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Abstracts 

The maximum subarray problem is to find the array portion that maximizes the 

sum of array elements in it. This problem was first introduced by Grenander and 

brought to computer science by Bentley in 1984. This problem has been 

branched out into other problems based on their characteristics. k-overlapping 

maximum subarray problem where the overlapping solutions are allowed, and k-

disjoint maximum subarray problem where all the solutions are disjoint from 

each other are those. For k-overlapping maximum subarray problems, 

significant improvement have been made since the problem was first introduced. 

The best known complexities of this problem are 𝑂(𝑛3 +  𝑘𝑙𝑙𝑙 𝑛), which is 

cubic when k = 𝑂(𝑛3/𝑙𝑙𝑙 𝑛) and 𝑂(𝑘𝑛3�log log 𝑛 / log 𝑛), which is sub-

cubic when k = 𝑂(�𝑙𝑙𝑙𝑛 / 𝑙𝑙𝑙 𝑙𝑙𝑙𝑛). 

 

For k-disjoint maximum subarrsy, Ruzzo and Tompa gave an O(n) time solution 

for one-dimension. This solution is, however, difficult to extend to two-

dimensions. While a trivial solution of O(kn3) time is easily obtainable for two-

dimensions, little study has been undertaken to better this. This paper introduces 

a faster algorithm for the k-disjoint maximum sub-array problem under the 

conventional RAM model, based on distance matrix multiplication. Specifically 

𝑂(𝑛3�log log 𝑛 / log 𝑛 +  𝑘𝑛2𝑙𝑙𝑙 𝑛) is achieved for the problem. This 

complexity is sub-cubic when k < 𝑂(𝑛/𝑙𝑙𝑙 𝑛). Also, DMM reuse technique is 

introduced for the maximum subarray problem based on recursion for space 

optimization. 
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1. Introduction 

 
Data mining is to extract useful information from a vast amount of data, 

typically from a large database. Here useful information means some interesting 

information that can be found only going through a large database with a 

computer, which a human can never scan through with bare eyes and hands. 

Suppose there is a record of monthly sales of smart phones for one year at a 

retail store in some city as a one-dimensional array. The maximum subarray 

(MSA) problem scans through the database to determine the array portions that 

sums to the maximum value with respect to all possible array portions within the 

input array, which gives seasonal trend of the sales. This sort of data mining 

methods are described in [1] and [2]. Since the array elements are all non-

negative, the obvious solution is the whole array. If the mean value of the array 

elements is subtracted from each array element, and consider the modified 

maximum subarray problem, we can have more accurate estimation on the sales 

trends. When the input array is two-dimensional, we find a rectangular subarray 

portion with the largest possible sum. The two-dimensional maximum subarray 

problem can be used in digital video image where every frame in it is 

represented as a two dimensional array. If the mean value of the pixels of a 

frame is subtracted from the each pixel value in grey-scale video image, we can 

identify the brightest portion in it. Even further, if a well-established background 

model is subtracted from the current video frame then the maximum subarray 

problem can spot new objects in the frame and track them through the following 

frames. 

 

The maximum subarray problem was first introduced by Grenander and brought 

to computer science by Bentley [3] in 1984 as an example to discuss the 

efficiency of computer programs for the two-dimensional problem with an 

algorithm of O(n3), and attracts attention from data mining point of view [4]. It 

was later improved by Tamaki and Tokuyama [5] to a sub-cubic time algorithm 

based on distance matrix multiplication (DMM), which is further simplified by 

Takaoka [6]. 
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This problem has been branched out into other problems based on their 

characteristics. k-overlapping maximum subarray problem and k-disjoint 

maximum subarray problem are those, whose detailed descriptions and known 

algorithms with their results are discussed in chapter 4. For k-overlapping 

maximum subarray problems where overlapping is allowed for solution arrays, 

significant improvements have been made since the problem was first discussed 

in [7] and [8]. Recent development by Cheng et al. [9] and Bengtsson and Chen 

[10] established O(n + k log k) time algorithm, and Brodal, et. al achieved O(n 

+ k) [11] for one-dimensional problem. For two-dimensions, O(n3) is possible in 

[12] and [9], and lately a sub-cubic algorithm was developed by Bae and 

Takaoka [13]. 

 

The goal of the k-disjoint maximum subarray problem is to find k-maximum 

subarrays, which are disjoint from one another. Ruzzo and Tompa’s algorithm 

[14] finds all disjoint maximum subarrays in O(n) time for one-dimension. 

However, little study has been undertaken on this problem for higher 

dimensions. In this paper, a new 𝑂(𝑚2𝑛�𝑙𝑙𝑙 𝑙𝑙𝑙𝑛 / 𝑙𝑙𝑙 𝑛 + 𝑘𝑚2𝑙𝑙𝑙 𝑛) time 

solution for two-dimension is presented, where (m, n) is the size of the input 

array. This is sub-cubic time when m = n and k < 𝑛/𝑙𝑙𝑙 𝑛. 

 

In chapter 2, the basic definition of the maximum subarray problem and a 

divide-and-conquer algorithm for the problem are given. In chapter 3, a faster 

algorithm for the DMM using two-level divide-and-conquer and table-lookup 

method is explained in detail, since the new algorithm is based on it. In chapter 

4, X + Y problem is defined and its well-known algorithm is described. Also a 

sub-cubic algorithm for the k-overlapping maximum subarray problem by Bae 

and Takaoka [13] is explained with a brief introduction of an algorithm for the 

k-disjoint maximum subarray problem. In chapter 5, which is the main chapter 

of this paper, the new sub-cubic k-disjoint maximum algorithm is presented and 

finally chapter 6 concludes the paper, discussing possibilities for further speed-

up. 
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The computational model in this paper is the conventional RAM, where only 

arithmetic operations, branching operations, and random accessibility with k < 

𝑂(𝑙𝑙𝑙 𝑛) bits are allowed and the same name k is used in two different 

meanings; indexing in arrays, and the k for the k-maximum subarray (k-MSA) 

problem. Also note that the terms of array and matrix are used interchangeably 

in this paper. 

 

 

2. Maximum Subarray Problem 

 

2.1 Basic Definitions 

As described above, the maximum subarray problem is to find the consecutive 

portion of an array that maximizes the sum of array elements in the portion.  

 

Example 2.1 Let a be given by 

 

[3 51 −41 −57 |𝟓𝟓 𝟓𝟓 −𝟏𝟏 𝟗𝟗| −55 −71 21 21] 

 

Then the maximum subarray is given by the portion from index 5 to index 8 with 
the maximum sum 193. 

 

In most applications, one-dimensional and two-dimensional arrays are used. In 

two dimensional arrays, the MSA problem is to comput a rectangular portion in 

the given two-dimensional array that maximizes the sum of array elements in it.  

 

Example 2.2 Let b given by 

 

�

−1 2 −3 5 −4 −8 3 −3
2 −4 −6 −8 2 −5 4 1
3 −2 9 −9 |𝟑   𝟔| −5 2
1 −3 5 −7 |𝟖   𝟐| 2 −6

� 

 

Then the maximum subarray is given by the rectangle defined by the upper left 
corner (3, 5) and the lower right corner (4, 6) with the maximum sum 19. 
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For the one-dimensional case, there is an optimal O(n) time sequential solution, 

known as Kadane’s algorithm [3] and a simple extension of this solution can 

solve the two-dimensional problem in O(m2n) time for an (m, n)-array (m ≤ n), 

which is cubic when m = n [3]. This is done by separating the two-dimensional 

array into every possible row strips, which is called strip separation, and 

applying the one-dimensional Kadane’s algorithm on each strip. Also, a sub-

cubic time algorithm for two-dimentional case was obtained by Tamaki and 

Tokuyama [5] by reducing the problem to DMM and showing that the time 

complexities of the two problems are the same order. Takaoka simplified the 

algorithm later for implementation [6] which is explained in chapter 2.3. 

 

2.2 Distance Matrix Multiplication 

We review distance matrix multiplication since it is the engine for the 

algorithms in this paper. 

