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Abstract 

Animal cells are often cultured in stirred tank reactors. Having no cell wall, these animal 

cells are very sensitive to the fluid mechanical stresses that result from agitation by the 

impeller and from the rising and bursting of bubbles, which are generated within the 

culture medium in the stirred tank to supply oxygen by mass transfer to the cells. If 

excessive, these fluid mechanical stresses can result in damage/death of animal cells. 

Stress due to the rising and bursting of bubbles can be avoided by using a gas-permeable 

membrane, in the form of a long coiled tube (with air passing through it) within the stirred 

tank, instead of air-bubbles to oxygenate the culture medium. Fluid mechanical stress due 

to impeller agitation can be controlled using appropriate impeller rotational speeds. The 

aim of this study was to lay the foundations for future work in which a correlation would 

be developed between cell damage/death and the fluid mechanical stresses that result from 

impeller agitation and bubbling. Such a correlation could be used to design stirred-tank 

reactors at any scale and to determine appropriate operating conditions that minimise cell 

damage/death due to fluid mechanical stresses. 

Firstly, a validated CFD model of a baffled tank stirred with a Rushton turbine was 

developed to allow fluid mechanical stresses due to impeller agitation to be estimated. In 

these simulations, special attention was paid to the turbulence energy dissipation rate, 

which has been closely linked to cell damage/death in the literature. Different turbulence 

models, including the k-ε, SST, SSG-RSM and the SAS-SST models, were investigated.  

All the turbulence models tested predicted the mean axial and tangential velocities 

reasonably well, but under-predicted the decay of mean radial velocity away from the 

impeller. The k-ε model predicted poorly the generation and dissipation of turbulence in 

the vicinity of the impeller. This contrasts with the SST model, which properly predicted 

the appearance of maxima in the turbulence kinetic energy and turbulence energy 

dissipation rate just off the impeller blades. Curvature correction improved the SST model 

by allowing a more accurate prediction of the magnitude and location of these maxima. 

However, neither the k-ε nor the SST models were able to properly capture the chaotic and 

three-dimensional nature of the trailing vortices that form downstream of the blades of the 

impeller. In this sense, the SAS-SST model produced more physical predictions. However, 
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this model has some drawbacks for modelling stirred tanks, such as the large number of 

modelled revolutions required to obtain good statistical averaging for calculating 

turbulence quantities. Taking into consideration both accuracy and solution time, the SSG-

RSM model was the least satisfactory model tested for predicting turbulent flow in a 

baffled stirred tank with a Rushton turbine. 

In the second part of the work, experiments to determine suitable oxygen transfer rates for 

culturing cells were carried out in a stirred tank oxygenated using either a sparger to 

bubble air through the culture medium or a gas-permeable membrane. Results showed that 

the oxygen transfer rates for both methods of oxygenation were always above the 

minimum oxygen requirements for culturing animal cells commonly produced in industry, 

although the oxygen transfer rate for air-bubbling was at-least 10 times higher compared 

with using a gas-permeable membrane. These results pave the way for future experiments, 

in which animal cells would be cultured in the stirred tank using bubbling and (separately) 

a gas-permeable membrane for oxygenation so that the effect of rising and bursting 

bubbles on cell damage/death rates can be quantified. The effect of impeller agitation on 

cell damage/death would be quantified by using the gas permeable membrane for 

oxygenation (to remove the detrimental effects of bubbling), and changing the impeller 

speed to observe the effect of agitation intensity. 

In the third and final part of this work, the turbulent flow in the stirred tank used in the 

oxygenation experiments was simulated using CFD.  The SST turbulence model with 

curvature correction was used in these simulations, since it was found to be the most 

accurate model for predicting turbulence energy dissipation rate in a stirred tank. The 

predicted local maximum turbulence energy dissipation rate of 8.9×10
1
 m

2
/s

3
 at a 

rotational speed of 900 rpm was found to be substantially less than the value of 1.98×10
5
 

m
2
/s

3
 quoted in the literature as a critical value above which cell damage/death becomes 

significant. However, the critical value for the turbulence energy dissipation rate quoted in 

the literature was determined in a single-pass flow device, whereas animal cells in a stirred 

tank experience frequent exposure to high turbulence energy dissipation rates (in the 

vicinity of the impeller) due to circulation within the stirred tank and long culture times. 

Future cell-culturing experiments carried out in the stirred tank of this work would aim to 

determine a more appropriate critical value for the turbulence energy dissipation rate in a 

stirred tank, above which cell damage/death becomes a problem. 
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1 Introduction  

Animal cells are used extensively in in vitro cultivation for cell research and manufacture 

of biological products. The product may be the cells, cell components or metabolites 

which are produced naturally or by expression of recombinant DNA (Garcia-Briones & 

Chalmers, 1994). To achieve maximum yields, it is important to provide the cells with an 

in vitro environment as similar as possible to the natural cell environment. Such an 

environment can be produced within an aerated and stirred bioreactor. However, animal 

cells are sensitive to the fluid-mechanical forces associated with stirring and/or aeration 

via bubbling (Garcia-Briones & Chalmers, 1994). An understanding of the damage 

mechanisms caused by such forces is important for effective bioreactor design. Thus 

research into the shear sensitive nature of the cells could provide information that would 

allow one to define an appropriate environment in which the cells could be cultured at any 

scale.  

In a bio-reactor, sufficient oxygen supply is necessary for animal cell survival. However, 

aeration by means of bubbling air can result in cell damage due to rising and bursting of 

bubbles (Tramper, Williams, Joustra, & Vlak, 1986). In addition, Yusuf Chisti (2001) 

found that animal cells are damaged by hydrodynamic stresses caused by agitation, such 

as produced by a stirrer, even in the absence of gas bubbles. Kunas and Papoursakis 

(1990) summarised that aeration via bubbling air and/or agitation are the two main fluid 

mechanical forces associated with cell damage. Cell damage due to aeration via bubbling 

air can be avoided by using gas-permeable membranes, as demonstrated by Kunas and 

Papoursakis (1990) and Schneider et al. (1995). One of the objectives of this study is to 

conduct oxygen mass transfer experiments in a stirred tank, in which aeration is provided 

either via bubbling or through use of gas-permeable membranes. No cells will be cultured 

in these preliminary experiments. Rather, suitable operating conditions will be found (for 

example, suitable air flow-rates for bubbling) so that the minimum oxygen transfer rate 

requirements for culturing cells in a stirred tank recommended in the literature are met. 

Future studies can then focus on separating the effects of animal cell damage due to 

bubbling and agitation by comparing cell death rates in a stirred tank with and without 

bubbling.  
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Scientists have used various experimental techniques to understand the shear effects and 

damage caused by aeration and agitation. However, experiments are not only costly and 

labour intensive, but also the parameters extracted are often specific to geometry and 

represent averages over the whole domain (Table 1-1). Thus, the results cannot be 

extrapolated to different vessel sizes and to other equipment designs. Computational Fluid 

Dynamics (CFD) is a relatively inexpensive method that can be used to investigate various 

flow parameters known to affect cell death rates. Through CFD, such flow parameters can 

be estimated locally throughout the flow domain. CFD could help not only to determine 

the relevant parameters of the flow field which govern hydrodynamic-related cell injury 

and their sensitivity to the geometry and operation of the equipment, but also to 

extrapolate results to different vessel sizes and to different equipment designs. Another 

aim of this study is to build a CFD model of a stirred tank to enable various hydrodynamic 

properties known to affect death rates of shear sensitive animal cells to be quantified and 

investigated. 

1.1  Oxygen requirements in cells 

The viability and growth of cells in sparged reactors depend, amongst other factors, on the 

bubble size and the bubble frequency, which can be controlled by the gas flow rate or the 

superficial gas velocity (Joshi, Elias, & Patole, 1996).  Joshi et al. (1996), in agreement 

with Wu and Goosen (1995), suggested that the maximum cell damage occurs mainly in 

the region of bubble disengagement at the air-liquid interface. Various methods of 

oxygenation without the formation of bubbles have also been researched to avoid cell 

damage/death due to cell-bubble interactions, such as using gas–permeable membranes 

(Kunas & Papoutsakis, 1990; Schneider, et al., 1995). A gas permeable membrane is 

essentially a long coiled gas-permeable tube placed within the stirred tank, with oxygen or 

air flowing within the tube, which allows oxygen to diffuse through the permeable wall 

(membrane) of the tube and into the culture medium. This approach allows mixing and 

hence mass transfer rates to be enhanced through increased agitation to a higher intensity 

than can be achieved when oxygenating by bubbling, with good resultant cell growth rates 

and acceptable cell damage/death rates.  

In this work, experimental oxygen mass transfer experiments will be conducted in a 

stirred-tank reactor using two different oxygenation methods, through bubbling and by 
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using a gas-permeable membrane. Appropriate operating conditions of the stirred tank 

when working with cells using these different oxygenation methods will be determined. 

1.2  Parameters to characterize hydrodynamic stress 

Various parameters that have been correlated with cell damage in a stirred tank include 

impeller speed, impeller tip velocity, integrated shear factor, time average shear rate and 

shear stress, specific power dissipation, and Kolmogorov eddy length scale, as shown in 

Table 1. However, there is little information available on how to use flow parameters that 

correlate well with cell damage in one particular system to predict cell damage in a 

different system. Garcia-Briones and Chalmers (1994) stated that cell damage should 

ideally be predicted by knowing the actual stresses that the cell experiences, determined 

from intrinsic cell mechanical properties and the resulting cell deformation. Should the 

cell deformation exceed a critical value, the disruption of the cell structure would be 

expected. They suggested that the parameter chosen to correlate with cell damage should 

be 1) general in nature and not be dependent on the particular stirred-tank geometry and 2) 

be local, that is, not be averaged throughout the flow domain. They proposed that two 

local intrinsic flow characteristics of general nature affect cell deformation: the local state 

of stress (proportional to actual stress that cells experience) and the vorticity of the 

suspending fluid.  

Garcia-Briones and Chalmers (1994) rejected the Kolmogorov eddy scale as a basis for 

predicting cell damage, because essentially cell size becomes the only correlation 

parameter when this parameter is used, and therefore cell mechanical properties are 

neglected. Kunas and Papoutsakis (1990) suggested that, although Kolmogorov eddy 

length can be used as a predictor of cell damage, it does not provide any details of how 

cells are damaged by their interaction with these eddies or even prove that there is a direct 

cell-eddy interaction.  Echoing this sentiment, Joshi et al. (1996) stated that it is very 

difficult to predict the relationship between the eddy size and its role in cell damage. 

Mollet et al. (2007) suggested the use of turbulence energy dissipation rate, ε, as an ideal 

parameter to characterize the potential of hydrodynamic stresses to damage cells. The 

advantage of using turbulence energy dissipation rate, ε, is that it is intrinsic to any 

moving fluid and is a scalar value (Mollet, et al., 2007). Moreover, it accounts for both 
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shear and extensional components of three-dimensional flow. Depending on the system 

geometry and the flow regime, the turbulence energy dissipation rate, ε, can be determined 

experimentally or obtained via computer simulations (Mollet, et al., 2007).  

Mavros (2001) presented a review of various experimental techniques for determining 

important parameters associated with turbulent flow in stirred tanks, including turbulence 

energy dissipation rate. According to Mavros (2001), laser Doppler velocimetry and 

particle image velocimetry are the most predominant techniques, having evolved into 

relatively easy-to-use techniques and providing considerable information about the three-

dimensional flow generated by the impeller within a stirred tank. Zhang et al. (2006) listed 

the efforts of various scientists devoted to the description and understanding of the 

physicochemical phenomena that occur in stirred tanks. He reported on the early work of 

Cutter (1966), who used a hot-wire anemometry and photography to measure the mean 

and fluctuating velocities in stirred tanks. Wu and Patterson (1989) used laser Doppler 

velocimetry to investigate the flow in stirred tanks and presented the axial profiles of the 

mean velocity components and root-mean-square velocity fluctuations at various radial 

locations. Rutherford et al. (1996) has presented laser Doppler velocimetry results in the 

tank stirred by dual Rushton impellers. Bakker et al. (1996) and Sheng et al. (1998) have 

used particle image velocimetry to investigate the bulk flow around a pitched-blade 

turbine. More recently, Ducci and Yianneskis (2005) have attempted to determine 

turbulence energy dissipation rate, ε, through measurement by two-point LDA.  

All the experimental techniques mentioned above have the disadvantage of being 

extremely complicated and labour intensive. In comparison, CFD is a relatively quick and 

cheap method for the determining flow parameters known to correlate well with cell 

damage in stirred tanks, such as turbulence energy dissipation rate. The ability of CFD for 

modelling stirred tank reactors has been aided by vastly increasing computing power and 

storage capacity with each passing year. CFD is more attractive and practical than 

experimental methods as a means of understanding the highly complex turbulent flow 

patterns that occur in a stirred tank reactor and the possible effect of this on cell damage. 

The key is that CFD models must first be validated by comparison with experimental data 

before they can be used with confidence for such means. In this project, a CFD approach 

to modelling turbulent flow in stirred tanks will be validated using well-known 

experimental data published in the literature.  



5 

 

Table 1-1: Various parameters used to correlate to cell death 

Cells used Range of hydrodynamic 

Parameters 

Important Observations Reference 

Insect Cells, 

SF-21 

210- 510 rev min
-1 

τ = 3 N m
-2

 

Cell death rate 

proportional to 

volumetric gas flow rate 

“Viability of cells 

decreased at shear stresses 

of 1 N m
-2

” 

Tramper et al. 

