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Chapter 1

Introduction

1.1 Introduction

The mathematical objects we investigate in this thesis are algebraic groups
defined over an algebraically closed field & (for the precise definition of algebraic
groups, see [Hum91|). The classical linear groups, such as the general linear
group GL,(k), the special linear group SL,(k), the orthogonal group O, (k),
and the symplectic group Sps,(k), are examples of algebraic groups. Among
many algebraic groups, a particular class of algebraic groups called reductive
algebraic groups (the simplest example of them is SL,(k)) is known to have very
nice structure, and is much studied, see [FAV69],[Hum91],[Spr98]. In particular,
reductive algebraic groups are all classified into infinite families and exceptional
groups according to their corresponding root systems, and for each root system
there is the associated Dynkin diagram and Cartan matrix (see [Hum?72]), which
encode much information about reductive algebraic groups in a combinatorial
way. In this thesis, we use these combinatorial information extensively to analyze
one particular property of subgroups of reductive algebraic groups called complete
reducibility.

Let G be a reductive algebraic group over an algebraically closed field k. A
subgroup H of G is said to be G-completely reducible (G-cr for short) if whenever
H is contained in a parabolic subgroup P of G, H is contained in some Levi
subgroup L of P. This is a generalization of the notion of semisimplicity in
representation theory since if G = GL,(k), H is G-cr if and only if H acts
completely reducibly on £"; see [Ser98, Lecture 1].

In Lie groups and Lie algebras, we can extract lots of important information
about Lie groups from the corresponding Lie algebras, see [FAV69]. A similar
thing happens in algebraic groups. In our case, the notion of G-separability is
particularly important. A subgroup H of G is said to be G-separable if the global



centralizer of H in GG agrees with the infinitesimal centralizer of H in the Lie alge-
bra of G (see Definition 2.1.2), and it is known that several results concerning G-
complete reducibility have the condition that certain subgroups are G-separable
(see [BMRT10, sec. 1]) as a hypothesis. In particular, it is known that if H and M
are reductive subgroups of a reductive group G such that H < M < G and H is
G-separable and (G, M) is a reductive pair (see Definition 2.1.7), then G-complete
reducibility of H implies M-complete reducibility of H, (Theorem 2.1.8).

In [BMRT10, Sec. 7], Bate, Martin, Rohrle, and Tange found a pair of reduc-
tive subgroups H and M of a reductive group G such that H < M < G and
H is G-cr but not M-cr. The purpose of this thesis is to find a new example of
subgroups with the same property. From the argument in the last paragraph, one
way of finding such an example is to find a G-nonseparable and G-cr reductive
subgroup H of a reductive group G first, and try to find a reductive subgroup M
such that H is not M-cr. This is the method used in [BMRT10, Sec. 7]. More
specifically, Bate, Martin, Rohrle, and Tange find a G-nonseparable subgroup H
where H is a subgroup of a rank 1 Levi subgroup L of a group G of type Gbs.
The authors show that H is G-nonseparable by finding a nilpotent witness to the
G-nonseparability of H (see Definition 2.1.3). This is the path we take in this
thesis.

It is known that in characteristic zero a subgroup H of G is G-cr if and only
if H is reductive (see [Ser98, Property 4] and [BMRO5, Lem. 2.6]). Therefore
we cannot find such examples unless k is of positive characteristic. Actually, we
have stricter constraints on the characteristic of k£ by Theorem 2.1.6, which says
that the characteristic p of k can not be wvery good (see Definition 2.1.4, 2.1.5).
We eventually restrict to the cases where the characteristic of k is 2.

Our thesis splits into several chapters, and we give the outline now. In Chap-
ter 2, we give a few definitions and relevant theorems as the preliminaries to our
arguments in the following chapters. We expect some familiarity with algebraic
varieties and algebraic groups, and no definition is given in our thesis. There,
we define the important notion of nilpotent witness to the G-nonseparability, (see
Definition 2.1.3). If there is such an element in the Lie algebra of G, the subgroup
H is not G-separable. After that, in Chapter 3, we negatively extend the result
of [BMRT10, Sec. 7]. We show that if we take the same specific form of H sitting
in a rank 1 Levi subgroup as in [BMRT10, Sec. 7], there is no nilpotent witness
to the G-nonseparability of H in the Lie algebra of the unipotent radical of a
specific parabolic subgroup P of G containing H for any simple algebraic group
G defined over an algebraically closed field of characteristics k of 2. This result
suggests that we look at higher rank Levi subgroups in order to find an example
we are after.

In the rest of the thesis we investigate a particular form of subgroups H sit-
ting in higher rank Levi subgroups L in various types of groups G where H is a
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subgroup of the normalizer of a maximal torus 7" of G' generated by elements cor-
responding to reflections in the Weyl group of GG. In particular, in Section 4.1.1,
we consider a group of type As with A, Levi subgroup, and in Section 4.1.2,
4.1.3, we consider a group of type A, with Ay and As Levi subgroups. Then
in Section 4.1.4, 4.1.5, we consider a group of type B3 with Ay and B, Levi
subgroups. In these classical cases, we find that there is no nilpotent witness
to the G-nonseparability in the Lie algebra of the unipotent radical of a specific
parabolic subgroup P containing H. After that, in Section 4.2.1, 4.2.2, and 4.2.3,
we investigate exceptional groups of type Eg, F7, and Fg with A5, Ag, and Az
Levi subgroup respectively. In these cases, we get the same result as in the clas-
sical cases. In FEg case, we have used a computer algebra software, Maple, and
we put the Maple codes and outputs in Appendix.

Then, in Section 5.2, we show a generic way to find a G-nonseparable subgroup
H and a nilpotent witness to the G-nonseparability of H. To illustrate our
method, we show how to get such an example in a group G of type E;. We
also show that the subgroup H is G-cr. Then in Section 5.3, we find a pair of
subgroups H and M such that H is G-cr but not M-cr by the same method as
in [BMRT10] and by using the subgroup H we found.

1.2 Acknowledgement

This thesis was prepared toward the author’s MSc qualification under the
supervision of Associate Professor Benjamin Martin at the University of Auckland
and Associate Professor Giinter Steinke at the University of Canterbury, with
financial support from the University of Canterbury Master’s Scholarship and
Marsden Grant UOC1009/UOA1021.

I would like to thank Associate Professor Benjamin Martin for setting the
problem and for his patience, motivation, enthusiasm, and immense knowledge.
His guidance helped me in all the time of research and writing of this thesis.
My sincere thanks also goes to Associate Professor Giinter Steinke. This the-
sis would not have been possible without his helpful comments and continuous
encouragement from the initial to the final level.



Chapter 2

Preliminaries

2.1 Notation

Throughout this thesis, we work over an algebraically closed field k of positive
characteristic p. We denote the multiplicative group of k by k*. A function
¢ : G — H between algebraic groups is a homomorphism if and only if ¢ is a
homomorphism of abstract groups and a morphism of varieties.

By a subgroup of an algebraic group, we always mean a closed subgroup. Let
H be a subgroup of an algebraic group G. We denote the derived group of H
by [H, H]. We usually use a capital roman letter, G, H, K, etc., to represent an
algebraic group, and the corresponding lowercase gothic letter, g, b, € etc., to
represent its Lie algebra. We sometimes use another notation for Lie algebras:
LieG, Lie H, and Lie K are the Lie algebras of G, H, and K respectively. We
denote the adjoint representation of G by Ad. Let H be a subgroup of G. We
denote the global centralizer of H in G by C(H ), and the infinitesimal centralizer
of H in g by ¢;(H), that is,

Definition 2.1.1. Cq(H) ={g€ G | hgh ' =g forall h € H} and
¢;(H)={re€g|Adh(zx) =z forall h € H}.

Now we give the important definitions of G-separability, G-nonseparability, and
nilpotent witness of G-nonseparability.

Definition 2.1.2. A subgroup H of G is G-separable if Lie Co(H) = ¢y(H) and
G-nonseparable if Lie Cq(H) C ¢g(H).
Note that we always have Lie Cq(H) C ¢g(H). We use the notion of nilpotent

witness to the G-nonseparability repeatedly in the following sections.

Definition 2.1.3. Let H be a subgroup of G. An element z € Lie G is called a
nilpotent witness to the G-nonseparability of H if z is nilpotent and = € ¢y(H),
but x ¢ Lie Cq(H).



We denote the maximal connected normal unipotent subgroup of G by R, (G),
and call this the unipotent radical of G. An algebraic group G is reductive if
R,(G) = {1}. In particular, G is called simple as an algebraic group if G is
connected and all proper normal subgroups of G are finite. Note that if G is
simple, then G is reductive.

Throughout the thesis, G always denotes a reductive algebraic group with Lie
algebra g. Fix a maximal torus T" of G. Let U(G,T) denote the set of roots
of G with respect to T'. We sometimes write just ¥(G) instead of V(G,T) if no
confusion arises. Let ¢ € U(G), then U, denotes the corresponding root subgroup
of G, and u¢ denotes the root subspace Lie U of g. We write t for the Lie algebra
of T. Recall that g has the root space decomposition as follows. [Hum91, Sec.
26.2]

g=t® P u. (2.1)
Cev(G)

Also, recall that if t € T, ( € U(G), and e, € u¢ then
t- 6( = Adt(@c) = C(t)ec.

A subgroup H of G is called a regular subgroup if H is normalized by some
maximal torus 7" of G. Then, this yields an action of 7" on H by conjugation,
and an action of 7" on Lie (H) by Ad. We call the subset W(H,T) of U(G,T)
a subsystem of U(G,T) if u, C Lie(H) for each ¢ € V(H,T), and we call an
element in W(H,T) a root of H with respect to T". In this case, the Lie algebra of
H has a similar decomposition to 2.1. In particular, if P is a parabolic subgroup
of G, and R, (P) is the unipotent radical of P, we have

Lie(R(P) = @ u.

CEY(Ru(P),T)

We denote the semi-simple rank 1 subgroup (Ue,U_¢) of G by G¢, and the Lie
algebra of G¢ by g where ¢ € ¥(G). Fix a Borel subgroup B of G containing
T, and let X(G,T) be the set of simple roots of W(G,T) defined by B. Then
U(B,T) = UH(G) is the set of positive roots of G. We know that any ( €
UT(G) can be written uniquely as a linear combination of the simple roots with
nonnegative integer coefficients. Now we are ready to define good primes and bad
primes for G.

Definition 2.1.4. For each ( € U*(G), let ¢ = Yeey cec§ for some cec € N. A
prime p is said to be good for G if it does not divide nonzero c¢; for any ¢ € ¥+ (G)
and for any £ € ¥(G), and bad otherwise.



In case of simple groups, it is known that 2 is a bad prime for all groups except
type A, 3 for the exceptional groups and 5 for the groups of type Eg (see [FAV69,
Appendix. p528-p531]). Also, we use the notion of very good primes.

Definition 2.1.5. A prime p is said to be very good for G if p is good for G and
also p does not divide n + 1 for any simple component of G of type A,.

The notion of very good primes is related to G-separability by the following
theorem, [BMRT10, Thm. 1.2].

Theorem 2.1.6. Let G be connected reductive and suppose that the characteristic
of k is very good for G. Then any subgroup of G is G-separable.

In our calculations in Chapter 3 onward, we always assume that G is simple,
in particular, connected and reductive. Therefore by the theorem above, we
must work in characteristic p where p is not very good in order to find a G-
nonseparable subgroup H (we actually work in p=2 in most cases in the follow-
ing sections). Now, we need to introduce the notion of reductive pair to state
Theorem 2.1.8 which gives a relationship between G-separability and G-complete
reducibility, [BMRT10, Thm. 1.4].

Definition 2.1.7. Let M be a reductive subgroup of a reductive group of G. We
say that (G, M) is a reductive pair if Lie M is an M-module direct summand of

g.

Theorem 2.1.8. Suppose that (G, M) is a reductive pair. Let H be a subgroup
of M such that H is a G-separable subgroup of G. If H is G-completely reducible,
then it is also M -completely reducible.

This theorem suggests that there are two strategies to find an example we are
after.

1. Find a G-nonseparable and G-cr subgroup H first, and then try to find a
reductive subgroup M such that H < M < G and H is not M-cr.

2. Find a reductive subgroup M such that (G, M) is not a reductive pair, and
then try to find a subgroup H of M such that H is G-cr but not M-cr.

In this thesis, we use the first method following [BMRT10, sec. 7].

We denote the set of cocharacters of G by Y (G). The elements of Y(G) are
the homomorphisms of algebraic groups k* — G. Let ( € W(G). We denote the
corresponding coroot by ¢V € Y(G). Then ¢V is a homomorphism of algebraic
groups k* — G¢. Now let (,£ € U(G). Then £ € Y(G). If we compose ¢ with
€Y, we get a homomorphism ¢ o £V : k* — k* such that ( o £¥(a) = a™ for some

n € Z. We define (¢, £Y) = n.



We denote by s¢ the reflection corresponding to £ in the Weyl group of G.
Each s¢ acts on the set of roots ¥(G) by the following formula [Spr98, Lem.
7.1.8].

ser ¢ =C—((.¢¢ (2.2)

For each root ( € V(G), we define the admissible homomorphism ¢ : k — U
satisfying the following relationship [Car72, Prop. 6.4.2, Lem. 7.2.1]. For any
¢ € ¥(G), we have
ngec(a)ngl = €5..¢(Fa), (2.3)
where ng = e¢(1)e_¢(—1)ee(1).

Now we set €;(0) = e¢. Then we get

Ne - €¢c = :I:esg.g. (24)
Note that by [Car72, Lem. 7.2.1] we also have

nchngl = USg'C' (25)

We use (2.2),(2.3),(2.4), and (2.5) extensively in our calculations in the following
sections.

