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Abstract  
 

 
This thesis begins by outlining the theoretical and empirical foundations of the 

economics of innovations. It then proceeds by analysing four econometric issues in the 

measurement of technological knowledge embedded in patented innovations and 

modelling the statistical relationship of the value of patented innovations originating in 

the G-5 countries overtime. This thesis contributes to the economics of innovation 

literature in four areas: (1) a comprehensive review of the proxies available to elicit the 

value embodied in patented inventions (2) a direct comparison of regression estimates 

based on citations count dependent variable versus citations-weighted dependent 

variable (3) an introduction and application of Regression Tree and Graphical 

Modelling methodologies to model patented inventions (4) estimation of the 

fluctuations and associations in the values of patented innovation in the G-5 countries 

using patent citations.   
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There is a well known saying that ‘Consistency is the 

Hobgoblin of small minds’. If this is true, then economics 

has been well endowed with minds that are not small.” 
 

Joseph E. Stiglitz, Nobel Laureate in Economic 2001 
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1 Introduction 
 
 

Economists have increasingly recognised the importance of technological knowledge 

assets in the economic growth process and the social well-being of all. The modern 

economic inquiry into technological knowledge stems from a number of theoretical 

developments led by Romer (1986, 1990), Lucas (1988), Aghion and Howitt (1988) 

and Grossman and Helpman (1991). Ideas, inventions, research and scientific 

discoveries are at the heart of modern growth theory. The difficulty comes in capturing 

these dynamic processes empirically, in a systematic and consistent manner. However, 

“in this desert of data, patent statistics loom up as a mirage of wonderful plentitude and 

objectivity” (Griliches, 1990 p. 1661). 

 

Patents fascinate economists as they represent an excellent source of information 

regarding innovative activity, technological developments and intellectual property. 

Most applied work however overlooks the fact that the value of patents is highly 

skewed to the right. Very few patents have a significant technological and economic 

impact on the society, while very many patents have a limited and insignificant impact. 

Recently, upon investigation, researchers have found that patent citations provide a 

strong indicator of the ex-post technological and economical value patents represent. 

Patent citations are the ‘prior-to-new-art-link’ and appear on the patent grant document.  

 

Patent citations are a complicated system that requires a careful analysis. The objective 

of this thesis is to improve the estimates of the value of innovations using only 

information contained in patent citations. This thesis provides an original contribution 

to the economics of innovation literature in four areas. First, it provides a 
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comprehensive and a rich review of the elicitation of the ex-post value of patented 

innovations literature. Secondly, it contrasts regression estimates based on citation 

count dependent variable against citation-weighted dependent variable. Thirdly, it takes 

advantage of techniques rare to the field, such as Regression Tree and Graphical 

Modelling, to model patented inventions. Fourthly, it estimates the fluctuations and 

associations of the averaged citation received by patented inventions originating in the 

G-5 countries: the US, the UK, Japan, Germany and France.   

 

The remainder of the thesis is organised as follows:  

 

Chapter 2 provides a rich and detailed synthesis of the main theoretical approaches to 

the economics of innovation. It describes the reasons technology, innovative activity 

and scientific discoveries are found at the heart of the modern economic inquiry into 

the determinants of economic growth. The discussion particularly concentrates on 

models based on the neoclassical and endogenous growth schools of thought.  

 

Chapter 3 starts with a description of the meaning of innovation. It is followed by a 

discussion on the measurement of innovations and the reasons patent statistics are 

found at the centre stage in estimating innovative activity. The following sections are 

devoted to the empirical literature on patent data and patent values. The chapter 

concludes with a detailed description of the various proxies available to elicit the value 

embodied in patented innovations, and encourages the use of patent citations.  

 

Chapter 4 provides a comprehensive discussion about the conceptual, theoretical and 

empirical background behind the use of patent citations for measuring the ex-post 

technological and economic value embodied patented inventions. This review sets the 
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scene and provides a context for the analysis of the quality of patents innovations in 

Chapters 6, 7 and 8.  

 

Chapter 5 provides a description of the citation data that is used in Chapters 6, 7 and 8. 

The data is taken from the National Bureau of Economics Research U.S. patent 

citations program. It comprises three million U.S. patents granted between January 

1963 and December 1999. 

 

Chapter 6 is the starting point for the analysis of the value of patented innovations. 

To ensure full comprehension of the methodology and use of the patent citation data, 

the chapter replicates an original econometric estimation of the value of patented 

innovations approximated by patent citations, suggested by Trajtenberg (2001). The 

results set the scene for the analysis in Chapter 7.    

 

Chapter 7 builds on Trajtenberg’s analysis and provides rigorous econometric 

estimation of the quality of patented innovations in the context of Count Data models 

and atheoretical Regression Tree. 

 

Chapter 8 provides an approach that uses patent citation data in the context of a 

cointegration test and Graphical Modelling to identify whether long run geographic 

trends exists in the value of patented innovations. The analysis is based on the 

theoretical framework developed in Chapter 2, 3 and 4. The final chapter draws 

together the main findings of this thesis. 
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2 Why Do Economists Care About Innovations? 

 

This chapter provides the main theoretical foundations of the economics of innovations. 

It discusses the reasons technology, inventions and scientific discoveries are found at 

the heart of the modern economic inquiry into the determinants of economic growth 

and the theoretical underpinning of this thesis.  

 

2.1 Introduction 

 
The interest of economists in the economics of innovations stems from an answer to a 

question that has preoccupied economists since the days of Adam Smith: What drives 

the long-run growth of nations? The answer is “The engine of economic growth is 

invention” (Jones 2002, p.195).1  

 

Economists have always considered innovative activity and scientific discoveries to be 

the key assets that foster and accelerate economic progress (Machlup, 1962; Freeman 

1974). The early analysis goes back to the work of the classical economists. Adam 

Smith, 250 years ago, said, “man educated at the expense of much labour and 

time…may be compared to one of those expensive machines,” emphasising the 

importance of knowledge and ideas embodied in individuals. Alfred Marshall was more 

explicit and described knowledge as “our most powerful engine of production 

(Marshall 1980). Karl Marx’s analysis of capitalist economy in the nineteenth century 

showed that the process of technological change is the driver of “capitalist 

development” (Rosenberg 1971). The process of technological development was also 

                                                 
1 In introducing Growth Theory and the Economics of Technological Change and 
Innovation, I closely follow texts by Aghion and Howitt (1998), Helpman (2004), Jones 
(2005), Marsh (2004) and Rosenberg (1971).  
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evident in the work of Malthus (1980) and Ricardo (1921), although it played a “kind 

of [an] afterthought” in relation to the traditional economic assets of land and capital 

formation (Rosenberg 1971).  

 

The classical economists emphasised inventions, but did not model the economics 

behind them. Their analysis was static in nature, which limited their ability to model the 

dynamic process of inventive activity. The first to bring technical innovation into the 

centre of the economic analysis was Joseph Schumpeter in the early 1940s. Schumpeter 

suggested that firms compete through innovation, whereby the development of new 

technologies generates a “creative destruction”. These innovations, carried out by profit 

seeking entrepreneurs, rival and may destroy the existing structure of industries, leading 

to the dynamic transformation of economic systems. In Schumpeter’s vision, these 

dynamic waves were the causes and forces behind the short run and long run economic 

fluctuations.  

 

Schumpeter’s theory was limited in scope, as it had “little to say [about the] economic 

factors shaping inventive activity, which seemed to have a life of its own” (Rosenberg 

1971, p.9). The foundations and inspiration for the most significant progress towards an 

analytical examination of invention growth in modern economics is contributed to the 

two famous articles by Robert Solow in the mid 50s. Solow’s growth framework 

emphasised the accumulation of physical capital, such as factories and machines, and 

human capital, such as education and skills, as the forces that move economies towards 

an equilibrium path of growth. Economic incentives were assumed to influence the 

accumulation of these resources, which made this framework very convenient for later 

analysis and gained it superiority among the leading economists at the time such as 
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Moses Abramovitz, Kenneth Arrow, Simon Kuznets and others. Much of their work is 

now known as the neoclassical growth theory.  

2.2 Neo-Classical Growth Theory 

 

The neo-classical growth theory provided answers to a number of key questions.  

Firstly, rich economies are those that have high capital investment rates and low net 

population growth. Their capital per worker is high and leads to a more productive and 

skilful labour force.  

 

Secondly, a country’s growth rate is, inter alia, a function of capital intensity. As a 

country becomes richer, its capital to labour ratio intensifies and the return to capital 

diminishes over time. Consequently, its growth rate will decline. This is a key 

implication of the neoclassical growth. The theory hypothesises that there is an inverse 

relationship between capital intensity and growth rate, a relationship commonly 

referred to as the convergence hypothesis. This means that there would be a point in a 

country’s growth rate where further increase in capital per worker will stimulate no 

further growth, a property known as the steady state.  

 

Thirdly, the reason that some countries enjoy sustained long-run growth is technology. 

A direct consequence of the convergence property is that a country’s growth rates will 

eventually decay due to the diminishing returns to capital. In the long run, the only 

factor that could offset this tendency is technological progress, where technological 

progress is the ability to produce more or better output from the same amount of input. 

The change of technology available is therefore the transformation in the processes by 

which economies produce outputs, a process driven by ideas, scientific discoveries and 

their diffusion throughout. 



 7 

The neoclassical model provided a simple framework for the estimation of a country’s 

technological progress. The methodology, commonly referred to as ‘growth 

accounting’ as proposed by Solow (1957), decomposes the change in the scale of 

production into the factors of production components (Capital, Labour). The growth of 

output that is not explained by the growth of factors of production is called the total 

factors productivity (TFP). Under this structure, the TFP measures the technological 

progress that occurred in an economy during a period, and the ratio of TFP to GDP is 

the growth of wealth explained by technological progress. The overwhelming evidence 

(see Helmpan 2004 for survey) shows that among the industrialist countries, the TFP 

ratio, over the second half of last century, ranges from 20 to 50 percent depending on 

the country and the quality adjustments of inputs.   

 

The assumptions and predictions of neoclassical theory raised a number of concerns. 

Although the convergence of the growth rate to the rate of technology progress is the 

theory’s greatest prediction, it cannot explain how technology enters into the economic 

system as technology is considered to be exogenous. The TFP measure provided an 

estimation of the rate of growth of technological progress but could not explain what 

causes it to grow (Helpman 2004).2 Meanwhile, the growth rates of many countries has 

been rising rapidly in a non-converging manner, rather than falling as predicted by the 

theory, challenging its convergence hypothesis (Jones 2005). Furthermore, the theory 

assumed that markets operated in a perfectly competitive environment, which would 

have prevented firms from covering the costs of their innovative activities, due to the 

public-good nature of knowledge (Marsh 2004). This implied that research and 

development, the inputs of technology progress, would not have been profitable and 

would have not been undertaken by firms.  

                                                 
2Interested readers can refer to Chapter 5 in Lipsey et al. (2005) for a discussion on why 
changes in TFP may not track changes in technology.    
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2.3 New Growth Theory  

 
Prior to the late eighties, research on technological development, its flow into the 

economic system and consequential growth, were subordinate to business cycle 

research, which took research centre stage. Technology was seen as a ‘black box’, 

which was “outside the specialised competence of most economists” (Freeman 1994). 

The revolution came with the formalisation of the effects of the accumulation of 

technological ideas on the economic system by Paul Romer and Robert Lucas in the 

late eighties. Their theories endogeneised the deliberate process economic agents 

undergo, in which the invention and diffusion of new processes is explained within the 

model. In that sense, these models extended the Solow framework by explaining the 

development of inventions. According to Romer (1986), technological ideas are 

nonrivalrous, implying that use of the idea by one firm does not preclude other firms 

from benefiting from the idea simultaneously. The production of new ideas increases 

the aggregate stock of ideas available in the economy, and that stock is a function of, 

inter alia, the number of researchers. The Japanese automobile inventory system of 

just-in-time service cannot stop American and European car manufactures from 

utilizing it. Once the idea is produced, it can be reproduced with no extra cost (Jones, 

2005). Consequently, firms’ productivity increases and increasing returns to scale 

would characterise production due to the high fixed costs. The presence of increasing 

returns to scale of production implies that inventors must expect to price above 

marginal cost in order to cover the high fixed of cost of producing the idea, which 

necessitated a move towards an economy that competes imperfectly, otherwise firms 

would never cover their costs and would not engage in research and development 

(Jones, 2005).  
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Romer’s model has two important implications. First, increasing returns to production 

imply that growth rates need not be declining, but can instead be increasing. This stands 

in sharp contrast to the notion of convergence as implied in the neoclassical theory (see, 

for example, Baumol (1986) and Mankiw et al. (1992) for empirical examinations of 

the implications of the two viewpoints). Secondly, the nonrivalry and low excludability 

attributes of ideas, originally suggested by Arrow in the early sixties, imply a positive 

externality in knowledge production and spillover – a “standing on shoulders” effect 

(Jones, 2005). 

 

These early models by Lucas (1988) and Romer (1990) are now viewed as the 

foundations of the ‘new’ growth theory. Since then, an overwhelming number of 

models have been developed in this spirit. In 1990, Romer also provided the second 

milestone in endogenising technology. Instead of pursuing an aggregate ideas 

accumulation approach as he did in 1986, Romer suggested a disaggregated model of 

the business sector that provides an explicit analysis of the competitive behaviour of 

firms (Helpman, 2004). In this model, firms innovate by engaging in R&D and are 

driven by market incentives. Free-riding on ideas is protected with patents, which 

restore the incentive to innovate. However, some of the ideas still spillover towards a 

common knowledge pool, which reduces the production costs for all firms, but at the 

same time induces development of competitive products, which cuts down the profits to 

all firms. The novelty in Romer’s model is a knowledge spillover mechanism that 

maintains a constant innovation incentive, which provides a nondiminishing rate of 

growth.  
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To illustrate this explicit link between innovation and economic growth, consider the 

following model suggested by Romer (1990) and generalised by Jones (1995,2005) 

which explains why and how long-run growth is sustained. 

2.3.1 Romer (1990) 

 
Consider an economy with a standard Cobb-Douglas production function: 

1 ( )yY K AL
α α−=  

where  

Y is the output produced in the economy 

A is the available stock of technology    

K is Capital 

L is labour. The population in this economy engages either in output production 

(
y

L ) or in innovative activities (
A

L ). 

α  is a parameter between 0 and 1.   

 
For a given level of technology, the production function in this economy exhibits 

constant returns to scale. However, when technological knowledge becomes part of the 

production process, increasing returns to scale characterise the production function.  

Once Steve Jobs and Steve Wozniak invented the plans for assembling personal computers, 

those plans…did not need to be invented again. To double the production of personal 

computers, Jobs and Wozniak needed only to double the number of intergraded circuits, 

semiconductors, etc., and find a larger garage. (Jones 2005, p. 98) 

 

The capital in this economy accumulates according an exogenously determined saving 

rate,
K

s  and depreciation rate d:
K

K s Y dK= −& .  
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The link between invention and growth becomes explicit once we model the flow of 

innovation into the model. Romer suggests that ( )A t  represents the existing technology, 

which is the summation of all existing technological innovations at time t. The 

production of innovation, A& , is equal to the number of people engaged in innovative 

activities, such as Research and Development, multiplied by the rate at which they 

successfully develop new inventions, δ : 
A

A Lδ=& . The innovation success rate 

depends on the available stock of technology: A
φδ δ= , where δ andφ  are constants.  

The parameter φ indicates the degree of externality inherent in technological 

knowledge. If it is greater than zero, it implies that an increase in the stock of 

technological innovations increases the invention success rate whereas if it is less than 

one it implies the opposite.3 The invention equation then becomes
A

A L A
φδ=&  which 

implies that the increase in TFP is proportional to the labour units engaged in 

innovative activities and the existing stock of technology. By dividing the equation by 

the technology stock, the innovation growth rate is denoted
1

A
LA

A A
φ

δ
−

=
&

. The steady 

state of inventive creation is found by logging and differentiating the equation with 

respect to time: 0 (1 )A

A

L A

L A
φ= − −

&&

 which reduces to 
(1 )

A

A

L

L

φ−

&

 and “pins down…all the 

growth rate in this model” (Jones 1995, p. 767). Thus, the long run growth in output per 

worker in this model is tied to the growth of inventions and to the nature of the 

innovation externality.     