 

Normally we multiply two (n, n)-matrices over real numbers using “+” and “*”. 

Let C = AB where A, B and C are all (n, n) matrices. Then 

 

𝑐𝑖𝑖 =  �𝑎𝑖𝑖

𝑛

𝑘=1

∗ 𝑏𝑘𝑘 (𝑖, 𝑗 = 1, … ,𝑛) 

 

We can define distance matrix multiplication C = AB by corresponding the 

above “+” to “min” and “*” to “+” as follows 

 

𝑐𝑖𝑖 = 𝑚𝑚𝑚1≤𝑘≤𝑛�𝑎𝑖𝑖 + 𝑏𝑘𝑘� (𝑖, 𝑗 = 1, … , 𝑛)  (1) 

 

Example 2.3 Distance Matrix Multiplication 

 

�
1 −3 7
∞ 5 ∞
8 2 −5

� ∗ �
8 ∞ −4
−3 0 −7
5 −2 1

� = �
−6 −3 −10
2 5 −2
−1 −7 −5

� 

 

c11 is decided by min{1+8, -3+-3, 7+5} 
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The intuitive meaning of cij is the distance of the shortest path from vertex i in 

the first layer to vertex j in the third layer in the following graph. The distance 

from i in the first layer to k in the second is aik and that from the second layer to 

the third is bkj. The index k that gives the minimum is called the witness for cij 

 

 
Figure 2.1  All Pairs Shortest Paths from i to j 

 

In this figure 2.1, matrices A and B are to show the connection distance from 

layer to layer. We can define the max version by changing the symbol “min” to 

“max” in the above formula. This corresponds to longest paths from layer 1 to 

layer 3. The original version is called the min version and the other one is called 

max version in this paper. 

 

To solve the k-MSA problem, we want to find up to k shortest distances from 

layer 1 to layer 3 between any vertices. We use this version of extended DMM 

in this paper, whereas k-DMM in [2] computes k shortest paths for each pair (i, j) 

with i in layer 1 and j in layer 3, which is rather time consuming. If we solve 

DMM in M(n) time in such a way that a tournament of some size becomes 

available for the extended DMM within the same time complexity, then 

subsequent shortest distances can be found in O(M(n)+k log n) time for k up to 

O(n3), as shown in Chapters 3. 

 

 

 

 

 

 

 

 

1 

2 

n 
A B 

i k j 
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We actually need at most k shortest distances in total for all DMMs used in our 

k-MSA algorithm, and our requirement is that the newly designed DMM 

algorithm return the next shortest distance for any pair (i, j), that is, i in layer 1 

to j in layer 3, in O(log n) time. 

 

2.3 Prefix Sum Array and Maximum Subarray Problem by Distance                                                                          

Matrix Multiplication 

The central algorithmic concept in the new algorithm is that of prefix sum array. 

The prefix sum of a one-dimensional array a at position i, denoted by s[i], is the 

sum of a[1], … , a[i]. The prefix sum array can be computed in linear time O(n) 

by  

 

s[0] ← 0; 

for i ← 1 to n  do s[i] ← s[i – 1] + a[i]; 

 

as 𝑠[𝑥] = � 𝑎[𝑖]𝑥
𝑖=1 , the sum of a[x…y] is computed by the subtraction of 

these prefix sums as 

 

�𝑎[𝑖]
𝑦

𝑖=𝑥

= 𝑠[𝑦]− 𝑠[𝑥 − 1] 

 

To yield the maximum sum from a one-dimensional array, we have to find 

indices x, y that maximize � 𝑎[𝑖]𝑦
𝑖=𝑥 . In prefix sum array, s[1, … , n], the 

maximum subarray is defined by  

 

For all x, y ∈ [1, … , n] 

Max Sum = max 1 ≤ y ≤ n s[y] – min 0 ≤ x ≤ y-1 s[x] 

 

Note that the notations max and min are used for operations. 
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The prefix sum array of a given two-dimensional array can be defined similarly. 

The prefix sum at position s[i][j] of a two-dimensional (m, n)-array a is the sum 

of array portion a[1, … , i][1, … , j] for all i and j with boundary condition 

s[i][0] = s[0][j] = 0, which can be calculated in O(mn) time. 

 

As 𝑠[𝑖][𝑗] = ∑ 𝑎[𝑝]𝑖,𝑗
𝑝=1,𝑞=1 [𝑞], the sum of a[k…i][l…j] is computed by the 

subtraction of these prefix sums as: 

 

� 𝑎[𝑝][q]
𝑖,𝑗

𝑝=𝑘 ,𝑞=𝑙

= 𝑠[𝑖][𝑗] − 𝑠[𝑘][𝑗]− 𝑠[𝑖][𝑙] + 𝑠[𝑘][𝑙] 

 

 
 

Figure 2.2  Sum of Subarray in Prefix Sum Array in two-dimension 

 

To maximize the sum from a two-dimensional array, we have to find indices (k, 

l), (i, j) that maximize � 𝑎[𝑝][q]𝑖,𝑗
𝑝=𝑘,𝑞=𝑙 . In prefix sum array s, the maximum 

subarray is defined by  

 

Max Sum =  𝑚𝑎𝑥𝑖=0,𝑙=0,𝑖=1,𝑖=1
𝑚−1,𝑛−1,𝑚,𝑛 {𝑠[𝑖][𝑗]−  𝑠[𝑘][𝑗] − 𝑠[𝑖][𝑙] + 𝑠[𝑘][𝑙]} 

 

  =  𝑚𝑎𝑥𝑖=1,𝑖=1,𝑖=0
𝑚,𝑛,𝑖−1 {𝑠[𝑖][𝑗]−  𝑠[𝑘][𝑗]}−𝑚𝑖𝑛𝑖=1,𝑙=0,𝑖=0

𝑚,𝑖−1,𝑖−1 {𝑠[𝑖][𝑙] − 𝑠[𝑘][𝑙]} 

 

l j 

k 

i 
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Let s*[j][k] = –s[k][j] and s*[l][k] = –s[k][l], then the above problem can further 

be converted into 

 

Max Sum =  𝑚𝑎𝑥𝑖=1,𝑖=1,𝑖=0
𝑚,𝑛,𝑖−1 {𝑠[𝑖][𝑗] + 𝑠∗[𝑗][𝑘]}−𝑚𝑖𝑛𝑖=1,𝑙=0,𝑖=0

𝑚,𝑖−1,𝑖−1 {𝑠[𝑖][𝑙] + 𝑠∗[𝑙][𝑘]} 

 

The first part in the above is distance matrix multiplication of the max version 

and the second part is of the min version. Let S1 and S2 be matrices whose (i, j) 

elements are s[i][j–1] and s[i][j]. For an arbitrary matrix T, let T* be that 

obtained by negating and transposing T and the resulting matrix by DMM 

between T and T* is called the DMM matrix of T in this paper. Then the above 

can be computed by multiplying S1 and S1* by the min version, that is min 

DMM matrix of S1, multiplying S2 and S2* by the max version, that is max 

DMM matrix of S2, and finally subtracting the former from the latter and taking 

the maximum.  

 

Now we review the simplified sub-cubic version in [6], which is the starting 

point of the new algorithm. A two-dimensional (m, n)-array a[1, …, m][1, … , n] 

of real numbers is given as input data. The maximum subarray problem is to 

maximize the sum of the array portion a[k, ... , i][l, … , j], that is, to obtain the 

sum and such indices (k, l) and (i, j). We suppose the upper-left corner has co-

ordinates (1, 1). 

 

For simplicity, the given array a is assumed to be a square (n, n)-array. We 

compute the prefix sums s[i][j] for array portions of a[1, … , i][1, … , j] for all i 

and j with boundary condition s[i][0] = s[0][j] = 0. Obviously this can be done 

in O(n2) time for an (n, n) array. The outer framework of the algorithm is given 

below. Note that the prefix sums once computed are used throughout recursion. 