2.2 Basic properties of reductive algebraic groups
and geometric invariant theory

In this subsection, we give several results about reductive algebraic groups
which are useful to cut down our calculations in the following chapters. Also we
give a few results concerning geometric invariant theory from [BMRO05] and [BMRTar]
which we use in the last chapter. Let G be a reductive algebraic group acting on
an affine variety X.

Definition 2.2.1. Let ¢ : k* — X be a morphism of algebraic varieties. We say
that %in% o(t) exists if there exists a morphism ¢ : k& — X (necessarily unique)
—

whose restriction to k* is ¢. If this limit exists, we set %ir% o(t) = $(0).
—
We need a characterization of a parabolic subgroup P of G, a Levi subgroup L

of P, and a unipotent radical R, (P) of P in terms of a cocharacter of G, [Ric88,
Sec. 2.1-2.3].



Let A be a cocharacter of G. Then we can associate to A a closed subgroup
Py of G by
Py={ge G| %1_{% At)gA(t) exists}.

Then, P, is a parabolic subgroup of G, and any parabolic subgroup of G is in
this form [Spr98, Prop. 8.4.5]. Also, if we define L, and R, (Py) by

Ly={g € G |lmA(t)gA(t)"" =g},

and
R.(Py) = {g € G | Tm A()gA(t) ™ = 1),

then, Ly is a Levi subgroup of Py, and R,(P)) is the unipotent radical of Pj.
Any Levi subgroup and the unipotent radical of any parabolic subgroup can be
expressed in this form [Spr98, Prop. 8.4.5]. Note that Ly = Cg(A(k*)), and Py
admits a Levi decomposition Py = R,(Py) x L, [BMRT10, 2.2].

Let M be a reductive subgroup of G. Then there is a natural inclusion
Y (M) C Y(G) of cocharacter groups. It is obvious from our characterization of
parabolic subgroups and unipotent radicals that if A € Y (M), then P\(M) =
P\(G)N M and R,(P\(M)) = R,(P\(G)) N M.

Definition 2.2.2. Define the map ¢y : P, — Ly by

ex(g) = Hm A(#)gA(t) .

t—0

Then this map is a surjective homomorphism of algebraic groups, [BMRO5,
Lem. 2.4]. We are ready to state the theorem, [Spr98, Thm. 13.4.2] , [Hum91,
Sec. 28.5].

Theorem 2.2.3. Let A be a cocharacter of G, and let Py, Ly, R,(Py) as above.
Then

(a) The product morphism Ly x R,(P\) — Py is an isomorphism of varieties.

(b) The product morphism R,(P_)) x P\ — G is an isomorphism onto an open
subset of G.

From this, we get a corollary [Spr98, 13.4.5].

Corollary 2.2.4. Let A be a cocharacter of G. Let Py, Ly, R,(P\) as above. Let
H be a subgroup of Ly. Then

(a) The product morphism ¢ : Cr,p_,)(H) x Cr,(H) x Cgr,(py(H) = Ca(H)°
is an isomorphism onto an open subset of Cq(H)°.
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(b) dim (Cg<H)> =dim (CRu(p_A)(H)> + dim (C’LA (H)) + dim (ORu(pA)(H)) .

(¢) The derivative of the product morphism ¢ in (a) at the identity of G, which
we write d(1), is a Lie algebra isomorphism from Lie (Cg,p_,)(H))
® Lie (O, (H)) @ Lie (Cg,(p,)(H)) to Lie Cq(H)°.

(@) i Lie (Ca11) ) = i (Lie (Cogp (1)) + i Lie (11

+ dim (Lie ((JRu(pA)(H))> .

Proof. Part (a) follows from Theorem 2.2.3, then part (b),(c), and (d) follow. [J

We always have Lie(Cg(H)) C ¢g(H) for any group G and any subgroup H of G.
Therefore by part (d) of Corollary 2.2.4, in order to prove that a subgroup H of
G is G-nonseparable, it is enough to show that

dim(C’Ru(pX) (H)) < dim(cLie(Ru(PX)) (H))

We use Theorems 2.2.5, 2.2.6, (see [BMRO05, Lem. 2.12], [BMRO05, Cor. 3.22])
concerning G-complete reducibility in Chapter 5. Let f : G; — G5 be a homo-
morphism of algebraic groups. We say that f is non-degenerate if (kerf)° is a
torus, [BMRO5, Sec. 2.4]. In particular, f is non-degenerate if f is an isogeny.

Theorem 2.2.5. Let G and Gy be reductive groups. Let f : G — G5 be an
epimorphism. Let Hy and Hs be closed subgroups of G and Gs, respectively.

(a) If Hy is Gy-cr, then f(Hy) is Go-cr.

(b) If f is non-degenerate, then Hy is Gy-cr if and only if f(Hy) is Go-cr, and
Hy is Go-cr if and only if f~1(Hy) is Gyi-cr.

Theorem 2.2.6. Let K be a closed subgroup of a Levi subgroup L of G. Then
K is L-cr if and only if K is G-cr.

Now we state two theorems concerning geometric invariant theory. These the-
orems are used in Chapter 5 to find an example we are after, [BMRO05, Lem. 2.17
and Thm. 3.1], [BMRTar, Thm. 3.3].

Theorem 2.2.7. Let H be a closed subgroup of G. Then H is G-cr if and
only if for every cocharacter A of G with H C P, there exists g € G such that
cx(h) = ghg™" for every h € H.

Theorem 2.2.8. Suppose X is an affine G-variety and letv € X. Let A € Y(G)
such that v’ := ll_{% A(t) - v exists and is G-conjugate to v. Then v' is R,(Py)-
conjugate to v.

11



2.3 Useful results

The following results are useful when we calculate the infinitesimal and the
global centralizer of a subgroup H of G in the following chapters. First, we have
the following, [Spr98, Prop. 8.2.1].

Lemma 2.3.1. Let G be a reductive algebraic group. Let P be a parabolic sub-
group of G, and let R,(P) be the unipotent radical of P. Then any element u in
R,(P) can be expressed uniquely as

u = H 6)\(&,\)

AEW(Ry(P))
where the product is taken with respect to a fized ordering of W(R,(P)).
We use the following lemmas repeatedly in our calculations.

Lemma 2.3.2. Let G be a reductive algebraic group defined over an algebraically
closed field k of characteristic 2. Fiz a mazimal torus T of G. Pick a parabolic
subgroup P of G such that T is a maximal torus of P. Let H be a subgroup
contained in the intersection of P and the normalizer of T' generated by elements
corresponding to reflections in the Weyl group of G. Pick ¢ € V(R,(P)), and let
H be the orbit of ¢ in W(R,(P)). Then any element & € crie(r,(p))(H) is of the
following form.

r=a ( Z e>\> + Z axey, where a,ay € k.
AeH, XEW (R, (P))\H¢
Proof. We know that any element = € Lie(R,(P)) can be written as

T = Z axey, where ay € k.
AEV(Ru(P))

Since H acts transitively on H, for any A\i, Ay € H we can find n € H such that
A2 = n - A;. Then we have

n-r=mn- ( Z aAeA) =n-(ayer)+n- ( Z CL)\(E)\)
AEV(Ryu(P)) AEY(Ry(P))\{ 1}

= ay,px, TN ( Z a,\e,\> = ay,ex, + 1" ( Z aAe,\) .
A€W (Ru(P))\{A1} A€W (Ru(P))\{A1}

If x € cLie(Ru(p))(H), we must have n - x = x. Comparing the coefficients of e,,
we get ay, = ay,. Set a = ay,. O

12



The next corollary makes it easier to calculate crie(r,(p)) (H)

Corollary 2.3.3. Let G be a reductive algebraic group defined over an alge-
braically closed field of characteristic 2. Fix a maximal torus T of G. Pick a
parabolic subgroup P of G such that T is a maximal torus of P. Let H be a sub-
group contained in the intersection of P and the normalizer of T' generated by ele-
ments corresponding to reflections in the Weyl group of G. Let {H; |i=1...m}
be the set of orbits of the action of H on V(R,(P)). Then,

CLie(Ra(P))(H) = {Z a; > exla; € k}

=1 ANeH;
Proof. Pick ¢ € V(R,(P)), and let H; be the orbit of (. Choose any n € H.
Then,

n- Z €\ — Z [

XeH, XEH,

=Y e

)\EHC

Therefore, we have

Z ex € CLie(r,(P))(H) for any He € {H; | i =1...n}.

AeH,
Combining this with the last lemma, and using induction on the cardinality of
the set of the orbits, we get the result we want. O]

The next lemma is useful when we calculate Lie(Cg, py(H)).

Lemma 2.3.4. Let G be a reductive algebraic group defined over an algebraically
closed field of characteristic 2. Fix a mazimal torus T of G. Pick a parabolic
subgroup P of G such that T is a maximal torus of P. Let H be a subgroup
contained in the intersection of P and the normalizer of T' generated by elements
corresponding to reflections in the Weyl group of G. Pick ¢ € V(R,(P)), and let
H, be the orbit of ¢ in W(R,(P)). If Uy, and Uy, are commuting root subgroups
of R,(P) for each M\, s € H¢, then we have

Z e\ € LIG(CRu(p)(H))

)\EHC

Proof. Since Uy, and U,, are commuting subgroups for each A\;,\y € H¢, the
product [Txep, Us is a subgroup of G. Take the 1-dimensional subgroup
{Ilxen, €x(a) | a € k} of [T, Ux. Pick any n € H. We have

n- (H eA(a)) = ]I enr(a) = ][ ex(a).

AeH, AeH, A€H

13



Thus we have

{ H 6)\(@) ‘ a & k‘} - ORu(p)(H)

)\EHC

Differentiating with respect to a, and evaluating at a = 0, we get

Z e) € Lie(CRu(p)(H)).

)\EH{
O

We use the next propositions repeatedly in our calculations, [Hum91, Lem. 32.5,
Prop. 33.4, Prop. 33.3].

Proposition 2.3.5. Let G be a reductive algebraic group. Let o, 5 € V(G). If
no positive integer linear combination of a and [ is a root of G, then

ea(a)eg(a) = eg(a)eqs(a), where a € k.

Proposition 2.3.6. Let U be the root system of type By with positive roots a, 3,
a+ B, and 2a+ [ where « is short and B is long. Then the homomorphisms €,,
€atB, aNd €204 can be chosen so that

€atp(b)ea(a) = €q(a)eqtp(b)eansp(2ab), where a,b € k.

Proposition 2.3.7. Let U be the root system of type Ao with positive roots a, 3,
a + 3. Then the homomorphisms €,, €, and €45 can be chosen so that

es(b)eala) = eq(a)es(b)eatp(ab), where a,b € k.

14



Chapter 3

The rank 1 Levi subgroup case

3.1 The negative result

In this chapter, we negatively extend the result of [BMRT10, Sec. 7]. First,
we recall the result in [BMRT10, Sec. 7]. Let G be a simple reductive algebraic
group of type G, defined over an algebraically closed field k of characteristic 2.
Fix a maximal torus 7" of G and a Borel subgroup B of G containing 7. Then
the set of positive roots ¥1(G) is {«, 8, a + 3,2a + §,3a + 3, 3a + 23} where «
is a short root and f is a long root (see [Hum91, Sec. 33.5]). For each ¢ € ¥(G),
we choose an admissible isomorphism e, : k& — U; and n¢ = e(1)e_¢(—1)ec(1)
satisfying 2.3, 2.4, and 2.5. Then n, has order 2 since k is of characteristic 2, and
n¢ represents the reflection corresponding to ¢ in the Weyl group N¢(T')/T of G.
Let Y(T') be the set of coroots of G with respect to T. Pick ¢t € o¥(k*) of order
3. Set

H = (na,t).

Note that S3 = H C L, where L, is the Levi subgroup of semi-simple rank 1
with respect to a. In [BMRT10, Sec. 7], the authors found a nilpotent wit-
ness to the G-nonseparability of H, and showed that the subgroup H is G-
nonseparable [BMRT10, Prop. 7.11]. We extend this result by proving the fol-
lowing.

Theorem 3.1.1. Let G be a simple algebraic group of any type except type Go
over an algebraically closed field k of characteristic 2. Pick any root ¢ of G, and
choose any t of order 3 or greater in (¥(k*). Let H = (t,n¢). Then there is
no nilpotent witness to the G-nonseparability of H in Lie (R,(P;)) where P is a
parabolic subgroup with respect to (. Also, if G is a simple algebraic group of type
Gy over k of characteristic 2, and if H = (t,ng) where B is a long root of G and
t is an element of order 3 or greater in 5Y(k*), there is no nilpotent witness to
the G-nonseparability of H in Lie (R, (Ps)).
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Before we prove this theorem, we prove the following little lemma about the
Cartan matrices and the pairings ((,£") where ¢ € ¥, and &Y € Y(T).

Lemma 3.1.2. Let G be a connected reductive algebraic group of any type except
type Gy. Pick any root ¢ € ¥ and any coroot £ € Y (T). Then the absolute
value of (¢, &) is always less than 3. Also, the statement holds for a connected
reductive algebraic group G of type G if £ is a long root of G.