 

Alternative ways of endogenising technology have been suggested in subsequent work. 

Later models can be crudely divided into either R&D or Human Capital based models 

                                                 
3 For a detailed discussion on the sign ofφ , see Jones (1995).  
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(Klenow, 1998). In R&D based models such as these of Grossman and Helpman (1991) 

and Aghion and Howitt (1992), R&D efforts generate new ideas, which once embodied 

in intermediate goods raise the level of productivity and generate growth. In these 

models, distinctively from Romer (1990), the productivity increases along a quality 

ladder, where the product’s quality affects its substitutability among older products. 

The higher the quality of a product, the bigger the “creative destruction” imposed by 

the new product is. Such models are referred to as Schumpeterian growth models as 

they fulfil the original prediction of Schumpeter in the late 30s. The second class of 

models emphasises the accumulation of Human Capital embodied in workers as the 

productivity factor that stimulates long run growth. Such models include these of Jones 

and Manuelli (1990) and Rebelo (1991). 

 

To illustrate the link between innovative activities, Human Capital and economic 

growth, consider the following model suggested by Jones and Manuelli (2005), 

developed in the spirit of recent work by Boldrin and Levine (2002). 

2.3.2 Jones and Manuelli (2005) 

 

t
c  - is the final consumption at time t.  

A - is a productivity factor.  

δ  - is the depreciation rate.  

β  - is a discount factor.  

λ - is long run growth 

α - is a parameter between 0 and 1.   

L  - is labour supply. There are two types of labour supply, inventors, 1L , and workers  

2L , where 1 2L L L= +  is the total supply of labour within each household. A 

continuum of households exists. Each supplies labour into invention creation 
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and into production of output. Each of the individuals in the household has his 

own level of human capital.  

t
H - is the level of Human Capital per inventor at time t. If households are symmetric,  

then 
t

H represents the economy absolute Human Capital skills frontier at time t.  

t
h  - is average level of Human Capital per worker is at time t  

 

Inventors can devote their efforts into either the research and development of 

inventions 1

H

t
L  or the training and educating of the workers 1

h

t
L . Thus, 1 1 1

H h

t tL L L= +  

Workers can devote their efforts into either the training and learning from inventors, 2

h

t
L  

or into to the production of current consumption goods 2

c
L . Thus, 2 2 2

h c

t t
L L L= +  

 

The increase in the inventors’ Human Capital stock is a function of the existing 
t

H and 

the production of new inventions 1 1

H

t t H t t
H H A L H+ = + . The development of new 

inventions is determined 1

H

H t t
A L H by the inventors’ inventive efforts, the current stock 

of inventive Human Capital and an inventive productivity factor. Note, depreciation 

does not enter this production function. Thus, inventors’ Human Capital cannot go 

backwards.     

 

The increase in the average Human Capital per worker is determined by (after 

depreciation) per worker Human Capital and the education and training workers 

undergo at time t 1

1 1 2(1 ) ( ) ( )h h

t t t h t t t t
h h A L H L h

α αδ −

+ = − + . The education and training 

component 1

1 2( ) ( )h h

h t t t t
A L H L h

α α−  is a Cobb-Douglas production function. An increase in 

the skills and knowledge embodied in workers is a function of two factors. The first 

factor 1

h

t t
L H  is the effort inventors (trainers) put into for training and educating the 
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workers and their Human Capital. The second factor 2

h

t t
L h is effort workers (trainees) put 

into training and learning from the inventors and their average Human Capital skills. 

 

The more time inventors spend on training and educating the workers, the less they 

engage in inventing activities. The more time workers spend on training and learning, 

the less time they have to for production. This effect of Human Capital on inventive 

output and consequential growth becomes obvious it is by introduced into the 

production of current consumption goods 2

c

t c t t
c A L h= . The amount of output produced 

is determined by the workers production efforts, their average Human Capital skills and 

a production productivity factor. Therefore, although education and training increases 

the productivity of workers, they constrain the growth of the inventive Human Capital 

frontier. In the extreme case where the inventors devote all their efforts towards 

training ( 1

H

t
L =0), the inventive Human Capital frontier would remain static and thus, the 

average Human Capital per worker would be bounded. Subsequently, the production of 

current consumption goods would also be bounded. Therefore, economic growth is only 

possible if new inventions are produced. The long run economic growth in a steady 

state becomes 1[1 ]H

H
A Lβ + . Thus, if we compare countries with a similar discount 

factor and productivity factor, the countries that devote more labour into research and 

inventive activities would have a more skilful labour market and enjoy higher economic 

growth rates.   
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2.4 Alternative Theoretical Approaches  

 

2.4.1 General Purposes Technologies  

 
The growth theories discussed above view inventiveness as an incremental process 

(Helpman 2004). However, in 1995, Breshahan and Trajtenberg suggested that certain 

innovations are radical in nature, which could lead the transformation of industries and 

economies over time. Steam engines, the railroad, electricity and computers are 

examples of innovations that gradually penetrated into the economy. These innovations 

are called General-Purpose Technologies (GPTs). Once the economy adjusts and 

implements the implications of the new technologies, an accelerated productivity 

growth rate will spread, leading to an economic discontinuity (Helpman 1998). A 

growing number of growth students now theorise the economic implications of such 

innovations. Nevertheless, the study of GPT is still very young and the concept is 

interpreted in a variety of ways in the literature (See Helpman (1998) for details). Yet, 

the theory has opened a window to the study of radical breakthroughs in science as the 

powerful engine of growth in modern economies.  

 

2.4.2 Evolutionary and Systems of Innovations 

 
As growth theory evolved over time with inventive activity gaining the central stage of 

the analytical analysis, supplementary theories started to evolve. An evolutionary 

approach that uses biological analogies for the dynamic process of technological 

change started to evolve in 1982 in the work of Nelson and Winter. This approach 

advocates the notion of bounded rationality and asymmetric and costly information to 

explain the inventive decisions undertaken by individuals and firms and institutions. 

The production of ideas, the centre of this framework, then follows a stochastic process 
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(Mokyr, 1999). This idea, to an extent, was further developed by a number of scholars 

who suggested the notion of a National System of Innovations (NIS), where the 

inventiveness competency of a country is hypothesized to lie within the interactions of 

individuals, firms and governments either at the domestic or international level 

(Lundvall 1992). It is an interaction between “institutions in the public and private 

sectors, whose activities … initiate, import, modify and diffuse new technologies” 

(Freeman 1987).  

 

Although these alternative theories may provide a more pragmatic description of reality 

than is provided in the mainstream literature, they are very general and their departure 

from the neoclassical paradigm of maximization and equilibrium leads to a “propensity 

to produce sheer nonsense” (Paul Krugman speaking in front of the European 

Association for Evolutionary Political Economy in November 1996). The aggregated 

approach under NIS creates measurement difficulties, and the implication of the 

indeterminacy of knowledge creation implied by evolutionary economics does not 

simplify the estimation (Marsh 2004). Nonetheless, the implications of both theories, 

integrated within mainstream literature, could provide a more holistic description of the 

innovative process.  

 

2.5 Summary 

 

The implications of growth theory that inventions are the engine behind economic 

growth have led a research trajectory into the determinants of innovation. Chapter 3 

reviews the literature on the measurement of innovations. 
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3 How Do Economists Measure Innovations?  
 

Chapter 2 provided the theoretical foundations underlining the interest in innovations. 

This chapter discusses the measurement of innovations and motivates the use of patent 

data as an indicator of inventive activity. The chapter then describes the empirical 

literature on patent data, the heterogeneity problem inherent in patent values and the 

methods available to elicit the value of each patented innovations. It shows that patent 

citations, prior-to-new-art link, appear to be the most objective and systemic proxy for 

patent value.  

 

3.1 What is Innovation?  

 
Before discussing the measurement of innovations, it will be useful to provide an 

introduction to the meaning of innovations in this thesis. Economists use innovation to 

mean “the economic application of a new idea” (Black 2002), that is, new ideas on 

ways “inputs to the production process [could be] transformed into output” (Jones 

2002, p.79). Innovations are predominantly thought to represent technological 

knowledge, which is knowledge “transmitted [inter alia] by mathematical theorems or 

computer programs that can be reproduced through known procedures” (Howitt, 1998, 

p. 99). Economists therefore regard innovations as actions that yield “new products … 

and new devices to be used in economic production… [and exclude] social inventions, 

new methods of inducing human beings to compete and cooperate in social 

progress…[and] creative work of an esthetic character, in which economic use is not 

the major aim or test” (Kuznets, 1962, p.19) 



 18 

3.2 How to Measure Innovations? 

 

The measurement of innovation is constrained by a shortage of adequate and precise 

data. Approximations of inventiveness are therefore used in the literature. Although 

many proxies exist, such as the study of scientific publications (see Kleinknecht 1996), 

the subsequent performance of inventive firms (see Hansen 1992) and quality indexes 

of improved products, R&D activity and patent counts are the most commonly used 

indicators of inventive activity. 

 

3.2.1 Research and Development (R&D) 
 

R&D is the “process of knowledge creation, with the knowledge applicative as a 

production technique, either directly or indirectly. Enhanced knowledge improves the 

productivity of existing inputs and these productivity gains – taking the form of cost 

reductions – are the returns to R&D” (Smith 1991, p.2). Therefore, R&D data are 

believed to represent the inputs to the production of innovations. The advantage of 

R&D data is that they typically have a dollar sign attached. Therefore, economists 

frequently use R&D data as an approximation for the share and intensity of resources 

devoted to developments of inventions. Alternatively, the number of scientists involved 

in R&D activities is sometimes used. 

 

R&D data are slowly starting to emerge. However, R&D data is often subject to 

classification problems due to strategic decisions by firms, institutions or countries in 

classifying their R&D activities (tax advantages for example), which imposes a great 

constraint on the reliability and validity of R&D based proxies.    
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3.2.2 Patent Statistics 

 

A patent is a “document, issued by an authorised government agency, granting the right 

to exclude anyone else from the production or use of a specific new device, apparatus 

or process for a number of years. The …purpose of the patent system is to encourage 

invention and technical progress both by providing temporary monopoly for the 

inventor and by forcing the early disclosure of the information necessary for the 

production of this item or the operation of the new process” (Griliches 1990, p. 1662-

1663). 

 

Whereas R&D measures the input side of innovative production and is subject to 

classification constraints, patents represent the inventive output and are “based on…an 

objective and slowly changing standard” (Griliches, 1990 pp. 1661) and are: 

1. A voluntary economic system 

2.  Contain highly detailed information about each invention granted 

3.  Provide over 250-300 years of data  

 

For these reasons, a substantial body of empirical literature in economics relies on 

patents data as an indicator of inventive activity. The following section reviews this 

literature. 
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3.3 Patents Statistics in Economics 

 

Patents have been extensively used in empirical economics since the mid 60s. Basberg 

(1987), Pavitt (1988) and Griliches (1990) provide surveys of the extensive use of 

patent statistics in economics.  

 

The early use of patent statistics in economics goes back to the 1966 book by Jacob 

Schmookler, Invention and Economic Growth. In his book, Schmookler “demonstrated 

that patent statistics…provide a unique source of systematic information about the 

inventive process” (Jaffe and Trajtenberg, 2002. p. 6). Using patents as a surrogate for 

an innovation, Schmookler showed that “not only that one could explain the diffusion 

of existing inventions in economic terms … but that one could even explain the pattern 

of inventive activity itself” (Rosenberg, 1974, p. 90).  

 

However, it was Zvi Griliches in the late 70s who laid the foundations for a systematic 

and concise use of patent statistics as a defined economic indicator. Griliches 

“transformed the study of productivity growth from the study of a residual to a study of 

the measurable factors that caused increases in the output available from given 

configurations of inputs, and in so doing changed both official statistical procedures, 

and our understanding of how productivity improvements occur” (Heckman 2006, p.4). 

During the 1980s, Griliches led an NBER research program into the sources of 

productivity growth. Griliches and colleagues developed detailed panel data that 

allowed a through investigation of the relationship between patents, R&D expenditure 

and productivity at the firm level (Griliches 1984). 4  Their work formed the basis of 

                                                 
4 Fredric Scherer (1982) was carrying out another large-scale patent related project. Scherer 
created a detailed patent dataset, with the patent being sorted according to technology type 
and industry of origin.   
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future empirical studies on the determinants of growth such as these of Bount et al. 

(1984), Hall, Griliches and Hausman (1986), Cockburn and Griliches (1988) and many 

others. Jaffe and Trajtenberg (2002) summarise some of the key findings:   

• Strong relationship between R&D and patents at the firm level 

• Strong correlation between R&D and patents over time 

• R&D expenditure is a strong predictor of firm’s performance.  

 

The use of patents statistics as an innovation indicator stimulated new research 

trajectories into a host of economic questions, such as the factors that influence the 

decision to innovate (Duguet and Kabla, 2000); the existence of radical innovation 

(Hall and Trajtenberg, 2005); the effects of Government innovation policies 

(Henderson et al. 1998; Mowery et al. 2001); the private returns to innovations (Hall 

1998); the social returns to innovations (Trajtenberg 1990); the spillovers of ideas 

(Jaffe 1983; 1986); fluctuations in inventive activities across countries  (McAleer et al. 

2006); and the diffusion of innovations across time (Sokoloff ,1988; Sokoloff and Khan 

1989; Magee 1999). 

 

Although patents are a very objective and concise indicator for innovative activity, they 

are an imperfect measure of innovation. This is the subject of the next sections. 
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3.3.1 Limitations of Patent Statistics 

 
A number of problems arise in the use of patents data.  

 

3.3.1.1 The Identification Problem 

The first is an identification problem. This is because not all innovations are patented or 

patentable. Therefore, patents represent only a subset of all the existing inventions. 

There are a number of reasons an innovation might not be patented.  

 

1. Inventors may strategically decide not to register their innovation through the 

patent system. Although a patent provides a temporary monopoly on an 

invention, it forces the inventor to disclose all “the information necessary for the 

production of this item or the operation of the new process” (Griliches 1990, p. 

1663). Therefore, it might be in the best interests of the inventors to use a 

secrecy approach to protect their innovation. The Coca-Cola formula is an 

example of such a situation. 

 

2. Innovations might not be patented because they are not a device. Inventors can 

only patent their invention if they: 

 

invent or discover any new and useful process, machine, manufacture, or composition of 

matter, or any new and useful improvement thereof,…. The word ‘process’ is defined by law 

as a process, act or method, and primarily includes industrial or technical processes. The term 

‘machine’ used in the statute needs no explanation. The term ‘manufacture’ refers to articles 

that are made, and includes all manufactured articles. The term ‘composition of matter’ relates 

to chemical compositions and may include mixtures of ingredients as well as new chemical 

compounds. These classes of subject matter taken together include practically everything that 
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is made by man and the processes for making the products … A patent cannot be obtained 

upon a mere idea or suggestion  

(US Patent and Trademark Office, 2006). 

 

3. Innovations might not be patentable because they are an idea, although they 

may provide a ‘better’ way of doing things. For example, Maxwell’s equations 

of the behaviour of electric fields cannot be patented (Trajtenberg et al. 1997).  

 

4. Inventions may not be patentable if they are regarded as trivial. For example, a 

marginal improvement of a ‘mousetrap’ would not be patentable (Trajtenberg et 

al. 1997) as the invention  

must be sufficiently different from what has been used or described before that it may be said 

to be nonobvious to a person having ordinary skill in the area of technology related to the 

invention. For example, the substitution of one colour for another, or changes in size, are 

ordinarily not patentable. 

 (US Patent and Trademark Office, 2006). 

