DMM, we can

achieve time complexity for k-disjoint maximum subarray problem of O(M(n) +

kn2 log n) where the M(n) is the time complexity of DMM. If we go down to the

single elements by recursion to build the DMM tree in a bottom up fashion ,and

naive DMM algorithm is used to build the tree, where M(n) = n3, then the time

complexity becomes O(n3 + kn2 log n) for k-disjoint maximum problem. This is

the same time complexity in [27].

To use the sub-cubic time algorithm for DMM, we stop dividing s by the four

way recursion when the desired submatrix size is achieved. When we do the

DMM by divide-and-conquer with table-lookup method, the matrices are

divided into (m, m)-submatrices where the size of m is determined by

𝑚 = 𝑙𝑙𝑙𝑛/(log 𝑐 𝑙𝑙𝑙 𝑙𝑙𝑙𝑛) where c is a constant

Then the time for making the table I of this size is easily shown to be O(n) as

described in chapter 3.2 which can be absorbed in the main computing time.

Substituting this value of m for 𝑂(𝑛3/√𝑚), the time complexity of the DMM,

we have the overall computing time for the maximum subarray problem with

tree building 𝑂(𝑛3�log log 𝑛 / log 𝑛) as claimed. When the submatrix size

matches the pre-determined size of m while dividing the matrix s by recursion in

33

a top-down fashion, we stop the recursion and start to find the maximum

subarray for the array s building the tournament tree. Then we achieve k-disjoint

maximum subarray algorithm in time complexity of 𝑂(𝑛3�log log 𝑛 / log 𝑛 +

 𝑘𝑛2𝑙𝑙𝑙 𝑛) which is sub-cubic time.

5.5 Modified Algorithm M with Space Optimization

The maximum subarray problems described in this paper have the Algorithm M

in their cores. It divides the prefix sum array s by four-way recursion and

calculates the column-centered and row-centered problem in each recursive call

by DMM, resulting that the coverage of each DMM matrix for the sub-problems

is heavily overlapped. As we see in LEMMA 1 in chapter 2.3, an (n, n)-matrix

takes 16 DMMs on its four (n/2, n/2)-submatrices to get the column-centered

and row centered problems solved in Algorithm M. Now we explain how to

reduce this constant by using DMM reuse technique.In the modified Algorithm

M, the column-centered and row-centered problems are divided further into

three sub-problems as described in [5].

Algorithm M: Maximum Subarray

1. If the array becomes one element, return its value.

2. Let Atl be the solution for the top left quarter.

3. Let Atr be the solution for the top right quarter.

4. Let Abl be the solution for the bottom left quarter.

5. Let Abr be the solution for the bottom right quarter.

6. Let Acolumn be the solution for the column-centered problem.

7. Let Arow be the solution for the row-centered problem.

8. Let the solution A be the maximum of those seven.

Algorithm for the row-centered problem

1. Divide the array into two parts by the vertical center line.

2. Let Aleft be the solution for the left row-centered problem.

3. Let Aright be the solution for the right row-centered problem.

4. Let Acenter be the solution for the center problem.

5. Let the solution be the maximum of those three.

34

Algorithm for the column-centered problem

1. Divide the array into two parts by the horizontal center line.

2. Let Aupper be the solution for the left row-centered problem.

3. Let Alower be the solution for the right row-centered problem.

4. Let Acenter be the solution for the center problem.

5. Let the solution be the maximum of those three.

Note that Acenter is the maximum subarray that crosses over the center point.

Figure 5.2 Column-centered problem divided into three sub-problems

Since the Algorithm M is based on recursion, the column-centered problem and

the row-centered problem can be solved more efficiently in this way with DMM

reuse technique that is explained in the following section. This optimization is

applicable to all maximum subarray problems based on Algorithm M including

k-overlapping maximum subarray problem and k-disjoint maximum subarray

problem.

5.6 Reuse of DMM

When we do DMM by divide-and-conquer, if matrices A, B, and C in DMM are

divided into (m, m)-submatrices for N = n/m as follows:

�
𝐴11 … 𝐴1𝑁
… … …
𝐴𝑁1 … 𝐴𝑁𝑁

� �
𝐵11 . . . 𝐵1𝑁
… … …
𝐵𝑁1 … 𝐵𝑁𝑁

� = �
𝐶11 … 𝐶1𝑁
… … …
𝐶𝑁1 … 𝐶𝑁𝑁

�

 Aupper

 Acenter

 Alower

35

Matrix C can be computed by N3 multiplications of distance matrices on the

submatrices. If there are some of Cij are already calculated, obviously the total

number for DMM to get C can be reduced.