Proof. Fix the set of simple roots ¥ in such a way that ¢ is a simple root. We can
assume that ¢ € VT (QG) since | ((,£Y) |=| (—(,£Y) |. Then we can write ¢ as a
linear combination of the simple roots of G with non-negative integer coefficients.
Let ¢ = > ;e Aio; for some nonempty finite index set J where J; is a non-negative
integer not all zero, and o; € 3. For each o; € X, let n(o;) be the node in the
Dynkin diagram of G corresponding to the simple root o; € X. Now, pick any
simple root ¢;. We know that (o;,£") = 0 if n(0;) is not adjacent to n(£) in the
Dynkin diagram of G. We have

<C,§V> = <Z )\i0i,§v> = Z)\z‘<0z‘7§v>
ieJ ieJ

From a complete list of all the connected Dynkin diagrams (see [FdV69, Ap-
pendix. Table. B]), we see that n(o) is connected to at most 3 nodes, therefore
it suffices to consider at most 3 adjacent nodes in all the Dynkin diagrams in
order to get all the possible values of (¢,£Y). We refer [FAV69, Appendix, p528-
p5H31] for all possible coefficients \; of simple roots o; in ¢ € ¥ (G). We exhaust
all cases to prove the lemma. We look at one root system at a time. We consider
the simply-laced root systems (i.e. ones where the Dynkin diagram has no double
or triple bonds) first. These are the root systems of type Es, F7, Eg, D,, and
A,. From the Cartan matrices of these root systems, we have

<§V>_ 2 ifO'i:ga
0y, - -1 if n(g’l) is adjacent to n(f)

Denote by A the coefficient of £ in (. Then we need to check that for every simple
root and every adjacent node to that simple root, the quantity

2\ — > Ai

(o; is adjacent to &)
has absolute value at most 2 in order to prove the lemma.

1. We consider the root system of type Eg. This case covers the root system of
type E7 and Fj since F; and Eg are subsystems of Eg. We divide this case
into 8 subcases depending on which simple root the simple root & is. Let
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Ay (Ary A, Ap) be the coefficient of the simple root oy, (o, 04, 0p) adjacent
to £ on the left, (right, above, below) in a root ¢ in the Dynkin diagram of
FEg.

(a) n(&) is the leftmost node in the Dynkin diagram of Eg. We list all

possible values of (A, A, 2A — \,) as follows.
(0,0,0),(0,1,-1),(1,0,2),(1,1,1),(1,2,0),(1,3,—-1),(2,3,1).

(b) n(§) is the second node from the left in the Dynkin diagram of Fj.
We list all possible values of (A, A\, A, 2A — A, — ;) as follows.

(0,0,0,0),(0,0,1,-1),(0,1,0,2), (0,0, 1,—1), (1,1,0,1), (0, 1, 1, 1),
(1,1,1,0),(0,1,2,0),(1,1,2,—1),(1,2,2,1),(1,2,3,0), (1, 2,4, —1),
(1,3,4,1),(2,3,4,0).

(¢) n(§) is the third node from the left in the Dynkin diagram of Eg. We

list all possible values of (A, A\, A, 2A — A\, — ;) as follows.

(0,0,0,0), (1,0,0,-1),(0,1,0,2), (0,0,1,—1),(1,1,0,1), (0,1, 1, 1),
(1,1,1,0),(0,1,2,0),(1,1,2,-1),(1,2,2,1),(2,2,2,0), (1,2, 3,0),
(2,2,3,-1),(2,3,3,1),(2,3,4,0),(2,3,5,—1), (2,4,5,1), (3,4, 5,0).
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(d) n(¢) is the forth node from the left in the Dynkin diagram of Eg. We
list all possible values of (A, A\, A, 2A — A\, — ;) as follows.

(0,0,0,0), ( ),

(1,1,1,0),(0,1,2,0), ( )
(2,2,3,-1),(2,3,3,1),(2,3,4,0)
(3,4,5,0),(3,4,6,—1), (3,5,6,1),

1,0,0,-1),(0,1,0,2),(0,0,1,-1),(1,1,0,1),(0,1,1,1),
1,1,2,-1),(1,2,2,1),(2,2,2,0),(1,2,3,0),

,(3,3,3,0),(3,3,4,—1),(3,4,4,1),
(4,5,6,0).

(e) n(&) is at the junction in the Dynkin diagram of Fs. Note that in
this case n(§) has three adjacent notes, namely, o, 0., 0,. We list all

I n(o,)

n(ar) n(§) n(or)

possible values of (Aj, A\, A, Ay, 2A — Ay — A — A,) as follows.

(0,0,0,0,0), (1,0,0,0,—1), (0,1,0,0,2), (0,0,0,1, —1),
(0,0,1,0,—1),(1,1,0,0,1),(0,1,0,1,1), (0,1,1,0, 1),
(1,1,0,1,0),(1,1,1,0,0),(0,1,1,1,0), (1,1,1,1, —1),
(1,2,1,1,1),(2,2,1,1,0),(1,2,2,1,0), (2,2,2, 1, -1),
(2,3,2,1,1),(2,3,2,2,0),(3,3,2,1,0), (3,3,2,2, -1),
(3,4,2,2,1),(3,4,3,2,0), (4,4,2,2,0), (4,4,3,2, —1),
(4,5,3,2,1),(4,5,3,3,0), (4,5,4,2,0), (4,5,4,3, -1),
(4,6,4,3,1),(5,6,4,3,0).

(f) n(§) is the second node from the right in the Dynkin diagram of Fj.
We list all possible values of (A, A, A, 2A — A, — \,.) as follows.

(0,0,0,0),(1,0,0,-1),(0,1,0,2), (0,0,1,—1), (1,1,0,1), (0,1, 1, 1),
(1,1,1,0),(2,1,0,0),(2,1,1,—1),(2,2,1,1),(3,2,1,0), (4,2, 1, - 1),
(4,3,1,1),(4,3,2,0), (5,3,1,0), (5,3,2, —1), (5,4, 2,1), (6,4, 2, 0).
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(g) n(§) is the rightmost node in the Dynkin diagram of Eg. We list all
possible values of (A, A\,2XA — ;) as follows.
(07 07 O)? (17 07 _1)7 (Oa 17 2)7 (17 17 1)7 (27 17 0)7 (3a 17 _1)7
(3,2,1), (4,2,0).

(h) n(§) is the simple root on the short branch in the Dynkin diagram of
Es. We list all possible values of (A, Ay, 2A — \p) as follows.

(0,0,0),(0,1,-1),(1,0,2),(1,1,1),(1,2,0), (1,3, —1),
(2,3,1),(2,4,0),(2,5,-1),(3,5,1),(3,6,0)

2. We consider the root system of type A, where n > 3. This case covers
the A; and A, root systems since A; and A, are subsystems of A,, where
n > 3. We divide this case into 3 subcases depending on which simple root
the simple root & is. Let A; (\.) be the coefficient of the simple root o
adjacent to the left (right) of £, in a root ¢ in the Dynkin diagram of A,,.

(a) n(&) is the leftmost node in the Dynkin diagram of A,. We list all
possible values of (A, A, 2A — \,) as follows.

(0,0,0),(1,0,2),(0,1,—1),(1,1,1).
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(b) n(€) is the the rightmost node. We list all possible values of (A, A, 2A—
;) as follows.

(0,0,0),(1,0,-1),(0,1,2),(1,1,1).

(¢) n(§) any other node. We list all possible values of (A;, A, A, 2A—=X\,— ;)

as follows.
(0,0,0,0),(1,0,0,-1),(0,0,1,—1),(1,1,0,1),(0,1,1,1),(1,1,1,0).

3. We consider the root system of type D,, where n > 5. This case covers the
root system of type D, of lower rank as a subsystem. We divide this case
into 3 subcases depending on which simple root the simple root & is. Let
A (Ar, Aa, Ap) be the coefficient of the simple root o; adjacent to the left
(right, above, below) of £, in a root ¢ in the Dynkin diagram of D,,.

(a) & is the root on one of the short branches (There are two possibilities
of the choice to &, but each case gives the same value of 2\ — " \;
because of the symmetry of the Dynkin diagram of type D,,). We list

all possible values of (A, A\, 2A — );) as follows.

(0,0,0),(1,0,-1),(0,1,2),(1,1,1),(2,1,0).
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(b) n(¢) is at the junction. We list all possible values of (A;, A, A, Ag, 2A —
Al — A — Ag) as follows.

(0,0,0,0,0),(1,0,0,0,—1), (0,1,0,0,2), (0,0,1,0,—1), (0,0,0, 1, —1),
(1,1,0,0,1),(0,1,1,0,1),(0,1,0,1,1),(1,1,1,0,0), (1,1,0,1,0),
(1,1,1,1,-1),(1,2,1,1,1),(2,2,1,1,0).

(¢) n(§) is any other node. We list all possible values of (A, A\, A, 2\ —

A — \,) as follows.

(0,0,0,0), (1,0,0,—1),(0,1,0,2), (0,0, 1,—1), (1,1,0,1), (0, 1, 1, 1),
(1,1,1,0),(0,1,2,0),(1,1,2,—1),(1,2,2,1),(2,2,2,0).

Now we consider the cases where there are roots of different lengths, namely, the
root systems of type B, C,, Fy, and G5. We consider the root systems of type
By, Cy,, and F} first. Suppose that n(o;) is adjacent to n(§). From the Cartan
matrices of B,,, C,, and F}j, we have

2 if g; = f,
(0;,€YY ={ =1 if 0; has the same length as &, or o; is short and ¢ is long,

—2 if g; is long and ¢ is short.

4. We consider the root system of type B,, where n > 4. This case covers the
root system of type B,, of lower rank as a subsystem. We divide this case
into 2 subcases depending on which simple root the simple root & is. Let
A (M) be the coefficient of the simple root o; adjacent to the left (right) of
¢ in a root ( in the Dynkin diagram of B,,.
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(a) & is the short root. In this case we have
(€,€") =2x -2\

We list all possible values of (A, A, 2\ — 2);) as follows.

(0,0,0),(1,0,-2),(0,1,2),(1,1,0),(1,2,2),(2,2,0).
(b) ¢ is a long simple root. Then we have
<C7€v> =2\ — )\l - )\r-

We list all possible values of (A;, A, A, 2A — A, — \,.) as follows.

(0,0,0,0),(1,0,0,-1),(0,1,0,2),(0,0,1,—1),(1,1,0,1),(0,1,1,1),
(1,1,1,0),(0,1,2,0),(1,2,2,1),(2,2,2,0).

5. We consider the root system of type C,, where n > 4. This case covers the
root system of type C,, of lower rank as a subsystem. We divide this case
into 3 subcases depending on which simple root the simple root & is. Let
A (M) be the coefficient of the simple root o; adjacent to the left (right) of
¢ in a root ( in the Dynkin diagram of C),.

(a) n(§) is the long simple root. Then we have
(¢, &)y =2\ — \.
We list all possible values of (A;, A\, 2A — );) as follows.

(0,0,0),(1,0,-1),(0,1,2),(1,1,1),(2,1,0).

22



(b) ¢ is the short simple root that is next to the long simple root. Then
we have

(€, &) =2A— N — 2\,

We list all possible values of (A, A\, A, 2A — A\, — 2),) as follows.
(0,0,0,0), (1,0,0,—1),(0,1,0,2), (0,0,1, —2), (1,1,0,1), (0, 1, 1,0),
(1,1,1,-1),(0,2,1,2),(1,2,1,1),(2,2,1,0).

(c) n(§) is one of the other short simple roots. Then we have
(C€) =20 = N — A
We list all possible values of (A;, A, A, 2A — A\, — \,.) as follows.

(0,0,0,0), (1,0,0,—1), (0,1,0,2), (0,0,1,—1), (1,1,0,1), (0, 1,1,1)
(1,1,1,0),(0,0,2,—2),(0,1,2,0), (1,1,2,—1),(0,2,2,2),(1,2,2,1)
(2,2,2,0).

6. We consider the root system of type Fy. We divide this case into 4 subcases
depending on which simple root the simple root € is. Let \; (A.) be the
coefficient of the simple root o; adjacent to the left (right) of £ in a root ¢
in the Dynkin diagram of Fj.

(a) n(&) is the leftmost node. Then we have
(€€ =22 .
We list all possible values of (A, A\, 2\ — \,.) as follows.
(0,0,0), (1,0,2),(0,1,—1), (1,1,1), (1,2,0), (1,3, —1), (2,3, 1).
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n(§) n(o:)

(b) n(§) is the second node from the left. Then we have
<C7£v> =2\ — )\l - )\r-
We list all possible values of (A, A, A, 2A — A, — \,.) as follows.

oo o
n(or) n(§) n(o,)

(0,0,0,0), (0,0,1,-1),(0,1,0,2), (1,0,0, 1), (1,1,0,1), (0, 1, 1, 1),
(1,1,1,0),(0,1,2,0),(1,1,2,—1),(1,2,2,1),(1,2,3,0), (1, 2,4, —1),
(1,3,4,1),(2,3,4,0).

(¢) n(§) is the second node from the right. Then we have
<<~7€\/> =2\ — 2)‘l - )\r-
We list all possible values of (A, A, A, 2A — 2\, — \,) as follows.

o oo o
n(ar) n(§) n(o,)

(07 07070)7 (Oa()? 17 _1)7 (07 1707 2)7 (170707 _2)7 (07 17 17 1)5 (17 17070)7
(1,1,1,—1)(1,2,0,2),(1,2,1,1),(1,2,2,0), (2,2,0,0), (2,2,1, 1),
(2,2,2,-2),(2,3,1,1),(2,3,2,0), (2,4,2,2), (3,4,2,0).

(d) n(&) is the rightmost node. Then we have
(€& =22 — A
We list all possible values of (A, A, 2\ — );) as follows.
(0,0,0),(0,1,2), (1,0, —1), (1,1,1), (2,0, —2), (2, 1,0), (2,2, 2)
(3,1,—1),(3,2,1), (4,2,0).
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o oo o
n(o;) n(§)

7. We consider the root system of type G5. We consider the case where the
root & is long. Let A, be the coefficient of the simple root o; adjacent to
the right of £ in a root ¢ in the Dynkin diagram of (G5. From the Cartan
matrices of G5, we have

2 if o, =&,
—1 if o, is short.

<JT7 §v> = {

Then we have

<Ca £V> =2\ — )\7“-
We list all possible values of (A, A, 2\ — \,) as follows.

——e
n(€) n(ov)

(1,0,2),(1,1,1),(1,2,0),(1,3,-1),(2,3,1).