(1986) 

Hybridoma 

CRl-8018 

60-900 rev min
-1

, 

Cell death correlates to 

Kolmogorov eddy size 

similar to or smaller than 

the cell  

“In absence of gas 

sparging, cells are 

damaged only at speed 

above 700 rev min
-1

. No 

damage was seen at speeds 

less than 600 rev min
-1

” 

Kunas and 

Papoutsakis 

(1990) 

Hybridoma 

HDP-1 

100-440 rev min
-1 

Impeller tip speed 19-

73.3 cm s
-1

 

 “Death rate constant, 

increased sharply at 

impeller tip speeds above 

40 cm s
-1

” 

Abu Reesh and  

Kargi (1989) 

SF-9 and 

Hybridoma, 

serum 

containing, 

gas free 

<0.7 impeller tip speed 

<350 W m
-3

 Power 

Inputs 

“Damaging threshold 

values of impeller tip 

speed or specific Power 

inputs for some animal 

cells” 

Chisti (2001) 

1.3  Scope of the Project 

The main aim of this project is to validate a Computational Fluid Dynamics approach for 

accurately determining important flow parameters known to affect the growth of shear 

sensitive cells in a stirred bioreactor. A secondary aim is to determine aeration rates 

suitable for cell culturing in a stirred tank when aeration is provided by either bubbling or 

through the use of a gas-permeable membrane.  

The thesis can be summarized as follows. In Chapter 2, a CFD model of a stirred tank will 

be described and validated by comparison with the well-known published experimental 

results of Wu and Patterson (1989) and Ducci and Yianneskis (2005). In Chapter 3, 

oxygen transfer rates measured in a stirred tank reactor at various gas flow rates and 

impeller rotational speeds will be reported. Two modes of oxygenation will be 

investigated: bubbling and a gas-permeable membrane. This is essentially preliminary 
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work to determine appropriate aeration rates for culturing cells in the stirred tank reactor 

being investigated. Future work would involve experimentally culturing cells in this 

stirred tank reactor using either bubbling or a gas-permeable membrane for aeration. The 

same impeller speed would be used in both cases, and the cell death rates would be 

compared to determine the effect of cell-bubble interactions on the cell death rates. This 

would also allow the effect of cell death due to bubbling and agitation by stirring to be 

separated. In Chapter 4, the validated CFD model developed in Chapter 2 will be used as a 

starting point to model the stirred tank reactor used in the oxygenation experiments.  

Turbulence energy dissipation rate will be extracted from these CFD simulations. Future 

work would involve experimentally measuring cell death rates at various impeller 

rotational speeds within the stirred tank reactor and correlating the turbulence energy 

dissipation rate determined using CFD with the cell damage or death rates measured 

experimentally. The ultimate aim would be to use this information to ascertain appropriate 

operating conditions for culturing cells in stirred tank reactors of any scale. 
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2 Validation of the CFD Model 

Stirred tanks are widely used in industry for dispersing gases or solids in liquids, 

crystallization, polymerization, and to perform chemical reactions and bio conversions. In 

the past, stirred tank design was confined to the use of empirical correlations because 

more detailed analysis of the flow fields by means of Computational Fluid Dynamics 

(CFD) was not reliable due to limitations on computer power and memory. As a result of 

these limited resources, CFD simulations of stirred tanks were restricted to coarse grids 

and steady-state predictions, or in the case of transient simulations, the use of large time 

steps that did not properly resolve the transient flow features. In addition, these limited 

resources also constrained the use of turbulence models to two-equation models, which 

assume an isotropic eddy viscosity, although the flow in the impeller region of the stirred 

tank has been demonstrated to be anisotropic (J. J. Derksen, Doelman, & Van den Akker, 

1999; Escudié & Liné, 2006; Lee & Yianneskis, 1998). These issues have resulted in 

unsatisfactory agreement between experiment and CFD simulations (Hartmann et al., 

2004; Jones, Harvey III, & Acharya, 2001; Montante, Lee, Brucato, & Yianneskis, 2001; 

Ng, Fentiman, Lee, & Yianneskis, 1998; Sheng, et al., 1998). However, advances in 

computer technology and mathematical models have enabled researchers to use finer 

computational grids and smaller time-steps, as well as more complex turbulence models 

(Delafosse, Liné, Morchain, & Guiraud, 2008). The present work aims to test the accuracy 

of CFD for predicting the turbulent flow field in a stirred tank using recently developed 

turbulence models and best practice numerical methods. 

Another aspect of concern in CFD modelling of stirred tanks has been the definition of the 

kinetic energy of fluctuating motions. Wu and Patterson (1989) showed that this kinetic 

energy consists of two components, a random component and a periodic component, with 

the total kinetic energy being the sum of these two components. The random component is 

due to turbulent eddies, while the periodic component is due to non-random oscillations 

caused by the cyclic passage of the impeller blades. The periodic component appears in 

the turbulence energy spectrum as peaks at the impeller blade frequency and harmonics 

thereof. Montante et al. (2001), Hartmann et al. (2004), Murthy and Joshi (2008) and 

Delafosse et al. (2008) have separated these components in the modelling of stirred tanks. 

However, many other researchers have not made this distinction clear. The turbulence 
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kinetic energy predicted by the Reynolds-Averaged Navier-Stokes (RANS) based models, 

such as k-ε, k-ω, SST and Reynolds-stress models, corresponds to the random component 

of the kinetic energy of fluctuating motions (Montante, et al., 2001). This modelled 

turbulence kinetic energy comes about through Reynolds-averaging of the Navier-Stokes 

equations, which is carried out to avoid resolving unsteady turbulent eddies directly, thus 

reducing the computational effort. In the case of turbulence models that contain "LES 

content" for unsteady simulations, such as the SAS-SST (Menter & Egorov, 2005), large-

scale turbulence is resolved directly to a certain extent, while the smaller-scale turbulence 

is dealt with through Reynolds-averaging. Thus, the predicted kinetic energy due to 

random fluctuations is the sum of the turbulence kinetic energy due to the directly-

resolved large eddies and that coming about through Reynolds averaging.  This is made 

more complex, because the periodic kinetic energy must first be extracted before the 

random component can be determined.   

Transient simulations of stirred tanks have been well documented for the k-ε and LES 

models. Although the k-ε model is the most commonly used model for stirred tank 

simulations, its use of the Boussinesq approach of modelling Reynolds stresses using 

mean velocity gradients and an isotropic eddy viscosity means a limit is placed on the 

simulated development of anisotropic turbulence (Bakker, et al., 1996; Jahoda, Mostek, 

Kukuková, & Machon, 2007; Javed, Mahmud, & Zhu, 2006; Ng, et al., 1998; Yeoh, 

Papadakis, & Yianneskis, 2004; Zhang, et al., 2006). To overcome this limitation, many 

researchers have suggested using the Reynolds stress models (RSM), in which case each 

Reynolds stress is modelled with a separate transport equation, which eliminates the 

assumption of the isotropic eddy viscosity. However, both steady-state and transient 

results of the Reynolds stress model have shown an under-prediction of turbulence kinetic 

energy (Bakker, et al., 1996; Montante, et al., 2001; Murthy & Joshi, 2008; Sheng, et al., 

1998). Another approach that can improve two-equation model predictions is the inclusion 

of a curvature correction term to sensitize the model to the effects of streamline curvature 

and system rotation (Smirnov & Menter, 2009). As far as the authors are aware, this 

approach has not been investigated for stirred-tank simulations.  

Some researchers have ventured towards other turbulence models for simulating stirred 

tanks, such as the shear stress transport (SST) and scale adaptive simulation (SAS-SST) 

(Hartmann, et al., 2004; Honkanen, Vaittinen, Saarenrinne, & Korpijärvi, 2007). The SST 
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model is a hybrid model that combines the best features of the k-ε and k-ω models, 

switching from the k-ω model in the near-wall region to the k-ε model in the free stream 

using a smoothing function. The SST model has been shown to accurately predict flows 

with adverse pressure gradients and separation. However, it is unable to resolve any 

details of unsteady turbulent structures, which is often required (at least to some extent) to 

increase the accuracy of unsteady-flow predictions (Menter, 2009). The SAS-SST 

turbulence model is a recent development by Menter and Egorov (2005) to overcome this 

limitation. This model is formulated on the idea of capturing as much as possible of the 

turbulence field that an LES simulation would resolve but making use of the RANS 

capabilities near walls and regions of "steady" flow  (Menter, 2009). Honkanen et al. 

(2007) have shown that the length and intensity of the trailing vortices that are generated 

off the impeller blades in a stirred tank are predicted well by the SAS-SST model, and are 

under-predicted by the SST model, which shows that the SST model over-estimates the 

dissipation rate of the turbulent structures. However, in their study, Honkanen et al. (2007) 

did not provide a detailed comparison between experimental data and simulated results of 

periodic and turbulence (or random) kinetic energy and turbulence energy dissipation rate 

obtained using the SST and SAS-SST.  

This study section’s focus is to conduct a detailed and comprehensive assessment of the 

ability of the k-ε, SST, RSM and SAS-SST turbulence models to predict important flow 

parameters associated with stirred tanks, such as the periodic and turbulence (random) 

kinetic energy, turbulence energy dissipation rate, turbulence length-scale, trailing vortices 

and power number. Care is taken to properly separate the random and periodic 

components of the kinetic energy of fluctuating motions. The experimental data of Wu and 

Patterson (1989) for a standard configuration system stirred by a Rushton turbine are used 

for validation. This data set is a standard used by many workers for validating simulations 

of stirred tanks (Brucato, Ciofalo, Grisafi, & Micale, 1998; Coroneo, Montante, Paglianti, 

& Magelli, 2010; Deglon & Meyer, 2006; J. Derksen & Van den Akker, 1999; 

Zadghaffari, Moghaddas, & Revstedt, 2010; Zhang, et al., 2006). The data of Wu and 

Patterson (1989) are supplemented with the experimental data of Ducci and Yianneskis 

(2005), also for a standard configuration tank stirred by a Rushton turbine. As will be 

explained in more detail below, Ducci and Yianneskis (2005) have shown that the 

experimental method used by Wu and Patterson (1989) results in a 40% underestimation 
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of the local maximum turbulence energy dissipation rate near the impeller, with the 

location of the maximum estimated to be too close to the impeller tip. They have obtained 

more accurate experimental data for the turbulence energy dissipation rate using a four-

channel LDA and high spatial resolution to properly resolve the dissipative scales. 

2.1 The Computational Model 

2.1.1 Turbulence modelling 

In this section, the various turbulence closures used in this study are described.  The 

equations used for each model are those as coded in version 12.1 of ANSYS CFX (2009). 

All of the models used in this study are derived from Reynolds-averaging of the 

underlying Navier-Stokes equations. This process introduces Reynolds stresses that have 

to be modelled to form a closed system of equations. The manner in which this is done 

impacts both the reliability of the modelled equations and the computational cost required 

to solve them.  

In two-equation models, the Boussinesq hypothesis is used to model the unknown 

Reynolds stresses by assuming they can be approximated by the product of the mean 

strain rate multiplied by an isotropic turbulence viscosity. There are a variety of models 

that have been formulated but here we focus on just two of them. Firstly, the k-ε model, 

based on transport equations for the turbulence kinetic energy, k, and the turbulence 

energy dissipation rate, ε, is used. Whilst this model has known limitations, particularly its 

unsatisfactory performance in the near-wall region, it is still very widely used and also 

provides a good starting point to generate an initial flow field for more complicated 

models.  

The k-ε model employs wall functions as the equations cannot be integrated to the wall. In 

order to address this problem, models in which the turbulence energy dissipation rate is 

replaced by the turbulence eddy frequency, ω, have been derived. These behave well near 

the wall and allow the detailed behaviour inside the boundary layer to be calculated. 

However, they perform poorly away from walls due to a problem with over-sensitivity to 

the free stream conditions. Menter (1994) blended the k-ε and k-ω models and added a 

turbulence production limiter in the calculation of the eddy viscosity to produce the now 
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widely used Shear Stress Transport (SST) model. It provides accurate predictions of the 

onset and the amount of flow separation under adverse pressure gradients (Menter, 1994). 

A key failing of unsteady two equation models is that they cause excessive damping of 

turbulence and thus do not resolve any of the details of the turbulence directly (Menter, 

2009). Menter and Egorov (2005) introduced the SAS-SST to overcome this deficiency. 

The SAS-SST model uses the von Karman length-scale (SAS stands for Scale Adaptive 

Simulation), which induces "LES-like" behavior in unsteady regions of the flow field. By 

adjusting the equations locally, damping of the resolved scales in the flow field is avoided 

(Menter, 2009; Menter & Egorov, 2005). Thus, unlike in the previous models, the grid 

length-scale enters directly into the conservation equations via the ratio of the grid length-

scale to the von Karman length-scale. 

Furthermore, another major drawback of eddy-viscosity RANS based models is the 

assumption of an isotropic turbulence viscosity, which limits the development of 

anisotropy in the Reynolds stresses. Reynolds stress models (RSM), which solve transport 

equations for each of the Reynolds stresses, remove this assumption. The model is much 

more computationally intensive than two-equation models and suffers from poor 

convergence behaviour (Aubin, Fletcher, & Xuereb, 2004). Just as there are many variants 

of the two equations models, there are a large number of Reynolds stress models that 

differ in their closure relationships, especially for the pressure-strain term. Here the variant 

of the model developed by Speziale, Sarkar and Gatski (1991), known as the SSG-RSM, is 

used. It is known to perform well in the simulations of strongly rotating flows, in, for 

example, cyclones.  