 

Algorithm M: Maximum Subarray 

1.  If the array becomes one element, return its value. 

2.  Let Atl be the solution for the top left quarter. 

3.  Let Atr be the solution for the top right quarter. 

4.  Let Abl be the solution for the bottom left quarter. 
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5.  Let Abr be the solution for the bottom right quarter. 

6.  Let Acolumn be the solution for the column-centered problem. 

7.  Let Arow be the solution for the row-centered problem. 

8.  Let the solution A be the maximum of those six. 

 

The location of a solution subarray is defined by index pairs ((k, l), (i, j)) if the 

solution is the sum of the array portion a[k, … , i][l, … , j]. The coverage of a 

solution subarray is the smallest square region, determined by the above 

recursive calls, in which the solution is obtained. The coverage is also defined 

by index pairs of the co-ordinates of the top-left corner, and those of the bottom-

right corner. If we call the above algorithm for a[1, … , n][1, … , n], for 

example, the coverage of A is ((1, 1), (n, n)), that of Atl is ((1, 1), (n/2, n/2)), and 

that of Atr is ((1, n/2 + 1), (n/2, n)), etc. 

 

 
 

Figure 2.3  Algorithm M. The solution of the coverage ((1, 1), (n, n)) is the 
maximum of the six solutions, that is Atl in this figure. Atl, Atr, Abl and Abr are the 

solutions of their own coverage that is (n/2, n/2)-submatrix. 
 

 

 

 

 

 

 

Atl 

Abl Acolumn 

Arow 

Abr 

Atr 
1 

n/2 

n 

1 n/2 n 

k 

i 

l j 
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Here the column-centered problem Acolumn is to obtain an array portion that 

crosses over the central vertical line with maximum sum, and can be solved in 

the following way. The row-centered problem Arow can be computed similarly. 

 

 
Figure 2.4  The column-centered problem 

 

In the Figure 2.4, We first fix k and i, and maximize the column-centered 

problem by changing l and j. then the problem is equivalent to maximizing the 

following for i = 1, … , n and k = 1, … , i - 1. 

 

𝐴𝑐𝑜𝑙𝑢𝑚𝑛[𝑘, 𝑖] =  𝑚𝑎𝑥𝑖=𝑛/2+1
𝑛 {𝑠[𝑖][𝑗] + 𝑠∗[𝑗][𝑘]}−𝑚𝑖𝑛𝑙=0

𝑛/2−1{𝑠[𝑖][𝑙] + 𝑠∗[𝑙][𝑘]} 

 

As described earlier in this section, the first part in the above is distance matrix 

multiplication of the max version and the second part is of the min version. Let 

S1 and S2 be matrices whose ranges are s[1, … , n][1, … , n/2 – 1] and s[1, … , 

n][n/2 + 1, … , n]. As the range of k is [0, … , n – 1] in S1* and S2*, we shift it 

to [1, … , n]. Then the above can be computed by multiplying S1 and S1* by the 

min version, multiplying S2 and S2* by the max version, subtracting the former 

from the latter, that is, S = max S2S2* – min S1S1*, and finally taking the 

maximum value from the matrix S. We will re-organize this maximizing 

operation into a tournament later.  

 

Acolumn 

1 

n 

1 n/2 n 

k 

i 

l j 
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Figure 2.5  How to solve the column-centered problem 

 

When we do DMM for the prefix sum matrix S of an arbitrary matrix A with its 

negated and transposed matrix S*, the elements of the resulting matrix, that is 

called DMM matrix of S, represent the maximum or the minimum sums 

depending on the version of the DMM for each of the every possible horizontal 

strip on the original array A. the location of the solution is identified by the 

index of the element and its witness k. For example, an element in the resulting 

DMM matrix in min version whose index is (i, j) with witness k represents the 

minimum sum for the strip from row j to row i and it is bounded by column 1 

and column k on the original array A. In other words, the sum of all the elements 

on the original array from (j, 1) to (i, k) is the minimum sum for the (j, i)-strip. 

Note that the upper right triangles of the DMM matrices are not needed for 

calculating MSA problem where i < j, because starting row of a strip cannot be 

greater than its ending row. We call the operations of extracting a triangle 

triangulation and this is effectively done by putting –∞ in the upper triangle of S. 

The converted matrix of S is now called S'. 

S1   S2 S2 S2S2* 
S2* 

* 
= 

S1 S1S1* 
S1* * = 

S2S2*-
S1S1* 

– 
=
 

n/2 1 n 

Solution (maximum value) 

max 

min 

max 

min 
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Figure 2.6  The relationship between the min DMM matrix and its original 
matrix a. The value of the element (i, j) in the DMM matrix is the sum of the 

shaded portion of the original matrix a, that is the minimum sum for the strip. 
The index (i, j) with the witness k of the DMM matrix represent the top left 

corner (j, 1) and bottom right corner (i, k) of the solution in a. Note that the 
upper right triangle of the DMM matrix is filled with –∞. 

 

If n is assumed to be a power of 2 for simplicity, then all size parameters 

appearing through recursion in Algorithm M are power of 2. We define the 

work of computing two subarrays, Acolumn and Arow to be the work at level 0. The 

algorithm will split the array horizontally and vertically into four subarrays 

through the recursion to go to level 1. 

 

Now let us analyze the time for the work at level 0. We can multiply (n, n/2) and 

(n/2, n) matrices by 4 multiplications of matrices in size (n/2, n/2) and there are 

two such multiplications in S = max S2S2* – min S1S1*. 

 

 
 

Figure 2.7  We can multiply (n, n/2) and (n/2, n) matrices by 4 multiplications 

of matrices in size (n/2, n/2) 

 

j 

i 

DMM Matrix for a 

-∞ 
  

j 

i 

k 

Original Matrix a 

i k
 

M1 

 M2 

 1 

 n/2 

 n 

 

 1  n/2  n 

 * 
M3 M4 = M1M3 M1M4 

M2M3 M2M4 
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We measure the time by the number of comparisons, as the rest is proportional 

to this. Let M(n) be the time for multiplying two (n/2, n/2) matrices. At level 0, 

we obtain an Acolumn and Arow, spending 16M(n) comparisons since we need 

8M(n) each. Thus we have the following recurrence for the total time T(n). 

 

T(1) = 0 

T(n) = 4T(n/2) + 16M(n). 

 

LEMMA 1  Let c be an arbitrary constant such that c > 0. Suppose M(n) 

satisfies the condition M(n) ≥ (4 + c)M(n/2). Then the above T(n) satisfies T(n) 

≤ 16(1 + 4/c)M(n). 

 

Proof. The condition on M(n) means that its asymptotic growth ratio is more 

than n2. If M(n) ≥ (4 + c)M(n/2) holds for T(1) from the algorithm, we assume it 

also holds for T(n/2) for induction. Then 

 

T(n) = 4T(n/2) + 16M(n) by definition 

T(n) ≤ 64(1+ 4/c)M(n/2) + 4M(n) since T(n/2) ≤ 16(1+4/c)M(n/2) 

T(n) ≤ 64(1+4/c)(M(n)/(4+c)) + 4M(n) since M(n) ≥ (4 + c)M(n/2) 

T(n) ≤ 16(1 + 4/c)M(n) 

 

Now suppose one or both of m and n are not given by power of 2. By 

embedding the array a in the array of size (m', n') such that m' and/or n' are next 

powers of 2 and the gap is filled with 0, we can solve the original problem in the 

complexity of the same order. 
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3 A Faster Algorithm for Distance Matrix Multiplication 

 

3.1 Distance Matrix Multiplication by Divide and Conquer 

The engine for our problem is an efficient algorithm for DMM. Since a sub-

cubic algorithm for DMM was achieved by Fredman [15], there have been 

several improvements [16], [17], [18], [19], [20], [21], [22], [23]. We review the 

DMM algorithm of min version in [16] whose complexity is 

𝑂(𝑛3�𝑙𝑙𝑙 𝑙𝑙𝑙𝑛 / 𝑙𝑙𝑙𝑛), that is modified and extended to the new algorithm. 