We have checked all possible values for (¢,£Y), and did not get any number with
absolute value equal to 3 or greater. So the lemma is proved. O

Now, we prove Theorem 3.1.1.

Proof of Theorem 3.1.1. Let G and H as in the hypotheses. Let t = (Y (a) where
a € k*. Note that a has the same order as t. Suppose that x is a nilpotent
witness to the G-nonseparability of H in Lie (R, (/% )). Then t centralizes z. We
can write x = Y ,c; \ie; for some subset I of U, \; € k*. We have

el
i€l
= > Ao (a)e;)
el
= > (@)
i€l
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Since t centralizes x and the order of a is 3 or greater, (i,(") has to be an integer
multiple of 3 or greater for each ¢ € I from the last equation. Then (i,(Y) has to
be zero for each i € I by Lemma 3.1.2. Hence ¢ centralizes U; for any ¢ € I. Also,
n¢ centralizes U; for any ¢« € I by 2.3 since k is of characteristic 2. Therefore,
we have U; C Cg(H) for any i € I, then it follows that Y ;c; Aie; € Lie (Cq(H)),
which is a contradiction. We conclude that there is no nilpotent witness to the
G-nonseparability of H in Lie (R, (F;)). O
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Chapter 4

The higher rank Levi subgroup
cases

In this chapter, we try to find a nilpotent witness to the G-nonseparablity
of a subgroup H of G. We always assume that H is generated by a subgroup
of the normalizer of a maximal torus 7" of G corresponding to reflections in the
Weyl group of GG. Following the result of the last chapter, we consider subgroups
H sitting in Levi subgroups of rank 2 or higher. We also assume that G is a
simple algebraic group defined over an algebraically closed field of characteristic
2. Then, by 2.3 and 2.4 we have

n§€C<a>nf_1 = 685'C<a>7

Adng(ec) = ne - e¢ = es,.c where ¢, € € U(G).

4.1 Classical cases

4.1.1 G = Az with A; Levi subgroup

Let G be a simple algebraic group of type Az. Fix a maximal torus T of G.
Pick a Borel subgroup B of GG containing T'. Then the set of positive roots is

UHG) ={a, 8,7, a+B,8+7,a+ B+7}

Let L,z be the Levi subgroup of type As corresponding to o and 3. Then

UH(Lag) = {o, B,a + B}

Set Pog = (BU Lyg). Then P,s is a parabolic subgroup of G with
U(Ru(Pag)) ={7. B+, 0+ B+7}.
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Figure 4.1: Dynkin diagram of As

We fix the ordering of W(R,(P,s)) as given above. We use round brackets for
ordered n-tuples of roots. Define H by

H = (nq,ng).
From the Cartan matrix of Az, we have
(0, 0”) =2,(B,0") = —1,{y,0") =0,
(@,8Y) = =1,(8,8") = 2,(y,8") = —1L.
From this, we compute

B+7,a")y==1{a+B+7v,a")=1,
(B+7.8") =1 {a+B+~,8")=0.

These formulas tell us how n, and ng act on W(R,(P,z)).

no - (,8+7v,a+B8+7) = a+b+7,5+7)

ng- (L, 0+va+8+7) =B+77a+64+7)
So H has the single orbit {v, 8+v,a+F+~} in Y(R,(Fas)). By Corollary 2.3.3,
we get

CLie(Ru(Pag)) () = {aley + €51y + €asp1y) [ @ € K}
Now, let’s check whether e, +es - +e€a4 54 belongs to Lie(Cr,p,,) (H)) or not. It
is easy to see that no positive integral linear combinations of {v, B+, a+ B +~}
is a root of G. By Proposition 2.3.5 and Lemma 2.3.4 we get

€y + €p1y T €arpry € Lie(Cry(p, s (H)).

So we have

Lie(CRu(paﬁ)(H)) 2 cLie(Ru(Paﬁ))(H)'
Hence

Lie(Cry(poy)(H)) = CLic(Ru(Pag)) (H)-

Hence, we have the following.

Proposition 4.1.1. There is no nilpotent witness to the G-nonseparability of H
in Lie (Ry(Pag)).
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4.1.2 G = A, with A, Levi subgroup

Let GG be a simple algebraic group of type A4. Fix a maximal torus T of G.
Pick a Borel subgroup B of G containing T'. Then the set of positive roots is

UHGE) ={a, B,7, 6, a+ B, B+, v+ 6 a+B+vB8+v+d8a+8+vy+5}

Let L, be the Levi subgroup of type As corresponding to o and 3. Then

Figure 4.2: Dynkin diagram of Ay

VT (Lag) = {a, 8,0 + B}
Set Pog = (BU Lyg). Then P,z is a parabolic subgroup of G with
U(R,(Pag)) = {76, 8+v,y+da+ B+, B+y+da+B+v+6}
We fix the ordering of W(R,(P,s)) as given above. Define H by
H = (nq,ng).
From the Cartan matrix of Ay, we get

<Ck, a\/> =2, <ﬁ> O‘V> =—1, <77 Oév> =0, <(57 a\/> =0,
<O[,5V> = _17 <ﬂ’ﬂ\/> = 2a <’Y7BV> = _17 <67 /Bv> =
From this, we compute
(B+7,0")=~1,{y+d,a")=0,{a+ B +7,a") =1,
(B+7+6,a")=~1{a+B+vy+6a")=1.

(B4+76")=1{y+6,8") = =1, {a+ B +~,8")
B+v+6,8")=1(a+8+~v+068")=0.

0,

These formulas show us how n, and ng act on V(R,(P,g)).

Mo (1,0, 8+7,v+d0a+B+7,8+7+06,a+F+7+9)
=0 a+B+v7+0B8+v,a+B+y+0,6+7+9).
ng- (7,0, 8+v.y+da+B+78+v+0a+B+v+0)
=B+7.6,70+7+6a+B+y,y+da+B+7+0).
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It is easy to see that H has three orbits {v,5 +~v,a+ 8 +~}, {v+ 0,8+~ +
d,a+ [ +~v+ 6}, and {6}. By Corollary 2.3.3, we get

CLio(Ru(Pag)) (H) ={aley + €1y + €arpin) + b(€r4s + €a1946 + €aspryrs) + CEs
| a,b,c € k}.

In this case, ¢Lie(r, (p,4))(H) is 3-dimensional, and we want to show that at least
one of ey + €giy + Cat iy, €y+5 T €84~y+s T €atpiyts OF €5 does not belong to
Lie(Cr,(p.;)(H)) in order to prove that H is G-nonseparable. It is easy to see
that no positive integral combinations of roots in the first two orbits of H is a
root of GG. By Proposition 2.3.5 and Lemma 2.3.4, we get

€y T €84y T CatBiy, Cy+5 T €B4y+5 T CatpBty+s, €5 € Lie (ORu(PaB)(H))'
So we have
Lie (CryPap)(H)) = CLic(ru(Pap) (H)-
Hence we have the following.
Proposition 4.1.2. There is no nilpotent witness to the G-nonseparability of H

in Lie (Ry(Pag)).

4.1.3 G = A, with A3z Levi subgroup

Let G be a simple algebraic group of type A4. Fix a maximal torus T of G.
Pick a Borel subgroup B of GG containing T'. Then the set of positive roots is

UHG) ={a, B,7, 0,0+ B, B+~v,v+0,a+B+~v,8+v+0,a+8+v+ 8}

Let Lo, be a Levi subgroup of type Aj corresponding to «, 8, and . Then

Figure 4.3: Dynkin diagram of Ay

Ut (Logy) = {a, 8,7, a4+ B, 8+ v, a+ B +7}.

Set Ppgy = (B U Lygy). Then P,s, is a parabolic subgroup of G with
U(Ry(Papy)) = {0,7 + 0,8+ +d,a+ +7+d}.
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We fix the ordering of W(R,(FPys,)) as given above. Define H by
H = (ng,ng,ny). (4.1)
From the Cartan matrix of A4, we have

<a7 a\/> =2, <67 av> =—1, <’77 av> =0, <57 a\/> =0,
(, ) = =1,(B,8") = 2,(7, ") = =1,(0,8") = 0,
<a77v> =0, <6>7V> = -1, <7>7v> =2, <57 7v> =—1

From this, we compute

<7—|—5,o¢v>:O,<B+'y—|—5,ozv>:—1,<a+6+7+5,av>:1,
(v+6,8)y=-1,(8+7+4,)y=1{a+B+~v+63") =0,
(V+6,7)=1(B+7+6,7") =0, (a+B+7v+67") =0,

These calculations show us how n,, ng, and n, act on V(R,(LPasy)).

Ne - (0,7 +6,8+7+8a+B+7+0)=0,v+da+B+v+6,3+~+90).
ng- (0,7 +6,8+y+da+B+y+d)=(58+v+0,7+da+f+7y+0).
Ny (0,y+0,8+7v+0,a+B+~v+)=+4,0,+7+6a+B+v+9).

From this, we see that H has the single orbit {6,740, +~v+d,a+ B+~ +3}.
By Corollary 2.3.3 we get

CLic(Ru (Pagy)) (H) = {a(€s + €445 + €1745 + €arpiyrs) | @ € K}

It is not difficult to see that no positive integral combination of the roots in the
orbit of H is a root of G. By Proposition 2.3.5 and Lemma 2.3.4 we get

Lie(cRu(PaB'y) (H)) = CLie(Ru(PocB’Y) (H)
Hence we have the following.

Proposition 4.1.3. There is no nilpotent witness to the G-nonseparability of H
in Lie (Ry(Pagy))-

4.1.4 G = B3 with A, Levi subgroup

Let G be a simple algebraic group of type Bs. Fix a maximal torus 7" of G.
Take a Borel subgroup B of GG containing T'. Then the set of positive roots is

\I]+(G):{04,5,’7,04+ﬁ,ﬁ+’Y,Oé+/6+’y,ﬁ—|—2’%0{—{—54—2’%@—{-25_}_27}
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Figure 4.4: Dynkin diagram of Bj

Let L.s be the Levi subgroup of type As corresponding to o and 5. Then
U (Lap) = {a, B, + B}
Set P,g = (BU Lag). Then P,3 is a parabolic subgroup of G with
V(Ry(Pag)) ={7v. B+ 710+ B+78+27,a+8+2y,a+28+27}
We fix the ordering of V(R,(P,s3)) as given above. Now, define H by
H = (nqy,ng).
From the Cartan matrix for Bs, we get

<a7 av) - 27 </87 av> = _17 <77 av> - 07
<Oé7ﬁv> = _17 <ﬁ7ﬁv> = 27 <776v> =-—1
From this, we compute
(B+7,a") ==L{a+p+7,0a")=1(8+2y,a") = -1,
(a+B8+2y,0") =1 (a+28+27,a") =0

<6+7>6v> = 17<a+ﬁ+77ﬁv> :07 <6+2776V>
(a+B+27,8)=—-1,(a+28+27,8) =1.

0,

These formulas show us how n, and ng act on V(R,(P,g)).

No- (7, 8+v,a+ B+, 08+2y,a+ 5+ 2y,a+ 25+ 2y)
=(va+B+7.8+v,a+B4+2y, 842y, a+25+2y).
ng- (v, 8+v,a+B+7,8+2y,a+5+2y,a+25+2y)
=B+, v, a+ B+, 842y, a+20+2y,a+ 5+ 27).

From this, it is not difficult to see that H has 2 orbits {v, 5 +v,a+ 5+ 7} and
{8+ 2v,a+ B+2y,a+28+2y}. By Corollary 2.3.3 we find

CLic(Ru (Pag)) () = {a(eyF€s4yteatpin) +b(esray+eatsroyteatapiny) | a,b € K}
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Note that {5, 5 + v, 8 + 27} is the root system of type By where v and § + 7
are short. So, by Proposition 2.3.6, we have

€1+(a)€5(0) = €5(b)esir(a)€sray(2ab)
= €,(b)egt(a), where a,b € k.

The last equality holds because we work in characteristic 2, and this tells us that
U, and Ug,., are commuting subgroups of G. Then,

~—

€pr(a)ey (b

© na - (g4 (a)ey (b
& €atpiry(a)ey(

© g (€atpiy(@)ey (b
(

& €atpiy(@)€514

— &, (g (a)
) = N - (&3(b)€g 14 (a))
b) = €y(b)ea+p+4(a)

) = np - (&(b)earpiy(a))
b) = €g14(b)ea+rpiq(a)

The third and the last equation show us that U,ig4, commutes with U, and
Ug4~. Therefore U,, Ugy, and Uy, g4 are mutually commuting subgroups of G.
It is easy to see that no positive integral combinations of the roots in the second
orbit {8 + 2v,a + 5+ 2y, + 25 + 27} is a root of G, so by Proposition 2.3.5
and Lemma 2.3.4 we find that

Lie (Cry(p.p) (H)) = {a(eytepiyteassiy) +b(€pr2yFCatsroyteatapioy) | a,b € k}.
So we have the following.

Proposition 4.1.4. There is no nilpotent witness to the G-nonseparability of H
in Lie (Ry(Pag)).

4.1.5 G = B3 with By Levi subgroup

Let G be a simple algebraic group of type Bs. Fix a maximal torus 7" of G.
Pick a Borel subgroup B containing 7. Then the set of positive roots is

UHGE) ={a, B, v, a+ 8,8+, a+B+7. 842y, 0+ 5+ 27,0+ 25+ 27}
Let Lg, be a Levi subgroup of G corresponding to # and «. Then

\D(Lﬁ'Y) = {ﬁ>77ﬁ + 775 + 27}

Set Pg, = (B'U Lg,). Then Pg, is a parabolic subgroup of G with
V(Ru(Psy)) ={o,a+f,a+B+y,a+0+2y,a+28+ 27}
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Figure 4.5: Dynkin diagram of Bj

We fix the ordering of W(R,(Ps,)) as given above. Define H by
H = (ng,n,)
From the Cartan matrix of B, we get
<a75\/> = _1a <676V> = 27 <’Ya/8v> = _17

(,7") =0,(8,7") = =2,(y,8") = 2.
From this, we compute

(@ +8,8") =1 {a+p+7,8") =0,

(4B +27,8) =-1L{a+28+2y,8") =1,

(a+B,7")==2(a+B+77")=0
(a4 B+27,7") =2,{a+26+27,7") = 0.