A key limitation of two-equation models is their insensitivity to streamline curvature and 

rotation, which is the main motivation for the use of Reynolds stress models. Recently, a 

modification to the SST model has been developed by Smirnov and Menter (2009) based 

on the work of Spalart and Shur (1997). This has shown considerable benefit in 

applications where highly swirling flows have been modelled, but to our knowledge it has 

not yet been applied to the simulation of stirred tanks. 
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2.1.2 Description of the Test Case 

A standard tank and Rushton turbine configuration was employed experimentally by Wu 

and Patterson (1989). The tank has a diameter and height of 270 mm with four equally 

spaced baffles of width one-tenth of the tank diameter. The impeller has a diameter of 93 

mm with six blades and is located at one-third of the tank diameter from the base of the 

tank. The blades have a width and height of one-quarter and one-fifth of the impeller 

diameter, respectively.  Water at 25 
o
C was used as the working fluid and the impeller 

rotational speed was 200 rpm, which corresponds to a Reynolds number of 28,830.  

2.1.3 The Computational Mesh and Time-steps   

Simulations were carried out using the sliding mesh technique with the impeller swept 

region as the inner rotating zone and rest of the tank, including the baffles, as the 

stationary zone. Only half of the geometry was modelled to reduce computational effort, 

which was possible due to the symmetry of a six-blade impeller and four baffles. The 

thicknesses of the impeller blades, impeller disc and baffles, which Wu and Patterson 

(1989) did not specify in their paper, were assumed to be zero in order to reduce the mesh 

complexity.  Rutherford et al. (1996) have shown experimentally that the thickness of the 

impeller blades significantly influences the power number, mean velocities and turbulence 

levels. They measured a reduction in the impeller power number of 33 % with an increase 

in the ratio of blade thickness to impeller diameter from 0.0082 to 0.0337, with the 

impeller diameter remaining constant. Delafosse et al. (2008) showed a similar influence 

of the impeller thickness on the power number after comparing the power number of 5.5 

measured by Escudié and Liné (2003) for a blade thickness to impeller diameter ratio of 

0.0133 with the power number of 5 measured by Ducci and Yianneskis (2005) for a blade 

thickness to impeller diameter ratio of 0.03, both cases using an impeller of the same 

diameter. 

In addition to the effect on power number, blade thickness also affects the mean and 

fluctuating velocities, mostly around the centre of the discharge stream of the impeller (at 

the impeller disk elevation). Rutherford et al. (1996) observed experimentally an increase 

in the maxima of the radial velocity of 26% and 11% at dimensionless radial distances rR 

from the impeller axis of 1.048 and 1.752, respectively, as the blade thickness to impeller 
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diameter ratio decreased from 0.0337 to 0.0082. Moreover, they observed an increase in 

the maxima of the radial fluctuating velocity of 15% and 25% at dimensionless radial 

distances rR of 1.048 and 1.752, respectively, as the blade thickness to impeller diameter 

ratio decreased from 0.0337 to 0.0082. CFD simulations of blades with a given thickness 

are often avoided because the thickness of the blade cannot be meshed sufficiently well 

while having a mesh that is practical from a computational point of view. Any differences 

between the prediction and experimental data in this paper may be due to the neglect of 

the impeller thickness in the simulations, as well as weaknesses in the turbulence models 

tested.   

 

Figure 2-1: Views of the 2.138×106 node mesh for the tank and impeller zones. 

The sliding interface was located at a radius corresponding to the tip of the impeller. No 

discontinuities in velocity, pressure, turbulence kinetic energy or turbulence energy 

dissipation rate were observed across the sliding interface with the mesh eventually 

adopted in the simulations (Figure 2-1), which indicates a good resolution of the mesh 

across the interface. Grid independence was tested with the SST turbulence model. In this 

case, the average percentage difference in the solution between meshes containing 1.644 

and 2.138 million nodes for the mean total kinetic energy of fluctuating motions and mean 

turbulence energy dissipation rate was 7.2% and 3.7%, respectively, over the region 

examined (shown in Figures 2b and 2c). Moreover, the average percentage difference in 

the solution between these meshes for the power number based on torque (defined below) 

was only 1.5%. Further mesh refinement from 2.138 to 3.127 million nodes had very little 
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effect on the numerical solution for the mean total kinetic energy of fluctuating motions, 

mean turbulence energy dissipation rate and power number.  

For the SAS-SST predictions, the average percentage difference between the meshes 

containing 1.644 and 2.138 million nodes for mean total kinetic energy of fluctuating 

motions and mean turbulence energy dissipation rate was 6.1% and 11.3%, respectively, 

over the region examined (shown in Figure 2-2d for turbulence energy dissipation rate). 

The value of 11.3% for the turbulence energy dissipation rate was considered to be too 

high to regard the SAS-SST predictions as being grid independent. For this turbulence 

model, a grid independent solution is more difficult to achieve, especially in the 

turbulence quantities, because further refinement of the mesh will result in smaller 

turbulent fluctuations (or eddies) being resolved. In this work, a mesh containing 2.138 

million nodes, shown in Figure 2-1, was adopted for all of the turbulence models tested. 

Refining the mesh further to resolve even finer turbulent structures and obtain more 

accurate solutions for the SAS-SST was found to be prohibitively expensive 

computationally.  

Figure 2-2 shows that little improvements in accuracy can be gained by moving from one 

degree resolution for the rotating impeller (equivalent to 8.3×10
-4

 s per time-step) to a 0.5 

degree resolution using the same mesh (containing 1.027 million nodes) and the SST 

model. In this comparison, the average percentage error for both the mean total kinetic 

energy of fluctuating motions and the mean turbulence energy dissipation rate was about 

0.4 % and 0.3%, respectively. For the SAS-SST model prediction with a mesh containing 

1.027 million nodes and for 20 simulated revolutions, the average percentage difference in 

solutions for a time-step of 1 degree and 0.5 degree resolution for both the mean total 

kinetic energy of fluctuating motions and mean turbulence energy dissipation rate was 

about 2.0% and 6.4%, respectively, over the region examined. As with mesh refinement, 

further time-step refinement would result in better resolution of turbulence when using the 

SAS-SST model. However, such refinement is constrained by the computational effort 

that can be afforded.   
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Figure 2-2. Grid and time-step independence check. (a) mean radial velocity at a 

dimensionless radial distance rR of 1.07 from the impeller axis, (b) total kinetic energy of 

fluctuating motions and (c) turbulence energy dissipation rate for the SST turbulence 

model, and (d) turbulence energy dissipation rate for the SAS-SST turbulence model at the 

impeller disk elevation. The legend for Figure 2-2c applies to Figures 2-2a and 2-2b. 

Only one revolution of data was collected for the k-ε, SST, and SSG-RSM models since 

repeat revolutions produced repeat data. In the SAS-SST, data representing a sufficient 

number of revolutions is required to ensure good statistical averages (Frank, Prasser, 

Menter, & Lifante, 2010). In this case, data was collected for 30 revolutions equivalent to 

around 9 seconds of real time. Figure 2-2d shows that 20 revolutions suffice to achieve 

time-averaged turbulence quantities that are independent of the number of further 

simulated revolutions. 
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Table 2-1 shows a comparison of various mesh sizes and time-steps used in recent studies. 

It can be seen that some researchers have used coarser meshes and longer time-steps than 

used in this work, perhaps due to limitations in computer power available but at the 

expense of a certain degree of accuracy. 

Table 2-1: Mesh size and time-step used by various authors for transient simulations of 

flow in stirred tanks. 

Author  Modelled tank 

geometry 

Mesh size: 

 In millions  

Time-step: 

resolution in degrees 

(Ng, et al., 1998) Half 0.239 (cells) 1 

(Montante, et al., 

2001) 

Half 0.080 4 

(Hartmann, et 

al., 2004) 

Full 0.242 (nodes) 4 

(Yeoh, et al., 

2004) 

Full 0.49 (cells) 1.67 

(Bakker & 

Oshinowo, 2004) 

Full 0.763 (cells) 6 

(Zhang, et al., 

2006) 

Not specified 1.728 (cells) 2.4 

(Honkanen, et 

al., 2007) 

Full 0.542 (nodes) 2.5 

(Jahoda, et al., 

2007) 

Full 0.615 1.8 

(Murthy & Joshi, 

2008) 

Not specified 0.575 Initially 0.16; gradually 

increased to 1.6 

(Delafosse, et 

al., 2008) 

Full 1 (cells) 0.5 

(Coroneo, et al., 

2010) 

Full 6.6 (cells) 3.75 

Present Study Half 2.138 (nodes) 1 

2.1.4 Computational Aspects 

The advection terms were modelled using the high resolution scheme for all equations and 

the second order backward Euler scheme was used for the transient terms. The 

convergence criteria used for the continuity, momentum and turbulence quantities was an 
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RMS scaled residual of 10
-5

. This was achieved in a maximum of 10 iterations per time-

step for all the turbulence models presented in this study. Double precision arithmetic was 

used in all simulations. In these simulations, an un-converged steady-state simulation was 

used as the initial guess for the transient simulations. Collection of transient data was 

started only after a pseudo-steady state was achieved for all turbulence models.  

The simulations have been performed using eight 1.9 GHz parallel processors each with 2 

GB of memory. No significant computing time difference was observed between the k-ε, 

SST, SST-CC and SAS-SST models, with the simulation of one revolution with one 

degree resolution in time-step and with a mesh having 2.138 million nodes being achieved 

in about 55 hours compared with 90 hours for the SSG-RSM model.  

2.1.5 Data Post Processing 

Kinetic Energy of Fluctuating Motions for the k-ε, SST and RSM Models 

In the case of the RANS turbulence models (k-ε, SST and RSM models), the instantaneous 

velocity for a given point in the tank can be defined as the sum of the mean velocity, the 

periodic velocity and a random velocity, as defined in Equation (2-1) below: 

      ̅         (2-1) 

Only the mean and periodic velocity components can be resolved directly in RANS 

simulations, provided these simulations are transient. In this case, the velocity at a point 

will oscillate in a regular manner around the mean due to the cyclic passage of the 

impeller blades. For example, with six blades, one revolution of the impeller will result in 

six oscillations. The transient velocity field in RANS simulations, ui, can be decomposed 

as follows: 

    ̅        (2-2) 

The time-averaged periodic velocity component in a given direction can be extracted as 

follows: 

    ̅̅ ̅̅ ̅̅ ̅  
 

 
∑ (    ̅)  

            (2-3) 
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where n is the number of time-steps over which the time-averaging takes place. The 

components in the other two orthogonal directions are extracted in the same manner. The 

periodic kinetic energy is then given by 

   
 

 
(    ̅̅ ̅̅ ̅̅ ̅      ̅̅ ̅̅ ̅̅ ̅      ̅̅ ̅̅ ̅̅ ̅̅ )  (2-4) 

The random velocity component comes from RANS modelling through the turbulence 

kinetic energy (kr). Thus, the total kinetic energy of fluctuating motions is given by 

           (2-5) 

Kinetic Energy of Fluctuating Motions for the SAS-SST model 

In the case of the SAS-SST model, the instantaneous velocity can also be described by 

Equation (2-1). However, the random velocity component,     now becomes the sum of a 

random velocity due to the large eddies, ule-r, which are resolved directly by the SAS-SST 

model and the random velocity due to the smaller eddies, use-r, which come from the 

RANS content of the model through the turbulence kinetic energy (k): 

      ̅                  (2-6) 

For SAS-SST simulations, the transient velocity at a point is resolved as follows: 

    ̅      (2-7) 

where             , which implies that any simulated fluctuations are caused by 

periodicity and large-eddies. The time-averaged component in each direction can be 

extracted separately, 

    ̅̅ ̅̅ ̅  
 

 
∑ (    ̅)  

       (2-8) 

where n is the number of time steps over which the time-averaging takes place. The 

kinetic energy due to these fluctuations (periodic plus the large-eddy) is given by 

        
 

 
(    ̅̅ ̅̅ ̅      ̅̅ ̅̅ ̅      ̅̅ ̅̅ ̅̅ )      (2-9) 
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The total kinetic energy of fluctuating motions is therefore the sum of the kinetic energy 

due to the periodic and large-eddy fluctuations and kinetic energy due to the small-eddy 

fluctuations (calculated as the turbulence kinetic energy, k, from the SAS-SST model): 

                  (2-10) 

The periodic and large-eddy fluctuations are separated by effectively averaging out the 

fluctuations due to the large eddies. One impeller rotation is resolved using mtotal angular 

positions. For example, for a 1 degree resolution, there are 360 angular positions before 

the impeller completes a full cycle and returns to its initial position. For a given repeat 

angular position of the impeller m, the velocity at a point can be averaged over a number 

of full turns: 

 ̃  
 

   
∑     

   
           (2-11) 

where      is the transient velocity at a point in the tank when the impeller has an angular 

position corresponding to m, and nTS is the number of full turns of the impeller for which 

data are available. Clearly, the more full-impeller turns that have been simulated the better 

the average. Equation (2-11) can be used to calculate the periodic fluctuation (due to the 

cyclic passage of the impeller blades) once the effect of the large eddy fluctuations have 

been averaged out. The effect of this averaging can be seen clearly in Figure 2-3. Thus, the 

time-averaged periodic velocity components in each direction can be derived from the 

averaged periodic fluctuations over a full turn, such as shown in Figure 2-3, using 

Equation (2-3). The periodic kinetic energy is then given by 

   
 

 
(    ̅̅ ̅̅ ̅̅ ̅      ̅̅ ̅̅ ̅̅ ̅      ̅̅ ̅̅ ̅̅ ̅̅ )  (2-12) 

The random component of the total kinetic energy can now be extracted as follows: 

                       (2-13) 
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Figure 2-3: Effect of averaging on the periodic velocity calculated using the SAS-SST 

turbulence model with 1
° 

time-step and a mesh with 2.138×10
6
 nodes at a dimensionless 

radial distance rR of 1.07 from the impeller axis at the axial height of the impeller disk. 