 

This identification problem means that patents may not capture the “purely scientific 

advances devoid of immediate applicability, as well as run-of-the-mill technological 

improvement that are too trite to pass for discrete, codifiable innovations” (Trajtenberg 

2001 p. 336). However, this problem is “widely believed … not too [be] severe” 

(Trajtenberg et al. 1997, p. 54-55) as the non-patented inventions reflect the outliers in 

the innovation curve and can be countered by adjusting the measures of this deficiency 

(Scherer, 1965). 
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3.3.1.2 The problem of high variance in patent values 

 

The second problem that arises in the use of patent data is the high variance in patent 

values. It is well recognised that the ex-post value of innovation embodied in each 

patent varies significantly across patents. Therefore, any aggregation patent counts 

leads to a highly biased estimation of the underlying innovation activity. This is the 

topic of the next section. 

  

3.4  Heterogeneity in Patent Values  

 

The value of patents is highly skewed to the right. Very few patents have a significant 

technological and economic impact on the society, while very many patents have a 

limited and insignificant impact. The patent granting office does not classify or scale 

the granted patents according to some hypothesised ex-post value measure. The office 

simply determines whether the patent application meets the non-triviality, novelty and 

usefulness patent criteria. This implies that any aggregation of patent records would 

result in a severe bias estimation of the real innovation activity. As Simon Kuznets 

stressed almost fifty years ago, any systematic measurement of innovations must be 

sensitive “with respect to the magnitude of technical problem overcome, technical 

potential, and economic contribution” (Kuznets, 1962. p. 30) of each invention.  

 

The variance in patent values is frequently overlooked in applied work as most 

researchers simply use patent counts to measure the underlying invention ‘success’, 

thereby attaching a value of one to all patents. The underlying hypothesis is that the 

quality of any sampled patent is simply “a random variable with some probability 

distribution” (Scherer, 1962 p. 1098). Given that the sample size studied is sufficiently 
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large, the average value of the sampled patents will approach the average of the patent 

population, and the variance of the estimator will be reduced. 

 

The reliance on the law of large numbers to minimise the bias of the estimator does not 

appear to be valid in the case of patents (Bertran 2004). The findings of numerous 

studies have suggested that the variance of patents values would remain high despite 

the size of the patent sample used. The first comprehensive evidence comes from a 

series of surveys and interviews of US patent holders conducted by the Patent 

Foundation Study in the late 50s by Barkev Sanders, Joseph Rossman and James 

Harris. The researchers studied the utilisation of a random sample consisting of two 

percent of the total patents granted in 1938, 1948 and 1952. One of their most striking 

findings was that the economic benefits of the patents to their assignees was highly 

skewed across patents (Sander et al. (1958); for a brief discussion of the results see 

Schmookler (1966) p. 47-55 and Griliches (1990) p. 1679). Patents that has been 

utilised at the time the research was carried out had a mean economic value of 

$557,000, whereas the median was $25,000. Griliches (1990) recomputed Sander et 

al.’s (1958) results for this group of patents and estimated the variance coefficient 

under log normality to be 2.5 and the standard deviation to be $1.5 million.  

 

Scherer (1965) used these data to carry a graphical test, confirming that  

…the existence of a Pareto-type distribution of profits with a α  coefficient of 

less than 0.5. Asymptotically such a distribution possesses neither a finite mean 

nor a finite variance, and so one cannot be sure that the mean economic value of 

any particular sample of patents converges (under the weak law of large 

numbers) towards the true population mean value if large enough samples are 

drawn. …patent statistics are likely to measure run-of-the-mill industrial 

inventive output much more accurately than they reflect the occasional strategic 
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inventions which open up new markets and new technologies. The latter must 

probably remain the domain of economic historians (Scherer, 1965 p. 1098). 

 

Counting patents leads to two measurement problems (Lanjouw et al. 1998): 

1. When systematic differences exist in the value of inventions across different 

groups of patents, the analysis would lead to biased inferences.  

2. Since the relationship between patents counts and values is ambiguous, then 

even a comparison of patent groups with similar average value is difficult to 

interpret. 

The implications of highly dispersed patent values on measuring inventive activity have 

led to research into the adjustments of patent counts. This is the topic of the following 

section.   

  

3.4.1 How to Estimate Patent Values? 

 

The issue of dispersed patent values has led to a new line of research. Its main objective 

is to identify the value of patents and ways to control for their variability. This section 

reviews the main approaches in the literature.  

 

1. Estimation of the value of patents through direct communication with 

patent holders  

 

This approach typically relies on surveys, where the patent holders are asked for the 

monetary value their patent has generated in subsequent years. Thus, the figures elicited 

are the private economic value of patents to assignees. 
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This line of work, starting with Sanders et al.’s (1958) and Scherer’s (1965) work with 

US patents, was popularised by Dietmar Harhoff and colleagues in the late 90s and 

extended to European patents (see Harhoff et al. 1999; Scherer and Harhoff 2000; 

Harhoff et al. 2003b). Giuri and Mariani (2005) and Reitzig (2003) are a few later 

examples.  

 

The use of surveys and interviews can be quite useful, but this approach is exposed to a 

number of important limitations. Firstly, surveys are limited in scope and can be quite 

expensive, limiting the possibility of using them in large-scale productivity and growth 

research. Secondly, surveys are prone to bias since patent holders are reluctant to 

provide their true returns on innovative investments. 

 

2. Observations on the propensity of patent holders to renew patents 

 

Patent holders must pay a periodic fee in order to keep their patent in force. Failure to 

do so results in the termination of the patent. This renewal cost increases over time in 

order to keep only useful patents and weed out less valuable ones.  

 

Observations over time of the propensity to renew patents at different patent ages, and 

the renewal cost schedule, can then provide detailed information on the value of 

patents: “The lower the incremental fee at which payment is discounted, the smaller is 

the patent right’s estimated value” (Harhoff et al. 2003a, p. 280). 

 

The underlying view of this approach is that the decision whether to renew a patent is 

based on economic criteria. Thus, patents are renewed if the discounted stream of 

profits that could be earned in the subsequent period exceeds the cost of renewing the 
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patent (See Lanjouw, Pakes and Putnam, 1998 and Pakes and Simpson, 2001 for a 

review of empirical work along this line). 

 

Early work on the renewal mechanism was carried out by Dernburg and Gharrity 

(1961) in the early 60s. However, it was Nordhaus’ (1969) thesis in the late 60s that 

introduced patent renewal data to the discipline. The first to popularise this approach 

were Pakes and Schankerman in 1984 using European patents data. Pakes and 

Schankerman’s (1984) patent renewal model was deterministic in nature, allowing the 

stream of returns generated by renewed patents to decay deterministically over time. 

Pakes (1986) relaxed this assumption and introduced uncertainty in the model. 

According to Pakes this uncertainty is because inventors often patent their inventions at 

an early stage of the innovation process in order to obtain immediate protection. This 

implies that the decision to patent often occurs prior to receiving market feedback about 

the commercial potential of the invention. However, Pakes’ findings showed that the 

uncertainty gradually fades away and almost perfectly clears when the patents reach the 

age of five. Given this result, Pakes and Schankerman (1986)5 re-estimated the 

deterministic model, but this time for patents older than five. Their results showed that 

half of the patents reach the age of ten and half do not. Only ten percent of all patents 

survive the entire renewal period. This implies that the majority of patents are not 

valuable enough, and the expected discounted profit generated does not exceed their 

maintenance costs. The mean value of a patent in the UK and France was $7,000, 

whereas in Germany, where the application is more rigorous, the mean value was 

$17,000. Their findings confirmed the highly skewed distribution of patents values as 

half of the values estimated belonged to about five percent of the entire patent 

population analysed.  

                                                 
5 The data contained information on the renewals of patents between 1950 and 1979.  
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The issue concerning the uncertainty of the inventors’ learning process led to a division 

of the literature. The first group (see, among others, Schankerman 1998, Sullivan 1994) 

assume that all the relevant information is available at the time the renewal is made, 

whereas the second group (see, among others, Pakes and Simpson 2001, Lanjouw 

1993) allows the patent value to follow a stochastic process.  

 

There are a number of limitations to the patent renewal approach. Griliches (1990) 

suggested that identification problems might arise in the renewal models. Since an 

‘open-ended’ class of patents exists6 that pay the full renewal fees throughout time and 

a stable renewal cost schedule, the estimations are very sensitive to the assumptions 

underlying functional form for patents rights. Furthermore, Scherer7 cautioned that 

since the technologies rapidly change, early patent dropout might not be indicative of 

low value. Many inventions are of high value when first introduced but become 

obsolete shortly after. Levin8 indicated that exogenous factors might influence the 

decision to renew patents, such as institutional factors in the pharmaceutical industries. 

For example, because of the long regulatory delays between drugs development and 

their introduction to the market, the high patent renewals might be biased for 

pharmaceutical and drugs patents (Pakes and Simpson, 1989).  

 

3. Independent proxies that correlate with ex-post value of patents  

 

This approach is typically an econometric analysis of value-dominated variables that 

are hypothesised to exhibit strong correlations with the value of patents. Most of the 

variables used in the literature are taken from the grant document which is issued when 

                                                 
6 The statutory limit is usually between 15 to 20 years.  
7 In the General Discussion in Pakes and Simpson (1989). 
8 In the General Discussion section in Pakes and Simpson (1989). 
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the invention is patented. This document contains all the general characteristics related 

to the invention. The underlying view of this work is that some of the information (See 

Appendix) is representative of the importance of the invention. Thus, by constructing 

the correlated factual details into a cross-sectional set of variables, an econometric 

analysis could be carried out to provide a framework for the study of patent values.  

 

The value-dominated variable used in the literature are: 

 

i. Patent Family Size 

 

The value-dominated variable ‘family size’ refers to the number of countries in which a 

patent grant has been sought. This proxy, first proposed in Putnam’s (1996) PhD thesis, 

suggested that the collection of international patent grants is an indicator of patents 

value. Putnam used the patent family size as an extension to Pakes and Schankerman’s 

(1984) original patent renewal decision model to allow the application and renewal of 

patents in more than one country. A number of papers have used family size as a proxy 

for patent value (see Harnoff et al. 2003b; Lanjouw et al. 1998; Guellec and Potterie 

2000; Lanjouw and Schankerman 2004 among others). Harnoff et al. (2003b) used the 

Derwents World Patent Index (WPI) to estimate the family size of a sample of German 

patents. Their Ordered Probit regression estimations showed that family size contains 

particularly valuable information about patent values. Lanjouw and Schankerman 

(2004) developed an index of patent quality using family size for patents applied by US 

firms. Their results showed a strong positive association between the equality index and 

the firm’s valuation. The authors showed this finding is robust and holds even when not 

controlling for year effects. Guellec and Potterie (2000) use the family size dummies as 

an explanatory variable in an econometric analysis of the likelihood that a European 
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patent would be successful in the grant. Their results support Putnam’s original 

hypothesis.  

 

ii. Patent Claims 

 

The value-dominated variable is patent claims, the number of ‘components’ embodied 

in patented invention, which appear at the front of the patent document.  

 

The view underlying this approach is that each individual patent represents a bundle of 

inventive components. Thus, the number of components could be indicative of the 

value of each patent. Tong and Frame (1994) were the first to use patent claims data to 

model the technological performance of patents. The authors used the following 

example to explain how patent counts are the true measure of the value of a patented 

invention: 

 

Let us say that Martha invents the first stool and applies for a patent to protect her invention. In 

the claims section, she might write the following claim: ‘I claim a device that can be used for 

sitting. This device is composed of a seat that is elevated off the ground by means of legs.’ 

 

Let us assume that George spots Martha’s invention and is stimulated to think of an 

improvement to it. He determines that the stool would be more comfortable if it has a back 

support to it. He thus invents a chair. Note, however, that in his claims section he can only claim 

the back of the chair, since the sitting component is already covered in Martha’s stool patent. 

This is fitting, since George’s true invention contribution is not the whole chair, but simply the 

seatback (Frame and Tong, 1994 p. 134). 
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To validate the use of patent claims, the authors compared the correlation of patent 

claims vis-à-vis patent counts with technological and economic strength indicators such 

as R&D expenditure, the number of scientists and engineers, gross national product, 

value of exports and counts of scientific and technological papers published. The 

sample contained 7531 patents granted in the US, but originating in the US, Japan, the 

UK, Germany and France. Their analysis showed that claims are much better than 

patent counts and have stronger correlations with the technology related indicators. 

Based on this relationship, Lanjouw and Schankerman (2004) used patent claims to 

formulate a factor model to analyse research productivity in the US. The factor model 

was estimated with more than 100,000 patents in seven different technological fields, 

applied between 1975 and 1993. Their results supported the Frame and Tong findings, 

as the number of claims was the most important determinant of research quality in six 

out of the seven technological fields. 

 

iii. Patent Subclasses  

 

The value-dominated variable is the number of subclasses the patent grant assigns the 

patented invention. This approach was suggested by Joshua Lerner (1994). The author 

pointed out that patent claim analysis, although having the potential to be a valid proxy 

for patent value, requires rigorous analysis of each patent and is not practical for large-

scale economic research. Instead, the author showed that the number of International 

Classification of Patents (IPC) subclasses is more useful as they are determined through 

a rigorous bureaucratic procedure in the patent grant office (see p. 320 for details). The 

strength of the IPC system, which originated in the 1964 ‘European Convention on the 

International Classification of Patents for Invention’, is its high standards, frequent 

revision, and strong industry and profession focus. 
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However, this definition of patent value is closer to technological diversity than to 

patent strength. It remains unclear how the broadness of the patent scope represents the 

technological or economic value of the invention.   

 

iv. Patent Application Process 

 

This approach examines the refusal, withdrawal or success of patent application across 

various dimensions (ownership, domestic and international co-operation, the number of 

applicants,  and technology category ) as a signal for patent value (Guellec and Potterie 

2000; Guellec and Potterie 2002). The view underlying this approach is that a patented 

invention corresponds to a higher technological and economic value than an 

unsuccessfully patented invention. Although this approach provides some interesting 

insights about the value of patents, it does not appear to provide a systematic and 

consistent way to assess and analyse patent values.  

 

v. Patent Citations 

 

The value dominated variable is the number of citations a patented invention 

subsequently receives from future patents. Citations imply the use of the ideas 

embodied in existing patents to develop new and/or better patents. The view underlying 

this approach is that patent citations represent the impact each invention has had on 

creating new knowledge. Thus, this knowledge impact indicates the technological value 

of the ideas embodied in each invention. This technological value could then be used to 

measure the economic value each invention contributed to its inventors and assignees 

(private economic value of invention) and to society (social economic value of an 
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invention). 

 

Patent citations are the boundaries of the new invention. Citations delimit the scope of 

the new innovation as they indicate all the relevant existing knowledge-base that leads 

to the development of the new idea. Therefore, patent citations, unlike scientific 

citations, are the result of the legal requirement to validate the creation of new 

knowledge needed (Trajtenberg, 1990). Therefore, research shows that the legal process 

that provides the list of citations is generated by the incentives of the people involved 

(Campbell and Nieves 1979). The computerised system at patent grant offices now 

makes the citations retrievable. These properties make patent citations a superior proxy 

to the other alternatives discussed above (Bertran 2004) and have made patent citations 

the most preferred proxy to determine the value of patents. For these reasons, the 

empirical research followed in this thesis uses patent citations as a proxy for patent 

values. 



 35 

4 What Are Patent Citations? 

 
This chapter provides the conceptual, theoretical and empirical background for the use 

of patent citations as the value-dominated variable for the measure of patented 

inventions.  

 

4.1 Introduction 

 
Patent citations appear on the patent grant document (See Appendix). The citations 

indicate the ‘prior-art’ that the current patented invention is building on:  

 

If Patent B cites patent A, it implies that Patent A represents a piece of previously existing 

knowledge upon which patent B builds, and over which patent B cannot claim. (Hall et al. 