These formulas show us how ng and n., act on W(R,(Ps,)).
ng-(a,a+ B,a+B+v,a+ B+ 2y,a+28+ 2y)
= (a+p,a, a4 f+7y,a+20+2y,a+ +27).

ny - (,a+B,a+B+v,a+ B+ 2y,a+28+27)
=(,a+B+2y,a+B+y,a+ B,a+25+2y).

From this, it is easy to see that H has two orbits {a, a+ 8, a+ 5427, a+25+27, }
and {«a + 5 + ~v}. By Corollary 2.3.3 we get

CLic(Ru(Ps,)) (H) = {a(ea + €atp + €atproy + Car2proy) + barpiy | a0 € K}

Now let us calculate Cg,(p,.)(H). Note that no non-negative integer linear com-
bination of the roots in the first orbit {a, o + 5,0 + 5+ 2y, + 28 + 27, } is a
root of G. So by Proposition 2.3.5 and Lemma 2.3.4 we find

Lie (Cr,(py,) (H)) = CLie(ru(Ps,)) (H)-
Then we have the following.

Proposition 4.1.5. There is no nilpotent witness to the G-nonseparability of H
in Lie (R, (Pgsy))-
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4.2 Exceptional cases

4.2.1 G = Eg with A5 Levi subgroup

Let G be a simple algebraic group of type Eg. Fix a maximal torus T of G.
Pick a Borel subgroup B of G containing T'. Let ¥ = {«, 3,7, d,¢,0} be the set
of simple roots of G corresponding to B and T'. The next figure defines how each
simple root of G corresponds to each node in the Dynkin diagram of Eg. From

Figure 4.6: Dynkin diagram of Fj

[FdV69, Appendix, Table B], we have the list of the coefficients of all positive
roots of G. We label all positive roots of G as in Table 4.1 from 1 to 36. For
example, root 1 corresponds to the root o, and root 5 to the root a + 8+ v+ o,
and root 21 to the root o + 25 + 37y + 20 + € + 20, and so on. Then the set of
positive roots is

THG) = {1,2,--- ,36}.

We fix the ordering of the positive roots in the natural order. Let L,g5c be the
Levi subgroup of type As corresponding to a;,--- ,e. Then

Ut (Lagse) = {22, , 361,
Let Pagyoe = (Lapyse U B). Then P,g,sc is the parabolic subgroup of G with
\IJ(RU(Pank)) = {1’ ce 721}‘

Note that these are precisely the roots in Fg such that the coefficient of ¢ is 1 or
2. We call the roots of the first type weight 1 roots, and the second type weight
2 roots. Define H by

H = (ng,ng, ny,ng,ne).
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Table 4.1: The set of positive roots of G

Let (i, (2 be simple roots of G. From the Cartan matrix of Fs [Hum9l, Sec.
11.4], we have

<<17 C;/> =

2
-1

if G = G.

if the nodes corresponding to (i, (> are adjacent to each other
in the Dynkin diagram.

if the nodes corresponding to (i, (» are NOT adjacent to each
other in the Dynkin diagram.

From this, it is not difficult to calculate (£,¢Y) for all £ € W(R,(Pagsc)) and
¢ € . For example,

(o

(a+B+2y+d+e+0,7)

A A (BY) 200, 9Y) +(0,9Y) + (e,7Y) + {,7Y)
1.

=0+ (1) +4+(-1)+0+(-1) =

These calculations show how n,, ng, n,, ns, and n. act on W(R,(Pagysc)) =
{1,---,21}. Let 7 be the corresponding representation of H on
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Sym(V (R, (Papyse))) = Sa1. We get Table 4.2. So, for example, n, maps the

m(na) = (35)(68)(911)(10 12)(13 14)(16 18)
t(ng) = (23)(46)(79)(12 15)(14 17)(18 19)
(n,) (12)(6 10)(8 12)(9 13)(11 14)(19 20)
m(ns) (24)(36)(58)(13 16)(14 18)(17 19)
7(nd) = (47)(69)(8 11)(10 13)(12 14)(15 17)
Table 4.2: Action of n,’s on V(R (Pasyse))

root 3 to the root 5, and the root 6 to the root 8, and fixes the root 4, etc. It is
not difficult to see that H has two orbits on W(R,(P.gyse)). These are

O, ={1,---,20},
and {21}.

Then, by Corollary 2.3.3, we have

CLie(Ru(Pagys)) (H) = {a( Y €x) +bea | a,b € k}.
€01

Now, let us calculate Lie(Cr,(p, . .)(H)). We prove the following claim first.
Claim 4.2.1. Any element u in Cr,(p,,. ;) (H) can be expressed uniquely as
U= H ex(a) | €21(az1), where a,as; € k
A€01

Proof. By Lemma 2.3.1, any element v in R, (Pag,sc) can be written uniquely as

U= H ex(ay), where ay € k.
Ae{l, 21}
Pick any two roots 4,7 € {1,---,20} such that ¢ < j in the given ordering. Since
H acts transitively on {1,---,20}, we can find n € H such that n-j =i. We

compute

n-u=n-(efar) - €a)---€i(a;) - eanlazn))
=en1(ar) - eni(ai) - enjla;) - €no(amn)
= e1(ap-1.1) - €lap-14) - €j(ap-14) - en(an + flar, -, ax))

for some f € kfay, -+, a).
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To get the last equality, we reordered the terms in the following way using Propo-
sitions 2.3.5 and 2.3.7. Note that given {,m € {1,---,20}, either U, and U,
commute or we get the [4+m = 21 and {l,m,21} forms an Ay subsystem. (We
use + to represent the sum of roots, not the sum of the labels of the roots.) In
the latter case, by Proposition 2.3.7 we have

e1(a)em(b) = en(b)e(a)ear(ab).
Also note that in this case there is only one weight-2 root, which is root 21.

(x) Move €; to the left, and if an €1 term occurs, this can be moved directly
to the right since a €31 term commutes with any other terms by Proposi-
tion 2.3.5. Then move ¢, term to the left until it appears right after ¢;
term. Continue with this process until all ¢; are rearranged into the natural
order.

If u € Cr,(p,s,5.)(H), we must have n - u = u. Comparing the arguments of the
€, we get a; = a,-1.;, so we have a; = a;. O

Now, pick a,as; € k, and let

A€0q

u= ( 11 eA(a)) €91(a91).

We list all pairs of non-commuting root subgroups of R,(FPasys) in Table 4.3.
They are non-commuting pairs because for each pair the set of the corresponding

{UlaUQO} {U27U19} {U37U18} {U47U17}
{U57U16} {U67U14} {U75U15} {U87U13}
{U97 Ul?} {Ul(JJ Ull}

Table 4.3: Non-commuting pairs of root subgroups of R, (Pagsc) in Eg
roots, say, root [ and root m, together with root 21, is the root system of type
Ag, and by Proposition 2.3.7, we have

e(a)em(a) = ep(a)e(a)es (a?).
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Now, we compute

Mg - U =N - ((Al_([) exla )621 G21))

= H ena-/\(a)> €ng-21(A21)

A€0Oq

A€Oq

= H 6)\ )621 CL21—|—26L)

A€0Oq

= H 6)\ )621 G21)

The last equation holds since k is of characteristic 2. To get the second last equa-
tion, we have used Proposition 2.3.5, Proposition 2.3.7 and (%) in the following

way. Note that n, permutes roots within each set of roots {1,---,8}, {9, -+, 12}
and {13,--- ,18}. Any two roots in {1,---,8} commute, and any two roots in
{13,--- ,18} commute, so it suffices to consider {9,--- ,12}. We compute

ne - (€9(a)erp(a)err(a)ern(a)) =€n,.0(a)én, 10(a)€én, 11(a)€n, 12(a)

Note that we get 2a? as the argument of €5; because the action of n, on u swaps
the order of two non-commuting pairs, namely, {eg, €15} and {ejo, €11}
We calculate the action of ng, n,,ns,n. on v in the similar way.

ng-u=ng: ((Al_([) ex(a ) €21 G21)>

= ( H Enﬁ’\(a)) Enﬁ.21(a21)

AeOq

= H 6)\ 621 CL21)
AeOq

39



In this case, no non-commuting pair has their order swapped by the action of ng

on 1.
Moy = U =Ty - H ex(a) | €21(az1)
A€0q

= I €n,2(a) | €n 21(a21)
€0,

= [] ex(a)] ex (a21 + 2a%)
€0

= H ex(a) | ean(an).
A€01

In this case, two non-commuting pairs, namely, {es, €13} and {eg, €12}, have their
order swapped by the action of n,.

N+ U =nNg - (( H €>\ ) €21 G21))
A€0,

= ( H ené.,\(a)> 6n5~21(a21)

AeOq

H ex(a) | exn(ag).
AeOq

In this case, no non-commuting pair has their order swapped by the action of ng

on u.
Ne - U =T - H €>\ €21 Cl21)
A€O1

= H Ené-)\(a) €n5-21<a21)
A€0q

= H ex(a) | ea1(axn + 2a° )
A€0q

= H €>\ €21 &21)
A€0q

In this case, two non-commuting pairs, namely, {eg, €13} and {ejg, €11}, have their
order swapped by the action of s,.
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Since the set {n,,ng, n,,ns, n.} generates H, these calculations show that

CRu(Papyse) (H) = {(Al_([) ex(a))eai(aa) | a,as € k}. (4.2)

In (4.2), setting a = 0, and differentiating with respect to as;, and evaluating at
as = 0, we get

€91 € Lie(ORu(Paﬂ—y(;e)(H))'
Again, in (4.2), if we set ag; = 0, differentiate with respect to a, and evaluate at
a =0, we get

> ex € Lie(Cr, (P, s (H)).
AeO1

So we have

{a( > ex) +bea | a,b € k} C Lie(Cr,(p,,,,0(H)).
A€O1

Hence
Lie(CRu(Pany(Se) (H>) = cLie(Ru(PaB'yés)) (H) °

Thus, we have the following.

Proposition 4.2.2. There is no nilpotent witness to the G-nonseparability of H
in Lie (Ry,(Pagyse))-

4.2.2 G = E; with Ag Levi subgroup

Let G be a simple algebraic group of type F;. Fix a maximal torus T of
G. Pick a Borel subgroup B of G containing 7. Let ¥ = {«, 3,7,d,¢,m,0} be
the set of simple roots of GG. The next figure defines how each simple root of G
corresponds to each node in the Dynkin diagram of E;. From [FdV69, Appendix,

Figure 4.7: Dynkin diagram of E7

Table B|, we have the coefficients of the simple roots in all positive roots of G.
We label all positive roots of GG in Table 4.4. Then the set of positive roots is

UHG) = {1,2, - ,63).
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Table 4.4: The set of positive roots of G
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We fix the ordering of W (G) in the natural order. Let Lag,se, be the Levi
subgroup of type Ag corresponding to a,--- , 7. Then

U (Lagysey) = {43, -+, 63}.
Let Pagyoen = (Lapyoen U B). Then P,g.se, is a parabolic subgroup of G with
\I/(RU(POC,BWSEU)) = {17 T »42}-

Note that {1,---,35} and {36,---,42} are precisely the roots in E7 such that
the coefficient of o is 1 and 2 respectively. We call the roots of the first type
weight-1 roots and the second type weight-2 roots. Define H by

H = (ng,ng, ny, ng, e, ny).

Let (i, (2 be simple roots of G. From the Cartan matrix of F; [Hum9l, Sec.
11.4], we have

2, ifG =0
—1, if the nodes corresponding to (i, (s

are adjacent to each other in the Dynkin diagram.

<<17 <5/> = . .
0, if the nodes corresponding to (1, (o

are NOT adjacent to each other in the Dynkin diagram,
and (1 # Ca.

From this, it is not difficult to calculate (£,¢Y) for all £ € U(R,(Papysey)) and
¢ € X. Then, these calculations show how n,, ng, n,, ns, ne, and n, act on
U(R,(Papysen)) = {1,---,42}. Let m be the corresponding representation of H
on Sym(V(Ry,(Pagysen))) = Si2. Then we get Table 4.5. It is not difficult to see
that H has two orbits,

O, :{17 T 735}7
Oss ={36,-- ,42}.

Then by Corollary 2.3.3, we have

CLie(Ru (Pagrse)) () = {a( D ex) +b( D ex) | a,be k}.