Calculation of the Power Number 

The power number can be obtained in two different ways from the numerical simulations: 

(1) using the torque applied on the impeller (Equation 2-14) and by integrating the 

turbulence energy dissipation rate ε over the tank volume (Equation 2-15), as follows 

                  (2-14) 

and 

    ∫             (2-15) 

where N is the rotational speed in rev/s, τ is the torque applied on the impeller, ρ is the 

fluid density and D is the diameter of the impeller.  

Calculation of the Turbulence Length-scale 

The turbulence length-scales used in this study are given by Equation (2-16) for the k-ε 

and SSG-RSM model and by Equation (2-17) for the SST and SAS-SST models. 

    
   

                              (2-16) 
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  √  (  
   

  )  (2-17) 

The constant Cµ takes a value of 0.09. 

2.2 Results and Discussion 

2.2.1 Mean Velocity Field 

Figures 2-4a and 2-4b show that all of the turbulence models, except for the k-ε model, 

slightly over-predict the maxima of the mean radial and tangential velocity profiles at a 

dimensionless radial distance rR of 1.07 from the centre of rotation. In addition, all models 

slightly over-predict the magnitude of the mean axial velocity below and above the blades 

of the impeller at this same radial location (Figure 2-4c).  Figures 2-4d and 2-4e show that 

the SAS-SST model predicts the decay of the mean tangential and axial velocities radially 

away from the impeller reasonably well, although the mean radial velocity decays too 

slowly (Figure 2-4f). Similar comparisons as seen in Figures 2-4d, 2-4e and 2-4f have 

been conducted between experiment and prediction for all other turbulence models tested; 

however, for the sake of brevity, figures showing these comparisons are not provided here. 

In general, all turbulence models tested modelled the decay of the mean tangential and 

axial velocity radially away from the impeller reasonably well, but they under-predicted 

the decay of mean radial velocity. Nevertheless, all these models at least qualitatively 

predict the radial jet-like flow away from the impeller and the entrainment of fluid into the 

jet from the bulk flow, which causes the jet to broaden and decrease in speed. Finally, 

using curvature correction with the SST turbulence model did not appreciably change the 

mean velocity predictions compared with using the SST turbulence model alone. 
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Figure 2-4. Mean radial, tangential and axial velocity profiles for different turbulence 

models at a dimensionless radial distance rR of 1.07 from the impeller axis (a, b and c) and 

for the SAS-SST model at various radial locations (d, e, and f). The legend for Figure 2-4c 

applies to Figures 2-4a and 2-4b. The legend for Figure 2-4f applies to Figures 2-4d and 2-

4e. 
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2.2.2 Kinetic Energy of Fluctuating Motions 

Figures 2-5a, 2-5b and 2-5c present axial profiles of the periodic, random and total 

components of the kinetic energy of the fluctuating motions at a dimensionless radial 

distance rR of 1.07 from the centre of rotation. All of the turbulence models, except for the 

k-ε model, over-predict the total kinetic energy of fluctuating motions. This over-

prediction of the total kinetic energy, which only occurs in the vicinity of the impeller 

(Figure 2-5c), is directly related to the over-prediction of the periodic kinetic energy 

(Figure 2-5a). Away from the impeller, the agreement is better for all the turbulence 

models, except for the SSG-RSM model, as shown in Figures 2-5d and 2-5f. The k-ε 

model predicts the random, periodic and total components of the kinetic energy reasonably 

well away from the impeller. However, closer to the impeller, it severely under-predicts 

the periodic component and over-predicts the random component, which Delafosse et al. 

(2008) also found. Conversely, the SSG-RSM model severely over-predicts the periodic 

kinetic energy and under-predicts the turbulence (or random) kinetic energy. Murthy and 

Joshi (2008) have found a similar under-prediction of the turbulence (random) kinetic 

energy for the SSG-RSM.  

None of the turbulence models are able to properly predict the peaks and local minimum 

in the turbulence (random) kinetic energy profile in the axial direction, as shown in 

Figure 2-5b. These peaks and local minimum are predicted only weakly by the SST and 

SAS-SST model and not at all by the SSG-RSM, SST-CC and k-ε models. Wu and 

Patterson (1989) state that the peaks correspond to the location of a pair of vortices, one 

vortex above and one vortex below the disk of the impeller, that originate from behind 

each blade and trail out into the bulk of the flow. Such trailing vortices, which will be 

visualized later in this paper, are predicted by all turbulence models tested. 
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Figure 2-5: Comparison of different turbulence models for (a) periodic, (b) random and (c) 

total kinetic energy of fluctuating motions at a dimensionless radial distance rR of 1.07 

from the impeller axis and for radial profiles of (d) periodic, (e) random, and (f) total 

kinetic energy of fluctuating motions at the impeller disk elevation. The legend for Figure 

2-5f applies to Figures 2-5a, 2-5b, 2-5c, 2-5d and 2-5e. 
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Regarding the turbulence (random) kinetic energy profile in the radial direction shown in 

Figure 2-5e, the SST, SST-CC and SAS-SST turbulence models predict the maximum at a 

dimensionless radial distance rR of about 1.4 in agreement with the experimental results. 

The k-ε model predicts the maximum at the impeller tip, while the SSG-RSM model 

predicts the maximum at a dimensionless radial distance rR of 1.6.  Of all the turbulence 

models tested, the SST-CC predicts the periodic, random and total kinetic energy of 

fluctuating motions most satisfactorily. These predictions mirror the experimental 

observations of Wu and Patterson (1989), who found that periodic fluctuations dominate 

the turbulence field close to the impeller, as can be seen by the high values of kp compared 

with kr in this region, but decay rapidly away from the impeller in the radial direction. 

Meanwhile, the random turbulent fluctuations developed in the near impeller region, 

dominate at a dimensionless radial distance rR of 1.4 and then decay further away. 

2.2.3 Turbulence Energy Dissipation Rate 

Figures 2-6 and 2-7 present the turbulence energy dissipation rate predictions of the 

different turbulence models tested in this paper. For comparison, two sets of experimental 

data are presented, the first by Wu and Patterson (1989) and the second by Ducci and 

Yianneskis (2005). The experimental turbulence energy dissipation rate determined by Wu 

and Patterson (1989) was calculated from the turbulence (random) kinetic energy by a 

fitted correlation rather than being measured directly. Ducci and Yianneskis (2005) have 

shown that this “dimensional” method tends to underestimate the local maximum 

turbulence energy dissipation rate near the impeller by about 40%. In addition, the 

location of this maximum is found to be too close to the impeller using this method. Ducci 

and Yianneskis (2005) measured ε directly and more accurately using a four-channel 

laser-Doppler anemometer (LDA) and a fine spatial resolution to properly resolve the 

dissipative scales. They found that the turbulence energy dissipation rate normalized with 

N
3
D

2
 was approximately constant between Reynolds numbers of 20,000 and 40,000. 

Given that the same standard tank configuration and Rushton turbine were used by both 

Wu and Patterson (1989) and Ducci and Yianneskis (2005), and that the Reynolds number 

in the experiments of Wu and Patterson (1989) was 28,830, then a direct comparison of 

the predictions of the turbulence models presented in this paper with the experimental data 

of Ducci and Yianneskis (2005) is possible.  
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Note that in the paper of Wu and Patterson (1989), profiles of turbulence energy 

dissipation rate normalized with an average turbulence energy dissipation rate εavg are 

presented. In order to estimate εavg so that these profiles could be re-dimensionalised here, 

Equation (15) was used with a power number of 5, which Wu and Patterson (1989) 

assumed on the basis of measurements conducted by Bates et al. (1963). Another point is 

that Ducci and Yianneskis (2005) only provide one axial profile of turbulence energy 

dissipation rate at a radial location of 1.35 rR. This position lies between the two radial 

locations (at 1.29 rR and 1.5 rR) of the turbulence energy dissipation rate axial profiles 

measured by Wu and Patterson (1989). In order to allow a good comparison, the axial ε 

profile of Ducci and Yianneskis (2005) at 1.35 rR is overlaid on both the axial ε profiles of 

Wu and Patterson (1989). An axial profile of turbulence energy dissipation rate at 1.07 rR 

is shown in Figure 7c, which will be discussed in relation to predicted power numbers 

further below. 

Figure 2-6 shows that the k-ε model predicts the location of maximum turbulence energy 

dissipation rate to be near the impeller tip, in agreement with the k-ε model predictions of 

Delafosse et al. (2008). This does not agree with the experimental results, which suggest 

that the location of the maximum is at a dimensionless radial distance rR of around 1.4. 

The SST model is able to predict the appearance of a maximum and its magnitude, 

although its location does not align with that of the experimental data. Curvature 

correction helps to improve this prediction. Indeed, the SST-CC model accurately predicts 

both the increase in turbulence energy dissipation rate radially away from the impeller tip 

in the near-impeller region, where turbulence is developing, and the decrease of the 

turbulence energy dissipation rate further away from the impeller, where turbulence 

decays. 

Neither the location of the maximum nor its magnitude is predicted well by the SAS-SST 

and SSG-RSM models, as shown in Figure 2-6. The SSG-RSM is the least accurate model 

tested. Given that this model also requires more than one-and-a-half times the 

computational time of the k-ε and the SST-based models, it would be a poor choice of 

turbulence model for predicting flow in baffled stirred tanks. Unfortunately, as indicated 

by the numerical-solution verification check detailed above (illustrated in Figure 2-2d), 

further refinement of the mesh is required before any conclusions can be drawn about the 

accuracy of the SAS-SST turbulence model for predicting the turbulence energy 
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dissipation rate. Such refinement proved to be impractical from a computational 

perspective in this work due to the significant number of impeller revolutions required to 

gain good statistical averages of the turbulence quantities and the prohibitively long time 

needed to achieve this. 

  

Figure 2-6: A comparison of the radial profile of normalized turbulence energy dissipation 

rate at the impeller disk elevation for various turbulence models. 

A comparison with the data of Ducci and Yianneskis (2005) indicates that all turbulence 

models under-estimate the width of the turbulence energy dissipation rate profile in the 

axial direction (Figure 2-7). Thus, it is reasonable to assume that, in general, the 

turbulence models under-predict the volume-integral of the turbulence energy dissipation 

rate throughout the tank. As will be discussed below, this has repercussions for the 

accurate prediction of power number based on the volume-integral of the turbulence 

energy dissipation rate (Equation 2-15). Note that the experimental data of Ducci and 

Yianneskis (2005) at 1.35 rR are more appropriately compared with the predictions shown 

in Figure 2-7a, which apply at a location of 1.29 rR. Further away radially, the predicted 

turbulence energy dissipation rates decrease and become even lower relative to the 

experiment measurements at 1.35 rR, which further highlights the under-estimation of the 

turbulence energy dissipation rate by all turbulence models tested.  
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Figure 2-7: Axial profiles of normalized turbulence energy dissipation rate at various 

radial locations for different turbulence models. The legends for Figures 2-7a and 2-7b 

apply to Figures 2-7a, 2-7b and 2-7c. 

2.2.4 Trailing Vortices and Turbulence Length-scale 

The vortical structures in a flow can be visualized in a number of different ways. Here we 

have used the swirling strength, based on the computation of the eigenvalues of the 

velocity gradient tensor. A threshold value of 0.1 was found to be a good compromise 

between missing structures if the value was too high and masking the structures if the 

value was too low. 
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Figure 2-8: Trailing vortices visualized using a swirling strength of 0.1 for the k-ε, SST, 

SSG-RSM and SAS-SST turbulence models. 

Unsteady two-equation models, such as k-ε and SST, are well-known for excessively 

damping turbulence so that any detail of the turbulent structure (even on the larger scales) 

cannot be resolved directly. This is reflected in Figures 2-8a and 2-8b, which show that 

these models predict very small and hence dissipative trailing vortices with no secondary 

vortex motion apparent. Nevertheless, both the k-ε and SST models predict the appearance 

of the pair of vortices, one vortex above and one vortex below the disk of the impeller, 

that originate from behind each blade and trail out into the bulk of the flow. Note that 

Honkanen et al. (2007) also predicted smooth, overly-dissipative trailing vortices with 

hardly any secondary motion using the SST turbulence model. In the k-ε and SST models, 

all turbulence scales are modelled through Reynolds-averaging, and hence a relatively 

a) k-ε b) SST 

c) SSG-RSM c) SAS-SST 
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large length-scale of turbulence was calculated using Equations (2-16) and (2-17), as can 

be seen in Figures 2-9a and 2-9b. Curvature correction in the SST model had a minor 

effect on the length of the trailing vortices and the length-scales of turbulence - this 

comparison is not shown here - and therefore, from this perspective, it did not improve the 

SST predictions appreciably.  Interestingly, the length-scales of turbulence of up to 3 mm 

predicted by the k-ε and SST models in the region of the impeller (shown in Figure 2-9) 

are similar to the experimental turbulence length-scales of between 0.3 and 3.0 mm 

measured by various researchers and compiled together by Wu and Patterson (1989). 

  

  

Figure 2-9: Predicted turbulence length scales for k-ε, SST, SSG-RSM and SAS-SST 

turbulence model simulations at the impeller disk elevation. 

b) SST 

c) SSG-RSM d) SAS-SST 

a) k-ε 



31 

 

For the SAS-SST model, some details of the turbulence structures -the larger scale 

structures- can be directly resolved, while Reynolds averaging accounts for the smaller-

scale turbulence structures. Figure 2-8d shows that the SAS-SST model predicts longer 

trailing vortices and secondary vortex motions, in agreement with Honkanen et al. (2007), 

who found that the SAS-SST model is able to predict vortices of comparable length and 

intensity to those found experimentally. The turbulence length-scales predicted by the 

SAS-SST model (Figure 2-9d) are much shorter than those predicted by the k-ε and SST 

models, because the larger scale turbulence is now being directly resolved through the 

"LES" content of the model. Figures 2-8c and 2-9c show that the SSG-RSM model is able 

to predict trailing vortices more similar to those predicted by the SAS-SST model, 

although no secondary motions are evident. 