2001 p. 14) 

 

The legal requirements behind patent citations, contrary to scientific citations, give 

them a dimension of objectiveness. Campbell and Nives (1979, Appendix II) explain: 

 

“Patent Citations have a distinct legal and technical meaning and are produced by a distinctive 

process. These [citations] come from two sources: (1) the patent attorney and his or her client 

and (2) the patent examiner. For both these sources, the motivation to cite … another patent is 

embedded in patent law.  

 

First, the inventor’s attorney must include by law citations to references in the specification of 

the patent application and in amendments that deal with related prior art. The inventor is 

obliged by law to bring to the attention of the patent examiner any relevant prior art of which 

he or she is aware. Failure to do so is considered fraud on the patent office, which places the 

patent (if issued) in risk of invalidation, if it can be shown that the patent was anticipated.  
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Second,  the patent examiner must include citations in the file of the patent and in the printed 

patent that were used to further limit the claims and specification and the prior art, these 

references serve to narrow the scope of the of the patent. Thus, the citations contained in a 

patent’s file represent the legal and technical judgement of the patent examiner (acting as an 

expert interested referee) and the patent attorney and inventor (as expert interested parties) 

with respect to the scope of the discovered hand. Not all citations included in the patent’s file 

are printed in the patent. Only those citations specify the most relevant prior art of the patent 

in question. 

 

4.2 The Validity of Patent Citations as a Proxy 

 

The first studies to use patent citations were primarily bibliometric focused and 

concerned with the technological merits hypothesised in the citations patent receive 

over time (Ellis et al. 1978; Campbell and Nieves 1979; Carpenter et al. 1981; Narin et 

al. 1987; Lieberman 1987; Albert et al. 1991).9 Ellis et al. (1978) used US patent 

citations as a source of information to map the history of specific technological fields. 

Carpenter et al. (1981) tested whether the average number of patent citations received is 

higher for patents whose underlying product received the IR100 award.10 Their results 

showed that the group of ‘important patents’ received 2.5 times as many citations as the 

randomly selected control patents. Albert et al (1991) asked 20 researchers and research 

managers in Kodak, working in the area of silver halide technology, to rate 77 silver 

halide Kodak patents according to the technological impact each patent has had, where 

the number of citations each of these patents received ranged between zero and ten or 

                                                 
9 With the exception of Lieberman (1987) who examined the relationship between patent citation and 
price change of a sample of 24 chemical products.  
10 The IR100 award is given by the Journal of Industrial Research and Development for the 100 most 
significant products developed (see Carpenter et al. (1981) for further discussion of the award). 



 37 

more. Their results showed that the highly cited patents were of much greater 

technological significance than the infrequently cited or not cited patents.  

 

The first systematic use of patent citations in economic research goes back to 

Trajtenberg’s 1983 PhD thesis. Trajtenberg (Trajtenberg 1990a; 1990b) pointed out that 

the value of an innovation could be equated with the social benefits that it generates. 

Trajtenberg’s underlying hypothesis was that patent citations could be used to indicate 

the ex-post social value of the ideas embodied in patented inventions. In an attempt to 

validate his hypothesis, Trajtenberg studied Computed Tomography (CT) technology. 

CT is a major medical innovation and is considered “the gold standard in the diagnosis 

of a large number of different disease entities” (Wikipedia, 2006). With the use of a 

discrete choice model, the social value of the CT innovation was measured as the 

incremental changes in the consumer and producer surplus of CT scanners marketed in 

the US. These estimations were then analyzed with all the 456 US CT granted patents 

from 1971 to 1986. The results showed that patents weighted by citations were highly 

correlated with this measure of social welfare.  

 

With Trajtenberg’s findings setting a benchmark, later studies further explored this 

relationship (Harnoff et al. 1999; Lanjouw and Schankerman 1999; Jaffe et al. 2000; 

Gay et al. 2005; Maurseth 2005). Harnoff et al.’s (1999) study showed a strong 

relationship between patent citation frequency and the private value of patented 

inventions as estimated through two surveys (one in Germany and one in the US) of the 

companies that hold these patents. Hall et al. (2005) indicated a strong association 

between patent citation and private economic value of innovations. Maurseth (2005) 

linked patent citation and renewal data, and showed that citations were positively 

correlated with the survival time of patents. Lanjouw and Schankerman (1999) 
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analyzed the variance of a range of patent value indicators and showed that forward 

citations (citation received) were the least idiosyncratic.  Jaffe et al. (2000) took a 

qualitative approach to investigate the nature of the patent citation mechanism as a 

signal of communications through surveying patent inventors. The perceived 

technological and economic values of the patents were found to be correlated with 

citation frequency. The authors could not ascertain which of the two perceived values 

had stronger associations with the citation frequency. 

 

4.3 Patent Citation in Applied Economics 

 

A growing literature has emerged as a response to the promising findings that patent 

citations could contain rich economic information. Consequently, a number of broad 

research areas have been explored using citations as the primary research tool: 

 

4.3.1 The Value of Intangible Assets 
 

Over the last two decades, there has been significant work done to estimate the value of 

the tangible and intangible assets of publicly traded firms. This body of literature11 uses 

a ‘hedonic’ Tobin’s Q model, ( )
it it it

V A Kλ= + where the value (V) of a firm i at time t 

is a function of physical assets ( A ), knowledge assets ( K ) and the shadow value of 

intangible assets versus tangible assets ( λ ).  

                    

A number of studies have applied patent citations to advance the estimations by 

adjusting ( K ) according to the quality of the intangible assets, rather than simply the 

stock of invented inventions. Hall et al. (2005) matches citations to patents and show 

                                                 
11 See Griliches (1981) and Griliches and Cockburn (1988) for early examples of this 
literature. 
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that each time a firm’ patent is cited, its market value increases by three percent. 

Nagaoka (2005) found that the effect of patent citations on a firm’s market value is 

greater in industries where innovation follows a strong cumulative process such as the 

ICTs industry (see Hall (1998) for a comprehensive review of this literature). 

 

4.3.2 Path of Knowledge Flows 

 

Patent citations data prevail over Paul Krugman’s pessimistic view that “Knowledge 

flows … are invisible [as] they leave no paper trail by which they may be measured or 

tracked” (Krugman 1991, p. 53). Numerous studies have successfully applied patent 

citations to identify the path of knowledge flows across geographic locations, sectors, 

technologies and time. The approach was popularised by Jaffe et al. (1993) who 

showed a localisation in knowledge spillovers. The ‘citation function’ mechanism the 

authors used was subsequently challenged (see the two 2005 AER comments by 

Thomson and Fox-Kean and Jaffe et al.). Nonetheless, their study provided the 

inspiration for much of the ongoing work that is far more specific in its scope (See Jaffe 

1998 for a review on the use of patent citations as a proxy for knowledge spillovers).  

 

4.3.3 The Economic and Technological Impact of Patented 
Innovations 

 

Intrigued by the earlier indications of the positive relationship between citation 

frequencies and the value of patents, numerous studies have applied patent citations to 

analyses of the performance and quality of patented innovations across countries, 

technologies, firms and sectors, and time. Trajtenberg et al. (1997) analysed the 

performance of corporate patents versus university patents. Henderson et al. (1998) 
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analysed the innovative performance of US universities as the result of the Bayh-Dole 

Act. Jaffe et al. (1998) analysed the effects of changes in R&D expenditure on the 

quality of NASA and other US Federal labs on patents activity and performance. 

Trajtenberg (2001) studied the quality of innovations of the US versus small innovative 

economies throughout time. Sakakibara and Branstetter (2001) examined the effects of 

the 1988 Japanese patent reform, which widened the extent to which patents claims 

could be included in one patent. Hall and Ziedonis (2001) examined the patenting 

performance of firms in the semiconductor industry. Jaffe and Lerner (2001) examined 

the effects of the 1980's US initiative to encourage US National Laboratories to patent.  

 

4.4 Summary 

  

The empirical investigation undertaken in this thesis is mostly nested within the 

“citation as a proxy for patent value” and trace of knowledge literature. The following 

chapter provides a description of the patent citations data used in this thesis.    
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5 Patent Citation Data 

This Chapter describes the citation data used in this thesis. 

 

5.1 Overview 

 

Patent citations are a complicated network. The complexity of citation retrieval limits 

the capacity to use them in large-scale research. To identify the number of citations a 

given patent receives, one needs to observe the complete set of existing patents. This is 

a huge research task. Only recently, with the assistance of advances in ICTs, was this 

objective finally achieved. 

 

During the 1990s, a team of scholars computerised the items that appear on the US 

patent grant document. These items were computed into the ‘NBER U.S. Patent 

Citations Data’ (Hall et al. 2001). Many of the studies discussed in the previous chapter 

extracted samples of this dataset and with the completion of the project in 2001, an 

accelerated number of ‘citations’ studies has emerged. The empirical exercise followed 

in this thesis is based on this dataset. 

 

The data includes all the utility US Patent Office (USPTO) granted patents from 

January 1963 to December 1999.12 The data were retrieved on December 1999. Three 

million patents were granted during that period, reaching over 16 million citations.13 

                                                 
12 The USPTO classifies patent into three categories: 

i. Utility patents – invention and discoveries of any new and useful process, 
machine, manufacture. 

ii. Design patents - invention and discoveries of any a new, original and 
ornamental manufacturing design. 

iii. Plant patents - invention and discoveries of distinct and new variety of plant.  
   The last two categories are minor and were therefore, excluded from the dataset.  
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5.2 Variables Used  

 
Patent Number - the USPTO patent number 

Citations Received - the number of citations a patent receives from later patents.  

Citations Made – the number of citations a patent makes to previous patents.  

Country – the country where the first inventor of the innovation resides.  

Technological Category – the USPTO classifies the granted patents into a 3-digit 

patent class. In this dataset, this class system is aggregated into six technological fields:  

1. Chemical (excluding drugs) 

2. Computer and  Communications 

3. Drugs and Medical 

4. Electrical and Electronics 

5. Mechanical 

6. Others (Agriculture, Fixtures, Furniture, etc)   

Grant Date – the data a patent is granted at the USPTO  

Grant Year – the year a patent is granted at the patent USPTO 

Application Year – the year an application is lodged at the USPTO 

Assignee Type - the USPTO classifies the patent assignee into seven classes: 

1. Unassigned - inventors who have yet to assign the right of their invention. 

2. US non-Government organizations 

3. Non-US non-Government organizations 

4. US individuals 

5. Non-US individuals 

6. US Federal Government 

7. Non-US Government  

                                                                                                                            
13 The citations retrieval only started with patent granted from 1975 onwards. Citations 
information on pre-1975 patents could not be retrieved.       
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Generality - the extent to which a patented innovation spreads through and contributes 

to the development of patented innovations in a range of different technological fields.  

 

Originality - the extent to which a patented innovation is broad in its scope in the sense 

that the innovation is based on knowledge coming from patented innovations belonging 

to a wide range of technological fields. 
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6 The Value of Patented Innovations 

 

This chapter is the starting point for the analysis of the value of patented innovations. 

The analysis is based on a methodology first proposed in Trajtenberg (2001). To ensure 

full comprehension of the methodology and use of the patent citation data, the chapter 

replicates the original econometric estimations. This is intended to set the scene and 

provide context for the analysis carried out in Chapter 7.       

 

6.1 Overview of Trajtenberg (2001) 

 
 

Trajtenberg (2001) appears to be the first to provide a comprehensive and systematic 

econometric analysis of the technological value embodied in patented innovations 

across countries and time, as approximated by patent citations. 

 
Trajtenberg’s objective was analysis of the performance of Israeli inventive output. 

Israel is a small open economy with a strong reputation for significant and impressive 

inventive capabilities. It is widely recognised that if a second Silicon Valley exist, 

Israel is its base.  

 

Trajtenberg used USPTO granted patents as the indicator for successful innovation and 

their received citations as a proxy for value. In an attempt to develop an inventive 

benchmark of performance, Trajtenberg constructed two control groups. The first group 

included a 1/72 random sample of all US originated patents in that period (US Group). 

The second group included Finland, New Zealand, Spain and Ireland. These four 

countries were selected according to their GDP per capita figures and population size. 

In the 1990s these countries were broadly comparable to the Israeli figures. Patents 
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originating in these countries were aggregated into one group (the Reference Group). 

The period analysed ranged from 1965 to 1996.14  

 

Three sets of dummy variables were created. The first set was country dummies, which 

included a US dummy and a Reference dummy. The dummy for Israel was omitted to 

avoid a dummy trap and was represented by the intercept term. The second set of 

dummies were Technology Type dummies which were constructed in order to control 

for the possibility that patents of different technologies would have different citation 

tendencies. The technological dummies included: chemical (‘Chemical’), electrical & 

electronics (‘Elec’), computers & communication (‘Cmpcmm’), mechanical, drugs & 

medical (‘Mech’), and other15 (‘Other’). ‘Other’ was omitted to avoid the dummy trap. 

The third set of dummies were Grant Year dummies, constructed to control for time 

effect.    

 

The estimation method was linear OLS regression, where the number of citations 

received by each patent was regressed on the three set of dummies. The estimated 

coefficients for the country dummies describe the average frequency with which patents 

originating in a specific country are cited, while controlling for the age and 

technological field of patents. As the number of patent citations is indicative of 

technological and economic ‘value’, the regression estimation showed the relative value 

of patents.  Therefore, the division of the average frequency with which patents 

originating in country A are cited, divided by the average frequency with which patents 

originating in country B are cited, yields the relative strength of country A’s patents 

versus country B’s patents.  

                                                 
14 The Israeli patents extend to 1998.  
15 ‘Other’ included patents belonging to various miscellaneous industries such as 
Agriculture, Food, Apparel & Textile, House Fixtures, Earth working & Wells. 
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Table 1 shows Trajtenberg’s results. All the estimated parameters were statistically 

significant. By comparing the country dummies and intercept term, the results showed 

the US has the ‘best’ patents (~3.7 average citations), then Israel (~3 average citations) 

followed by the reference countries of New Zealand, Spain, Finland and Ireland (~2.3 

average citations). Based on these estimates, Trajtenberg concluded that US originated 

patents were about 25% better than Israeli patents, while Israeli patents were about 25% 

better than Reference country patents. 

   

      Table 1 Trajtenberg (2001) regression estimates (page 383) 

 

 

 

6.2 Replication of the Results  
 

I replicate Trajtenberg’s (2001) to set benchmark for later work. The replication results 

are presented as Table 2. 

 
       Table 2 Replication of Trajtenberg Results 

US 0.865 

  (7.45)** 

Reference -1.169 

  (9.36)** 

Chemical 0.481 

  (4.23)** 

Cmpcmm 4.811 
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  (30.89)** 

Drgsmed 3.058 

  (19.95)** 

Elec 0.775 

  (6.30)** 

Mech -0.315 

  (2.87)** 

Constant 4.198 

  (34.72)** 

GYEAR2 F(33,37393)=67.098 

        Observations 37434 
        R-squared               0.09 
        Absolute value of t statistics in parentheses  
        * significant at 5%; ** significant at 1% 

 
 
All the estimates are statistically significant and their signs match the original 

regression. Nevertheless, the values of the coefficients differ somewhat from the 

original estimations, although they do not fundamentally overturn the original results. 

According to the replicated coefficients, US patents are 20.6% better than Israeli 

patents as US patents receive ~5 citations on average whereas Israeli patents receive 

~4.2 citations on average, and Israeli patents remain significantly better than patents 

originating in the reference countries as Israeli patents receive ~4.2 citations on average 

whereas reference patents receive ~3 citations on average. A plausible explanation for 

the different coefficients estimated is the use of a larger dataset in replication regression 

than the one used in Trajtenberg (2001) as the Hall et al. (2001) data, which is the one 

Trajtenberg (2001) is primarily relying on, would have been a work in progress at the 

time the original regression was estimated. In addition, the sampling technique used in 

Trajtenberg (2001) is not reported and the author could have quite possibly followed a 

stratified sampling technique, which would have led to different results.16  

                                                 
16 Unfortunately, the original regression code no longer exists.  
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6.3 Discussion 

 
 
Trajtenberg’s (2001) approach is valuable and meaningful. Under some very sensible 

assumptions of the importance of citations as a value indicator, the OLS analysis 

provides a clear measure of the average value of patented innovations.  