AEO, A€036

Now, we calculate Lie(Cr,(p,s.5.,)(H)). By Proposition 2.3.7, a pair of root
subgroups {Uj, Uy, } such that [+m is a root of R,(Pagsey) IS @ non-commuting
pair of root subgroups. We list all such pairs {U;, U, } with root [+m in Table 4.6.
Note that I, m,[+m form an A, subsystem. Now, we prove the following claim.
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m(ne) = (58)(912)(13 16)(14 17)(18 21)(19 22)(23 26)(24 27)(28 30)(31 33)
m(ng) = 865;))(76) 9)(10 14)(11 13)(15 19)(20 24)(21 25)(26 29)(30 32)(33 34)
m(n,) = 873;))?4) 6)(7 10)(13 18)(16 21)(19 23)(22 26)(24 28)(27 30)(34 35)
m(ns) = 88233(9(2 11)(9 13)(10 15)(12 16)(14 19)(17 22)(28 31)(30 33)(32 34)
m(ng) = 5394;1(033 6)(59)(8 12)(15 20)(19 24)(22 27)(23 28)(26 30)(29 32)
w(n,) = g(}i(:% 10)(9 14)(11 15)(12 17)(13 19)(16 22)(18 23)(21 26)(25 29)

Table 4.5: Action of n,’s on ¥(Ry,(Pagysen))

Claim 4.2.3. Any element u in CRM(PQB,Y&W)(H) can be expressed uniquely as

u = (H e)\(a)) ( 11 e,\(a,\)) , where a,ay € k

A€0q /\6036

Proof. By Lemma 2.3.1 any element w in R, (Pagsen) can be written uniquely as

U= H ex(ay), where ay € k.
Ae{1, 42}
Pick any two roots 4,7 € {1,---,35} such that ¢ < j in the given ordering. Since
H acts transitively on {1,---,35}, we can find n € H such that n-j =i. We

compute

AeO036

—ena(ar) -+ eni) -+ nglai) - T] enn(an)

AEO34
=61 (an-11) - €(An-1) - - €5 (An-1,) - -

H ex(@n—1. + falar, -+, ass))

A€034

n-u=n- (el(al)‘~~ei(ai)~~ej(aj)~-- 11 e,\(a,\))

for some fy € klay,- -, ass)].

To get the last equality, we reordered the terms in the following way using Propo-
sition 2.3.5 and Proposition 2.3.7. Note that we get a root subsystem of type A,
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{Ula U317 36}
{Us, Uy, 36}
{Uso, U3, 36}

{Ula U337 37}
{Uﬁa U227 37}
{U11, Uy, 37}

{Uh U34» 38}
{U7,Uss, 38}
{Ui3, U7, 38}

{U17 U357 39}
{U87 U287 39}
{U147 U217 39}

{U27 U357 40}
{U11, Uz, 40}
{Uis, Uz, 40}

{U47 U357 41}
{Ui2,Us;, 41}
{Uso, Uz, 41}

{Uz7,Uss,42}
{Ui7,Us1, 42}
{Uas, Uy, 42}

{U27 U287 36}
{Us, Ug, 36}
{Ully U147 36}

{UQa U3U7 37}
{U'?a U217 37}
{U12> U157 37}

{U27 U32) 38}
{Us, Uas, 38}
{Uh4, Uss, 38}

{U37 U327 39}
{U97 U267 39}
{U17, U1, 39}

{Us, Usa, 40}
{Uh3, Usg, 40}
{Uhg, Ua1, 40}

{Uﬁa U347 41}
{Uis, Usp, 41}
{Us, Uz, 41}

{Ur0, Usq, 42}
{Uhg, Usp, 42}
{Ua4, Usg, 42}

{Us, Uas, 36}
{U7,U1s, 36}

{Us, Us7, 37}
{USa U207 37}

{U47 U297 38}
{Uy, Up, 38}

{U57 U307 39}
{U10, Uss, 39}

{Us, Uss, 40}
{U5, Uas, 40}

{Uy, Us3, 41}
{Uss, Uss, 41}

{U14,Uss, 42}
{Us0, Usg, 42}

{Us, Uss, 36}
{Us, U15, 36}

{U4a U267 37}
{U107 Ulﬁa 37}

{Us, Uar, 38}
{U12, Urg, 38}

{Us, Uag, 39}
{U12, Uaz, 39}

{Us, Us1,40}
{Uss, Uns, 40}

{U11,Uso, 41}
{U187 U27a 41}

{Ui5, Usp, 42}
{Usz2, Uss, 42}

Table 4.6: Non-commuting pair of root subgroups U;, U,, with root I+m

when we choose two weight-1 roots, say, [ and m, such that [+m is a weight 2
root. Also note that in this case the weight-2 root in Ay subsystem can be any
one of seven weight-2 roots of W(R,(Pasgysen)) depending on the choice of two
weight-1 roots.

(xx) Move €; to the leftmost, and if a weight-2 term, say, €;, occurs, this can
be moved to the rightmost since weight-2 terms commute with any other
term by Proposition 2.3.5. Then move the e; term to the left until it
appears immediately after ¢; term. Continue with this process until all
terms corresponding to weight-1 roots are rearranged into the natural order.
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Then reorder the weight-2 terms. This is easy since all weight-2 terms
mutually commute by Proposition 2.3.5.

If u € Cry,(p,p.50,) (H), we must have n - u = u. Comparing the arguments of ¢;,
we get a; = a,-1.;, o we have a; = a;. O

Now, pick a,ay € k where X\ € {36,--- ,42}, and let

U = (H EA(CL)) ( H 6)\((1)\)).
A€0; A€036

By Proposition 2.3.7, for any pair of non-commuting 1-dimensional root sub-
groups, we have
c(a)em(a) = em(a)e(a)erim(a?).

Now, we compute

Ng - U =Ny - ( ( H }6,\(@)) 636(a36)€37(a37)€38(a38)€39(a39)€40(a40)€41(CL41)

Ae{l,,35

642(G42)>

= ( H Ena-)\(a)) Gna-36(a36)€na-37(a37)€na-38(a38)Gna-39(a39)6na-40(a40)

A€O1

€ng-41 (641)6na-42 (CL42)

= ( H €na.,\(a)) 637(a36)€36(a37)€38<a38)639(a39)640(a40)641(a41)€42(a42)

A€01

= ( H €A(a)) e36(as7)esr(ase)ess(ass + 2a%)ezg(asg)€so(aao + 2a*)esr (agr)
A€O1

€49 (CL42 + 2&2)

= ( H 6,\(&)) 636(037)637(%6)638(a38)€39(a39)€40(a40)€41(a41)€42(&42)-

A€0q

The last equation holds since k is of characteristic 2. To get the second last
equation, we have used Proposition 2.3.5, Proposition 2.3.7, and (xx). We have
2a? in the argument of €33 because two non-commuting pairs contributing to the
ess term, namely {€13, €17} and {€14, €16}, have their order swapped by the action
of n,, on wu.
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We calculate the action of ng,n,,ns, ne,n, on v in a similar way. Also, if
u € CRry,(Pyss.,) (H), then we must have u = ng -u=ng-u=n, - u=mns - u =
ne - u = n, - u. Comparing the coefficients of each term in each case, we get a
system of simultaneous equations. From the calculation of the action of n, on u
we have

3¢ = Aagr- (4-3)
We compute

Ng-u=ng - (( H 6,\(61)) 636(a36)€37(a37)638(0638)639(%9)640(G40)641(Cl41)€42(a42)>

A€Oq

= ( H En@-/\(a)> €n5-36(a36)Eng-37(a37)€n5-38(a38)6n5-39<a39)6n5-40(a40)
A€O1

€ng-41 <a41)€n5-42 (a42)

= ( H Eng-/\(a)> €36(as6) €38 (asr)esr(ass)eso(asg)€ao(@ao)€ar (@ )€aa(asn)

A€O1

= ( H 6,\(0)> 636(a36 + 2a2)€37(a38)€38(G37)€39(@39)€40(a40)641 (CL41 + 2a2)

A€O1
642(a42)
= ( H EA(G)> 636(CL36)€37(CL38)638(a37)€39(a39)€40(a40)641(a41)642(a42)-
A€O1
We get
a37 = A38. (4'4>
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Ny - U

=N - (( H €>\ ) €36 a36)€37(a37)638(a38)639(@39)640(6140)641(G41)€42(&42))

A€01

= ( H Enw\((l)) 6n7-36(a36)6n7-37(a37)6nw-38(a38>€nw-39(a39)6nw-40<a40)

A€0q

€n,-41 (041)67”-42 (a42)

= ( H Eny/\(a)) 636(6136)637(&37)639(a38)€38(a39)€40(a40)641(a41)€42(a42)

We get

Nng - u

A€01

( H 6,\ ) €36 a36)€37(a37)€38(a39 +a )639(6l38 + Cl2)€4o(0l40 + 2a2)
€0

ea1(aq1 )€ (as + 2a%)
( H ex(a ) €36(ase)€sr(asr)ess(azg + a*)esg(ass + a®)eso(aso)€ar (asr)
AeOq

€42 (a42) .

ass = asg + a’. (4.5)

=ng - (( H EA ) €36 a36)€37(a37)€38(&38)639(6139)640(&40)641(a41)€42(a42))

AeO1

= ( H €n5~>\(a)) €n5~36(a36)€n5~37(a37)6n5~38(a38)€n5-39(a39)6n5‘40(a40)
AeO1

€ng-41 (a41)€n5~42(a'42)

= ( H €n5~,\(@)) 636(a36)€37(a37)€3s(a38)€40(a39)€39(a40)€41(a41)642(a42)

AeOq

11 ex(a) | ess(ass + 2a*)esr(asr + 2a°)ess(ass + 2a°)eso(aso + a®)
AEO1
e10(asy + a®)en (anr)ean(asn)
( H 6/\ ) €36 a36)637(a37)538(a38)639(a40 +a )€4o(a39 + Cl2)€41(a41)
Ae0q

642(Cl42).
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We get

a39 = Qyo + CL2. (46)

AeO1

Ne - U =N - (( H 6/\ )636 a36)€37(a37)€38(a38)€39(a39)€40(a40)€41(a41)€42(a42))

= ( H €n5~>\(a)) €n5~36<a36)€n6~37(a37)6n6-38(a38>6n€~39(a39)€n5~40(a40)

AeOq

€nc-41 (Cl41)€n6 42 (a42)

( H €ne-A ) 636(G36)€37(G37)€38(038)639(%9)641(a40)€40(a41)€42(a42)

Ae0q

( H ex(a ) €36(a36)€37(asr)€ss(ass)€zo(asg) €0 (aar + a*)en (ag + a®)
AeOq

€so(ag + 2a2)

( H €>\ ) €36 CL36)637(@37)638(Clzf,s;)ﬁz<’,9(CL:«;g)€40(CL41 +a )641(a40 + GQ)
Ae0q

€42 (a42) .
We get

40 = A41 + CL2. (47)
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Ny = U =Ty + ( ( H }6,\(@)) 636(a36)€37(a37)€38(a38)€39(a39)€40(a40)€41(G41)

Ae{l,,35

642((142))

= ( H Ennv\(&)) 6n,,~36(a36)6nn~37<a37)6nn~38(a38)€nn~39(a39)€nn-40(a40)
}

{1, .35

€n,-41 (a41)€nn~42(a42)

= ( H }Gnnv\(a)) 636(a36)€37(a37)638(a38)€39(a39)€40(a40)€42(a41)

Ae{1,,35

€41 (Cl42)

= ( H Q\(G)) 636(a36 + 2@2)637(a37 + 20/2)638<a38 + 2&2>€39(a39)
Ae{l,-,35}

640((140 + 2&2)641 (a42 + a2)642(a41 + a2)

= ( H }GA(G)) 636(@36)637(a37)€38(a38)639(a39)€4o(a4o)€41(a42 + a2)

{1, 35

642(CL41 + CL2).
We get
ay1 = Qg9 + CL2. (48)

Since the set {n,,ng, n,,ns, nen,} generates H, equations (4.3), (4.4), (4.5),
(4.6), (4.7), and (4.8) give

CRu(Pagysen) (H) :{(Al_([) ex(a))ess(b)esr(b)ess(b)eso(a” 4 b)eso(b)es (a® +b) (4.9)

E4Q(b) | CL,b € l{}

In (4.9), set b = 0, and differentiate with respect to a, and evaluate at a = 0, we
get

Z ex S Lie(CRu(Paﬁ'yéen)(H))'
A€0q

By Proposition 2.3.5 all weight-2 terms mutually commute , so by Lemma 2.3.4
we have

Z ex S Lie<CRu(Paﬁw6en)(H>)'

A€036
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So we have

{a( Z 6/\) + b( Z 6)\) | a, b S k} g Lie(CRu(Paﬁ'yéen)(H))'
€01 )\6036

We already know that

Lie (CRu(PaB'yéen)(H)) g cLie(Rﬂ(PaB'yéen))(H) :{a( Z 6)\) + b( Z 6)\) |

Ae{l1,-- 35} AE{36,--- 42}

a,b ek}
Therefore we have shown that

Lie(CRu(PaB'yéen)(H>) = cLie(Ru(Paﬂ’YisEﬂ)) (H)
Thus, we have the following.
Proposition 4.2.4. There is no nilpotent witness to the G-nonseparability of H
in Lie (Ry(Pagysen))-
4.2.3 G = kg with A; Levi subgroup

Let G be a simple algebraic group of type Fs. Fix a maximal torus T of G.
Pick a Borel subgroup B of G containing T. Let ¥ = {«,3,7,d,¢,1,&,0} be
the set of simple roots of G. The next figure defines how each simple root of G
corresponds to each node in the Dynkin diagram of Es. From [FdV69, Appendix,

Figure 4.8: Dynkin diagram of FEjg

Table B|, we have the list of the coefficients of the simple roots for all positive
roots of G. We label all positive roots of G in Table 4.7, and Table 4.8.
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Table 4.7: The set of positive roots of Lqgysene

Then the set of positive roots is
UH(G) ={1,2,---,120}.
Let Lagysene be the Levi subgroup of type A corresponding to «,--- ,§. Then
VT (Lagysene) = {1, 28}
Let Pagysene = (Lagysene U B). Then P,g.sene is the parabolic subgroup of G with
V(Ru(Pagysens)) = {29, -+, 120}

Note that {29,--- ,84}, {85, -+, 112}, and {113,---,120} are precisely the roots
in Eg such that the coefficient of o is 1, 2, and 3 respectively. We call the roots
of the first, second, and third type, weight-1 roots, weight-2 roots, and weight-3
roots, respectively. Define H by

H = (ng,ng, ny, ng, ne, Ny, Ng).