The max version is similar. The recent improvements for DMM are slightly 

better than [16], and it may be possible that they can be tuned for speed-up of 

the k-MSA problem. 

 

Let A and B be (n, n)-matrices whose compontes are nonnegative real numbers 

and we are to compute DMM matrix C between the two matrices in min version.  

Now the matrices A and B are divided into (m, m)-submatrices for N = n/m, then 

Matrix C can be computed as follows: 

 

�
𝐴11 … 𝐴1𝑁
… … …
𝐴𝑁1 … 𝐴𝑁𝑁

�  �
𝐵11 . . . 𝐵1𝑁
… … …
𝐵𝑁1 … 𝐵𝑁𝑁

� =  �
𝐶11 … 𝐶1𝑁
… … …
𝐶𝑁1 … 𝐶𝑁𝑁

� 

 

𝐶 = �𝐶𝑖𝑖�, 𝑤ℎ𝑒𝑟𝑒 𝐶𝑖𝑖 =  𝑚𝑖𝑛𝑖=1𝑁 �𝐴𝑖𝑖𝐵𝑖𝑖�  (𝑖, 𝑗 = 1, … ,𝑁)     (2) 

 

The product of submatrices is DMM in min version as defined in (1) and the 

“min" operation in (2) is defined on the submatrices by taking the “min” 

operation component-wise. Since additions and comparisons of distances are 

performed in a pair, we measure the time complexity by the number of key 

comparisons, and omit counting the number of additions for measurement of the 

time complexity. We have N3 multiplications of distance matrices in (2).  Let 

us assume that each multiplication of (m, m)-submatrices can be done in T(m) 

computing time, assuming precomputed tables are available. The time for 

constructing the tables is reasonable when m is small. The time for min 

operations in (2) is O(n3/m) in total. Thus the total time excluding table 
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construction is given by O(n3/m + (n/m)3T(m)). In the next section it is shown 

that 𝑇(𝑚) = 𝑂(𝑚2√𝑚), which makes the time become 𝑂(𝑛3/√𝑚). 

 

3.2 Distance Matrix Multiplication by Table-Lookup 

In this section it is explained how to multiply the (m, m)-submatrices Aik and Bkj 

for Cij in (2). Now the matrices Aik and Bkj are renamed by A and B for simplicity 

of explanation and the maxrix A and B is further divided in the following way. 

Let M = m/l, where 1 ≤ l ≤ m. Matrix A is divided into M (m, l)-submatrices 

A1, ... , AM from left to right, and B is divided into M (l, m)-submatrices B1, ..., 

BM from top to bottom. Note that Ak are vertically rectangular and Bk are 

horizontally rectangular.  

 

 
Figure 2.4  matrix Aik and Bkj are further divided into m/l submatrices. 

 

Then the product C = AB can be given by 

 

𝐶 =  𝑚𝑖𝑛𝑖=1𝑀 𝐶𝑖 , 𝑤ℎ𝑒𝑟𝑒 𝐶𝑖 =  𝐴𝑖𝐵𝑖     (3) 

 

It is shown later, AkBk can be computed in O(l2m) time, assuming that a 

precomputed table is available. Thus the above C in (3) can be computed in 

O(m3/l + lm2) time. Setting l = √𝑚 yields 𝑂(𝑚2√𝑚) time. 

A1  A2  ….. AM 

B1 

B2 

BM 

 
 AMBM (m, m) * 

BM 
= AM 

Aik (m, m) Bik (m, m) 

l 

l 

(m, l) 

(l, m) 
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Figure 2.5  DMM by Divide-and-Conquer 

 

We define a u/l-tournament. Let us find k minima from m (n, n)-matrices X1, … , 

Xm for general m and n. The right-hand side of 𝑋 =  𝑚𝑖𝑛𝑡=1𝑚 𝑋𝑡  is to take 

minimum values of matrices component-wise. The elements at the same index (i, 

j) in each matrix are organized into a lower tournament through the index t, then 

the n2 roots of those tournaments, which give X, are also organized into an upper 

tournament. k minima of those matrices can be drawn from the root of the upper 

tournament in this structure. We call this tournament structure a u/l- tournament. 

 

Now for the extended DMM algorithm, the “min" operation in (2) for each (i, j) 

is reorganized into a u/l-tournament within the same asymptotic complexity as 

that of DMM, by the substitution Xk = AikBkj . As C in (2) is regarded as an (N, 

N)-matrix of (m, m)-matrices, we organize a tournament of N2 roots of these u/l-

tournaments. We note that the matrix C in (3) can be updated by the next 

minimum in some AkBk in O(M) = O(m/l) time by sequential scanning, that is, 

without a tournament structure.  

 

From this construction, we can find the next minimum for the extended DMM 

in O(log n) time, since the next minimum in AkBk in (3) can be found in O(1) 

time, as is shown next. Note that O(m/l) is absorbed in O(log n). 

 

Cij 

Ai1B1j Ai2B2j AikBkj 

 
 

AmBm 

  
  

AmBm 

  
  

AmBm 

… 

… 

lower tournament 

Min value in Cij 

by lower tournament 

Sequential 
scanning 
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Now the matrices Ak and Bk in (3) are renamed again by A and B to show how to 

compute AB, that is, 

 

𝑚𝑖𝑛𝑟=1𝑙 �𝑎𝑖𝑟 + 𝑏𝑟𝑖�, 𝑓𝑙𝑟 𝑖 = 1, … ,𝑚;   𝑗 = 1, … ,𝑚    (4) 

 

Note that we do not form tournaments for this “min” operation. 

 

We assume that the lists of length m, (a1r – a1s, … , amr – ams), and (bs1 – br1, … , 

bsm – brm) are already sorted for all r and s (1 ≤ r < s ≤ l). The time for sorting 

will be mentioned later. Let Ers and Frs be the corresponding sorted lists. For 

each r and s, we merge lists Ers and Frs to form list Grs. In case of a tie, we put 

an element from Ers first into the merged list. Let Hrs be the list of ranks of air – 

ais (i = 1, … , m) in Grs and Lrs be the list of ranks of bsj – brj (j = 1, … , m) in Grs. 

Let Hrs[i] and Lrs[j] be the ith and jth components of Hrs and Lrs respectively. 

Then we have Grs[Hrs[i]] = air – ais and Grs[Lrs[j]] = bsj – brj. 

 

The lists Hrs and Lrs for all r and s can be made in O(l2m) time, when the sorted 

lists are available. We have the following obvious equivalence for r < s. 

 

air + brj ≤ ais + bsj ⇔ air – ais ≤ bsj – brj ⇔ Hrs[i] ≤ Lrs[j] 

 

Fredman [15] observed that the information of ordering for all i, j, r and s in the 

rightmost side of the above formula is sufficient to determine the product AB by 

a precomputed table. This information is essentially packed in the three 

dimensional space of Hrs[i](i = 1, … , m;  r = 1, … , l;  s = r + 1, … , l), and 

Lrs[j](j = 1, … , m;  r = 1, … , l;  s = r + 1, … , l). This can be regarded as the 

three-dimensional packing. 

 

In [16] it is observed that to compute each (i, j) element of AB, it is enough to 

know the above ordering for all r and s. This can be obtained from a 

precomputed table, which must be obtained within the total time requirement. 

This table is regarded as a two-dimensional packing, which allows a larger size 
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of m. leading to a speed-up. In [19] and [21], a method by one-dimensional 

packing is described. 

 

For simplicity, we omit i from Hrs[i] and Lrs[i], and define concatenated 

sequences H[i] and L[i] of length l(l – 1)/2 by 

 

H[i] = H1,2 … H1,lH2,3 … H2,l … Hl,l–1 

(5) 

L[i] = L1,2 … L1,lL2,3 … L2,l … Ll,l–1 

 

For integer sequence (x1, … , xp), let h(x1, … , xp) = x1µp-1 + … + xp-1µ + xp. Let 

h(H[i]) and h(L[i]) be encoded integer values for H[i] and L[i], where p = l(l – 

1)/2 and µ = 2m. The computation of h for H[i] and L[i] for all i takes O(l2m) 

time. By consulting a precomputed table table with the values of h(H[i]) and 

h(L[j]), we can determine the value of r that gives the minimum for (4) in O(1) 

time. For all i and j, it takes O(m2) time. Thus the time for one AkBk in (3) is 

O(l2m), since l2 = m and M such multiplications take O(Ml2m) = O(lm2) time, 

since M = m/l. 