 

Nevertheless, I suggest that Trajtenberg’s analysis could be very sensitive to a number 

of important factors that appear to have been overlooked. Firstly, as patent citations are 

not a normally distributed variable, OLS analysis may not provide robust results. 

Secondly, although aggregation of patents into a reference group may enhance the 

statistical power of the model, it could potentially lead to misspecified estimation. 

Thirdly, the nature of the citations data and institutional factors at the USPTO office 

may induce the possibility of a break in the data, which require a thorough empirical 

examination. Trajtenberg, arbitrarily chooses the year 1986 to divide the data into two 

samples to without any explanation or ex-ante theoretical justification and re-estimates 

the model. Although Trajtenberg’s re-estimation results were primarily consistent with 

his original estimates, I suggest that this approach for testing for the robustness of the 

estimates over time is simplistic, atheoretical and does not accurately capture the 

possibility of breaks. Fourthly, unweighted patent citation could contain a considerable 

amount of noise (Jaffe et al. 2000) and would therefore require careful examination of 

the results. These are the topics of the next chapter.  
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7 Tests of Robustness  

The objective of the chapter is to build on Trajtenberg’s original methodology by 

testing for the robustness of the estimations. Chapter 6 suggested that the OLS analysis, 

although very valuable, could be sensitive to the statistical properties of the dependent 

variable, the structure of the underlying model, breakdates in the data and noise in 

citations counts. This chapter discusses and tests these factors in detail. The results 

indicate that these factors, if overlooked, may lead to inappropriate and/or invalid 

econometric estimations. 

 

7.1 The Statistical Nature of the Dependent Variable 

 

The first test of robustness stems from the statistical characteristics of patent citations. 

The analysis of patents quality carried out in Trajtenberg (2001) and replicated in 

Chapter 6 was based on an Ordinary Least Squares (OLS) model. The OLS model is a 

normal linear regression and is applied when the variable of interest, the dependent 

variable, is continuous and normally distributed around the mean. When the dependent 

variable fails to satisfy the above statistical characteristics, the OLS predicted outcomes 

could lead to inefficient, inconsistent and biased estimations (Long 1997).   

 

The number of patent citations received is not a normally distributed variable, see 

Figure 1. The histogram clearly indicates that citations have an extremely skewed tail. 

The variable has a variance of 53.95811, skewness of 7.768 and a Kurtosis value of 

291.6572.  
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Patent citations represent the occurrence of the event that a granted patent cites an 

existing patent in a fixed period. When this event occurs, a citation is added to the stock 

of citations of a patent. Thus, patent citations are the counts of such an event. This 

implies that theoretically, patent citations should be analysed using Count Data models, 

which can explicitly model the nonnegative characteristic of citations. I therefore test 

whether Trajtenberg’s OLS predictions are robust and consistent when carried out in 

the context of Count Data model. 
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Figure 1 The histogram of the number of citations received by patents.  

 

7.1.1 Count Data Models 

Count data models are now widely used in microeconometrics.17 In many micro 

applications, the underlying data take non-negative random integer values and follow a 

count data process that necessitates the use of specialised estimation techniques. The 

two 1984 papers by Gourieroux, Monfort and Trognon, and Hausman, Hall, and 

Griliches provided the early groundbreaking methodological techniques for the analysis 

of micro data of this kind. Cameron and Trivedi (1986), Winkelmann (1994), Long 

(1997) and Cameron and Trivedi (1998) provide a good overview of the standard 

                                                 
17 See, for example, the special issue of the Journal of Applied Econometrics (1997) that is 
devoted to the analysis and applications of count models in economics. 
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models available for the regression analysis of count data. In the presentation and 

analysis of this topic, I shall follow their texts closely.  

 

The Poisson regression model appears to be the most frequently referred to count data 

model. The model is based on a Poisson distribution. The distribution describes the 

probability associated with the number of events occurring in a specific time interval 

and is derived from the stochastic Poisson process, which assumes the independence in 

the occurrence of the underlying events.   

 

Let y be the variable of interest. In our case, y is a random variable indicating the 

number of citations a patent receives from subsequent patents over time. Patent 

citations follow a Poisson distribution if  

 

exp( )
Pr( )

!

y

y
y

µ µ
µ

−
=    for y=0,1,2…                 

 

This equation implies that the probability of a certain citation count depends on the 

parameter µ , the mean number of times a patent is cited per unit of time, and y, the 

citation count of interest. As the mean citations increase, the probability of low citation 

counts decreases and the distribution shifts to the right and approaches the normal 

distribution. The Poisson distribution assumes equidispersion of the mean and variance, 

which imposes equality of the two: var( )y µ= .                                                               

 

The Poisson Regression Model estimates the expected value of a dependent variable 

given a number of independent variables: ( ) exp( )i i i iE y x xµ β= = . The variations in 
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the estimations of µ are then due to variations in the values of the explanatory 

variables
i

x . This property is known as the observed heterogeneity.  

 

The estimated 
i

µ  provides the expected number of citations per patent conditional on 

certain characteristics that are of interest. This conditional mean is then used to find the 

probability of various citation counts, y: 
exp( )

Pr( )
!

iy

i i
i i

i

y x
y

µ µ−
= . 

 

Frequently, the Poisson distribution does not model the economic data well. The 

common explanation is that the strong assumption that all heterogeneity in the 

conditional mean of the variable of interest is observed is invalid (Long 1997). Under a 

Poisson regression model, the variation of µ is the result of different values of the 

explanatory variables. When analysing the probability of the occurrence of an event, 

the estimated rate at which the event occurs ( µ ) would be identical for all observations 

conditional on similarity in the set and values of the explanatory variables. The failure 

to count the unobserved heterogeneity results in inequality between the conditional 

mean and the conditional variance, which violates the assumption underpinning the 

Poisson model and hinders its validity.  

 

When the conditional variance exceeds the conditional mean, the data is said to be 

overdispersed, whereas if the conditional mean exceeds the conditional variance, the 

data is said to be underdispersed. The most common observation is an overdispersion in 

the data. When this occurs the standard errors of the Poisson regression estimates are 

biased downwards with very small p-values (Cameron and Trivedi, 1986). The 

Negative Binomial model is the common model used when overdispersion 
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characterises the data of interest.18 The model accounts for the unobserved 

heterogeneity that could not be explained by the regressors as it adds a random error 

term to the regression structure. The estimated conditional mean then becomes: 

exp( ) exp( )
i i i i i i i

xµ β ε µ ε µ ε= + = =%  

The expected value of the error term is assumed to equal one, which implies that the 

expected value of the 
i

µ%  still equals
i

µ .  

( ) ( ) ( )
i i i i i i

E E Eµ µ δ µ δ µ= = =%    

However, the conditional variance is allowed to differ and becomes: 

2 2var( ) (1 ) exp( ) [exp( )]i i i i i i i iy x x xµ αµ β α β µ αµ′ ′= + = + = +  

where α is the variance of the error term and is known as the dispersion parameter. 

 

The equation above implies that the Negative Binomial Model is a generalisation of the 

Poisson model. That is, when 0α =  the Negative Binomial model is reduced to a 

Poisson model. Interested readers can refer to Long (1998) and Cameron and Trivedi 

(1998) for further discussion. 

7.1.2 Estimation 

 
In order to compare the Negative Binomial with the Poisson model, I fit the citations 

predictions of the two distributions against the actual citations received in the period, 

see Figure 2. The graph clearly indicates that the fitted Poisson model over-predicts the 

counts four, five, six, seven and eight and under-predicts zeros, ones and twos, whereas 

the Negative Binomial model fits the data much more accurately, see Figure 2. The 

estimated overdispersion parameter is 1.226. I therefore choose the Negative Binomial 

Model to estimate Trajtenberg (2001) regression, Table 3. 

                                                 
18 For a model that deal with underdispersion, see Cameron and Johansson (1997). 
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Figure 2 Comparison of the Poisson and Negative Binomial distributions and the 

observed distribution of citations received.   

 

The computation and interpretation of the intercept term differs between OLS and 

Count Data models. Whereas under the OLS, the intercept is the value of the population 

regression line when all regressors are equal to zero and thus represents the relative 

quality of Israeli patents, the nonlinearity of Count Data models implies that the 

intercept term cannot be interpreted in the same way. I therefore run three separate 

regressions, identical in structure and data to OLS, but include only two country 

dummies in each regression. This allows straightforward inspection of the relative 

performance of each of the examined country dummies and a test for the robustness of 

the original predictions. The first regression is for the US vis-à-vis Israel, the second 

regression is for US vis-à-vis Reference country, the third regression is for Israel vis-à-

vis Reference country.19  

                                                 
19The year dummies are included and are statistically significant but are not shown.  
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     Table 3 Negative Binomial Regression 

  1 2 3 
US 0.407 0.163   

  (29.54)**   (9.42)** 

e^b 1.5026 1.1742   

 % 50% 18%   

Israel 0.244  -0.163 

  (12.95)**    (9.42)** 

e^b 1.2797  0.8516 

 % 28%   -15% 

reference   -0.244 -0.407 

    (12.95)**  (29.54)** 

e^b   0.7815 0.6655 

 %   -22% -33% 

chemical 0.099      0.099 0.099 

  (5.78)**   (5.78)**    (5.78)** 

cmpcmm 0.862 0.862 0.862 

  (36.46)** (36.46)**  (36.46)** 

drgsmed 0.518 0.518 0.518 

  (22.59)** (22.59)**  (22.59)** 

elec 0.157 0.157 0.157 

  (8.41)**   (8.41)**    (8.41)** 

mech -0.072 -0.072 -0.072 

  (4.29)**   (4.29)**    (4.29)** 

Constant -1.449 -1.205 -1.042 

  (21.19)** (18.21)**  (15.30)** 

Observations 37434 37434 37434 

R^2 0.0352 0.0352 0.0352 

Absolute value of z statistics in parentheses   

* significant at 5%; ** significant at 1%    

e^b = exp(b) = factor change in expected count for unit 
increase in X 

                               % = percent change in expected count for unit increase in X  

 

7.1.3 Interpretation of the Results 

 
The estimated coefficients require a different interpretation compared to the 

coefficients estimated under the linear OLS model. Whereas under the OLS analysis, 

the patent inventive technological performance was obtained directly by the country 

coefficient, the patent inventive technological performance under count data analysis 

requires further computations of the estimated country dummy coefficients.  
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The count data coefficients provide the factor change in the expected patent citations 

for patented invention originating in different countries. If ω  represent the country of 

interest and ( , )kE y x x  represents all the other variables in the regression model, then 

( , )

( , )

k

k

E y x x

E y x x

ω+
 is the factor increase or decrease in expected patent citation when this 

specific country’s patents are tested. The factor change estimations are derived by 

taking the exponential value of the country dummy, while holding all other variables in 

the model constant:
( , )

exp
( , )

k

k

k

E y x x

E y x x

ω
β ω

+
= . 

 

The factor change estimations are interesting as they provide indications of the relative 

strength of the patented inventions in a specific country vis-à-vis other analysed 

countries. A factor change of the country’s dummy that is greater than one implies that 

the change in the quantity of expected citations is positive for that country, whereas if it 

is less than one the change is negative. Note that the factor change is constrained to be 

positive as we are taking the exponential value of the dummy coefficient. The factor 

change estimations can also be then used to identify the percentage change of the 

expected patent citations for patented invention originating in specific countries. The 

percentage change is
( , ) ( , )

100*
( , )

k k

k

E y x x E y x x

E y x x

ω+ −
 which is100*(exp 1)

k
β ω − .  

7.1.4 Results  

 
All the parameters estimated via the Negative Binomial model are statistically 

significant and their sign match the original Trajtenberg results, see Table 3. The 

Negative Binomial analysis of citation reveals that the OLS estimates are robust to the 

statistical nature of patent citations. The ‘best’ patented innovations according to the 

Negative Binomial model remain US originated ones. Regression 1 shows that the US 
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dummy has a factor change of 1.50 whereas the Israel dummy is slightly behind with a 

1.27 factor change. This implies that given a patent is invented in the US, the expected 

citation it receives would increase by a factor 1.50, corresponding to a 50% rise in 

citation stock, whereas if it is an Israeli patent, the expected citations would increase by 

a factor of 1.27, corresponding to a 27% increase.  

 

The Negative Binomial estimations also support the advantage of Israeli patents over 

Reference country patents. Regression 3 shows that the Israeli dummy has a factor 

change of 0.85 whereas the reference dummy has a 0.66 factor change. This implies 

that given a patent is originated in Israel, the expected citation it receives decreases by a 

factor of 0.85, whereas if it originates in a Reference country, the expected citations 

would decrease by a factor of 0.66. 

7.1.5 Summary  

 

The results indicate that Count Data estimates are similar to the ones by OLS, as the 

Negative Binomial regression does not fundamentally overturn the OLS results. Both 

regressions point to a strong relative advantage of US originated patents vis-à-vis the 

other country patents, and a relative advantage of Israeli patents vis-à-vis the Reference 

patents. A plausible explanation for this finding is that the large number of the citation 

observations20 pushes the count variable towards a continuous variable which can be 

analysed in the context of a linear regression. 

 

                                                 
20 Reaching almost 40,000 observations. 
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7.2 Breakdates in the Data  

 
The second test of robustness stems from the possibility of breakdates in the citations 

data. If breaks exist, they may affect the robustness of model parameters and the 

predictions derived. The current literature on applied patent citations appears to neglect 

this matter.21 

 

7.2.1 Theoretical Explanation for the Existence of Breaks 

 

 I review material on structural adjustments that have occurred at the USPTO office and 

documentation on the retrieval of the Hall et al. (2001) data. The material reveals that 

the existence of breaks is highly possible. There are three reasons for the possibility of 

a break.  

 

7.2.1.1 Truncation Effect 

 

The first reason for a break is the truncation effect. The truncation effect is inherent in 

citation analysis and occurs when the citation data is collected. Receiving a citation is a 

lengthy process. The longer the patent exposure is, the likelier it is to be cited. As the 

Hall et al. (2001) data was collected in 1999, patents granted in 1998 (for example) 

would have had only a one year exposure, which would severely affect their citations 

stock. Research shows that citations still arrive even after ten years of exposure, and 

many years pass until the number of citations received actually matures (Hall et al. 

2001). The truncation effect is apparent in Figure 3, which sorts the average number of 

patent citations received according to the patent grant year. The graph shows a drastic 

                                                 
21 For example, Trajtenberg (2001) tested for the robustness of the results over time but did 
so by just arbitrarily choosing a year to divide the data without any explanation or ex-ante 
theoretical justification for dividing the data.  Information motivating the possibility of a 
break was not provided or suggested. 
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decline in the average number of citations as the patent grant year approaches the data 

collection date.  
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Figure 3 The Average Number of Citations Received 

 

The most common approach to dealing with patent citation truncation in the literature is 

to “take quite a wide time window to get significance coverage of forward citations” 

(Hall et al. 2001, p. 17). This is the reason grant year dummies were added in the 

Trajtenberg (2001) analysis.  

7.2.1.2 Patent Explosion  

 
 
The second reason for a break in the data is patent explosion. Figure 4 shows the 

number of patents granted at the USPTO from 1963 to 1999. The graph shows that the 

number of patents granted more than tripled in that period. From 45,000 in 1963, they 

tripled to over 150,000 in 1999. 
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Figure 4 Patents granted in the USPTO from 1963 to 1999 

 

The major jump in patent grants occurs in the mid eighties. The reasons for the 

acceleration in patenting (patent explosion) are US Congress adjustments to the US 

patent system. Jaffe and Lerner’s (2004) recent award winning book documents these 

changes and their harmful consequences on the quality of US granted patents. The main 

adjustment occurs in 1982. Prior to 1982, patent disputes were settled in a district court. 