2.2.5 Power Number 

Table 2-2 summarizes the predictions of the power number for the different turbulence 

models, calculated by the two different methods described in Section 2.1.5. By comparing 

these values with the power number of 5, which was assumed (not measured directly) by 

Wu and Patterson (1989) on the basis of measurements conducted by Bates et al. (1963), it 

can be seen that the power number determined from the torque on the impeller over 

predicts the experimental data by 14% for the k-ε model and at least 30% for the SST, 

SST-CC, SAS-SST and SSG-RSM models. Delafosse et al. (2008) found an over-

prediction of the power number determined from the torque of 20% for the k-ε model. The 

predicted power number determined by integrating the turbulence energy dissipation rate 

throughout the fluid volume is close to the power number of 5 for nearly every turbulence 

model tested.  

There is, however, a question of whether an assumed power number of 5 is reasonable, 

given that there were no data provided on the thickness of the impeller blades in the paper 

of Wu and Patterson (1989). In fact, the predicted power numbers determined from the 

torque in this paper are closer to the value of 6 measured by Rushton et al. (1950). As 

described above, both Rutherford et al. (1996) and Delafosse et al. (2008) have shown that 

the power number increases with decreasing blade thickness. In the simulations presented 

here, an impeller with blades of negligible thickness was modelled and thus predicted 

power numbers at the higher end of the spectrum can be expected. Furthermore, Figure 2-
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7 clearly shows an under-estimation of ε throughout the tank by all the turbulence models 

tested, and it is therefore reasonable to assume that the simulated power numbers based on 

the volume integral of ε are also under-predicted. Therefore, it is assumed in this paper 

that the predicted power number based on torque is more indicative of the actual power 

number than the predicted power number based on turbulence energy dissipation rate. It 

became clear during this work that CFD simulations of a stirred tank using a mesh that 

properly resolves the blade thickness would be impractical with the computing power 

available.  

The width of the axial profile of turbulence energy dissipation rate at 1.07 rR predicted by 

the SST-CC model is narrower than that of nearly every other turbulence model tested, as 

shown in Figure 2-7c. This lower turbulence energy dissipation rate in the vicinity of the 

impeller explains the relatively low power number (based on the volume integral of ε) of 

4.5 predicted by the SST-CC model compared with the other turbulence models tested, as 

shown in Table 2-2. The predicted power number based on the volume integral of ε for the 

SSG-RSM model is highest at 5.5, because the predicted turbulence energy dissipation 

rate for this turbulence model becomes higher than for the other models radially away 

from the impeller tip, as shown in Figure 2-6. Note that the power number fluctuates as 

the impeller rotates, and the predicted range of these fluctuations is presented in Table 2-2.  

Table 2-2: The effect of the turbulence model on power number calculated using the 

torque and volume-integral of the turbulence energy dissipation rate methods. 

Turbulence model 
Power number  

from torque 

Power number from 

ε 

k-ε 5.7±  0.2 5.1 ±  0.1 

SST 6.5 ±  0.2 5.1 ±  0.04 

SAS-SST  6.9 ±  0.7 5.2 ±  0.4 

SSG-RSM 6.5 ±  0.3 5.5 ±  0.2 

SST-CC 6.6 ±  0.3 4.5 ±  0.05 

2.2.6 Computational Cost 

Approximately five impeller revolutions were required to obtain a pseudo-steady state 

simulation for the k-ε, SST, SSG-RSM and SST-CC models. Only one further revolution 

was required for averaging purposes after the pseudo-steady state had been reached for 

these models. For the SAS-SST model, a large number of revolutions were required to 
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obtain good statistical averages. Thirty revolutions worth of data were collected in this 

study. Given that at least 20 revolutions were required for the SAS-SST model to obtain 

good statistical averages, the computational time required to obtain meaningful results 

from the SAS-SST model was at least twenty times greater than that required for the k-ε or 

the SST models. LES models are computationally even more intensive since they are more 

sensitive to the grid and therefore would require even more grid refinement (Menter & 

Egorov, 2005) and more impeller revolutions for good statistical averages. In an industrial 

setting, the solution time is likely to be an important factor affecting the choice of 

turbulence models in the simulation of turbulent flow in stirred tanks. From this point of 

view, the SST model with curvature correction is the most attractive choice, since it 

provides a reasonably accurate solution in the lowest computational time.  
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2.3 Nomenclature 

Cμ A constant in the definition of the turbulence length scale 

D Diameter of tank 

  Modelled turbulence kinetic energy 

   Periodic kinetic energy 

         Periodic kinetic energy plus the turbulence (random) kinetic energy due to 

large-eddies in SAS-SST model 

   Turbulence (random) kinetic energy 

   Total kinetic energy of fluctuating motions 

  Turbulence length-scale 

N Number of time-steps 

N Rotational speed 

    Power number measured through torque on the impeller 

    Power measured by integrating turbulence energy dissipation rate over the 

tank volume 

nTS Number of full turns of the impeller 

R Radial distance from the center of rotation 

R Impeller radius 

   r/R 

   Velocity fluctuations in the radial direction 

 ̅ Mean velocity 

   Transient velocity 

     Instantaneous velocity 

      Random velocity due to the large eddies 

   Periodic velocity 

   Random velocity 
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Ur Radial velocity 

use-r Random velocity due to the smaller eddies 

Utip Impeller tip velocity 

Uz Axial velocity 

Uθ Tangential velocity 

   Velocity fluctuations in the tangential direction 

W  Width of the blade 

   Velocity fluctuations in the axial direction 

Z Axial distance from the center of impeller 

zw 2z/W 

Greek Letters 

Ε Turbulence energy dissipation rate 

εavg Average turbulence energy dissipation rate 

Ρ Density 

Τ Torque 

Ω Turbulence eddy frequency 
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3 Oxygen transfer rate experiments 

The availability of sufficient oxygen is of utmost importance when culturing cells or 

micro-organisms in a bio-reactor. Oxygen can be supplied by bubbling air through the 

culture medium or by passing air through a gas-permeable membrane contained within the 

tank. Appropriate air flow rates and agitation speeds must be chosen, since they affect the 

rate of oxygen transfer to the micro-organisms. A good understanding of the oxygen 

transfer rate and the oxygen demand of cells will help in establishing optimal operating 

conditions for culturing cells in stirred tanks. One of the main objectives of this particular 

study is to find similar oxygen transfer rates for oxygenation via air bubbling and a gas-

permeable membrane with the same agitation speeds. 

Although bubbling air is the most commonly used and the most efficient method for 

oxygenation, it can damage cells, especially animal cells, which have no cell wall and are 

therefore sensitive to the fluid mechanical stress associated with the rising and bursting of 

bubbles (Tramper, et al., 1986). Alternative oxygenation methods that result in low fluid 

mechanical stresses have been sought in the past. Smith and Greenfield (1992) used 

headspace gassing with air or oxygen in a stirred tank. However, headspace gassing is 

limited to smaller sized vessels of order 500 ml due to the limitations of low interfacial 

area (surface area of the gas phase to the volume of liquid phase) inside larger vessels, 

which renders oxygen transfer inefficient (Singh, 1999). Porous membranes of silicon 

(Kunas & Papoutsakis, 1990) or Polytetraflouroethylene / Teflon (PTFE) (Schneider, et 

al., 1995) have also been used for oxygenation. The advantage of using porous membranes 

is that higher agitation speeds are possible by avoiding cell damage caused by bubbling. 

Kunas and Papoutsakis (1990) proposed that aeration via bubbling and/or agitation are the 

two fluid mechanical forces mostly responsible for cell damage. However, it is not known 

which of these mechanical forces is more influential on the cells. The impact of each of 

these forces on the cells should be quantified not only for better understanding of this 

phenomenon but also for better optimization of the process. There has been no research so 

far that has separated the cell damage due to these two hydrodynamic forces. One possible 

experiment to separate these forces involves oxygenating cells in a stirred tank first using 

standard air bubbling and then using a gas-permeable membrane. By comparing the cell 
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damage resulting from each type of oxygenation method for a given agitation rate, the 

effect of bubbling versus no bubbling can be ascertained. The study of Schneider et al. 

(1995) has laid the foundation for this study by reporting on experiments where PTFE 

tubing was used to oxygenate the culture medium. 

In this chapter, operating conditions that result in appropriate oxygenation rates for cell 

culturing are chosen for both air-bubbling and gas-permeable membrane oxygenation. In 

this preliminary experiment, no cells will be cultured, only oxygen transfer rates will be 

measured. The procedure is 1) to conduct experiments at various agitation speeds and air 

flow rates for both bubbling and gas-permeable membrane; 2) to calculate the oxygen 

transfer rate for both cases; 3) to compare the oxygen transfer rates of both of these cases 

and choose a similar value for a given agitation speed that results in appropriate 

oxygenation during cell culturing, as determined from the literature. This information can 

be used in future experiments in which cells are cultured using either air-bubbling or a 

gas-permeable membrane for oxygenation. The extent of cell damage due to bubbling 

could then be ascertained by comparison. It is important to note that the air flow rate and 

percentage of oxygen in the air will be varied in order to keep similar oxygen transfer 

rates. 
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3.1 Mass transfer theory 

3.1.1 Bubbling experiments 

For a bubble present in a liquid phase, the amount of mass transferred from its surface into 

the liquid is proportional to the concentration difference and the interfacial area (Mills, 

1999). The major resistance is observed in the liquid film surrounding the gas bubble 

(Figure 3-1). Hence, the transport of oxygen through the liquid film can be expressed as: 

     (        )   (3-1) 

where NA is the flux at the interface, kL is the mass transfer coefficient in the liquid phase, 

CAsat is the saturated concentration at the surface of the bubble and CA is the bulk 

concentration of the dissolved oxygen. 

 

 

 

 

 

Figure 3-1: Oxygen concentration profile at air bubble-medium interface 

In a closed reactor, the oxygen consumption can be expressed as: 

 

  
           (        )   (3-2) 

which can be rearranged as follows 

 
   

(        )
 

   

 
      (3-3) 

and integrated to give 

   (        )           (3-4) 
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Here ab is the ratio of area of oxygen bubbles to the volume of the liquid phase and B is a 

constant of integration. At initial conditions when t=0, it can be supposed that CA = CA0, 

which implies that      (         ). Therefore, Equation 4 becomes: 

       
(         )

(        )
 ⁄   (3-5) 

3.1.2 Membrane experiments 

In the case of the transfer of oxygen through the gas-permeable membrane, the gas phase 

is present within the gas-permeable membrane tube, with the membrane wall acting as a 

resistance to the transfer of oxygen to the liquid phase (Schneider, et al., 1995). Two other 

resistances include the gas film (on the inner-tube side) and the liquid film (on the outer-

tube side), as shown in Figure 3-2. It can be assumed that there is an overall mass transfer 

coefficient, km which has contributions from the mass transfer coefficients due to the gas 

film, kG, the thickness of the gas-permeable membrane, kt, and the liquid film, kL. Hence, 

the transfer of oxygen can be expressed as: 

     (     )    (3-6) 

where C1 is the concentration of oxygen inside the gas-permeable membrane tube and C2 

is the concentration in the bulk liquid. C2 was measured directly by the dissolved oxygen 

probe in percentages. Appendix 7.2 shows the details of the determination of C1, which 

should be the concentration of oxygen in the air within the gas permeable membrane tube 

if km is the overall resistance across the membrane.  In Appendix 7.2, it is reasoned from 

experiment that C1 is equal to the saturation concentration of oxygen in water. Again, the 

oxygen consumption can be expressed as: 

 

  
           (     )  (3-7) 

Following the same procedure as followed in Equation 3-5, km   can be obtained as: 

       
(     )

(     )
 ⁄     (3-8) 

where am represents the ratio of surface are of gas-permeable membrane to the volume of 

the liquid phase. 
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Figure 3-2: Transfer of oxygen through a gas-permeable membrane into the Bulk Liquid 

Phase 

3.2 Materials and methods 

3.2.1 Membrane for bubble-free oxygenation 

In order to achieve bubble-free oxygenation, a suitable membrane is required to provide 

the oxygen in the liquid phase (Figure 3-3). This can be done either by providing 

air/oxygen in liquid phase or in gas phase within the gas-permeable membrane tube, from 

where the oxygen diffuses through the pores of the membrane and mixes with the 

surrounding liquid phase without producing any bubbles. Schneider et al. (1995) have 

shown that the overall mass transfer coefficient is much less when the air/oxygen is in the 

liquid phase within the permeable membrane tube compared with air/oxygen in the gas 

phase. Therefore, only gas-phase oxygenation was considered in this work. 

Typically, there are three types of gas permeable membranes that can be used for 

membrane-based gas absorption processes: 1) nonporous or dense film membranes such as 

silicone rubber membranes; 2) microporous membranes made of glassy polymers, such as 

polypropylene or polyethersulfone and; 3) composite material made of 

polydimethylsiloxane (PDMS) / polypropylene  (PP) and polyalkylsulphone (PAS) / PP 

(Vladisavljevic, 1999; Voss, Ahmed, & Semmens, 1999).  Each membrane type has 

certain advantages and disadvantages. Nonporous/dense film membranes such as silicon 

rubber membranes can be operated at high trans-membrane pressures without forming 

Bulk 

Gas 

Phase 

Bulk 

Liquid 

Phase 
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bubbles. Silicon-rubber membranes also have high gas permeability (Table 3-1). However, 

there is a problem of bio film attachment and growth. This problem can be resolved by 

providing pure oxygen within the membrane tube because with pure oxygen, the oxygen 

concentration at the solid-liquid interface increases to a toxic level for any bio film 

(Wilderer, Bräutigam, & Sekoulov, 1985). However, this solution involves the additional 

cost of providing a continuous supply of pure oxygen. 