 

To compute table[x][y] for any positive integers x and y, x and y are decoded 

into sequences H and L, which are expressed by the right-hand sides of (5). If 

Hsr > Lsr for s < r or Hrs < Lrs for r < s, we can say r beats s in the sense that air + 

brj ≤ ais + bsj if H and L represent H[i] and L[j]. We first fix r and check this 

condition for all such s. We repeat this for all r. If r is not beaten by any s, it 

becomes the table entry, that is, table[x][y] = r. If there is no such r, the table 

entry is undefined. There are O(((2m)l(l–1)/2)2) possible values for all x and y, and 

one table entry takes O(l(l – 1)/2) time. Thus the table can be constructed in 

O((l(l – 1)/2)(2m)2l(l – 1)/2) = O(cm log m) time for some constant c. Let us set m = 

log n / (log c log log n). Then we can compute the table in O(n) time.  

 

If r is beaten by i participants, the rank of r becomes i + 1. Let ri be at rank i. 

Then we fill the (x, y) entry of table', table' [x, y], by h(r1, … , rl) with p = l. 

That is, using this function h, we encode not only the winner, but second winner, 
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third winner, etc., into the table elements. This can also be done in O(n) time, by 

a slight increase of constant c in the previous page. 

 

To prepare for the extended DMM, we extend equation (4) in such a way that cij 

is the l-tuple of the imaginary sorted sequence, (𝑎𝑖𝑟1 + 𝑏𝑟1𝑖, … ,𝑎𝑖𝑟𝑙 + 𝑏𝑟𝑙𝑖), of 

the set {air + brj | 1 ≤ r ≤ l}. Note that we do not actually sort the set. The 

leftmost element of cij, that is, the minimum, participates in the tournament for 

“min" in (3). If cij = (x1, x2,…, xl) and x1 is chosen as the winner, cij is changed to 

(x2,…, xl, ∞), etc. As k can be up to O(n3), many of cij will be all infinity towards 

the end of computation. 

 

This can be implemented by introducing an auxiliary matrix C'. When we 

compute DMM, we compute C', where c' ij = table' [h[H[i]), h(L[j])] =h(r1,…, 

rl). Each rk (k = 1,…, l) is obtained in O(1) time. The elements of the sorted list 

of c'ij is delivered by decoding C' [i, j] one-by-one when demanded from up-

stream of the algorithm. 

 

Example 3.1   

𝐻 =  �
 _ 4 5
 _  _ 6
 _  _  _

� ,    𝐿 =  �
 _ 3 2
 _  _ 9
 _  _  _

� 

 

m = 5, 2m = 10, h(H) = 456, and h(L) = 329. Since H1,2 > L1,2 and H2,3 < L2,3, the 
winner is 2, that is, table[456, 329] = 2. Also we see table' [456, 329] = 231, 

since H[1, 3] > L[1, 3]. 
 

We note that the time for sorting to obtain the lists Ers and Frs for all k in (3) is 

O(Ml2 mlogm). This task of sorting, which we call presort, is done for all Aij and 

Bij in advance, taking O((n/m)2(m/l)l2m log m) = O(n2l log m) time, which is 

absorbed in the main complexity. Thus we can compute k shortest distances in 

O(M(n) + k log n) time. 
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4 k-Maximum Subarray Problem 
 

Once the maximum sum is found, finding k-maximum sums is a natural 

extension. The k-maximum subarray (k-MSA) problem is to obtain the 

maximum subarray, the second maximum subarray, … , the k-th maximum 

subarray in sorted order for k up to O(n4). In many applications we need to find 

up to k-th maximum. For example, suppose the database is for a geographical 

distribution of customers, and we need to post flyers to the most loyal customers. 

The identified rectangle region for posting may not be very suitable due to road 

construction, etc. then we need the second or third alternative. This problem can 

be further defined by two such problems. One is the general case where physical 

overlapping of portions is allowed, and the other is only for disjoint portions. In 

this chapter, the k-maximum subarray problem where physical overlapping is 

allowed is called k-overlapping maximum subarray problem, and the other one 

where the overlapping is not allowed is called k-disjoint maximum subarray 

problem. We consider the general problem first.  

 

Let M(n) be the time complexity for DMM for an (n, n)-matrix. The problem is 

solved by Bae and Takaoka in O(M(n)+k log n) time for the general problem 

with an (n, n)-array, where 𝑀(𝑛) =  𝑂(𝑛3�log log 𝑛 / log 𝑛) in [13], which is 

explained in detail in the following chapter. 

 

Preceding results for the one-dimensional problem are O(kn) by Bae and 

Takaoka [7], 𝑂�min�𝑛√𝑘,𝑛𝑙𝑙𝑙2𝑛�� by Bengtsson and Chen [8], O(n log k) by 

Bae and Takaoka [12], O(n + k log n) by Bae [24], Cheng, et. al. [9], Bengtsson, 

et. al. [10], O(n log n + k) expected time by Lin, et. al. [25], and O(n + k) by 

Brodal, et. al. [11]. Obviously we can solve the two-dimensional problem by 

applying the one-dimensional algorithm to all O(n2) strips of the array, resulting 

in the time complexity multiplied by O(n2). For the algorithms specially 

designed for the two-dimensional case, we have 𝑂(𝑘𝑛3�log log 𝑛 / log 𝑛) by 

[12] and O(n3 + k) by [11]. The last is for k maximum subarrays in unsorted 

order. 
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These results are mainly based on extension of optimal algorithms for the one-

dimensional problem to the two-dimensional problem. The result of the 

algorithm in this chapter and [12] show an extension of an optimal algorithm in 

one dimension to two dimensions does not produce optimal solutions for the 

two-dimensional problem. 

 

4.1 k-Overlapping Maximum Subarray Problem 

We review the sub-cubic algorithm by Bae and Takaoka [13], with which the 

new algorithm for k-disjoint maximum subarray problem shares the same basic 

structure. 

 

4.1.1 Tournament 

The main technique in this paper is tournament. Specifically we reorganize the 

structure of the maximum subarray algorithm based on divide-and-conquer into 

a tournament structure, which serves as an upper structure. We also reorganize 

the DMM algorithm into a tournament, which works as a lower structure. 

Through the combined tournament, the maximum, second maximum, etc. are 

delivered in O(log n) time per subarray. 

 

An r-ary tournament T is an r-ary tree such that each internal node has r internal 

nodes and some external nodes as children, or some external nodes only as 

children. It also has a key, which originates from itself if it is an external node, 

or is extracted from one of its children if it is an internal node. Each external 

node has a numerical datum as a key. External nodes can be regarded as 

participants of the tournament. A parent has the minimum of those keys of its 

children. We call this a minimum tournament. A maximum tournament is 

similarly defined. In other words a parent is the winner among its children. The 

external nodes form the leaves of the tree. We form a complete r-ary tree as far 

as internal nodes are concerned. Also a node maintains some identity 

information of the winner that reached this node, such as the original position of 

the winner, etc. The key and this kind of information eventually propagate to the 

root, and the winner is selected. The size of the tournament, defined by the 
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number of nodes, is O(n), if there are n external nodes.  

 

If we use a binary tournament for sorting, the identity can be the position of the 

data item in the original array. We can build up a minimum tournament for n 

data items in O(n) time. After that, successive k minima can be chosen in O(k 

log n) time. This can be done by replacing the key of the winning item at the 

bottom level, that is, in a leaf, by ∞ and performing matches along the winning 

path spending O(log n) time for the second winner, etc. Thus k minima can be 

chosen in O(n + k log n) time in sorted order. If k = n, this is a sorting process in 

O(n log n) time, called the tournament sort. We use a similar technique of 

tournament in the k-MSA problem. 