Let (i, (2 be simple roots of G. From the Cartan matrix of Fg [Hum91, Sec.
11.4], we have

2, G =0

—1, if the nodes corresponding to (1, (o

v are adjacent to each other in the Dynkin diagram.
(G620 = 0, if the nodes corresponding to (1, (o

are NOT adjacent to each other in the Dynkin diagram,
and (i # Co.
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From this, it is not difficult to calculate (¢,¢Y) for all & € U(R,(Pagysene)) and
¢ € X. Then, these calculations show how ng, ng, n,, ns, ne, ny, and ng act on
V(R (Papysene)) = {29,---,120}. Let 7 be the corresponding representation of
H on Sym(Y(Ry(Pagysene))) = Soa. Then we get Table 4.9 It is not difficult to

m(na) = (3640)(41 45)(46 51)(47 52)(53 57)(54 58)(59 63)(60 64)(61 65)
(66 70)(67 71)(72 75)(73 76)(77 79)(80 82)(86 87)(88 89)(90 92)
(93 95)(96 99)(100 103)(119 120)

m(ng) = (33 36)(37 41)(42 46)(43 47)(48 53)(49 54)(55 60)(56 61)(62 67)
(63 69)(68 73)(70 74)(75 78)(79 81)(82 83)(85 86)(89 91)(92 94)
(95 98)(99 102)(103 106)(118 119)

m(n,) = (3133)(3437)(38 42)(39 43)(44 49)(50 56)(53 59)(57 63)(60 66)
(64 70)(67 72)(71 75)(73 77)(76 79)(83 84)(86 88)(87 89)(94 97)
(98 101)(102 105)(106 108)(117 118)

m(ns) = (30 31)(3234)(35 39)(42 48)(46 53)(49 55)(51 57)(54 60)(56 62)
(58 64)(61 67)(65 71)(77 80)(79 82)(81 83)(88 90)(89 92)(91 94)
(101 104)(105 107)(108 110)(116 117)

m(nd) = (29 30)(34 38)(37 42)(39 44)(41 46)(43 49)(45 51)(47 54)(52 58)
(62 68)(67 73)(71 76)(72 77)(75 79)(78 81)(90 93)(92 95)(94 98)
(97 101)(107 109)(110 111)(115 116)

m(n,) = (3032)(3134)(33 37)(36 41)(40 45)(44 50)(49 56)(54 61)(55 62)
(58 65)(60 67)(64 71)(66 72)(70 75)(74 78)(93 96)(95 99)(98 102)
(101 105)(104 107)(111 112)(114 115)

m(ne) = (32 35)(34 39)(37 43)(38 44)(41 47)(42 49)(45 52)(46 54)(48 55)
(51 58)(53 60)(57 64)(59 66)(63 70)(69 74)(96 100)(99 103)
(102 106)(105 108)(107 110)(109 111)(113 114)

Table 4.9: Action of n,’s on V(R (Pagysene))

see that H has three orbits,

029 = {29, e 784}a
Ogs = {85, , 112},
0113 == {113, Tty 120}
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Then by Corollary 2.3.3, we have

CLie(Ru(Paﬁ'yéenﬁ)) (H) :{a< Z 6>\) + b( Z 6>\> + C( Z 6)\)
AE€O29 A€O0gs A€0113
| a,b,c € k}.

Now, we calculate Lie(Cg,(p,;.s.)(H)). Fix an ordering of W(R,(P)) in the
given order. By a similar argument as in the Fg and E7 cases, it is not difficult
to establish the following claim.

Claim 4.2.5. Any element u in Cg,p, y(H) can be expressed uniquely as

Bydeng

u= ( 11 e,\(a)) ( 11 6,\(a,\)) , where a,a, € k.

)\6029 )\6035U0113

Now, pick a,ay € k for A € {85,---,120}, and let

u = ( 1T e,\(a)) ( 11 6)\(&)\)>.
AEO29 AEO0s5UO113

Then we have

Ng - U = (na- 11 (ex(a))) (na- 11 e,\(a,\)) :

AEO29 A€0g5U0113

We use Maple to reorder n¢ - [Iyco,, €x(a) for ¢ € {a, 3,7,6,€,1,&} (see Maple
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output in Appendix A). We have

Ny - U = (AI_O[ e,\(a)) ese(a?)esy(a®)ego(a?)egr (2a%)ega(a?)egs(a?)egs(2a) gy (a?)

6104(202)6105(2a2)6106(2a2)€11( )6112(2a2)€113(4a3)€114(6a3)€115(6a2)
e116(6a”)e117(8a”)er1s(4a”)er19(10a”)€120(10a> g5 (ass )ess (ast)est(ase)
688(a89)689(a88)690(a92)691(a91)€92(a90)593(a95)594(a94)595(a93)596<a99)
€o7(agr)€os(ags) €99 (96 ) €100(@103) €101 (@101) €102 (A102) €103 (A100) €104 (@104)
€105(@105) €106 (@106) €107 (@107) €108 (@108) €100 (@100 ) €110 (@110) €111 (@111)
6112(G112)€113(a113)€114(a114)€115(CE115)€116(a116)€117(a117)€118(ans)

)

6119(61120)6120(&119

= ( H GA(G)) 685(&85)686((12 + a87)€87(a2 + a86)€88(a89)€89(a88)

AEO29
690(&2 + Ol92)€91(2(12 + a91)692(a2 + agp) €93 (95 ) €94 (94 ) €95 (ag3)
e96(a” + agy)egr(agr)eos(2a” + ags)egg(a” + ags)e100(ar0s)€101 (a101)
€102(@102)€103(@100) €104 (20* + @104) €105 (20 + ar05)€106 (20 + a106)
e107(a107) €108 (@108) €100 (@109 €110(20° + arr0)erri(arnn)ena(2a® + arna)
e113(4a® + anz)er1a(6a® + aria)enns(6a” + ans)es(6a” + ang)
e117(8a® + arir)eris(4a® + ars)ernn(10a” + ara0)e120(10a” + aqg)

= ( H 6)\(&)) es5(ass)ese(a” + agy)est(a® + ase)ess(aso)eso(ass)

AEO29
690(@ +a92)691(a91)692(a +G90)€93(a95)€94(a94)€95( 93)696(6Z +G99)
697(6L97)€98(CL98)699(6L + 096)6100(%03)6101(a101)€102(a102)€103(a100)
€104(@104) €105 (@105) €106 (@106 ) €107 (@107) €108 (@108 ) €100 (@100 ) €110(@110)
6111(61111)6112(%12)6113(G113)€114( 114)€115(a115)€116(@ 116)6117( 117)
) )-

6118(a118) 119( ai120 6120( a119

We have used Proposition 2.3.5, Proposition 2.3.7, and a similar argument to (xx)
in the E7 case. Note that in this case, we see some cubic terms a? in the arguments
of €, during our calculation. We explain why that happens, and this is one of the
reasons why calculations for this case are much more complicated than those from
the Fg and F; cases. Suppose we have some n € H, my, mg,m3 € {29,--- 84}
such that m; < mgo < ms, n-me < n-my; and n-ms < n - my+n - my with
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[Unomy s Unems,) # 0 and [Upmy +noms s Unams] # 0. Then we have

n- [[ ex(a) =en1(a)ena(a) - numy (@) - €numy (@) + + + €numy (@) - - - €n53(a)€nsala)
A€O029

=€p1(a)ena(a) - €pmy (@) - €pmy (@) - en.ml;n.mz(aQ)
e Epmg (@) - €ng3(@)€nga(a)
=€n-1€n-2 ** * €nomo (a) c o €pemy ((Z) * €pamg (CL) e 6n-ljrn-m<a2)

T €pemy FnemeFnems (a3) e En'83(a)€n'84(a)

Ifu € Cr,p, H), we must have n, -u = u. Equating variables in each term,

we get

Bysene) (

2 2 2
Gge = Qg7 + a°, Ggg = gy, Qgy = Qg2 + a°, Qg3 = Qg5, Qg = A9y + @~

@100 = 103, 4119 = 120- (4.10)
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Similarly, we calculate ny - u for A € {3,7,4,¢,n,£}.

ng - u = ( H }e,\(a)) ess(2a?) €92 (a?)eg3(2a?)€9s(a?)ego(a?)€100(2a ) €102 (a?)

Ae{29,---,84
2(12 6113(2@3)6114(4&3)6115(4(13)6116 (4@3)6117(66L3)

6107(2012)6109(2@2)6111 )
4a3)€85 (a86)€86 (a85)€87 (a87)€88 (a88)€89 (a91)€90 (ago)
(age

(
6118(8a3)€119 (8a3)€120(
6100(a100)€101 (G101)€102 (a99)€103 (a106)€104(a104)€105 (a105)€106(0403)6107(@107)
€108(CL108)€109 (0109)6110(%10)6111 (a111)€112(a112)€113 (a113)6114(a114)
Jenr(

6115(0115) 116( a116)€117\ Q117 )6118(G119)€119(0118)€120(CL120)

= ( H }EA(G)) 685(a86)€86(G85)€87(a87)€88(2@2 + a88)€89(a91)€9o(a90)

AE{29, 8
€91 (aso)€02(a” + aga)€o3(2a° + ags)ega(a” + age)egs(ags)€os(ags)eor(agr)
€9s(ags )€ (a” + a102)€100(a” + a100) €101 (a101)€102(a” + agg)€103(aio6)
6104(61104)6105(a105)€106(@103)6107(2a2 + 61107)6108(CL108)€109(2<12 + a109)
ero(an )6111(2Cl2 + a111)€112(a112)€113(2d3 + a113)€114(4&3 + a114)
e115(4a® + ans)erie(4a® + ang)enr(6a® + anr)ens(8a® + ag)
(

€119(8a® +(1118)6120(4a + ai20)

= ( H 6)\(@)) 585(a86)€86(a85)€87(a87)€88(a88)€89(a91)€90(a90)
4}

A€{29,- 8
691(@89)692(@2 + a94)693(a93)eg4(a2 + CL92)€95(CL98)696 (@96)697(%7)698(@95)
699(Cl2 + a102)€1oo(aloo)€101(a101)€102(a2 + @99)6103(a106)6104(CL104)€105(0105)
6106(CL103)€107(G107)€108(a108)6109((1109)6110(&110)6111(a111)€112(a112)
6113(a113)€114(a114)6115(a115)€116(a116)€117(a117)€118(a119)€119(a118)

6120(0120)-
Then ng - u = u gives

_ _ _ 2 _ 9
ags = agg, Agg = Ag1, A9z = @~ + Gg4, Qg5 = Agg, Qg9 = A~ + 102,

@103 = 106, A118 = A119- (4.11)

58



Ny - U = ( H e,\(a)) 685(2&2)687(a2)689(a2)696(2@2)698(662)6101(a2)€102(a2)
1)

Ae{29,- 8
6104(2a2)€105 (a2)€106 (a2)€108 (a2)€110 (2a2)€112 (2a2)€113 (4a3)6114(4a3)
e115(4a”)e116(6a”)e117(6a*)e115(6a°)e119(6a” €120 (8a* ) ess (ass ) ess(ass)
€87 (a89)688 (a86)€89 (a87)€90 (a90)€91 (CL91)€92 (CL92)€93 (093)694 (6197)695 (6195)
€96(96 ) €07 (94) €98(@101) €99 (99) €100(@100) €101 (@98 ) €102(@105 ) €103(@103)
6104(CL104)€105 (a102)€106(Cllos)6107(a107)€108(CL106)€109 (a109)€110(a110)
6111(61111)6112( 112)6113(a113)€114(G114)€115(@115)€116(a116)€117(a118)

)

6118(a117) 119( a119 6120(a120)

= ( H }EA(G)) es5(2a” + ags )ese(ass)esr(a” + asg)ess(ase)

Ae{29,--,84
689(a2 + 0687)690(@90)691(G91)€92(a92)€93(a93)€94(a97)€95(CL95)€96(2&2 + CL%)
€o7(aga)€gs (a® + a101) €09 (ag9)€100(a100) €101 (a° + ags)eroz(a” + aios)
€103(@103)€104(2a” + ar04)€105(a” + a102)€106(a” + a10s)€r07(a107)
e108(a” + a106)€100(a109)€110(2a° + ar10)€rri(arnn)eri2(2a® + arna)
en13(4a” + apiz)enna(4a® + aria)ens(4a® + airs)ens(6a” + are)
(

e117(6a” + CL118)€118(6G3 + a117)€119(6<l3 + a119)6120(8a3 + aia0)

= ( H }GA(G)) es5(ass)€se (ass)est(a” + aso)ess(ase)eso(a” + asr)

{29, ,84
690((190)691(a91)692(a92)€93(a93)€94(a97)€95(a95)€96(a96)€97(6194)
eos(a” + a101)€99(agy)€100(@100)€101(a” + ags)ero2(a’ + aios)eros(aios)
6104(a104)€105(a + a102)€106(a + a108)€107(a107)€108(a + a106)€109(a109)
6110(61110) 111(a1 )6112(a112)€113(G113)6114(@114)€115(a115)6116(a116)
(

6117(6L118) €118\a11 )6119(61119)6120(@120).
Then n., - u = u gives

2 2 2
age = agg, Agy + A~ = Agg, Qg4 = Qg7, dgg + A~ = Q101,102 + @~ = G105,

2
ai06 + a° = aiog, 117 = G118- (4.12)
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Next, we calculate

ns-u = ( ) 688 690 691( 2)693(2&2)694((12)695(2(12)698(2CL2)€99(26L2>
)\6029

6100 2G 6101 G2 6103 2(1 )6104( 2)6105(<12)€106(26L2)€107(a2)€108(012)6110(G2)

(
e113(2a%)e114(4a®)e115(4a”) €116 (90”117 (90 ) e118(12a° ) e119(12a° ) €190 (14a”)
€85 (g5 ) 86 (ass ) €a7(ast) €ss(@o0) €80 (@02 ) €90 (ass ) €91 (04 ) €92 (agg ) €93 (aos3)
694(a91)€95(a95) 96(a96)€97(ag7)€98(G98)€99(a99)6100(G100)€101(CL104)€102(CL102)
6103((1103)6104(@101)6105(a107)€106(a106)€107(&105)€108(a110)€109(a109)
6110(a108)€111(a111)6112(a112)6113(a113)€114(a114)€115(a115)6116(a117)
Jénno(