  

 

Figure 3-3: Installation of gas-permeable membrane (a) in a spiral shape around the inside 

of a mesh (b) in the stirred tank. 

The advantage of using microporous membranes is their better gas permeabilities and the 

possibility of manufacturing as small diameter hollow fibers (100–400 µm) to provide a 

very high interfacial area per unit volume (Vladisavljevic, 1999). However, microporous 

membranes cannot be operated at higher operating pressures due to the formation of 

bubbles above 14 kPa (2 psi) (Voss, et al., 1999). Voss et al. (1999) found that when 

microporous hollow fibers are coated with an ultrathin (approximately 1 µm) nonporous 

layer of composite material, such as PDMS, the membrane can be operated at oxygen 

pressures as high as 410 kPa (60 psi) without bubble formation in water which is 

maintained at atmospheric pressure. Ahmed et al. (2004) found that the polyurethane layer 

and the fiber arrangement allowed the usage of high operating pressures. Such an 

a) b) 
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arrangement enhanced the rate of oxygen transfer drastically, irrespective of the presence 

of membrane resistance, and resulted in 100% oxygen transfer efficiency. Therefore, 

Ahmed et al. (2004) observed better oxygen transfer rates using composite fiber 

membranes compared with polypropylene fiber membranes. The biggest disadvantage of 

these membranes was the high cost and availability of a vendor. 

However, the PTFE membrane, which is another type of microporous membrane, shows 

great promise as well. Schneider et al. (1995) found that the PTFE membranes give twice 

the oxygen transfer per unit surface area of membrane compared with silicon tubing. 

PTFE membranes have high gas permeability (Table 3-1) and are hydrophobic in nature; 

thus they completely prevent cell growth on the membrane surface. Most importantly, 

these membranes have been successfully used to culture insect cells at various agitation 

speeds eliminating the need to oxygenate via bubbles. Finally, these membranes are 

relatively inexpensive and readily available. Considering these advantages, it was decided 

to work with the PTFE membranes in this work. 

Table 3-1: Oxygen permeability through various organic materials. Data from Lynch W. 

(1978) provided by Wilderer et al. (1985)  

Material Permeability (cm
3
, mm/cm, cm Hg, sec) x 10

-10
 

Polyamide 0.38 

Polyvinyl chloride 1.2-6 

Hexafluor Propylene   15 

Polyethylene 11-59 

Ethyl cellulose 265 

Natural rubber 230 

Silicone rubber 5,000-6,000 

PTFE (Heller, Pasternak, 

& Christensen, 1970) 

420 cB = (cm
2
 - cm) / (cm - Hg - sec - cm

2
) x 10

-8
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3.2.2 Equipment used 

A stirred tank was used as the reactor for the experiments. The advantages of using a 

stirred tank are many. Firstly, a vast amount of experimental data for stirred tanks exists in 

the literature which can be used for validation purposes. Secondly, using a stirred tank 

provides an opportunity to separate the two major causes of cell damage in a bio-reactor, 

namely, damage caused by bubbles and damage caused by agitation. This is possible if 

oxygen can be provided to the animal cells by using membranes so that there is no bubble-

generation in the reactor (Schneider, et al., 1995). In other reactors, such as the bubble 

column and air-lift reactors, bubbles are required to produce recirculation and so the shear 

stress effects generated by bubbles and velocity gradients would be difficult to separate. 

Spinner flasks were also considered for investigation in this project. However, the 

maximum agitation that can be achieved in these reactors is very low, so that shear 

generation would be negligible. Finally, stirred tanks can be modelled easily with CFD to 

obtain the flow profiles of velocity, turbulence kinetic energy, and most importantly 

turbulence energy dissipation rate (Delafosse, et al., 2008), which has been correlated 

closely to cell damage by various researchers (Ma, Koelling, & Chalmers, 2002; Mollet, et 

al., 2007; Mollet, Godoy-Silva, Berdugo, & Chalmers, 2008). 

Figure 3-4 shows an overview of the complete equipment used in this study. The stirred 

tank as shown in Figure 4-1 is cylindrical in shape and contains a standard six-blade 

Rushton turbine and three equally spaced baffles that are attached to the tank wall. A J-

shaped pipe was used to produce bubbles which appeared a few centimetres underneath 

the six-blade Rushton turbine. The gas-permeable membrane was installed in a spiral 

shape (Figure 3-3a) around the inside of a circular mesh (Figure 3-3b), whose outer-

diameter was equal to the inner diameter of the baffles. The gas-permeable membrane had 

an external diameter of 6 mm and length of 2.2 m. Dissolved oxygen concentration was 

measured on-line using a dissolved oxygen meter. A specific probe for controlling 

temperature was also used. This cylindrical stirred tank also has options for controlling 

pH, on-line cell density measurement, managing feed pumps automatically for culturing 

cells, controlling foam with automatic antifoam unit, analysing output gas, and taking 

samples.  
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Figure 3-4: Stirred tank used for oxygenation by bubbling and through a gas-permeable membrane. 



45 

 

3.3 Results and discussion 

Repeated measurements of oxygen transfer rate for a few selected values of gas flow rates 

and rotational speeds were carried out at-least 4 times for kLab, and kmam measurements. 

The relative deviation from the average value was ≤ 2.5 % for bubbling experiments and 

2.1 % for gas-permeable membrane experiments. 

3.3.1 Calculating oxygen transfer rate 

Oxygen transfer rates were calculated using Equations 3-5 and 3-8, respectively, for the 

bubbling and gas-permeable membrane experiments. Figure 3-5 shows that, apart from the 

initial phase of oxygen transfer rate for bubbling experiments which seems to be 

exponential in nature, the overall oxygen transfer rate follows a linear pattern. The 

deviation from linearity is comparatively higher with the increase in the gas flow rate. In 

contrast, in the case of membrane experiments, the oxygen transfer rate completely follows 

the linear first order equation. 

 

Figure 3-5: Oxygen transfer rate at different gas flow rates when oxygenation is carried out 

by bubbling and through gas-permeable membrane (GPM) at a constant rotational speed of 

700 rpm and at an oxygen concentration of 21% in the air. 
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3.3.2 Comparison of oxygen transfer rate with gas flow rate 

In Figure 3-6, it can be observed that there is an increase in the oxygen transfer rate with 

kLab increasing from 0.00399 to 0.01837 when the gas flow rate is increased from 0.15 to 4 

L/min. Table 3-2, however, indicates that when the gas-permeable membrane was used the 

gas flow rate had little effect on the oxygen transfer rates. This minor effect of gas flow 

rates is due to low gas-side resistance to the oxygen transfer compared with the resistance 

within the membrane wall and the liquid side resistance. In the case of bubbling, the 

increase in the gas flow rate increases the number of bubbles produced by the sparger and 

hence the surface area, thus leading to an increase in the oxygen transfer rate. 

Table 3-2: Oxygen transfer rates for gas-permeable membrane at different gas flow rates 

and oxygen concentrations in the air for a constant rotational speed of 700 rpm. 

700 rpm 

Gas flow rate, 

L/m 

Oxygen transfer rate, 

kmam, s
-1

 

Oxygen concentration 

in the air, % 

2 0.00138 21 

3 0.00134 21 

4 0.00146 21 

4 0.00140 30 

4 0.00146 40 

  

Figure 3-6: Comparison of oxygen transfer rate with the gas flow rate at a constant 

rotational speed of 700 rpm. 
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Another important point to observe is that even the increase in the oxygen concentration in 

the gas flow rate does not impact significantly the oxygen transfer rate when oxygenation 

is carried out using a gas-permeable membrane (Table 3-2). Schnieder et al. (1995) found 

relatively lower oxygen transfer coefficients when they used pure oxygen compared with 

air while using a similar PTFE gas-permeable membrane. In contrast, Wilderer et al. 

(1985) reported higher oxygen transfer rates when they used pure oxygen in comparison 

with air with a silicon based gas-permeable membrane. In their cell culturing experiments, 

they found growth and development of biofilm around the gas-permeable membrane when 

they used air; whereas, this growth and development of biofilm was inhibited when they 

used pure oxygen, which they attributed to the probability of toxic levels of oxygen for the 

cells at the membrane-liquid interface. 

3.3.3 Comparison of oxygen transfer rate with rotational speeds 

Figure 3-7 shows a linear increase in the overall oxygen transfer rate for gas-permeable 

membrane, kmam, and for bubbling, kLab, with increase in the rotational speed. In this 

figure, the mass transfer coefficients for the lowest tested gas flow rate for bubbling are 

compared with the mass transfer coefficients for the highest tested gas flow rate for gas-

permeable membranes. Even with a very low gas flow rate in the bubbling experiment, the 

oxygen transfer rate when bubbling is always considerably higher than the oxygen transfer 

rate for the gas-permeable membrane. This is true even when high oxygen concentrations 

(up to 40% tested in this work) are used in the gas-permeable membrane. Under similar 

conditions of gas flow rate and rotational speed, the oxygen transfer rate is at-least 10 

times higher for bubbling experiments in comparison with the gas-permeable membranes.  

These experiments were carried out to observe if there would be sufficient oxygen when 

culturing cells in the stirred tank for a given set of operating conditions. The maximum 

overall oxygen transfer coefficient, km, measured by Schneider et al. (1995), who 

successfully cultured insect cells using PTFE gas-permeable membrane in a stirred tank 

similar to the one used in this study, was approximately 1.6×10
-5

 m/s  at a rotational speed 

of 250 rpm and air flow rate of 1.4 L/min. In the experiments reported here, at an air flow 

rate of 4 L/min and a comparable rotational speed of 300 rpm, the overall oxygen transfer 

coefficient was found to be approximately 4.0×10
-5

 m/s. This increase in the overall 

oxygen transfer coefficient is due to the 2.2 metre length of gas-permeable membrane used 
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in the experiments reported here compared with 0.6 m used by Schneider et al. (1995). The 

research work of Singh (1999) shows that an overall oxygen transfer rate of greater than 1 

hr
-1

 is sufficient for cell culture. In this work, the minimum oxygen transfer rate with the 

gas-permeable membranes was always greater than 2 hr
-1

. Hence, the gas-permeable 

membrane investigated here can be used to provide sufficient oxygenation for culturing 

animal cells in the stirred tank of this work. 

 

Figure 3-7: Comparison of the overall oxygen transfer rates for gas-permeable membrane 

(GPM), kmam, and bubbling, kLab, experiments at different rotational speeds and oxygen 

concentrations.  
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3.4 Nomenclature 

ab Interfacial area = A/V for bubbling 

am Interfacial area = A/V for gas-permeable membrane 

A Area of the gaseous phase 

B Constant of integration 

C0 Initial concentration of the dissolved oxygen at time t =0 when gas-

permeable membrane is used for oxygenation 

C1 Concentration of oxygen inside the gas-permeable membrane 

C2 Bulk concentration of the dissolved oxygen when gas-permeable membrane 

is used for oxygenation 

CA Bulk concentration of the dissolved oxygen when bubbling is used for 

oxygenation 

CA0 Initial concentration of the dissolved oxygen at time t =0 when bubbling is 

used for oxygenation 

CAsat Saturated concentration at the surface of the bubble 

   Mass transfer coefficient due to gas film 

   Mass transfer coefficient due to liquid film 

   Overall mass transfer coefficient for gas-permeable membrane 

   Mass transfer coefficient due to the thickness of the gas-permeable 

membrane 

   Flux at the interface 

  Time 

V Volume of the liquid phase 
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4 Operating Conditions based on parameters obtained 

through CFD 

Over the years, researchers have shown experimentally the vulnerability of shear sensitive 

cells to the hydrodynamic forces that occur in a stirred tank reactor. Often, in these 

experiments, relationships for the shear sensitivity of the cells are found by correlating cell 

damage/death against a certain parameter, specific to the flow. However, the chosen 

parameter, such as impeller tip-speed or rotational speed, are usually vessel specific in 

these studies, and are thus not applicable for different vessel sizes and designs, as shown in 

Table 1-1. Therefore, a new vessel design requires new experiments in order to determine 

appropriate conditions for optimal culturing of cells, which is not only costly but also time 

consuming. There is an on-going search for a flow parameter that can be related to cell 

damage/death, which is general in nature and which can be obtained locally, (Garcia-

Briones and Chalmers, (1994)). Turbulence energy dissipation rate is one such parameter 

which has taken the limelight in recent years. Gregoriades et al. (2000) showed an increase 

in the percent cell damage for microcarrier culture of Chinese hamster ovary (CHO) cells 

with an increase in maximum turbulence energy dissipation rate in a flow contraction 

device designed to capture the effects of shear and extensional flow on the cells. They used 

Computational Fluid Dynamics (CFD) to determine the turbulence energy dissipation rate 

in the flow contraction device. They found that the percent cell damage was below 10% up 

to a local maximum turbulence energy dissipation rate in the device of 10 m
2
/s

3
. Above 

this value, the percent cell damage increased significantly and reached around 80 % cell 

damage at a turbulence energy dissipation rate of 7×10
4
 m

2
/s

3
. These results suggest that 

an upper limit on the turbulence energy disipation rate exists to avoid cell damage in a 

stirred-tank reactor. This would be controlled using the impeller rotational speed.  