When we do DMM at the level 0 in recursive calls on a given (n, n)-matrix in

Algorithm M, the DMM matrices for its four (n/2, n/2)-submatrices are already

calculated in the previously ending recursive call at level 1. Instead of

calculating the DMM matrices for the level 0, the already calculated DMM

matrices for its submatrices can be reused by merging them as described below.

Figure 5.3 Merging four DMM matrices into one for the upper level. The
prefix sum array S is divided into four submatrices by recursion in a top down

fashion and the DMM matrices are built up in a bottom-up fashion

min

S1S1* S1S2*

S2S1*

S2S2*

S3S3* S3S4*

S4S3* S4S4*

 S1 S3

 S2 S4

S1S1*

 S2S2*

 S3S3*

 S4S4*

 S1

 S2

 S3

 S4

{S1S1*
S3S3*}

min
{S2S1*
S4S3*}

min
{S2S2*
S4S4*}

S min DMM for S

Min DMM for left half Min DMM for right half

min
{S1S2*
S3S4*}

36

We explain the merging operation for DMM matrices in min version for the

column–centered problem. The merging operations for the other matrices are

similar. In each level of recursive call, the matrix has two versions of DMM

matrix for the column centered-problem of its own coverage. One is min version

and the other is max version. Each DMM matrix is built from the DMM

matrices of its four submatrices as described in Figure 5.3. The prefix sum

matrix S is divided into four submatrices S1, S2, S3 and S4 by recursion in a top-

down fashion and min version of DMM matrices for the column-centered

problem are calculated for each of those. For the min DMM Matrix for the

upper level’s, the precalculated min DMM matrices for S1 and S2 are merged

first to form the min DMM matrix for the left half of s. The upper left portion

and lower right portion of the matrix just copy the corresponding part of the

DMM matrix of the children and only the rest parts are newly calculated. For

the maximum subarray problem, upper right triangle of DMM matrix is not

necessary, only lower left part are desired to be newly calculated. The right half

DMM matrix is calculated in the same way. Finally, take the element-wise

minimum between the two halves to get the final min DMM matrix for the

matrix S.

To solve the column-centered problem for S, min DMM for S1 is subtracted

from the max DMM for S3 and the take the maximum from the resulting matrix,

such as Aupper = max{S3S3* - S1S1*} where the max operation find the maximum

value of the matrix. Since the coverage of the resulting matrix is ((1, 1), (n/2, n)),

the solution should be bounded in the upper half of s. similarly min DMM for S2

is subtracted from the max DMM for S4 to get the lower solution, such as Alower

= max{S4S4* - S2S2*}. Since the coverage of the resulting matrix is ((n/2+1, 1),

(n, n)), the solution should be bounded in the lower half of s. Lastly, newly

calculated min version of S2S1 is subtracted from the also newly calculated max

version of S4S3 to get the center solution. The row coverage of S1 and S3 is [1, …

n/2] and the one of S2 and S4 is [n/2+1, … , n], so those of S4S3* and S2S1*

should be [k, i] where 1 ≤ k ≤ n/2, n/2+1 ≤ i ≤ n, which means that the solution

Acenter = max{S4S3* - S2S1*} should across the center point. The final column-

centered problem is the maximum of those three. The row-centered problem can

37

be solved in a similar way.

Now let us analyze the time for the work at level 0 as we do in chapter 2.3. We

can multiply (n, n/2) and (n/2, n) matrices by 2 multiplications of size (n/2, n/2),

if we reuse DMM matrices from the children. Furthermore, if we do not

calculate unnecessary part of the DMM matrix, the upper right triangle, only

one multiplication is needed. There are two such multiplications in S = S2S2* –

S1S1*. We measure the time by the number of comparisons, as the rest is

proportional to this. Let M(n) be the time for multiplying two (n/2, n/2) matrices.

At level 0, we obtain an Acolumn and Arow, spending 4M(n) comparisons. Thus we

have the following recurrence for the total time T(n).