 

4.1.2 X + Y Problem 

Let X and Y be lists of n numbers. We want to choose k smallest numbers from 

the set Z = {x + y | (x ∈ X) ∩ (y ∈ Y )}. We organize a tournament for each of X 

and Y in O(n) time. Let the imaginary sorted lists be X = (x1, … , xn) and Y = (y1, 

… , yn). Actually they are extracted from the tournaments as the computation 

proceeds. We successively take elements from those sorted lists, one in O(log n) 

time. Obviously x1 + y1 is the smallest. The next smallest is x1 + y2 or x2 + y1. Let 

us have an imaginary two-dimensional array whose (i, j)- element is xi + yj . As 

the already selected elements occupy some portion of the top left corner, which 

we call the solved part, we can prepare a heap to represent the border elements 

adjacent to the solved region. By keeping selecting minima from the heap, and 

inserting new bordering elements, we can solve the problem in O(n + k log n) 

time. See the figure below for illustration. If we change the tournaments from 

minimum to maximum, we can find k maxima in the same amount of time. Also 

with similar arrangements, we can select k largest or smallest from X – Y = {x – 

y | (x ∈ X) ∩ (y ∈ Y)} in the same amount of time. We use this simple algorithm 

rather than sophisticated ones such as [26], since these two are equivalent in 

computing time for k minima in sorted order. 
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 y1 y2   y5 y6 

x1 x1+y1 x1 + y2     

x2 x2+y1      

x3       

       

       

 

Figure 4.1  Hatched part is in priority queue. If x2+y5 is chosen with delete-
min, it is moved from the hatched to the solved part, and x3+y5 and x2+y6 are 

inserted to the heap 
 

4.1.3  The Main Algorithm 

When we solve the maximum subarray problem of a two-dimensional (n, n)-

array with Algorithm M in chapter 2.3, within the same asymptotic time 

complexity, we organize a four-ary tournament along the four-way recursion as 

internal nodes, and the two sub-problems; column-centered and row-centered as 

external nodes, in Algorithm M. 

 

Algorithm M: Maximum Subarray 

1. If the array becomes one element, return its value. 

2. Let Atl be the solution for the top left quarter. 

3. Let Atr be the solution for the top right quarter. 

4. Let Abl be the solution for the bottom left quarter. 

5. Let Abr be the solution for the bottom right quarter. 

6. Let Acolumn be the solution for the column-centered problem. 

7. Let Arow be the solution for the row-centered problem. 

8. Let the solution A be the maximum of those six. 

 

When we make the four-ary tournament along the execution of Algorithm M, 

we copy necessary portions of the given prefix sum array s for the six sub-

problems from line 2 to 7 and while solving the column-centered and row-

centered problems by DMM for the maximum sum, the two sub-problems are 

organized into tournaments as described in chapter 3. The total overhead time 

and space requirement for this part are O(n2 log n). Suppose the maximum 
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subarray was returned at level 0, whose coverage and location are ((K, L), (I, J)) 

and ((k, l), (i, j)). If this array is a single element, that is, returned at the bottom 

of recursion, i.e., line 1 of the algorithm, we put –∞ at the leaf, and reorganize 

the tournament for the second maximum subarray towards the root along the 

winning path. The necessary time is O(log n). If the maximum subarray is not 

from the bottom of recursion, it must be from one of Acolumn or Arow of some 

coverage at some level. As those two problems are organized into a tournament 

each, they can return the second maximum in O(log n) time. The coverage and 

location information can identify which of the two produced the winner. We can 

reorganize the tournament along the winning path from this second maximum 

towards the root. Thus the k-maximum subarray problem can be solved in 

O(M(n) + k log n) time, where 𝑀(𝑛) =  𝑂(𝑛3�log log 𝑛 / log 𝑛). 

 

 
Figure 4.2  Column Centered Problem 

 

Let us assume K = 1, I = n, L = 1, and J = n without loss of generality. Also 

assume A was obtained from Acolumn, which is in turn obtained from S', that is, 

the lower triangle of S = maxS2S2* – minS1S1*. We rewrite this equation as S = 

Q – P, where P = minS1S1* and Q = maxS2S2*. We assume that S[i, k] for some 

k < i gives Acolumn with the witnesses l and j for P and Q respectively. We need to 

find the next value for S'. To do so, we need to find the next minimum value for 

P[i, k] and next maximum for Q[i, k] with witnesses different from l and j. As is 

shown in the chapters 3, the next value for P[i, k] and Q[i, k] are returned in 

1 

 k 

 i 

 n 

 X  Y 

n
   1 
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O(log n) time. Then using the X + Y algorithm, we can choose the next value for 

S[i, k] in O(log n) time, which is delivered to the tournament for S' where other 

elements are intact. See Figure 4.2 for illustration. Thus the next value for the 

chosen one of the above two problems, Acolumn and Arow, can be found in O(log n) 

time.  

 

We observe at this stage that any DMM algorithm, that can deliver successive 

minimum distances from layer 1 to layer 3 in the context of Chapter 2.2 in 

O(log n) time, can be fitted into the framework of our algorithm 

 

4.2 k-Disjoint Maximum Subarray Problem 

k-disjoint maximum subarray Problem is to find the maximum subarray portion 

up to k-th without overlapping each other. The best known results for the 

disjoint case are the straightforward O(kM(n)), which is sub-cubic for small k 

such as 𝑘 = 𝑜(�𝑙𝑙𝑙𝑛 / 𝑙𝑙𝑙 log 𝑛 ), where M(n) is the time for DMM, and O(n3 

+ kn2 log n) by Bae and Takaoka [27] for larger k. The new algorithm presented 

in the following chapter achieves sub-cubic time for this problem. 

 

 

5 k-Disjoint Maximum Subarray Problem 

 

5.1 Building Up Tournaments 

After we find the maximum subarray, we want to find the next maximum 

subarray from the remianing portion. That is, we want to find k-disjoint 

maximum subarrays. As the general problem, in which the overlapping is 

allowed, Algorithm M and tournaments play the main roles in this algorithm for 

k-disjoint maximum subarray problem. While it is solving the maximum 

subarray problem with Algorithm M, a four-ary tournament are organized along 

the four-way recursion as internal nodes, with the two local u/l-tournaments for 

the column-centered and row-centered problem for each internal node as 

external nodes. Once the maximum sum is found and the tournaments are 

organized, the X + Y problem takes part in the algorithm for the next maximum.
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Figure 5.1  Column centered problem with a hole over Y 

 

In the overlapping problem, successive minima and maxima for X and Y are 

selected in O(log n) time for the next value of X + Y. In other word, the X +Y 

problem played the role of glue between the four-way recursion tree of upper 

tournament structure and the u/l-tournament trees of the lower DMM 

tournament structures. When we require successive maximum subarrys to be 

disjoint, the previous choice becomes a hole in the array a, which affect various 

nodes in the tournament tree upward and downward. 

 

Suppose the column centered solution at location ((k, l), (i, j)) in the coverage 

((K, L), (I, J)) is chosen as the maximum subarray. Then the DMM solutions for 

the strips that intersect with the solution strip in the same coverage are all 

removed from further consideration. If a hole is created in another coverage like 

in Figure 3, the tournaments in affected coverages need to be modified. In the 

figure, the tournament for Y at position h (beginning of the hole) and to the right 

must be removed. After all modifications on the tournament trees are done, we 

can finalize the next winner of the whole tournament tree in a bottom up fashion. 