Continuing on from the work of Gregoriades et al. (2000),  Ma et al. (2002) presented cell 

damage/rupture as a function of turbulence energy dissipation rate for 4 suspended cell 

lines, namely Chinese hamster ovary (CHO), spodoptera frugiperda (Sf-9), mouse 

hybridoma (HB-24), and human breast carcinoma (MCF7). They worked with a 

microfluidic channel - to capture the effects of shear and extensional flow on the cells, and 

conducted two-dimensional CFD simulations of the microfluidic device to estimate the 

turbulence energy dissipation rate. The percent cell damage was found to be below 10 % 



51 

 

for most of the cell lines up to a local maximum turbulence energy dissipation rate of 10
5 

m
2
/s

3
. Above this, turbulence energy dissipation rate, the percent cell damage increased 

rapidly. The studies of Gregoriades et al. (2000) and Ma et al. (2002) show a relationship 

between turbulence energy dissipation rate, estimated via CFD, and cell damage/death 

measured experimentally. However, these workers studied simpler flow systems than 

usually employed in culturing cells, for which stirred tanks are often used, and their CFD 

studies do not give details of the turbulence model, grid independent study and the 

validation of the CFD model. In Chapter 2,  the importance of validating the CFD model 

(linked to the choice of turbulence model and the grid and time-step independence study) 

has been demonstrated for the accurate estimation of the turbulence energy dissipation 

rate. 

Table 4-1: Hydrodynamics used in the stirred tank reactors in different studies. 

Ref. 
Method of 

aeration 

Rotational speed 
Impeller tip 

speed 

Reynolds 

number 

Rpm Rps m/s (-) 

Kunas and 

Papoutsakis 

(1990) 

Gas-permeable 

membrane or 

headspace gassing 

60 – 900 1.7 – 15 0.12 – 1.05 
8,167 – 

73,500 

Smith and 

Greenfield 

(1992) 

Headspace 

gassing 
100 – 600 1.7 – 10.0 0.08 – 0.5 

4,167 – 

25,000 

This study 
Gas-permeable 

membrane 
300 – 900 5.0 – 15.0 0.25 – 0.75 

12,500 – 

37,500 

The main aim of this section is to model the stirred tank reactor used in the oxygenation 

experiments, detailed in Chapter 3, using the validated CFD model as a starting point. 

Results of Chapter 2 show that the SST model with curvature correction predicts the 

location and magnitude of maximum turbulence energy dissipation rate most accurately. 

Therefore, the SST-CC model will be used as the turbulence model to estimate the 

maximum turbulence energy dissipation rate at different rotational speeds. This study aims 

to create a sound base for future work to experimentally measure cell death rates for a 

range of impeller rotational speeds in the stirred tank reactor used in the oxygenation 

experiments, and to develop a correlation of the experimental cell death rates as a function 

of turbulence energy dissipation rate, determined using CFD. The ultimate aim is to 

produce a tool for predicting optimal operating conditions for culturing cells in stirred tank 

reactors of any scale. 
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4.1 The Computational Model 

4.1.1 Description of the stirred tank 

The stirred tank and Rushton turbine configurations used in the oxygenation experiments 

are shown in Figure 4-1. The tank has a diameter, Dt, and height, H, of 150 mm with three 

equally spaced baffles of width, J, one-tenth of the tank diameter. The diameter of 

impeller, Da, is one-third of the tank diameter with 6 blades and is located at height, E, of 

one-third of the tank diameter from the base of the tank. The length, L, and width, W, of 

the blades are one-quarter and one-fifth of the impeller diameter, respectively. Water at 25 

o
C was used as the working fluid. Impeller rotational speed was modelled from 300-900 

rpm, which corresponds to the Reynolds number from 12500 - 37500.  

 

Figure 4-1: Configurations of the stirred tank and Rushton turbine. 

4.1.2 Turbulence Modelling and Numerical scheme 

Figure 2.6 shows that the SST-CC model estimates most accurately the magnitude and 

location of the maximum turbulence energy dissipation rate in a stirred tank. The SST-CC 
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model, developed by Smirnov and Menter (2009), is a modification to the SST model, that 

sensitizes it to streamline curvature and rotation. 

All the simulations were carried out using the sliding mesh technique with the impeller 

swept region as the inner rotation zone and rest of the tank, including the baffles, as the 

stationary zone. No discontinuities in velocity, pressure, turbulence kinetic energy or 

turbulence energy dissipation rate were observed across the sliding interface with the mesh 

adopted in the simulations (Figure 4-2a and Figure 4-2b), which indicates a good 

resolution of the mesh across the interface (Figure 4-2c). The symmetry of the six-blade 

impeller and 3 baffles provided the opportunity to model only one-third of the geometry in 

order to reduce the computational effort. The thicknesses of the impeller blades, impeller 

disc and baffles were assumed to be zero to reduce the mesh complexity. 

Based on the grid and time- step independence study done in the Chapter 2, a similar mesh 

of 1.472 million nodes and one degree resolution for the rotating impeller were chosen for 

the stirred tank. High resolution scheme was used for all equations for modelling the 

advection terms, and the transient terms were modelled using the second order backward 

Euler scheme. An RMS scaled residual of 10
-5 

was used as the convergence criteria for the 

continuity, momentum and turbulence quantities. A maximum of 10 iterations per time-

step was set to achieve the convergence criteria for the SST-CC model. All simulations 

used double precision arithmetic. In these simulations, an un-converged steady-state 

simulation was used as the initial guess for the transient simulations. Collection of 

transient data was started only after a pseudo-steady state was achieved for all turbulence 

models.  

Only one revolution of data was collected for the SST-CC model since repeat revolutions 

produced repeat data. The simulations have been performed using eight 1.9 GHz parallel 

processors each with 2 GB of memory. The simulation time of one revolution with one 

degree resolution in time-step and with a mesh having 1.472 million nodes was achieved in 

about 36 hours. 
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Figure 4-2: Mesh of (a) stirred tank alone, (b) impeller alone, and (c) both tank and 

impeller together. 

4.2 Results and Discussion 

In Figure 4-3, the variation of the turbulence energy dissipation rate as a function of 

rotational speed can be seen. The turbulence energy dissipation rate increases 

exponentially with an increase in the rotational speed. Similar values for the turbulence 

a) b) 

c) 
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energy dissipation rate were found by Mollet et al. (2004) at similar rotational speeds in a 

geometrically similar stirred tank but with four baffles instead of the three baffles used in 

this study. 

 

Figure 4-3: Maximum and average turbulence energy dissipation rate as a function of 

rotational speed estimated by the SST-CC model. 

The maximum turbulence energy dissipation rate simulated at 900 rpm of 8.9×10
1
 m

2
/s

3 
is 

significantly lower than the maximum turbulence energy dissipation rate of 1.98×10
5
 m
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at which Ma et al. (2002) observed around 15 % cell damage for the CHO and Sf-9 cell 

lines and 4 % cell damage for the Hybridoma cell lines. This could imply that very little 

damage to cells due to turbulence and shear generated by the impeller would occur within 

the stirred tank tested in this work for rotational speeds of up to 900 rpm. Note, in a 

bubbled stirred tank, an additional source of turbulence and shear would come from the 

rising and bursting of bubbles, although the contribution of this effect on the overall 

turbulence energy dissipation rate has not been quantified in this work.  In addition, the 

difference in percentage cell damage for a given turbulence energy dissipation rate 

measured by Mollet et al. (2008) indicates that optimal operating conditions need to be 

changed for different cell lines. This implies that separate correlations relating cell death to 

turbulence energy dissipation rate would need to be developed for different cell lines. 
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Another point to note is that the residence times of the cells in the vicinity of maximum 

turbulence energy dissipation rate (close to the impeller) in a stirred tank is similar to the 

residence times in the contractional flow devices used by Ma et al. (2002). However, the 

cells would undergo multiple exposures to the region of maximum turbulence energy 

dissipation rate as they circulate within the stirred tank reactor, whereas in the 

contractional flow device, the cells were exposed to the maximum turbulence energy 

dissipation rate of 1.98×10
5
 m

2
/s

3
 only once.  

Smith and Greenfield (1992) have shown that they were not able to culture cells without 

significant cell damage in a geometrically similar stirred tank as tested in this study, above 

a Reynolds number of 25,000 or a rotational speed of 700 rpm. If the CFD results of this 

study are used for the stirred tank used by Smith and Greenfield (1992) (due to geometrical 

similar vessel), then it can be seen that 700 rpm corresponds to the maximum turbulence 

energy dissipation rate of around 3.8×10
1
 m

2
/s

3
, which is significantly lower than the 

maximum turbulence energy dissipation rate of 1.98×10
5
 m

2
/s

3
 at which Ma et al. (2002) 

observed less than 15 % cell damage for Sf-9 and CHO cell lines and 4% for the 

Hybridoma cell line. It seems likely that, in the case of multiple exposures for a cell in the 

vicinity of high level of turbulence energy dissipation rate, such as occurs due to 

circulation in a stirred tank, the maximum turbulence energy dissipation rate that cells can 

withstand without significant damage will be significantly less. 

The future work of this study will aim to answer this question by doing experiments with 

animal cell cultures at different rotational speeds while oxygenating through a gas-

permeable membrane, so that cell damage only occurs due to shear generated by the 

impeller. In addition, experiments will be done at different rotational speeds with 

oxygenation via air-bubbling. These two sets of experiments will be used to separate and 

quantify cell damage that occurs in a stirred tank reactor due to shear generated by 

agitation and by the rising and bursting of bubbles. 
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4.3 Nomenclature 

Da Diameter of the impeller 

Dt Diameter of the tank 

E Height of the location of the Impeller blade from the bottom of the tank 

J Width of the baffles 

H Height of the tank 

L Length of the blade 

W Width of the blade 
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5 Conclusions 

Shear stress is believed to be the main factor causing cell damage/death during culturing of 

cells. In stirred tanks, such shear stress results from rising and bursting of bubbles and 

agitation due to the rotation of the impeller. For stirred tanks, several parameters linked to 

shear stress have been correlated with cell damage, such as impeller speed, impeller tip 

velocity, Kolmogorov eddy length scale and turbulence energy dissipation rate.  However, 

it can be argued that turbulence energy dissipation rate is the most appropriate parameter 

to relate to cell damage since it is not geometry specific, it is general in nature, and 

intrinsic to any moving fluid. This parameter is difficult to measure experimentally, but it 

can be predicted locally throughout a reactor using CFD. Various studies have been carried 

out on cell damage as a function of turbulence energy dissipation rate, but in vessels other 

than stirred tanks. At present, there is no literature available regarding the use of 

turbulence energy dissipation rate, predicted numerically via CFD, to estimate cell damage 

in stirred tanks.  

The first part of this study focussed on validating a CFD model for accurately predicting 

turbulence energy dissipation rate in a stirred tank. The second part of the study 

investigated appropriate oxygenation rates for culturing cells in a stirred tank, using either 

air bubbling or gas-permeable membranes. In the third part of the study, the stirred tank 

used in the oxygenation experiments was modelled using CFD to predict the local 

turbulence energy dissipation rates. Future studies would focus on correlating the 

turbulence energy dissipation rate, predicted using CFD, with cell damage measured 

experimentally within the stirred tank. In such a study, the effects of cell damage due to 

bubbling and impeller agitation would be separated by using gas permeable membranes for 

oxygenation to avoid the damaging effects of bubbling.      In the first part of this work, a 

CFD model of a cylindrical tank agitated by a Rushton turbine was validated using 

experimental data available in the literature. The turbulence models tested were the k-ε, 

SST, SST-CC, SAS-SST and SSG-RSM turbulence models. All the tested turbulence 

models predicted the mean axial and tangential velocities reasonably well, but they tended 

to under-predict the decay of mean radial velocity away from the impeller. The k-ε model 

poorly predicted the random and periodic components of the kinetic energy of fluctuating 

motions in the vicinity of the impeller. Furthermore, the predicted trailing vortices were 
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too short and there were no secondary vortex motions. This model also wrongly predicted 

the location of the maxima of both the turbulence (random) kinetic energy and turbulence 

energy dissipation rate at the impeller-tip, whereas experimental results show that the 

maxima occurs at a dimensionless radial distance of around 1.4 from the impeller axis. The 

SST model predicted the magnitude of these maxima in reasonable agreement with the 

experimental findings, and curvature correction helped in improving the predicted location 

of the maximum. However, both the SST and SST-CC models predicted overly-dissipative 

trailing vortices that were too short and without the presence of secondary vortex motions, 

similar to the k-ε model.  

The SAS-SST model predictions of periodic and turbulence (random) kinetic energy 

provided qualitative and quantitative agreement with experiment similar to both the SST 

and SST-CC turbulence models. Moreover, this model predicted long trailing vortices with 

secondary motions, as observed experimentally by other researchers. However, the 

predictions of the turbulence energy dissipation rate were not as good as those of the SST 

and SST-CC turbulence models, although further refinements of the mesh were required to 

make a proper assessment of the accuracy of the SAS-SST model. Such refinement proved 

impractical in this work due to limitations on the computer power available and the 

significant number of revolutions required to obtain good statistical averages of the 

turbulence parameters. The SSG-RSM model reproduced the experimental velocity flow 

fields well and predicted trailing vortices similar in length to the SAS-SST model, 

however the prediction of the periodic and turbulence (random) kinetic energy and the 

turbulence energy dissipation rate were poor, and no secondary motions were predicted in 

the trailing vortices. Overall, the SST model with curvature correction, SST-CC, was the 

most satisfactory turbulence model tested for predicting turbulent flow in baffled stirred 

tanks, in terms of both computing time and most accurately predicting the location and 

magnitude of the turbulence energy dissipation rate.  

For all turbulence models tested, the predicted power number determined by integration of 

the turbulence energy dissipation rate over the tank was likely to be under-predicted and 

was significantly lower than that calculated using the impeller torque. In order to 

accurately predict the power number using the impeller torque, the thickness of the blade 

must be accounted for and resolved properly by the mesh in the simulations. However, this 
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was impractical in this work due to limitations on the computer power available to produce 

such a fine mesh. 