T(1) = 0,

T(n) = 4T(n/2) + 4M(n).

Note that the constant in front of the M(n) is 16 in chapter 2.3

LEMMA 2 Let c be an arbitrary constant such that c > 0. Suppose M(n)

satisfies the condition M(n) ≥ (4 + c)M(n/2). Then the above T(n) satisfies T(n)

≤ 4(1 + 4/c)M(n).

Clearly the complexity of 𝑂(𝑛3�log log 𝑛 / log 𝑛) satisfies the condition of the

LEMMA 2 with some constant c > 0. Thus the first maximum sum can be

solved in 𝑂(𝑛3�log log 𝑛 / log 𝑛) time. Since we take the maximum of two

matrices component-wise in line 8 of our algorithm and for the maximum from

S', we need an extra term of O(n2) in the recurrence to count the number of

operations. This term can be absorbed by slightly increasing the constant 4 in

front of M(n) in the above recurrence.

38

6 Concluding Remarks

We showed an asymptotic improvement on the time complexity of the k-

maximum subarray problem based on a fast algorithm for DMM. The time

complexity is sub-cubic in n, when k = o(n3/logn). If we use recent faster

algorithms for DMM, it may be possible to have a better complexity bound for

the k-MSA problem. For the disjoint case, the time complexity is O(M(n) +

kn2logn). This complexity is sub-cubic when k = o(n/logn). Since the maximum

possibility of k is O(n2), there is some possibility of improving the bound for k

so that the time complexity of the problem remains sub-cubic.

39

References

[1] R. Agrawal, et al., "Mining association rules between sets of items in

large databases," presented at the Proceedings of the 1993 ACM

SIGMOD international conference on Management of data, Washington,

D.C., United States, 1993.

[2] T. Fukuda, et al., "Data Mining with optimized two-dimensional

association rules," ACM Trans. Database Syst., vol. 26, pp. 179-213,

2001.

[3] J. Bentley, "Programming pearls: perspective on performance," Commun.

ACM, vol. 27, pp. 1087-1092, 1984.

[4] T. Takaoka, "Efficient Algorithms for the Maximum Subarray Problem

by Distance Matrix Multiplication," Electronic Notes in Theoretical

Computer Science, vol. 61, pp. 191-200, 2002.

[5] H. Tamaki and T. Tokuyama, "Algorithms for the maximum subarray

problem based on matrix multiplication," presented at the Proceedings of

the ninth annual ACM-SIAM symposium on Discrete algorithms, San

Francisco, California, United States, 1998.

[6] T. Takaoka, "Sub-cubic algorithms for the maximum subarray problem,"

Proc. Computing:Australasian Theory Sumposium (CATS 2002), pp.

189-198, 2002.

[7] S. E. Bae and T. Takaoka, "Mesh algorithms for the K maximum subarray

problem," Proc. ISPAN, pp. 247-253, 2004.

[8] F. Bengtsson and J. Chen, "Efficient Algorithms for Maximum Sums," in

Algorithms and Computation. vol. 3341, R. Fleischer and G. Trippen,

Eds., ed: Springer Berlin / Heidelberg, 2005, pp. 137-148.

40

[9] C.-H. Cheng, et al., "Improved Algorithms for the Maximum-Sums

Problems," in Algorithms and Computation. vol. 3827, X. Deng and D.-Z.

Du, Eds., ed: Springer Berlin / Heidelberg, 2005, pp. 799-808.

[10] F. Bengtsson and J. Chen, "A note on ranking k maximum sums,"

Research Report 2005:8, 2005.

[11] G. S. Brodal and A. G. Jørgensen, "A Linear Time Algorithm for the k

Maximal Sums Problem," private communication, 2007.

[12] S. Bae and T. Takaoka, "Improved Algorithms for the Maximum

Subarray Problem for Small k," in Computing and Combinatorics. vol.

3595, L. Wang, Ed., ed: Springer Berlin / Heidelberg, 2005, pp. 621-631.

[13] S. E. Bae and T. Takaoka, "A sub-cubic time algorithm for the k-

maximum subarray problem," presented at the Proceedings of the 18th

international conference on Algorithms and computation, Sendai, Japan,

2007.