Note that the total number of affected strips in all layers on the four-way 

recursion is O(n2). In the following sections, we show that a modification on a 

strip can be done in O(log n) time so that the selection of the next winner can be 

done in O(n2 log n) time. 
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5.2 Modified X + Y Problem 

We extend the X + Y problem to a modified X + Y problem, where some portion 

of X or Y is removed each time the maximum or minimum is found. More 

specifically X and Y are organized into tournaments, keeping the original order 

from left to right in which X and Y are given. Each node of either tree has two 

key values; one by which a winner is chosen and the other the position index of 

the key. We express those two key values by key(v) and pos(v) of node v, and 

also its content of node v, c(v), is defined by c(v) = (key(v), pos(v)). The tree for 

X is cut from left, whereas that for Y is cut from right. X is organized into a min-

tournament (Y is into a max-tournament), where the winner at each node is 

determined by the min (max) key. A left cut at i is to cut the tree from position i 

to the left and a right cut is similarly defined. We perform a left cut on the tree 

for X and right cut on the tree for Y. The trees are a mixture of heap and binary 

search tree; vertically key follows the heap property and horizontally pos 

follows the binary search tree property. An example of a maximum tournament 

tree is shown in Figure 5.2 and 5.3. 

 

 
Figure 5.2  A max-tournament tree. Key 8 at position (index) 6 is the winner. 

 

(6, 1)   (4, 2)      (1, 3)   (5, 4)      (2, 5)   (8, 6)      (7, 7)   (3, 8) 

(6, 1)            (5, 4)            (8, 6)            (7, 7) 

(6, 1)                           (8, 6) 

(8, 6) 
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Figure 5.3  After a right cut performed after the index 5. Key 6 at position 

(index) 1 is the new winner. The changed keys and indices are written in bold. 
 

A rightcut at position i = 6 results in the following tree. The key value 6 at 

position 1 is the next winner. See Figure 5. A node in the tree consists of two 

key values, pointer to the parent, the left child and that to right child. The left 

child and right child of v are denoted by left(v) and right(v). Cutting the left 

(right) child is to set the pointer to the left (right) child to nil. The parent of node 

v is denoted by parent(v). The update of the tree takes place along a zig zag path 

from the bottom towards the root. 

 

Algorithm : right cut  //Left cut can be defined symmetrically 

Perform binary search from the root for position of i, pos(i), at the bottom; 

v = the leaf node representing position i; 

if v is the right child of its parent then let v go to the left child; 

while v is not the root do begin 

while v is a left child of its parent do begin 

c(parent(v)) = c(v); 

v = parent(v); 

Cut the right child of v; 

end; 

while v is the right child of its parent do begin 

v = parent(v); 

c(v) = c(max(left(v); right(v))); 

(6, 1)   (4, 2)      (1, 3)   (5, 4)      (2, 5)   (8, 6)      (7, 7)   (3, 8) 

(6, 1)            (5, 4)            (2, 5)            (7, 7) 

(6, 1)                           (2, 5) 

(6, 1) 
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end 

end 

/** function max(u, v) is to take the node with maximum key **/ 

 

If there are n elements in the tree, this algorithm runs in O(log n) time and O(n2) 

strips are affected. If we use the naive DMM algorithm based on the definition 

of 𝑚𝑖𝑛𝑖=1𝑛 {𝑎𝑖𝑖 + 𝑏𝑖𝑖}, we can maintain two tournements for X and Y in each 

strip, and we can achieve O(n3 + kn2 log n) time for our problem. Our final goal 

is to organize a multi-level tournament based on the sub-cubic algorithm for 

DMM. 

 

5.3 Modified DMM 

Modification of tournament trees for equations (2) and (3) can be done with the 

technique in the previous section. We describe the modification for equation (4) 

in this section. We describe the right cut with table look-up. In chapter 3.2, the 

sorted order of participants are encoded in table'. Instead we encode the ranks of 

participants. We fill the (x, y) entry of table', table'[x, y], by h(w1, … ,wl) with p 

= l, where wi is the rank of participant i. Note that (w1, … ,wl) is the inverse 

permutation of (r1, … , rl), that is, using [.] for indexing, r[w[i]] = i. The right 

cut of (w1, … , wl) at position k is to give (w1, … , wk–1), that is, items at position 

to the right of k inclusive of k are cut off. The result is returned from the 

enhanced table with another dimension of k, T[h(H1, … ,Hl), h(L1, … ,Ll), k] = 

h(w1, … , wk–1), in O(1) time. 

 

Example 2  m = 5, 2m = 10, h(H) = 456, and h(L) = 329. Since H1,2 > L1,2 and 

H2,3 < L2,3, the winner is 2, that is, table[456, 329] = 2. Also we saw table'[456, 

329] = 231, since H[1, 3] < L[1, 3] in Example 1. Now by the new definition 

table0[456, 329] = 312, that is. the rank of 1 is 3, etc. If we cut at position 3, we 

have table'[456, 329, 3] = 21, from which we can retrieve winners 2 and 1 in 

this order. A simple cut would give 31, which is normalized to 21.  

 

With the right cut operations in Chapter 5.2 and Chapter 5.3, we can perform the 

modification of the tournaments of X and Y at any coverage ((K, L), (I, J)). Let 
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the index h be the leftmost index of the hole (not h-function), be given by h = (L 

+ J)/2 + (i – 1)m + (j – 1)l + k. Then the portion from position k to the right in 

the bottom part is cut, the portion from position j to the right is cut and the 

portion from position i to the right is cut to update Y in this coverage. The left 

cut operations for X are similarly defined. The cut off operations for one 

coverage takes O(log n) time. After one hole is created by deleting the next 

maximum subarray, there are O(n2) strips over affected levels of recursion,. 

Thus the time for updating tournaments for a next subarray, we spend O(n2 log n) 

time, resulting in O(kn2 log n) time for the k-maximum subarrays. 

 

5.4 Sub-cubic Algorithm 

By Algorithm M with modified X + Y problem and modified DMM, we can 

achieve time complexity for k-disjoint maximum subarray problem of O(M(n) + 

kn2 log n) where the M(n) is the time complexity of DMM. If we go down to the 

single elements by recursion to build the DMM tree in a bottom up fashion ,and 

naive DMM algorithm is used to build the tree, where M(n) = n3, then the time 

complexity becomes O(n3 + kn2 log n) for k-disjoint maximum problem. This is 

the same time complexity in [27]. 

 

To use the sub-cubic time algorithm for DMM, we stop dividing s by the four 

way recursion when the desired submatrix size is achieved. When we do the 

DMM by divide-and-conquer with table-lookup method, the matrices are 

divided into (m, m)-submatrices where the size of m is determined by 

 

𝑚 = 𝑙𝑙𝑙𝑛/( log 𝑐 𝑙𝑙𝑙 𝑙𝑙𝑙𝑛) where c is a constant 

 

Then the time for making the table I of this size is easily shown to be O(n) as 

described in chapter 3.2 which can be absorbed in the main computing time. 

Substituting this value of m for 𝑂(𝑛3/√𝑚), the time complexity of the DMM, 

we have the overall computing time for the maximum subarray problem with 

tree building 𝑂(𝑛3�log log 𝑛 / log 𝑛) as claimed. When the submatrix size 

matches the pre-determined size of m while dividing the matrix s by recursion in 
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a top-down fashion, we stop the recursion and start to find the maximum 

subarray for the array s building the tournament tree. Then we achieve k-disjoint 

maximum subarray algorithm in time complexity of 𝑂(𝑛3�log log 𝑛 / log 𝑛 +

 𝑘𝑛2𝑙𝑙𝑙 𝑛) which is sub-cubic time. 

 

5.5 Modified Algorithm M with Space Optimization 

The maximum subarray problems described in this paper have the Algorithm M 

in their cores. It divides the prefix sum array s by four-way recursion and 

calculates the column-centered and row-centered problem in each recursive call 

by DMM, resulting that the coverage of each DMM matrix for the sub-problems 

is heavily overlapped. As we see in LEMMA 1 in chapter 2.3, an (n, n)-matrix 

takes 16 DMMs on its four (n/2, n/2)-submatrices to get the column-centered 

and row centered problems solved in Algorithm M. Now we explain how to 

reduce this constant by using DMM reuse technique.In the modified Algorithm 

M, the column-centered and row-centered problems are divided further into 

three sub-problems as described in [5]. 