In the second part of this work, oxygen mass transfer experiments were conducted in a 

tank stirred with a Rushton turbine using air-bubbling and a gas-permeable membrane as 

two different methods of oxygenation. The aim of these experiments was to understand the 

transfer of oxygen at different gas flow rates and impeller rotational speeds for both air-

bubbling and permeable-membrane oxygenation in order to find suitable operating 

conditions for culturing cells in the stirred tank using either method of oxygenation. It was 

found that the oxygen transfer rate for the gas-permeable membrane was at least 10 times 

lower than for air-bubbling at the same impeller rotational speeds. The oxygen transfer 

rates for air-bubbling, even at the lowest reasonable gas flow rate of 0.15 L/min and an 

oxygen concentration of 21% in the stirred tank, was at least two times higher than the 

oxygen transfer rate for the gas-permeable membrane at a gas flow rate of 4 L/min and 

oxygen concentration of 40% in the gas flow rate.  

The minimum oxygen requirements for culturing Sf-9 cells, which is a cell line that could 

be used in future studies for investigating the effect of shear on cell damage/death, is 1 hr
-

1
. In this study, an oxygen transfer rate of at least 2 hr

-1
 was achieved for both air-bubbling 

and gas-permeable membrane oxygenation, which implies that Sf-9 cells could be 

successfully cultured in the stirred tank of this study using either method of oxygenation. 

In the final part of this study, the stirred tank reactor employed in the oxygenation 

experiments was modelled with CFD using the SST-CC turbulence model, which was 

shown in the first part of the study to accurately predict the turbulence energy dissipation 

rate within a stirred tank. Turbulence energy dissipation rate increased exponentially with 

an increase in the impeller rotational speed from 300 to 900 rpm. The local maximum 

turbulence energy dissipation rate of around 8.9×10
1
 m

2
/s

3
 observed at a rotational speed 

of 900 rpm, was found to be considerably lower than the local maximum turbulence 

energy dissipation rate of 1.98×10
5
 m

2
/s

3
 at which Ma et al. (2002) observed up to 15 % 

cell damage for Sf-9 and CHO cell lines and 4% for the Hybridoma cell line. The cell 

cultures of Ma et al. (2002) were tested in a transient flow contractional device with 

residence times similar to a stirred tank having a rotational speed of 500 rpm. However, 

these cells were exposed to high levels of turbulence energy dissipation rates only once. 
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The cells in a stirred tank are exposed multiple times to high levels of turbulence energy 

dissipation rate in the vicinity of the impeller due to the circulatory nature of the flow. 

Thus, the value of maximum turbulence energy dissipation rate that a cell can withstand 

would be substantially lower in a stirred tank than in a single-pass flow device, since the 

integrated exposure time is considerably longer. Clearly, both the residence time of a 

single pass and the number of exposures to high turbulence energy dissipation rate in the 

vicinity of the impeller must be considered when estimating cell damage in a stirred-tank 

reactor. 

For a geometrically similar stirred tank and Rushton turbine to the one used in this study, 

cells were cultured successfully without significant damage at a rotational speed of 600 

rpm with headspace gassing as the oxygenation method by Smith and Greenfield (1992).  

This study can be used as a starting point for creating a model for estimating cell damage 

in different types and scales of reactors. In this regard, future work would involve detailed 

cell-culture experiments in a stirred-tank reactor at different impeller rotational speeds 

with the two different methods of oxygenation: air-bubbling and permeable membrane 

oxygenation. One experiment would be conducted to quantify the effect of agitation on 

cell damage/death. In this experiment, cells would be cultured in a stirred tank reactor at 

different agitation rates using a gas-permeable membrane for oxygenation to eliminate cell 

damage normally associated with bubbling. Another experiment would be conducted to 

quantify the effect of bursting bubbles on animal cells by comparing the experimental 

results of two different methods of oxygenation, air-bubbling and gas-permeable 

membranes, for a given impeller rotational speed. The data sets of both these experiments 

would be brought together to develop correlations that relate cell damage/death to 

turbulence energy dissipation rate (as related to agitation) and bubbling rates. The results 

of these experiments would also help elucidate the importance of residence time in the 

vicinity of high turbulence energy dissipation rate and multiple exposures to that high 

value on the culturing of cells in stirred tank reactors. Different animal cell cultures would 

also be tested, especially those which are most commonly used in industry, such as Sf-9, 

Hybridoma and CHO cell lines, in order to establish the optimal operating parameters for 

the most commonly used cultures for industrial use. 
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The next step of the study would be to produce cell cultures in different scales of reactor to 

show that the developed cell damage/death correlations can be applied to any scale of 

reactor. This would demonstrate that these correlations are useful to determine appropriate 

impeller rotational speeds and bubbling rates that minimize cell damage in any scale of 

reactor. 
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7 Appendix 

7.1 Measurement of saturated concentration of oxygen in water at different oxygen concentrations in 

air. 

 

 

   
Formula for linear averaging 

   
  slope (y1-y2)/(x1-x2) 

   
  y3 

slope × (X3-X2) + 

Y2 

       
Henry's constant in Pis/Xiu in atm source Mills, A.F. (1999) 

Temp (K) 290 293 298 300 310 320 

Solute/Temp (C) ε17 20 25 27 37 47 

O2 38000 40100 43600 45000 52000 57000 

Air 62000 65600 71600 74000 84000 92000 
 

      

       

       
Density of water, 20 C 998.2 kg/m

3
 g/L 

 
Molecular mass of water 18.0 g/mole 

  
KH 

Solute/Temp (K) 290 293 298 300 310 320 

O2 0.00146 0.00138 0.00127 0.00123 0.00107 0.00097 

Air 0.00089 0.00084 0.00077 0.00075 0.00066 0.00060 
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Component Fractions Fractions Fractions Fractions 
  

  Total Pressure, air 
 

Air 1 1 1 1 
  

S.No bar atm 
 

Oxygen 0.21 0.30 0.40 0.50 
  

1 1 0.99 
 

Nitrogen 0.79 0.70 0.60 0.50 
  

2 1.21 1.19 
 

 

 

      

 

   

        Total Pressure  of air × fraction of oxygen 

        
Saturated concentration of 21% oxygen in water, Ca in case of bubbling in mg/L 

 
Pg at 21 % O2 

Temp(K) 290 293 298 300 310 320 
 Partial pressure, O2 Partial pressure, N2 

Pressure (bar)/Temp (C) 17 20 25 27 37 47 
 

bar Atm bar atm 

1 9.7 9.2 8.4 8.2 7.1 6.4 
 

0.21 0.21 0.79 0.78 

1.21 11.7 11.1 10.2 9.9 8.6 7.8 
 

0.25 0.25 0.96 0.94 

        
Pg at 30 % O2 

Saturated concentration of 30% oxygen in water, Ca in case of bubbling in mg/L 
 Partial pressure, O2  Partial pressure, N2 

Temp(K) 290 293 298 300 310 320 
 

bar Atm bar atm 

Pressure (bar)/Temp (C) 17 20 25 27 37 47 
 

0.30 0.30 0.70 0.69 

1 13.8 13.1 12.0 11.7 10.1 9.2 
 

0.36 0.36 0.85 0.84 

1.21 16.7 15.8 14.6 14.1 12.2 11.1 
 

Pg at 40 % O2 

        
Partial pressure, O2  Partial pressure, N2 

Saturated concentration of 40% oxygen in water, Ca in case of bubbling in mg/L 
 

bar Atm bar atm 

Temp(K) 290 293 298 300 310 320 
 

0.40 0.39 0.60 0.59 

Pressure (bar)/Temp (C) 17 20 25 27 37 47 
 

0.48 0.48 0.73 0.72 

1 18.4 17.5 16.1 15.6 13.5 12.3 
 

Pg at 50 % O2 

1.21 22.3 21.1 19.4 18.8 16.3 14.9 
 Partial pressure, O2  Partial pressure, N2 

        
bar atm bar atm 

        
0.50 0.49 0.50 0.49 

        
0.61 0.60 0.61 0.60 
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7.2 Measurement of Concentration C1 for gas-permeable 

membrane.  

The molar concentration of oxygen in water could not be measured directly. The dissolved 

oxygen probe measures only in percentage oxygen saturation. In addition, the break-down 

of the three different resistances (gas-side, liquid side and membrane resistance) of the 

gas-permeable membrane is difficult to estimate without knowing the solubility of oxygen 

in the membrane.  To estimate the oxygen concentration C1, a set of experiments was 

done, in which, initially, 0-100% for the oxygen probe was calibrated in an air bubbling 

experiment. Nitrogen was bubbled through the stirred tank to strip the water of oxygen, 

reducing the oxygen concentration to 0%, at which point the oxygen probe was calibrated 

to 0%. Then air was bubbled to increase the oxygen concentration in water to 100%, at 

which point the oxygen probe was calibrated to 100%. With this calibration of the 

extremes completed, nitrogen was then used to strip oxygen from the water once again. 

Then, the gas-permeable membrane was used to oxygenate the water. Note that the 

oxygen probe kept the same calibration as set in the air bubbling experiment. A 

concentration of virtually 100% was eventually reached when using the gas-permeable 

membrane, as shown in Figure 7-1. This suggests that the oxygen concentration C1 should 

be set to CAsat concentration, as in the case of the air-bubbling experiments. 

The saturation concentration of oxygen increases from 9.2 mg/L at 21% oxygen 

concentration in the gas phase, to 13.1 mg/L at 30% oxygen concentration in the gas phase 

(pressure of 1 bar and temperature of 20
o
C) as shown in Appendix 7.1. This signifies that 

the percentage increase in the saturation concentration of oxygen in water (as measured by 

the dissolved oxygen probe calibrated using the method described above) when the 

concentration of oxygen in the gas phase is increased from 21% to 30% oxygen 

concentration, should be  approximately 142.9 % (13.1/9.2x100%). Under similar 

conditions of 30 % oxygen concentration in the gas flow rate (pressure of 1 bar and 

temperature of 20
o
C) using the gas-permeable membrane, the oxygen probe detected a 

saturated concentration of oxygen of 143% in the stirred tank. Similar observations were 

made in the case of 40 % oxygen concentration in the gas flow rate. Oxygen probe 

detected a saturated concentration of oxygen of 189 % in the stirred tank, and the 

concentration of the oxygen in the gas phase, when oxygen concentration is increased 
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from 21% to 40%, should be approximately 190.2 % (17.5/9.2×100). Thus, it can be seen 

that the oxygen concentration C1 is equal to CAsat concentration within the 2.1% error in 

the measurement of oxygen transfer rate with the gas-permeable membrane. 

 

Figure 7-1: Oxygen probe response for oxygen concentration measurements at a rotational 

speed of 400 rpm and gas flow rate of 4 L/min for air-bubbling and gas-permeable 

membrane. 
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7.3 Oxygen transfer rate calculations of bubbling experiments 

Gas flow rate = 4 L/min 

     CA0 0.1 % 
 

     CAsat 100 % 
 

     
Rotational speed = 700 rpm 

 

 
 

    
Time 

Conc., 

CA 
Time 

ln 

term 

 

    Sec % sec (-) 
 

    0 0.1 0 0.000 

     10 0.7 10 0.006 

     13 1.9 13 0.018 

     17 3.6 17 0.036 

     19 5.3 19 0.053 

     20 6.3 20 0.064 

 

Note 1: The oxygen probe used in 

the experiments calculates only in 

percentages. 

22 7.8 22 0.080 

 23 8.9 23 0.092 

 24 10.1 24 0.105 

 25 11.4 25 0.120 

 27 12.8 27 0.136 

 28 14.3 28 0.153 

 30 16.0 30 0.173 

     31 17.7 31 0.194 

 

Note 2: Because CA can reach the 

CAsat concentration in the case of 

bubbling experiments, the 

concentrations were not converted to 

mg/L from percentages 

32 19.0 32 0.210 

 33 20.5 33 0.228 

 34 22.0 34 0.247 

 35 23.5 35 0.267 

 38 25.5 38 0.293 

 39 26.8 39 0.311 

 40 28.2 40 0.330 

 41 29.8 41 0.353 

 42 31.4 42 0.376 

     43 33.0 43 0.399 

     45 34.7 45 0.425 

     46 36.2 46 0.448 

     47 37.6 47 0.471 

     48 39.0 48 0.493 

     51 41.5 51 0.535 
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7.4 Oxygen transfer rate calculations of gas-permeable membrane 

experiments 

Gas flow rate = 4 L/min 

 
    

C0 0.2 % 
 

 
Note 1: The oxygen probe used in 

the experiments only calculates in 

percentages. 

C1 100 % 
 

 300 rpm 
  

 
Time 

Conc. 

C2 
Time ln term 

  

   

Sec % Sec (-) 

 Note 2: Appendix 3.1 shows that 

C2 can reach the CAsat 

concentration in the case of gas-

permeable membrane experiments, 

so the concentrations were not 

converted to mg/L from 

percentages. 

0 0.2 0 0 
 

 
 

27 0.3 27 0.001 

 37 0.6 37 0.00402 

 47 1.0 47 0.00805 

 57 1.5 57 0.01311 

 67 2.1 67 0.01922 

 77 2.6 77 0.02434 

 

 

   
87 3.2 87 0.03052 

 
    

97 3.8 97 0.03674 

     107 4.5 107 0.04404 

     117 5.2 117 0.0514 

     127 5.8 127 0.05775 

     137 6.4 137 0.06414 

     147 7.1 147 0.07164 

     157 7.7 157 0.07812 

     167 8.3 167 0.08465 

     177 9.0 177 0.09231 

     187 9.6 187 0.09892 

     197 10.3 197 0.1067 

     207 10.9 207 0.11341 

     217 11.5 217 0.12017 

     227 12.1 227 0.12697 

     237 12.7 237 0.13382 

     247 13.3 247 0.14071 

     257 14.0 257 0.14882 

     267 14.5 267 0.15465 

     277 15.2 277 0.16287 

     
 