[14] W. L. Ruzzo and M. Tompa, "A Linear Time Algorithm for Finding All

Maximal Scoring Subsequences," presented at the Proceedings of the

Seventh International Conference on Intelligent Systems for Molecular

Biology, 1999.

[15] M. L. Fredman, "New Bounds on the Complexity of the Shortest Path

Problem," SIAM Journal on Computing, vol. 5, pp. 83-89, 1976.

[16] T. Takaoka, "A new upper bound on the complexity of the all pairs

shortest path problem," Information Processing Letters, vol. 43, pp. 195-

199, 1992.

[17] H. Yijie, "Improved algorithm for all pairs shortest paths," Information

41

Processing Letters, vol. 91, pp. 245-250, 2004.

[18] Y. Han, "An O(n3(loglogn/logn)5/4) Time Algorithm for All Pairs

Shortest Path," Algorithmica, vol. 51, pp. 428-434, 2008.

[19] T. Takaoka, "A Faster Algorithm for the All-Pairs Shortest Path Problem

and Its Application," in Computing and Combinatorics. vol. 3106, K.-Y.

Chwa and J. Munro, Eds., ed: Springer Berlin / Heidelberg, 2004, pp.

278-289.

[20] U. Zwick, "A Slightly Improved Sub-cubic Algorithm for the All Pairs

Shortest Paths Problem with Real Edge Lengths," in Algorithms and

Computation. vol. 3341, R. Fleischer and G. Trippen, Eds., ed: Springer

Berlin / Heidelberg, 2005, pp. 841-843.

[21] T. Takaoka, "An O(n3 log log n/log n) time algorithm for the all-pairs

shortest path problem," Information Processing Letters, vol. 96, pp. 155-

161, 2005.

[22] T. Chan, "All-Pairs Shortest Paths with Real Weights in O(n3/logn)

Time," in Algorithms and Data Structure. vol. 3608, F. Dehne, et al., Eds.,

ed: Springer Berlin / Heidelberg, 2005, pp. 318-324.

[23] T. M. Chan, "More algorithms for all-pairs shortest paths in weighted

graphs," presented at the Proceedings of the thirty-ninth annual ACM

symposium on Theory of computing, San Diego, California, USA, 2007.

[24] S. E. Bae, "Sequential and Parallel Algorithms for the Generalized

Maximum Subarray Problem," Ph.D, Computer Science and Software

Engineering, University of Canterbury, Christchurch, 2007.

[25] T.-C. Lin and D. Lee, "Randomized Algorithm for the Sum Selection

Problem," in Algorithms and Computation. vol. 3827, X. Deng and D.-Z.

42

Du, Eds., ed: Springer Berlin / Heidelberg, 2005, pp. 515-523.

[26] G. N. Frederickson and D. B. Johnson, "The complexity of selection and

ranking in X + Y and matrices with sorted columns," Journal of Computer

and System Sciences, vol. 24, pp. 197-208, 1982.

[27] S. Bae and T. Takaoka, "Algorithm for K Disjoint Maximum Subarrays,"

in Computational Science – ICCS 2006. vol. 3991, V. Alexandrov, et al.,

Eds., ed: Springer Berlin / Heidelberg, 2006, pp. 595-602.

	Acknowledgement
	Abstracts
	1. Introduction
	2. Maximum Subarray Problem
	2.1 Basic Definitions
	2.2 Distance Matrix Multiplication
	2.3 Prefix Sum Array and Maximum Subarray Problem by Distance Matrix Multiplication

	3 A Faster Algorithm for Distance Matrix Multiplication
	3.1 Distance Matrix Multiplication by Divide and Conquer
	3.2 Distance Matrix Multiplication by Table-Lookup

	4 k-Maximum Subarray Problem
	4.1 k-Overlapping Maximum Subarray Problem
	4.1.1 Tournament
	4.1.2 X + Y Problem
	4.1.3 The Main Algorithm

	4.2 k-Disjoint Maximum Subarray Problem

	5 k-Disjoint Maximum Subarray Problem
	5.1 Building Up Tournaments
	5.2 Modified X + Y Problem
	5.3 Modified DMM
	5.4 Sub-cubic Algorithm
	5.5 Modified Algorithm M with Space Optimization
	5.6 Reuse of DMM

	6 Concluding Remarks
	References