These courts differed in their interpretation of patent law, leading to considerable 

consequences on their rulings. This led to the development of perceived friendly and 

less friendly courts, whereby firms would strategically decide in which court to lodge 

the claim, resulting in a severe undermining of the US Patent Office. In 1982, US 

Congress established a centralised patent appeal court, the Court of Appeals for the 

Federal Circuit (CAFC), in an attempt to restore order in the chaotic patent system and 

to strengthen patent holders rights. The CAFC  

1. Increased the incentive to patent by firstly making certain new technologies 

patentable 

2. Lowered patent grant standards  

3. Made patent rights more durable 
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The result was a significant increase in patent applications and grants. The Patent 

Office struggled to find qualified and knowledgeable patent examiners that could deal 

with the dramatic increase in patents applications and the new technologies that they 

cover.  

 

A few years after introducing the CAFC, Congress converted the USPTO from an 

agency that runs on tax revenues to a ‘profit-centre’ funded by fees. It is commonly 

believed that the CAFC and the changes in tax structure had led to a dramatic increase 

in the grant of trivially obvious and/or dubious patents (Jaffe and Lerner 2004).  

 

The implication of the increase of patent grants on patent citation is very simple. The 

higher the number of granted patents, the more patents that are cited. This implies that 

patents granted after the Congress adjustments may have higher citation tendencies 

simply because there are more patents to cite. The increase in citations made by each 

newly-granted patent is apparent in Figure 5, which sorts the average number of patent 

citations made according to when the citing patent was granted. A strong positive trend 

is visible, which could suggest that there exists a point in time where the average 

number of citations received by each patent had shifted due to the Congress 

adjustments discussed in above. If such a break in citations received exists and is due to 

these Congress adjustments, it is likely to occur prior to the introduction of the 

adjustments as citations go back in time.  

7.2.1.3 Citations Retrieval   

 
The third reason for a break in the data is due to data collection. The Hall et al. (2001) 

data begins the identification of citations made by each new granted patent only for 

1975 granted patents onwards. Citations made by patents granted prior to 1975 could 
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not be retrieved as the USPTO did not store computerised patent file information in that 

period. The result is evident in Figure 3 that clearly shows a steep rise in the number of 

citations received after 1975. Patents granted prior to 1975 still receive citations from 

patents granted after 1975 but not from patents granted prior to 1975.    

 

Furthermore, the computerisation of the USPTO patent file process in the 1970s and 

1980s, would have made the search for ‘prior art’ by examiners much easier and more 

efficient, which is another reason for the increase in citations made by each new-

granted patent apparent in Figure 5 and the possibility of a break in the data.  
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Figure 5 Average Number of Citations Made to Previous Patents 

 
 

7.2.2 Detection of Breakdates 

 

The detection of breakdates in the data requires the use of an econometric test. 

Arbitrarily dividing the data into sub-periods according to some hypothesized break 

period, although it might be practical, is too simplistic in this case as we do not have 

prior knowledge on the exact date the breaks occur.22 Since the distribution of patent 

citations is sensitive to the period and size of the sample analysed, I propose the use of 

                                                 
22  See Hansen (2001) for a discussion and an example of the pervasiveness of breaks in 
economic data.  
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a non-parametric approach for the detection of breaks, which avoids making 

assumptions about the distribution of the underlying variable. 

7.2.2.1 Regression Tree  

 
I suggest the use of a Regression Tree test as the non-parametric procedure for the 

detection of breaks. The development of Regression Trees goes back to Breiman et al. 

(1984). The application for dating structural break whose dates of occurrence are 

unknown was proposed in Cappelli and Reale (2005). In the presentation of this 

technique, I shall follow their approach closely.  

 

Regression trees are a useful technique to discover and explore hidden information that 

might exist in large datasets. They can be used to predict the values of the dependent 

variable for a range of structured relationships observed in the data. Their strength is 

their relative methodological simplicity in implementing least squares partitions and 

their engaging visual presentation of the partition process, which provides a 

hierarchical representation of the data, allowing straightforward inspection for 

estimation errors.  

 

Regression trees make use of a least squares methodology in minimising the squared 

errors between the observation and their mean value. The construction of a regression 

tree often is achieved with the division of the data into a ‘training set’, which is used to 

construct the regression tree, and a validation set that is used to trim the tree. 

 

Consider a random vector ( , )
i i

Y X consisting of n  cases ( , )
n n

Y X . Let ( )f X  be the 

predictor of the dependent variable, Y, for given values of the independent variable, X. 

Under the conditional expectations of the dependent variable, given the measurement 
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vector ( )E Y X x= , 2( ) ( ( ))SS h E Y f X= − describes the measurement error or the mean 

squared errors implied by ( )f X  under the Least Squares Regression Trees (LSTR). 

The LSTR operation fits a group mean which represents the value of ( )f X that 

minimises the sum of squares of all Ys for the n cases that fall under this group. 

Breiman et al. (1984) provide a detailed discussion on the properties of this process. 

 

The data splitting follows a recursive process. A split is a binary question which 

induces partition of the Y observations into a left descendent if, for example, 

( )
ij

x g< or into a right descendent if ( )
ij

x g≥ , for all of g  ranging in the domain of 
i

x . 

The best split of the data is the one that leads to maximisation in the reduction of the 

deviance of the sum of squares. The best split, selected by the algorithm, is the one that 

leads to the minimisation of the split deviance and hence maximisation of the difference 

between the sum of squares at node, h ( ( ))SS h  and the within-group deviance of the 

right and left descendents: ( ) ( )
r l

SS h SS h+ .Formally, the algorithm iteratively splits the 

data to obtain maximisation of ( , )SS tµ∆ :  ( , ) ( ) [ ( ) ( )]
i r

SS t SS h SS h SS hµ∆ = − +                    

so that ( *, ) max ( , )SS t SS t
µ

µ µ
∈Ψ

∆ = ∆ , where the set of premised splits is Ψ . 

 

The result is recursive partition of the data until no further gain of 

( , ) ( ) [ ( ) ( )]
i r

SS t SS h SS h SS hµ∆ = − + can be achieved. At this stage, overfitting the data 

into a large number of nodes is a common difficulty, which is avoided by following a 

pruning method that trims the tree based on a measurement criterion such as the 

popular AIC, BIC (Schwarz, 1978) or the RIC criteria based on Shi and Tsai (2002). 

Alternatively, a predetermined rule can be followed which limits the number of attained 
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nodes, using a condition that stops the algorithm from further partitioning the data 

when specific conditions are met.   

 

Cappelli and Reale (2005) show that if as a covariate we use a strictly ascending or 

descending frequency of numbers, then the Regression Tree would identify structural 

breaks on the mean. Regression Trees provide a number of advantages over other 

existing structural breaks tests, such as the Chow and the Bai and Perron tests. In the 

case of the Chow test, the Regression Tree can detect large number of breaks whereas 

the Chow test can is limited to one break at a time. Furthermore, the Chow test requires 

a predetermined break date to carryout the test, whereas Regression Tree does not. In 

the case of the Bai and Perron test, Regression Trees are much quicker in dealing with 

large datasets and do not show tendencies to underestimate the number of breaks 

whereas the Bai and Perron test does (Rea et al. 2006)   

7.2.2.2 Results 

 
Using the Regression Trees methodology presented in previous Chapter, I test whether 

structural breaks exist in the data used by Trajtenberg (2001).23 The number of citations 

received is the variable of interest and the tree algorithm is computed to identify all 

admissible splits in citations count during that period, see Figure 6. 

 

The values above the node indicate the split point and values beneath the terminal node 

indicate the mean number of citations received in that specific sub-period. The tree 

identifies two decision nodes, indicating the occurrence of two breaks and three 

regimes. The first is the pre-1971 period, the second is the 1972 to 1993 period and the 

third is post-1993 period.  

                                                 
23 I use the tree package in the R statistical computation software to estimate the tree.    
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The 1993 break is easy to explain. It is solely due to the truncation effect as indicated 

by the time the break occurs and the value underneath the terminal node. The post-1993 

patents receive less than three citations on average, lower than the citations expected 

under the two other regimes. Patents granted in 1995 would have had less exposure 

time compared to a 1985 patents, and thus, the lower citations expected.  

 

The 1971 break is more curious, as it occurs prior to the 1982 adjustments and prior to 

the beginning of citation count in 1975. It is quite possible that the break captures both 

effects since the two are reinforcing each other. The 1982 adjustments led to a patent 

explosion and the rise of the average citations made by post-1982 patents and the 

consequent rise in citations received by pre-1982 patents. The tree suggests that the rise 

of citations received goes back to 1972. The computerisation changes of 1975 would 

have contributed and accelerated the high citations tendency as it became easier to 

search for ‘prior-art’. These two effects work in same direction and are picked up by 

the tree as significantly increasing the citation tendencies during the 1972 to 1993 

period. As expected, the 1972 to 1993 period has the highest citations received, 6.17 

per patent.  
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Figure 6 Regression Tree of the number of citations received partitioned across grant years. Values 

above the node indicate the split point and values beneath the terminal node indicate the mean 

number of citations. 

 
The value of the pre-1971 terminal node is interesting. Although the count of citations 

only began in 1975, these period patents receive 3.9 citations on average, which are 

significantly higher than the ~ 2.7 citations during the truncation bias period. This 

confirms that citation is a lengthy process with significant time lags. Although it is 

difficult to know the precise cause for the 1970 break, the discussion in Jaffe and 

Lerner (2004) and data computation procedures would suggest that it is likely to be due 

to changes in the Patent Office. Beyond that, we cannot tell the extent of the 1982 

effects on as opposed to the 1975 data computation effects on the break. The only way 

to identify whether the breaks reflect a real transformation in the data is to re-estimate 

the model for each period.  
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7.2.2.3 The Implication of the Breaks on the 

Estimations 

I test the impact of the breaks on Trajtenberg (2001) estimations by running three OLS 

regressions, one for each sub period, Table 4. The results show that the Trajtenberg 

(2001) estimations are highly unstable across periods. The expected citations 

significantly change across three regimes, see Table 4. Only the 1972 to 1993 period 

(the majority of the data) resembles the original results. The estimates are all 

statistically significant and their sign match the original regression. However, for the 

pre-1971 period, the reference country patents are on par with Israeli patents as the 

reference dummy is statistically insignificant, which different from the results obtained 

in Trajtenberg (2001). Furthermore, in pre-1971 regression many of technological 

dummies become statistically insignificant and the remaining significant technological 

dummies change their signs compared to the original regression.  

 

In the post-1993 period, the citations are highly truncated as the average citations 

estimated by the country dummies is significantly lower than in is suggested in the 

original Trajtenberg (2001) regression. The estimations in Table 4 therefore imply that 

the Trajtenberg (2001) results are not robust to the presence of breaks. 

                          Table 4 Three OLS regressions, one for each sub period. 

  <=1971 1972- 1993      >=1994 

US 1.163 0.843 0.642

       (3.92)** (5.61)**          (4.26)** 

reference 0.074 -1.358 -0.737

  -0.22             (8.43)**          (4.67)** 

chemical -0.207 0.723 0.015

  -1.08             (4.84)** -0.09

cmpcmm -0.405 6.103 3.677

  -1.24          (26.92)**        (21.48)** 

drgsmed 2.017 4.25 1.31

       (4.76)**          (20.67)**          (7.25)** 

elec -0.835 1.048 0.908

  (4.04)**             (6.26)**           (5.19)** 

mech -0.542 -0.331 0.042
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  (2.95)** (2.28)* -0.24

Constant 3.142 5.148 1.667

     (10.05)**            (32.21)**          (11.10)** 

Observations 6034 24623 6777

R-squared 0.02 0.07 0.15

                          Absolute value of t statistics in parentheses    
                          * significant at 5%; ** significant at 1% 
 

 
                         Table 5 Expected Citations 

  <=1971 1972- 1993      >=1994 
US 4.305 5.991 2.309 

Israel 3.142 5.148 1.667 

Reference 3.216* 3.79 0.93 

                         * insignificant at 5% 

7.3 The Structure of the Model Estimated  

 
The third robustness test examines the structural form of the Trajtenberg regression 

model. The aggregation of patents originating in Finland, Ireland, Spain and New 

Zealand into one control group, instead of four independent dummy regressors, could 

lead to a significant loss of information and thus, to a loss of accuracy of the results. It 

is therefore imperative to test whether the aggregation of the dummies yields robust and 

consistent results. Treating the Trajtenberg aggregated reference dummy model as a 

restricted model if nested within the unrestricted disaggregated model, hence a log 

likelihood ratio test could be used to test for the effects of aggregation. As the 

aggregated model imposes that the patented innovations originate in one ‘big’ country, 

it is a simpler version of the disaggregated model and typically would have a lower 

maximum likelihood value. The log likelihood test asks whether the reduction in 

likelihood value is statistically significant and is carried out by looking at the difference 

between the log likelihood values of the restricted and unrestricted models. If 

2( )
Restricted Unrestricted

V V− − , where 
Restricted

V is the log likelihood value of the restricted 

model and 
Unrestricted

V  is the log likelihood value of the unrestricted model, is greater 

than the 2χ  value (with n degrees of freedom, where n is equal to the difference in the 
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number of free coefficients estimated in each case) then the null is rejected and the 

unrestricted model is be said to be significantly better than the restricted model.  

 

Table 6 shows the results of the unrestricted regression.24 With the exception of the 

Irish dummy, all the country dummies are statistically significant and their signs match 

Trajtenberg (2001) estimated parameters. However, the size of the coefficients varies 

significantly across countries. US patented innovations remain the ‘best’ with a ~5 

averaged citations, while Israel maintains its advantage over the remaining countries 

with 4.2 averaged citations, with the exception of Ireland.  

 

The insignificance of the Irish dummy is picked by the log ratio test., which strongly 

rejects the null hypothesis. The computed log ratio value is 63.96, which under t-

statistics of three degrees of freedom at the five percent significance level corresponds 

to a P-Value of 0.000 and the rejection of the test. This implies that the aggregation of 

country dummies leads to a significant loss of information, which therefore suggests 

that Trajtenberg’s (2001) regression structure does not capture the full information 

contained in the data. That is, aggregation of country dummies into one ‘big’ country 

results in a significant loss of valuable information for the analysis.  

                                                Table 6 Results of the unrestricted regression 

US 0.855 

    (7.37)** 

NZ -1.2 

    (4.98)** 

FI -0.969 

    (6.74)** 

ES -1.919 

  (11.28)** 

IE 0.016 

  -0.06 

Constant 4.231 

  (34.93)** 

                                                 
24 The year and technology type are included but are not shown.  
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Observations 37434 

R-squared 0.09 
                                                    Absolute value of t statistics in parentheses  
                                                    * significant at 5%; ** significant at 1% 
 

7.4 The Noise in Patent Citations  

 
The fourth test of robustness is more a test of accuracy. It stems from the possibility 

that citation count may contain a large degree of noise. Just like in the case of 

bibliometric analysis of scientific citations whereby the importance of an academic 

paper is determined by the number of citations it receives and the importance of the 

citing paper (e.g. the importance of journal where the citing paper is published), it is 

valuable to test the accuracy of the estimates when citations are weighted according to 

some ‘value’ index. To do so, I compare Trajtenberg’s estimations to two independent 

patent citations-based ‘value’ measures, developed and tested by Henderson et al. 

(1997).25 This is the first direct comparison of regression results estimated with 

citations count dependent variable against citations-weighted dependent variable. The 

estimation procedure is OLS regression. 

 

7.4.1 Independent Citation-Based Value Indexes  

 
The first ‘value’ measure is the Generality Index, which indicates the extent to which 

an innovation spreads through and contributes to the development of innovations in a 

range of different technological fields.  

 

The index is computed according to the Henderson et al. (1997) F/Generality 

computation and is a Herfindahl index of concentration. 

Let

2

1

1
Ni

ik
i

k i

NCITING
Generality

NCITING=

 
= −  

 
∑ , where NCITING  is the number of citations a 

                                                 
25 The two measures are positively correlated with the citations frequencies.  
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patent receives, k  is the index of patent classes, 
i

N is the number of different classes. 