 

Algorithm M: Maximum Subarray 

1. If the array becomes one element, return its value. 

2. Let Atl be the solution for the top left quarter. 

3. Let Atr be the solution for the top right quarter. 

4. Let Abl be the solution for the bottom left quarter. 

5. Let Abr be the solution for the bottom right quarter. 

6. Let Acolumn be the solution for the column-centered problem. 

7. Let Arow be the solution for the row-centered problem. 

8. Let the solution A be the maximum of those seven. 

 

Algorithm for the row-centered problem 

1. Divide the array into two parts by the vertical center line. 

2. Let Aleft be the solution for the left row-centered problem. 

3. Let Aright be the solution for the right row-centered problem. 

4. Let Acenter be the solution for the center problem. 

5. Let the solution be the maximum of those three. 
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Algorithm for the column-centered problem 

1. Divide the array into two parts by the horizontal center line. 

2. Let Aupper be the solution for the left row-centered problem. 

3. Let Alower be the solution for the right row-centered problem. 

4. Let Acenter be the solution for the center problem. 

5. Let the solution be the maximum of those three. 

 

Note that Acenter is the maximum subarray that crosses over the center point. 

 

 
Figure 5.2  Column-centered problem divided into three sub-problems 

 

Since the Algorithm M is based on recursion, the column-centered problem and 

the row-centered problem can be solved more efficiently in this way with DMM 

reuse technique that is explained in the following section. This optimization is 

applicable to all maximum subarray problems based on Algorithm M including 

k-overlapping maximum subarray problem and k-disjoint maximum subarray 

problem. 

 

5.6 Reuse of DMM 

When we do DMM by divide-and-conquer, if matrices A, B, and C in DMM are 

divided into (m, m)-submatrices for N = n/m as follows:  

 

�
𝐴11 … 𝐴1𝑁
… … …
𝐴𝑁1 … 𝐴𝑁𝑁

�  �
𝐵11 . . . 𝐵1𝑁
… … …
𝐵𝑁1 … 𝐵𝑁𝑁

� =  �
𝐶11 … 𝐶1𝑁
… … …
𝐶𝑁1 … 𝐶𝑁𝑁

� 

   Aupper 

   Acenter 

   Alower 
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Matrix C can be computed by N3 multiplications of distance matrices on the 

submatrices. If there are some of Cij are already calculated, obviously the total 

number for DMM to get C can be reduced. 

 

When we do DMM at the level 0 in recursive calls on a given (n, n)-matrix in 

Algorithm M, the DMM matrices for its four (n/2, n/2)-submatrices are already 

calculated in the previously ending recursive call at level 1. Instead of 

calculating the DMM matrices for the level 0, the already calculated DMM 

matrices for its submatrices can be reused by merging them as described below. 

 

 
 

Figure 5.3  Merging four DMM matrices into one for the upper level. The 
prefix sum array S is divided into four submatrices by recursion in a top down 

fashion and the DMM matrices are built up in a bottom-up fashion 
 

min 

 
S1S1* S1S2* 

S2S1*

  
S2S2* 

 
S3S3* S3S4* 

S4S3* S4S4* 

 
 S1  S3 

 S2  S4 

S1S1* 

 S2S2* 

 S3S3* 

  S4S4* 

 
 S1 

  
 S2 

  
 S3 

  
 S4 

{S1S1* 
S3S3*} 

min 
{S2S1* 
S4S3*} 

min 
{S2S2* 
S4S4*} 

S  min DMM for S 

Min DMM for left half Min DMM for right half 

min 
{S1S2* 
S3S4*} 
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We explain the merging operation for DMM matrices in min version for the 

column–centered problem. The merging operations for the other matrices are 

similar. In each level of recursive call, the matrix has two versions of DMM 

matrix for the column centered-problem of its own coverage. One is min version 

and the other is max version. Each DMM matrix is built from the DMM 

matrices of its four submatrices as described in Figure 5.3. The prefix sum 

matrix S is divided into four submatrices S1, S2, S3 and S4 by recursion in a top-

down fashion and min version of DMM matrices for the column-centered 

problem are calculated for each of those. For the min DMM Matrix for the 

upper level’s, the precalculated min DMM matrices for S1 and S2 are merged 

first to form the min DMM matrix for the left half of s. The upper left portion 

and lower right portion of the matrix just copy the corresponding part of the 

DMM matrix of the children and only the rest parts are newly calculated. For 

the maximum subarray problem, upper right triangle of DMM matrix is not 

necessary, only lower left part are desired to be newly calculated. The right half 

DMM matrix is calculated in the same way. Finally, take the element-wise 

minimum between the two halves to get the final min DMM matrix for the 

matrix S. 

 

To solve the column-centered problem for S, min DMM for S1 is subtracted 

from the max DMM for S3 and the take the maximum from the resulting matrix, 

such as Aupper = max{S3S3* - S1S1*} where the max operation find the maximum 

value of the matrix. Since the coverage of the resulting matrix is ((1, 1), (n/2, n)), 

the solution should be bounded in the upper half of s. similarly min DMM for S2 

is subtracted from the max DMM for S4 to get the lower solution, such as Alower 

= max{S4S4* - S2S2*}. Since the coverage of the resulting matrix is ((n/2+1, 1), 

(n, n)), the solution should be bounded in the lower half of s. Lastly, newly 

calculated min version of S2S1 is subtracted from the also newly calculated max 

version of S4S3 to get the center solution. The row coverage of S1 and S3 is [1, … 

n/2] and the one of S2 and S4 is [n/2+1, … , n], so those of S4S3* and S2S1* 

should be [k, i] where 1 ≤ k ≤ n/2, n/2+1 ≤ i ≤ n, which means that the solution 

Acenter = max{S4S3* - S2S1*} should across the center point. The final column-

centered problem is the maximum of those three. The row-centered problem can 
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be solved in a similar way. 

 

Now let us analyze the time for the work at level 0 as we do in chapter 2.3. We 

can multiply (n, n/2) and (n/2, n) matrices by 2 multiplications of size (n/2, n/2), 

if we reuse DMM matrices from the children. Furthermore, if we do not 

calculate unnecessary part of the DMM matrix, the upper right triangle, only 

one multiplication is needed. There are two such multiplications in S = S2S2* – 

S1S1*. We measure the time by the number of comparisons, as the rest is 

proportional to this. Let M(n) be the time for multiplying two (n/2, n/2) matrices. 

At level 0, we obtain an Acolumn and Arow, spending 4M(n) comparisons. Thus we 

have the following recurrence for the total time T(n). 

 

T(1) = 0,  

T(n) = 4T(n/2) + 4M(n). 

 

Note that the constant in front of the M(n) is 16 in chapter 2.3 

 

LEMMA 2  Let c be an arbitrary constant such that c > 0. Suppose M(n) 

satisfies the condition M(n) ≥ (4 + c)M(n/2). Then the above T(n) satisfies T(n) 

≤ 4(1 + 4/c)M(n). 

 

Clearly the complexity of 𝑂(𝑛3�log log 𝑛 / log 𝑛) satisfies the condition of the 

LEMMA 2 with some constant c > 0. Thus the first maximum sum can be 

solved in 𝑂(𝑛3�log log 𝑛 / log 𝑛) time. Since we take the maximum of two 

matrices component-wise in line 8 of our algorithm and for the maximum from 

S', we need an extra term of O(n2) in the recurrence to count the number of 

operations. This term can be absorbed by slightly increasing the constant 4 in 

front of M(n) in the above recurrence. 
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6 Concluding Remarks 

 

We showed an asymptotic improvement on the time complexity of the k-

maximum subarray problem based on a fast algorithm for DMM. The time 

complexity is sub-cubic in n, when k = o(n3/logn). If we use recent faster 

algorithms for DMM, it may be possible to have a better complexity bound for 

the k-MSA problem. For the disjoint case, the time complexity is O(M(n) + 

kn2logn). This complexity is sub-cubic when k = o(n/logn). Since the maximum 

possibility of k is O(n2), there is some possibility of improving the bound for k 

so that the time complexity of the problem remains sub-cubic. 
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