This implies that ik

i

NCITING

NCITING

 
 
 

 is the percentage of citations received by patent i that 

belong to patent class k, out of 
i

N  patent classes. The 
i

N patent class is based on a 3-

digit patent class, consists of 417 classifications.26 

 

The Generality index takes values between zero and one, where low values represent 

high concentration and consequently low patent Generality. If many subsequent patents 

that belong to the same technological class as the cited patent cite the patent, the 

Generality measure will be low. Conversely, if many patents from a wide range of 

fields cite the patent the Generality index will be high. 

 

The second ‘value’ measure is the Originality Index, which is the extent to which an 

innovation is broad in its scope in the sense that the innovation is based on knowledge 

coming from innovations from a wide range of technological fields. The Originality 

index is by the Henderson et al. (1997) B/Originality computation. The Originality 

index is a Herfindahl index of concentration. It is similar in computation to the 

Generality measure but is based on the number of class a patent cites rather than 

receives. Therefore, 0 1
i

ORIGINAL≤ ≥ , where higher values of originality imply 

broader innovations as they cite many previous innovations from a wide range of 

technological fields.  

7.4.1.1 Adjusting for a Bias in the Indexes 

The computation of the Generality and Originality indexes are based on the 

concentration of citations made or received by patents. Hall (2000) highlights the 

possibility of a bias in these two indexes due to the way the data are counted. The 

                                                 
26 This is based on the 1999 patent classification. 
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concern arises because patents with zero or one citations, although having a non-zero 

probability of receiving citations in subsequent years, are removed from the analysis. 

Since patents may have a higher or lower tendency to cite or to be cited simply because 

of the cohort to which they belong, the author shows that if the citations follow a 

multinomial distribution, the ‘concentration’ measures would be biased upwards, 

leading to lower estimations of the ‘value’ of the patented innovations. Hall (2000) 

suggests a computation that leads to an unbiased estimation. I follow the author’s 

methodology and adjust the value of Originality and Generality for the possibility of a 

bias.   

7.4.2 Estimation  

 
I estimate two value adjusted OLS regressions, see Table 7.27 The two are similar in 

structure to Trajtenberg’s (2001) OLS regression but have Generality and Originality 

indexes as the dependent variables. The country dummies then represent the average 

expected Generality or Originality of patented innovations originated in those countries 

and are contrasted to the value predicted by the simple citations regression.  

 

The results indicate that regressing on a simple citation aggregation could be somewhat 

misleading in predicting the aggregate values of patented innovations. The Generality 

regression shows that US patented innovations do not appear to be any better than 

Israeli innovations as the US dummy is statistically insignificant. However, the 

Originality regression maintains the US advantage over the Israeli innovations. The US 

dummy is three basis points above the Israeli dummy, implying that US patent 

innovations are eight percent more Original than Israeli patented innovations. In the 

case of Israel vis-à-vis the Reference country, the Generality and Originality 

                                                 
27 The year dummies are included but are not reported. 
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estimations confirm Trajtenberg results. Israeli patents are superior to Reference 

country patents.  

 

The finding that citation-weighted value indexes may provide different predictions on 

the value of patented innovation imply that regressing on citation frequencies requires 

careful examination for the consistency and robustness of the results. Simply regressing 

on citation count may not provide the most accurate predictions.    

                                   Table 7 Two ‘value’ weighted OLS regressions 

  Generality Originality 
US 0.013 0.03 

   -1.89       (4.98)** 

Reference -0.032 -0.034 

  (4.26)**        (5.31)** 

chemical 0.103 0.104 

  (15.26)**      (16.34)** 

cmpcmm 0.097 0.089 

  (11.04)**      (11.06)** 

drgsmed -0.024 0.037 

  (2.60)**        (4.50)** 

elec 0.052 0.045 

  (7.25)**        (6.68)** 

mech 0.027 0.015 

  (4.15)**         (2.42)* 

Constant 0.467 0.385 

  (64.96)**      (61.54)** 

Observations  25278 25723 

R-squared  0.02 0.03 

 

7.5 Summary 

 
The chapter discussed and tested four factors that appeared to have been overlooked in 

Trajtenberg’s original work. The results indicate that the original estimations are 

sensitive to three factors: structural breaks, structure of the OLS model and noise in 

citation frequencies. The most important finding is that breaks exist in the Hall et al. 

(2001) citation data. Furthermore, these breaks significantly change the estimated 

results. A failure to address this issue in applied work may lead to a loss of significant 

information and robustness.  
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8 Long Run Trends in the Value of Innovations    
 

This Chapter extends the discussion to the literature on patent citations as a proxy for 

the geography of knowledge spillovers. It begins by providing the conceptual, 

theoretical and empirical background for economic inquiry into the geographic flow of 

knowledge. It then takes advantage of a cointegration test and Graphical Modelling 

and shows a clear single trend and strong association in the value of patented 

innovations originating in the G-5 countries over time.  

 

8.1 Overview 

 
So far, this thesis discussed and explored the literature on patent citations as a proxy for 

measuring the ex-post value of patented innovations. This chapter extends this 

discussion to the literature on patent citations as a proxy for knowledge spillovers. This 

emerging body of work explores the usefulness of patent citations to trace the flow of 

knowledge across institutions and organisations, countries and time. In the presentation 

and discussion of this topic, I shall closely follows texts by Branstetter (1998), 

Griliches (1979, 1990, 1992), Jaffe and Trajtenberg (2002) and Romer (1994). 

 

The concept of knowledge spillovers is intimately tied to the nature of knowledge 

assets. Knowledge is nonrivalrous and only partially excludable (Jones 2002). These 

attributes imply that the inventors of new knowledge can only partially appropriate and 

capture the entire economic value of the knowledge embodied in their inventions. The 

available legal mechanisms that are designed to protect the property rights of the 

inventors (copyrights and patents are common examples) are imperfect. Ultimately, 

some knowledge inevitably spills out, leading to a knowledge externality.  
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8.2 Why Do Economists Study Knowledge Spillovers? 

 
The theoretical foundations to the economic inquiry into the geographic flow of 

knowledge spillovers can be seen in the work of Grossman and Helpman (1990, 1991, 

1995). The authors present spillover-based endogenous growth models to explain the 

rate of economic trade and growth. A key novelty of these models is their explicit 

treatment of the idea that inventors, who may earn monopoly rents for their inventive 

output, discover inventions endogenously (Romer, 1994). This idea is not 

accommodated in the neoclassical growth literature, which typically treats knowledge 

as a public good (Romer 1994). This is one of the reasons the Grossman and Helpman 

type theoretical models are sometimes referred to as Schumpeterian growth models. 

They emphasise the prediction of Schumpeter in the late 1930s that temporary 

monopoly returns on inventions are required to ignite the innovative process, which 

determines the rate of growth. More specifically, the outcome of the inventive activity 

yields benefits both to the inventors in the form of returns on investment and to society 

by adding new knowledge into the aggregate spillover pool. As the inventive activity 

increases, more knowledge is created and spills over into the aggregate knowledge 

pool. This reduces the investment costs for inventing new knowledge and prohibits 

diminishing returns from arising (Branstetter 1998).  

 

The economic inquiry into the geographic patterns knowledge spills is because 

Grossman and Helpman models may yield different predictions depending on the 

assumptions surrounding the spillover flow (Branstetter 1998). If knowledge diffuses 

beyond borders (internationally), then the normal competitive advantage opportunities 

dictate trading and the corresponding growth rates. However, if knowledge diffuses 

locally (intranationally), than an economy, which might only have a slight 
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technological advantage over the other economies, would eventually dominate the 

world production (Branstetter 1998). The authors provide the following example: 

Suppose it is country A that begins with more research experience. Then initially this country’s 

researchers have a competitive advantage in the research lab, and they perform all of the world’s 

R&D at time 0. But then additional knowledge accumulates in country A, while in the absence 

of international knowledge spillovers, the knowledge stock remains fixed in country B. So, 

country A’s competitive lead in R&D widens and there is even greater reason for this country to 

conduct all the world’s research in the next period. The initial lead is selfreinforcing and 

eventually country A comes to dominate production in the high-technology sector. (Grossman 

and Helpman 1995, Chapter 2)28 

 

Why might knowledge spillovers exhibit intranationally rather than international 

tendencies? Bransteter (1998) suggests three key answers to this question: 

1. Interaction - inventors might find it easier to communicate their ideas if they are 

geographically proximate. 

2. Language - inventors might find it easier to transfer knowledge when they 

communicate in the same language. 

3. Transactional costs – fewer regulatory barriers when knowledge is transferred 

intarnationally rather than internationally.  

8.3 Empirical Findings  

 

The theoretical implications of trade and growth type theories discussed above 

necessitated empirical investigations into identifying whether and to what extent do 

geographic knowledge spillovers exist. Before discussing this body of work in depth, it 

is important to understand what economists regard as knowledge spillover.  

 

                                                 
28 This quote also appears in Branstetter, 1998. 
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Strictly speaking, a knowledge spillover occurs when: 

 firm A is able to derive economic benefit from R&D activity undertaken by firm B without 

sharing in the cost firm B incurred in undertaking its R&D (Branstetter 1998, p. 495). 

This implies that knowledge that is bought out by other inventors or firms merely 

represents a knowledge transfer rather than a knowledge spillover. Griliches (1979) is a 

bit more specific and distinguishes between two different types of knowledge 

spillovers: 

1. Pecuniary (embodies) spillover, which occurs when the inventors cannot 

appropriate all the surplus of their invention. This type of externality could 

occur when the inventors cannot perfectly price discriminate (Branstetter 1998). 

2. Nonpecuniary (disembodied) spillover, which is the impact of new knowledge 

on the discoveries of new inventions.  

 

It is the second type, Nonpecuniary (disembodied) spillover, that is the knowledge 

spillover discussed in the trade and endogenous growth models and has preoccupied the 

applied microeconomics literature (Branstetter 1998). This type of spillover 

corresponds precisely to the nonrivalry and low excludability attributes, which make 

them extremely difficult to trace and even harder to quantify. This research frustration 

can be seen in Paul Krugman’s pessimistic statement that “knowledge flows … are 

invisible [as] they leave no paper trail by which they may be measured or tracked” 

(Krugman 1991, p. 53). 

 

Most existing empirical work only indirectly tests for geographic knowledge spillover. 

The common approach is to use some form of production function, with either 

aggregated industry or country data, to represent a single profit maximising firm. The 

production function typically has the normal ingredients plus a knowledge asset on the 
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right hand side. Examples of influential papers of this kind include Coe and Helpman 

(1995) and Coe et al. (1995). Although their results indicate significant international 

spillovers, the production function approach imposes numerous assumptions, whose 

validity has been highly challenged in later work, predominantly by the scholars in the 

micro-productivity literature; see Branstetter (1998). Griliches (1992) suggests a cost 

function approach as an alternative, although this too suffers from considerable pitfalls 

due to the assumed underpinning of the structural models. A more micro approach for 

estimating knowledge spillovers was proposed by Griliches (1979) and tested in Jaffes’ 

1983 thesis. The approach uses common technological groups of firms, clustered by the 

patent type of their granted patented inventions and tests whether the firms’ activity is 

correlated to the overall cluster to which it belongs. The findings show significant 

correlation between the aggregate knowledge pool and the firm data.29 

 

Broadly speaking, the literature discussed above provides evidence in favour of 

knowledge spillovers as a gap between the private and social rate of return to 

knowledge is identified. However, this literature does not explain the mechanism for 

the transmission of the spillovers. More recently, Jaffe, Trajtenberg and colleagues 

have used patent citations data to identity and measure the direct flow of knowledge, 

where citations represent a ‘paper trail’ of codified technological knowledge spillovers. 

Their survey of the use of US inventors on the citations of patents revealed that 

“aggregate citations flows can be used as [direct] proxies for knowledge spillover 

intensity…between categories of organizations or between countries (Jaffe et al. 2000, 

p. 218). Caballero and Jaffe (1993) were the first to lay the methodological foundations 

to this research. In the context of a general equilibrium model, the authors developed a 

‘citations function’ that captures the patent citation process in terms of both knowledge 

                                                 
29 The reader can refer to Griliches (1979, 1990) for further discussion on this approach.  
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obsolescence and knowledge diffusion as time elapses. Their findings show a clear 

decline in the spillover potency across time as the knowledge obsolescence rate is 

shown to be endogenously determined by the number of ideas rather than exogenously 

by time.  

 

With Caballero and Jaffe’s (1993) work setting the scene, later work explored and 

specifically linked patent citations to the geography of knowledge spillover. Jaffe et al. 

(1993) tested for the geography of spillovers by examining the relationship between the 

location of the citing and cited patent, relative to an expected relationship due to the 

technological activity in the regions. That is, the expected likelihood given the existing 

concentration of technological activity. The authors were the first to show a significant 

localisation in the geography of patent citations (Jaffe and Trajtenberg 2002). Patents 

tend to cite more heavily patents that originate in the region than would be expected 

given the distribution inventive resources in those regions. Thus, technological 

knowledge is utilised more readily where it originates (Branstetter 1998).     

 

As the NBER U.S. Patent Citations Data project (Hall et al. 2001) evolved, providing 

richer data, scholars were able to further examine and more carefully quantify the 

patterns the spillover flow identified in Jaffe et al. (1993). Jaffe and Trajtenberg (1996) 

used a nonlinear citation function to predict the nationality of inventors. They showed 

“that there is a clear time path to the diffusion of knowledge, in which domestic 

inventors’ citation probabilities are particularly high in the early years after an 

invention is made” (Jaffe and Trajtenberg 1999, p. 106). Jaffe and Trajtenberg (1999) 

went further and explored the citations patterns of inventors from the G-5 countries, 

while accounting for, inter alia, changes in the citation tendencies and the truncation 
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bias. Their results showed that inventors of the same country are 30 to 80 percent more 

likely to site each other.   

 

The citation approach for tracing knowledge spillovers is still evolving and 

continuously challenged (see the two 2005 AER comments by Thomson and Fox-Kean 

and Jaffe et al.). Yet, two clear messages appear to have emerged: 

1. Knowledge spillovers tend to show a strong ‘intranational’ tendency. 

2. As time goes by, this intranational fades away towards an international 

tendency. 

Jaffe and Trajtenberg (2002) explain the intuition behind these findings concisely: 

…whatever initial advantage geographic proximity may offer in terms of knowledge transmission and as 

stimuli for further knowledge creation, the very ‘ethereal’ nature of knowledge dictates that such 

advantage should diminish with time (Jaffe and Trajtenberg, 2002, p. 12). 

 

8.4  Building on the Literature   

 

The implications of the findings of the geographic spillover citation-based literature 

imply that the diffusion of knowledge is a lengthy process and if it exists, ought to 

appear in long-run information. Based on this observation, the question I want to ask in 

this chapter is whether a statistical relationship can be identified in the value of 

knowledge embodied in patented inventions originating in the G-5 countries in the long 

run? This question should not be thought of as a question on the occurrence of a 

knowledge spillover, but as simply an inquiry into the statistical relationship in the 

value of inventive output across the G-5 countries over the long horizon. This 

relationship, if found, could be argued to be a necessary condition for the existence of 

technological knowledge spillovers, but not sufficient.  
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Why might we expect to identify a long run relationship in the value of knowledge 

embodied in patented inventions across the G-5 countries? To answer this question, 

consider a quality increase in the technological inventive output of one of the countries. 

In the presence of knowledge spillovers, foreign inventors, working on related 

technological inventions, can benefit from this new technological knowledge for their 

own research and discoveries. If they are advantaged by gaining access to this 

knowledge, we would expect this new knowledge to eventually stimulate and enhance 

the quality of their own inventive activity and output.  

 

The theoretical validity to the reasoning above is implicitly found in endogenous 

growth theory. Consider the Romer (1990) model (Chapter 2). The model asserts that 

the advanced economies in the world form one integrated gigantic economy, whose 

economic performance is determined, inter alia, by their access to knowledge from the 

common aggregate knowledge pool, represented by the φ parameter (Jones 2002, see 

Chapter 2). The discovery of better knowledge in one economy raises the knowledge 

pool and pushes forward the ‘world’ technological frontier and consequently the 

‘world’ economy growth rate.  

 

Patent citations can be used as a proxy for the value of patented innovations originating 

in the G-5 countries. I follow the maintained assumption in the patent citation value 

literature (see Chapter 4) that “patents are a proxy for ‘bits of knowledge’ and patent 

citations are a proxy for a given bit of knowledge being useful…” (Jaffe and 

Trajtenberg 1999, p. 108). By treating patent citations as a proxy for the value of 

codified technological knowledge embodied in patents, the averaged aggregate patent 

citations flow of patents originating in the G-5 economies represent a series of 

innovative output value data.  
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I propose that the long run relationship in the value of patented innovations originating 

in the G-5 countries should be tested through two distinctively different set of tests that 

complement each other. The first is a time-series cointegration test to identify whether a 

stochastic common long run quality trend relationship can be identified in the quality of 

patented innovations series of the G-5 countries. With n most advanced economies in 

the world, n nonstationary (innovative output quality) series, and n k− significant 

cointegrating vectors, there will be k common stochastic (value )trends (Greasley and 

Oxley, 2000).  

 

The second test is a multivariate-based Graphical Modelling analysis that uses graphs 

to identify the conditional association in complicated statistical series. If the 

cointegration test identifies common stochastic trends in the data, Graphical Modelling 

can further represent the nature of these statistical relationships. This is the topic of the 

following section. 

 

8.4.1 Data and Estimation  

 
I use the patents and corresponding citations of the G-5 countries, US, Japan, Germany 

France and UK for the 1965 to 1995 period. I then calculate the weekly average 

citations per granted patents each week for each of the five countries. Each average is 

assumed to represent the observed weekly quality of a country’s innovative output. This 

provides five variables, US, Japan, Germany France and Britain, each containing more 

than 1,600 observations.  

 
I begin the analysis with a cointegration test to identify common trends in the value of a 

country’s innovative output. The advantage of following such a rigorous process is the 
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ability to examine short-term dynamics without losing “long-run information” (Engle 

and Granger, 1987).30  

 

The cointegration test is only appropriate when the variables of interest are 

nonstationary and are integrated of the same order, I(d). I use the Augmented Dickey-

Fuller (ADF) test of unit root to determine the stationarity of the quality variables.  

8.4.1.1 Test for Stationarity 

 

Consider a simple AR(1) process: 1t t t
Y Yρ ε−= + , where 

t
Y  is the variable of interest 

and
t

ε is a white-noise process. If ρ equals to one, the variance of the series approaches 

infinity and 
t

Y is said to be a nonstationary process.  

                                                        

The ADF test (Dickey and Fuller, 1981) is carried out by 

estimating 0 1

1

p

t t i t i t

i

Y Y t yβ α γ β ε− −
=

∆ = + + + ∆ +∑ , where Y∆  is a change in the variable 

of interest, 1α ρ= −  and
t

ε is an independently and identically distributed white-noise 

process. If the estimated coefficient of the lagged variable,α , is significantly less than 

zero, the null hypothesis of a unit root can be rejected and 
t

Y  is said to be a stationary 

process. 

 

When the series are difference stationary, stationarity is induced by differencing the 

variable of interest. A variable that needs to be differenced (d) times to reach 

stationarity is regarded as a I(d) process or as integrated of order (d).  

 

                                                 
30 The methodological explanation in this section follows Lee (1997); Maddala (1992) and 
Maddalla and Kim (2000) and the Eview manual.  
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For all the five quality series, the unit root test fail to reject the null of hypothesis of 

nonstationary in the levels of the variables, but is rejected when the five variables are 

first differenced, Table 8. The five countries have a nonstationary, I(1), innovation 

quality series.      

Table 8 Unit Root Tests (Augmented Dickey-Fuller Statistics)  

for the 1965 to 1995 period 

   Level 
 1

st
 

Difference 

Germany  -0.75 -18.67* 

  0.83 0.00 

US -0.97 -24.21* 

  0.76 0.00 

France -2.22 -20.83* 

  0.20 0.00 

Japan -1.49 -21.06* 

  0.54 0.00 

Britain -1.54 -17.28* 

  0.51 0.00 

The first number is the t-Statistics and the number below is the corresponding 
P-Values. The lag length was chosen on the basis of Akaike’s Information 
Criteria. * denotes rejection of the hypothesis at the 0.05 level.  

 

Engle and Granger (1987) show that nonstationary variables might share a long-term 

equilibrium relationship. Consider the following example: if two series ,
t t

Y X are both 

I(d) and there exists a linear combination e.g., 
t t

Y Xβ− which is stationary, then the 

variables,
t

Y and
t

X , do not drift a way from each other and are described as being 

cointegrated with a cointegrating parameter β . That is, the variables progress through 

time in a similar pattern and there exists a long-run equilibrium between the two 

variables. The test used here to determine whether the group of five I(1) variables are 

cointegrated or not is based on Johansen’s (1988) maximum likelihoods technique. 

8.4.1.2 Testing for Cointegration  

 

Johansen’s method involves the estimation of the following th
k order Vector 

Autoregressive (VAR) equation: 0 1 1 ...
t t k t k t t

y A A y A y xβ ε− −= + + + + +  where  
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t
y = a k-vector of nonstationary I(1) variables    

0A = an ( 1)n× vector of intercept terms 

i
A = ( )n n× matrices of coefficients  

t
ε = the ( 1)n× vector of error term           

              

This VAR could also be written in terms of the following Vector Error Correcting 

Mechanism (VECM): 
1

0

1

k

t t k i t i t

i

y A y yπ β ε
−

− −
=

∆ = + + ∆ +∑  where 
1

1

( )
k

i

i

I Aπ
−

=

= − −∑  and 

1

1

( )
k

i j

i

I Aβ
−

=

= − −∑ . The rank of the matrix π represents the number of cointegrating 

vectors r among the variables in the vector y . Subtracting the number of cointegrating 

vectors r from the number of variables in the vector y  yields the number of long run 

stochastic trends (Stock and Watson 1988). Johansen’s method employs two likelihood-

ratio test statistics to test the null hypothesis of at most r cointegrating vectors in
t

y . 

The first one,
1

( ) ln(1 )
n

trace j

j r

rλ ϕ
= +

= −Τ −∑ , is a 
trace

λ  statistics, which reports the 0H  of at 

most r cointegrating vectors against the 1H of more than r. The second 

test max 1( , 1) ln(1 )
r

r rλ ϕ ++ = −Τ −  is a maxλ criteria, which is similar to the null of
trace

λ , 

but its alternative is 1r + cointegrating relationship.   

 

Table 9 shows that both the Max criteria and the Trace statistics reject the three or 

fewer cointegrating vectors in favour of four, pointing to the existence of one single 

common stochastic trend for the five innovation quality series. This implies that all the 

five series follow one stochastic knowledge frontier. The issue now is whether some of 

the G-5 countries play a leading role in the stochastic trend identified above. This could 

be revealed through a test of statistical association, where the associated links tested 
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concern the interrelationship surrounding the fluctuations between the five series. I test 

for association with a Graphical Modelling (GM) test. The advantage of implementing 

Graphical Modelling on the series is twofold. Firstly, if patterns of association emerge 

between the countries’ value series then we would have an insight into the nature of the 

fluctuations of common stochastic trend. Furthermore, if association is not picked up by 

the Graphical Modelling analysis, then it would be taken as seriously casting doubt on 

the validity the cointegration results.         

 

Table 9 Johansen Cointegration Test Results  

H(0) H(1) Maximal EigenvalueTrace 

r = 0 r = 1 0.17* 860.39* 

r ≤ 1 r = 2 0.16* 557.38* 

r ≤ 2 r = 3 0.13* 257.11* 

r ≤ 3 r = 4 0.03*   55.49* 

r ≤ 4 r = 5 0     1.86 

r = the number of cointegrating vectors.  
The lag length was chosen on the basis of Swartz’s Information Criteria.      
* rejection of the null at the 5% level.  

 

8.4.1.3 Testing for Association 

 

Graphical Modelling is a multivariate-based analysis that uses graphs to translate the 

relationship of complicated systems into statistical meaning (Edwards 1995; Jordan 

1999). The issue of association pursued here uses graphs to identify the statistical 

relationship across all five innovative output quality variables.  

Two different graphical representations are used in practice, directed and undirected 

graphs, which vary in the rules that are applied to read the graphs. I use an undirected 

graph to estimate the conditional dependence relationship between the quality series. In 

introducing GM theory and presenting the basic definitions of conditional 

independence, I closely follow the texts by Edwards (1995) and Wasserman (2003). 
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8.4.1.3.1 Conditional Independence  

The conditional probability of event A, given event B, is 

    
( )

( )
( )

P A B
P A B

P B

∩
=                        (1) 

When multiplying both sides of (1) by ( )P A  the Multiplicative Rule of Probability is 

obtained: 

( ) ( ) ( )P A B P A B P B∩ =                 (2) 

When event A and event B are independent events, then ( ) ( )P A B P A= and, therefore, 

(2) becomes:  

( ) ( ) ( )P A B P A P B∩ =                      (3) 

 

Equation (3) can also be represented mathematically as BA ⊥ .  

 

Extending the discussion to three random variables, we can say that the random events 

A and B are conditionally independent of C when the information contained in B does 

not provide further information about A once C is known.  

Mathematically it can be represented as  

CBA ⊥    or   CAB ⊥                        (4) 

8.4.1.3.2 Undirected Graphical Model  

Graphical models provide a visual representation for the CBA ⊥ relationship. 

An undirected graph is a structure of ( , )G V E= , where the set of V are vertices (nodes) 

and the set of E are edges (lines) which connect these vertices. The variables X and Y 

are adjacent, ~X Y , if there is an edge connecting them. A path is a sequence of 

0 ,...,
n

X X if 1 1~
i

X X− for every i . A complete graph is a graph where every pair of its 

vertices is connected by an edge. The pairwise Markov property holds that any pair of 
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random variables that are non adjacent are conditionally independent given all other 

variables in the model. Identification of conditional independence among the variables 

in the model can simply be found by observing the separated set of variables. If A and 

B are separated by a set C, then A B C⊥ , which is the global Markov property.  

 

Consider Figure 7, which represents the four variables model, A, B, C and D. Visual 

examination shows the non-existence of edges between the vertices A and D and B and 

D and therefore, variable A is conditionally independent of D given C, A D C⊥  and 

that B is conditionally independent of D given C, B D C⊥ . 

 

Figure 7 Graphical Modelling: an example 

8.4.1.3.3 Results and Summary 

I use the mimR package in the R statistical computation software to construct an 

undirected graphical model, Figure 8. The result is a complete graph as there is an edge 

between every pair of vertices. The graph indicates that all the five value series are 

conditionally dependent. None of the five quality variables can be analysed in isolation 

form the remaining set, which implies that dominating countries do not exist. This 

reinforces the result of the cointegration test of a common stochastic trend shared 

across all the five patented innovations value series. Each of the five economies appears 

to follow a common technology frontier trend generated by this ‘whole’ “global” 

economy. This result strongly supports the implied assumption in Romer (1990) and the 
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observation of international long run tendencies in the spillovers of technological 

knowledge in the patent citation literature.  

  

 

Figure 8 Graphical Modelling for the time-series quality US, French, British, Japanese and 

German averaged aggregate citations flow.  
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9 Conclusion 
 

The objective of this thesis is to advance our understanding of the value of innovations 

using information contained in patent citations. This chapter synthesises the findings of 

this thesis. 

 

In Chapter 2, I began by reviewing the reasons economists are intrigued by innovative 

activity. The literature indicates that the creation of innovative output is a key 

component in the growth process of advanced economies. Concepts such as 

technological ideas, R&D and scientific discoveries are found at the heart of modern 

macro and micro economic inquiry into the determinants of economic prosperity and 

social well-being.  

  

In Chapter 3, I discussed the difficulties in finding empirical counterparts for the 

dynamic process of innovative activity and supported the use of patent statistics as an 

imperfect measure of innovative output. Patents are objective, based on a voluntary 

economic system, and contain highly detailed information about each granted 

innovation. Upon a comprehensive analysis of the methods and empirical proxies for 

the elicitation of the value embodied in patents, patent citations, a prior-to-new-art link, 

appeared as the most objective and systemic indicator for the ex-post technological 

value patents represent. 

 

In Chapter 6, I developed a framework for the analytical examination of patent values 

based on Trajtenberg’s (2001) approach. This approach yields a clear measure of the 

average value of patented innovations. However, upon investigation in Chapter 7, I 

found that this approach is somewhat simplistic and requires further robustness tests. I 
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emphasised four econometric and theoretical factors that are of importance in carrying 

this empirical analysis: the statistical properties of the dependent variable, the structure 

of the underlying model, breakdates in the data and noise in citations counts. The 

results indicated that three out of the four factors, if overlooked, could lead to non-

robust econometric estimations; these are the structure of the underlying model, 

breakdates in the data and noise in citations counts. 

 

Upon reviewing the properties of citation arrival and the literature of the US Patent 

Office, I proposed that structural breaks that may impair the robustness of the 

econometric estimations would exist. Atheoretical Regression Trees revealed that two 

break and three sub-periods exist in the data. Adjusting the estimations to three 

individual periods confirmed a strong sensitivity of the results to period examined. 

Furthermore, the structural form of the model proposed in Trajtenberg (2001) was then 

tested and found to be sensitive. The aggregation of patented innovation into one big 

control group leads to a significant loss of information, and thus to a loss of accuracy of 

the results.  

 

From the tests of robustness, it was also apparent that patent citations are a noisy signal 

of technological value. I identified an inconsistency in Trajtenberg’s (2001) results of 

technological significance compared to the results obtained with weighted indexes of 

patent value compiled by patent citations. The Herfindahl index of concentration 

Generality regression showed, contrary to Trajtenberg (2001) estimates, that US 

patented innovations do not appear to be any better than Israeli patented innovations as 

the US dummy is statistically insignificant. 
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A further valuable contribution of this thesis has been the integration of predictions by 

endogenous growth theory, the applied knowledge spillover literature and patent 

citations to test for geographic long run trends and association in the value of 

technological knowledge across time. The geographic knowledge spillover literature 

shows that knowledge spillovers tend to show a strong ‘intranational’ tendency in the 

flow of knowledge. However, as time goes by, this ‘intranationality’ fades away 

towards an international tendency. Based on this observation, I ask whether a statistical 

relationship can be identified in the value of knowledge embodied in patented 

inventions originating in the G-5 countries in the long run. To answer this question I 

use patent citations in the context of a cointegration test to identify whether G-5 

innovative output fluctuates and moves in a similar pattern over the long time horizon. 

The results show that there is a single long run stochastic trend in the quality of 

inventive output between the five most advanced economies in the world. Furthermore, 

applying a multivariate Graphical Modelling association estimation, I show that 

countries’ quality series are completely associated and domination does not appear to 

exist. This finding supports the implicit assumption in the endogenous growth literature 

of a technological knowledge frontier common to the advanced countries in the world.  

 

Overall, this thesis provides an original contribution to the economics of innovation 

literature in a number of areas: 

i. A comprehensive description of the various proxies available to elicit the 

value embodied in patented innovations. 

ii. A direct comparison of regression results of the value of patent innovations 

based on citations count as the dependent variable versus citations-weighted 

as the dependent variable 
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iii. An introduction and application of Regression Tree and Graphical 

Modelling tests to advance empirical analysis of the value of patented 

innovations.  

iv. Estimation of the fluctuations and associations of the values of patented 

innovation originating in the G-5 countries.   

 

This thesis will provide a valuable reference both for researchers in the area of 

economic of innovation, and for policy analysts in developing and analysing 

innovation, technology and science and R&D based policies.  
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