6117(@116) 118(a118 €119 a119) 120( 120)

= (AI_O[ €A(a)) es5(ass)€so(ase ) €st(asr)ess(a” + ago)eso(age)€go(a” + ags)

€91(a” + aga)ena(asy)€os(2a” + ags)ega(a”® + ag)egs(2a* + ags)eos(aos)
€o7(ao7)€0s (2a” + ags)€go (2a” + agy)€100(2a” + a100)€101(a” + a1o4)
€102(a102)€103(2a” + a103)€104(a” + ar01)€105(a” + a107)€106(20” + a106)
e107(a” + a105)€108(a” + a110)€100(@100)€110(a” + @r08) €111 (a111)€r12(a112)
05113(2@3 + a113)6114(4a3 + a114)€115(4a3 + a115)€116(9a3 + a117)

e117(9a® + are)er1s(12a” + aris)eng(12a” + asig)€ra0(14a’® + ara0)

= (}\1_0[ €A(a)) es5(ass)€so(ase ) €st(asr)ess(a” + ago)eso(age)€go(a” + ags)

691(@2 + a94)€92(a89)€93(a93)€94(a2 + ag1) €95 (ags )6 (g6 ) €97 (agr) €os(ags)
699((199)6100(@100)6101(az + Ol104)€102((1102)6103(Cllo?,)eloz;t(@2 + ao1)
e105(a” + aior)€e106(a106)€107(a” + a105) €108 (a” + ar10) €100 (ar09)

6110(&2 + CL108)€111(Cl111)6112((1112)6113(61113)6114(CL114)€115(a115)

6116(&3 + a117)6117(a3 + ar16)€11s(a11s)€119(@119)€120(@120)-
Then ng - u = u gives

2 2 2 2
agg + a” = agp, gy = Qgz, g1 + A~ = Gg4, Q101 + G~ = G104, A105 + G~ = G107,

2 3
Q108 + a° = A110, 116 + @~ = a117. (4.13)
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Next, we calculate n, - u.

Ne - U = ( H 6)\(&>) €s5(2a”)egs (2a% ) egs (202 ) ego(2a?) egn (a? ) €91 (20 €93(a?)

AEO29
coa(a®)egg(a?)erio(a®)ernr(a?)ennn(2a?)en13(10a”)er14(12a%)e115(12a°)
6116(12613)6117(8&3)6118 (8CL3)€119 (10@3)6120(6613)685 (G85)€86(G86)€87(a87)
€88 (ass)ésg (a89)690 (@93)691 (@91)692(6195)693(@90)694(a98)€95(a92)€96(a96)
697(CL101)€98 (a94)699(a99)€100(a100)6101 (097)6102 (0102)6103 (a103)6104(a1o4)
€105 ((1105)6106 (@106)6107(a109)€108(a108)€109(a107)€110((1111)€111 (ano)
6112(61112)6113(@113 €114 (Cl114)€115 (a116)€116(a115)€117(a117)€118 (Clns)

)
6119 aiig 120(CL120)

685 2a + a/85)686(2a + ag6)eg7(ag7)egg(2a -+ agg)
)\6029

€s0(2a” 4 agg)€go(a” + ags)€g1 (2a” + ag1)ega(ags)€gz(a’ + ago)ega(a’ + ags)
695(a92)696(a96)€97(a101)€98(a + ag4)€g9(agg ) €100(a100) €101 (@97) €102 (A102)
6103(6L103)€104(a104)€105(G105)€106(G106)€107(CL109)6108(CL108)€109(G107)
e110(a® + arnr)eni(a® + arno)ern2(2a® + ari2)erns(10a® + arns)
6114(12a3 + a114)€115(12a3 + a116)€116(12a3 + a115)€117(8a3 + a117)

(

e118(8a” + 6118)6119(1063 + a119)€120(6G3 + aia0)

= ( H 6,\(CL)> 585(a85>586(a86)587(a87)688<a88)689(a89)690(a2 + a93)

AE029
691(a91)€92(095)€93(a2 + a90)€94(a2 + agg) €95 (@92 ) €96 (g6 ) €o7(a101)
698(@2 + a94)€99(099)€100(aloo)ﬁlol(097)6102(%02)6103(a103)€104(0104)
6105(Cl105)6106(a106)€107(G109)€108(a108)€109(a107)€110(a2 + a111)
6111((12 + a110)€112(G112)€113(G113)€114(a114)€115(a116)€116(a115)€117(a117)

6118(a11s)€119(a119)€120(a120)-
Then n, - u = u gives

2 2
ago + G~ = g3z, Agy = Qgs, Qgq + A~ = Qgg, Ag7 = @101, G107 = A109,

2
ajip +a” = ai, G5 = A1i6- (4.14)
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Now we calculate n,, - u.

Tln U = ( ) 687 20, 693 )696((12)698(a2>6100(2a2)€101(a2)€102(a2)
)\6029

€103(2a)€104(a?) €105 (a?) €106 (2a% €107 (a®) €110 (2a% ) €111 (a?)e112(a?)err3(2a?)

(
e114(2a%)e115(2a% ) e116(4a”) €117 (60 ) e118(6a% ) e119(8a” ) €120(10a* ) egs (ags)
686(6186) (a87)€88(a88)€89(a89)690(a90)€91(a91)€92(a92)€93(a96)€94(a94)
€95 (99) €06 (@93) €97 (a97) €98 (a102)
€99(a9s)€100(a100)€101(@105) €102 (@08 ) €103(@103) €104 (@107) €105 (@101 ) €106 (A106)
E107(00104)6108(06108)6109((1109)6110(&110)6111(00112)6112(Ol111)€113((1113)

6114(a115)5115(a114>€116(a116)€117(a117)€118(a118)€119(a119)6120(a120)

= ( H 6,\(@)) 685(a85)€86(a86)€87(2a2 + a87)€88(a88)€89(a89)590(a90)

AEO39
691(6191)692(@92)693(02 + CL96)€94 (CL94)€95 (a99)€96 (CL2 + a93)€97(G97)
€9s(a” + a102)€99(ags)€100(2a° + a100)€101(a” + ar05)€102(a” + ags)
€103(2a° + a103)€104(a” + aro7)€105(a” + ar01)€106(2a° + a1o6)
€107(a” + a104)€108(a108) €109 (@109 €110(20° + ario)erni(a® + aira)
e112(a® + ain)ennz(2a” + anz)ena(2a® + aiis)ens(2a® + aiia)
6116(4a + a116)€117(6a + a117)€118(6a + a118)€119(8a + aqig)
(

€120(10a” + a120)

= ( H 6,\(@)) 685(G85)€86(@86)€87(a87)€88(a88)€89(a89)€90(a90)€91(agl)

AEO29
€92(ag2)€93(a” + ags) €94 (aga)€gs (agg)€os(a® + ags)€or(agr)eos(a” + aron)
€99(a05) €100 (@100) €101 (a” + @105)€102(a” + ags)er03(aios)€r04(a” + ator)
6105(6L2 + a101>€106(a106)€107(a2 + 61104)6108(@108)6109(a109)€110(a110)
6111(@2 + 66112)6112((12 + a111)€113(a113)€114((1115)6115(61114)6116(61116)

6117(a117)€118(a118)€119(a119)€120(a120)«
Then n,, - v = u gives

2 2 2 2
Q93 + @~ = Qgg, Qg5 = Qgg, Agg + A~ = G192, @101 + A~ = G105, Q104 + A~ = G107,

2
a1l +a” = a112, @114 = A115- (4.15)
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Finally, we calculate ng¢ - u.

ng - u = ( 11 e,\(a)) €s5(2a”) egs(2a% ) ess(2a?) egg (20 ) €91 (2a% ) €92 (2a?) €93 (2a?)

AEO29
€05(20°)€gs (a”) €05 (20% ) €100 (a® €100 (a” ) €104(20° ) €105 (a? ) €106 (a®) €107 (a?)
e10s(a?)erio(a?)enz(11a®)er1a(11a®)er15(12a°)€116(16a°)er17(14a”)
6118(14613)6119 (14@3)6120(14613)685 (@85)686 (G86)€87(a87)688(6688)689(&89)
€90(@90) €91 (91 ) €02 (02) €03(@93) €94 (@94 €95 (95 ) €96 (@100 €07 (@97) €08 (98
€99(a103)€100(@96) €101 (@101)€102(@106) €103 (@99) €104 (@104) €105 (A108) €106 (A102)
E107(a110)€108(61105)€109((1111)'5110 (CL107)€111 (G109)€112 (a112)€113(ar1a)

E114 CL113 6115 aiis 6116 a116)€117(a117)€118(G118)€119(a119)€120(a120)

( ) 685 2CL -+ a85)(—:86(2a —+ a86)687(a87)688(2a + a88)
>\6029

)égo(ago)€or (2a” + agy)€ga(2a® + age)egz(2a* + agz)ega(agy)
695(261 + a95)€96(a + (1100)697(a97)698(2a + 6198)699(61103)6100(612 + age)
6101(a101)€102( + a106) €103 (@99) €104(2a” + ar04)€105(a” + aios)
€106(a” + a102)€107(a” + a110)€r0s(a” + aros)eroo(ar11)erio(a® + aror)

(a®

6111(a109)€112(a112)€113(11a +@114)€114(11@ +a113)6115(12a +a115)
(
(

689(2CL + agog

€116 16a° +a116)€117(14a +a117)€118(14a +a118)€119(14a +a119)

€190(14a” + a120)

= ( H 6,\(61)) 685(@85)686(@86)687(@87)688(a88)€89(a89)€90(a90)€91(CL91)

AEO29
692(6192)693(6193)694(6194)695(@95)696(612 + a100) €97 (agr ) €9s(aos ) €99 (@103)
e100(a” + age)€r01(a101)€102(a” + @106)€103(@99) €104 (@104) €105 (@* + @108)
€106(a” + a102)€107(a” + ar10)€r0s(a” + aios)eroo(ar11)erio(a® + aror)
E111(@1 )6112(61112)6113((1 + a114)6114(a + G113)€115(G115)€116(a116)
(

€117\a11 )6118(a118)€119(a119)€120(a120)~
Then ng - u = u gives

2 2 2 2
Qgs + @~ = Q100, G99 = @103, A102 + A~ = G106, A105 + A~ = G108, A107 + A~ = G110,

3
109 = A111, G113 + A~ = A114- (4.16)
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Solving (4.10),(4.11),(4.12),(4.13),(4.14),(4.15), and (4.16) simultaneously, we get

ags = Age = Agg = Agg — (91 = Ag2 = (93 = Ag5 = Agg = Ag9 = A100 = A103
= G104 = A105 = A106 = A110 = A112-
asy = ags + a’.
agy = Ag9p = g4 = Age = Q97 = A101 — A102 = A107 = A108 = @109 = A111-
113 = G117 = A118 = A119 = A120-
ajg = apz +a’.

114 = Q115 = A116-

Since the set {n,,ng, ny, ns, ne Ny, Ne b generates H, we have

AEO29
€90(a* + b)eg1 (b)egz (b)egs(b)ega(a? + b)egs (b)egs(a® 4 b)
€or(a® + b)egs(b)ego (b)e100(b) €101 (a® + b)eroa(a® 4 b)ergs(D)
€104(b)€105(b) €106 (D) €107(a” + b)eros(a® + b)ergg(a® + b)er1o(b)
e111(a® + b)era(b)ens(c)erna(a® + c)ens(a® + c)errg(a® + c)

6117(0)6118(6)6119<C)6120(C) | a, b, [AS l{?} (417)

CRu(Pagsene) () :{( [1 ex(a) ] ess(b)ess(b)esr(a® + b)ess(b)eso (D)

In (4.17), set b = 0, ¢ = 0, and differentiate with respect to a, and evaluate at
a =0, we get

Z €x € Lie(CRu(Panaeng)<H))'
A€O029

Note that all weight-2 roots mutually commute by Proposition 2.3.5. So, by
Lemma 2.3.4, we get

A€0sgs5

Similarly, all weight-3 roots mutually commute, so we get

Z ex € Lie(Cr,( aﬁwseng)(H»'

A€0113
So we have
{a( den)+b( D e+l Y en)labe k} C Lie(Cry(Pagsene) (H)).
A€O029 A€O0ss5 A€0113
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We already know that

Lie(CRu(PaB'yésng)(H)) g cLie(Ru(Pa,B'y&ené))(H) =

{a( Y e+ Y et 3 ex)ya,bek}.

AEO29 AeOgs5 A€0113
Therefore we have shown that

Lie(CRu(Paﬂ'ydenE) (H>) = cLie(Ru(PaB'yéenf)) (H)'
Thus, we have the following.

Proposition 4.2.6. There is no nilpotent witness to the G-nonseparability of H
in Lie (Ru(Pasiene)).
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Chapter 5

A positive example

5.1 Introduction

Let G be a simple algebraic group of type E7;. We use the same notation as in
the previous chapters. In the next section we find an example of a G-nonseparable
subgroup H of GG. Here, we describe a generic way to find such a subgroup H of
G. Consider a subgroup H with two generators, say, P, and P,, where P, and P,
are products of n, satisfying the following two conditions.

1. One of the orbits of (P, P) in W(R,(P)) contains an odd number of pairs
of roots whose corresponding root-subgroups are non-commuting and con-
tributing to a weight-2 root-subgroup, say, U, and get their order swapped
by the action of (P, P»).

2. Py centralizes a weight-2 root (.

We show how this method works by finding a nilpotent witness to the G-nonsep-
arability of H. Then we find an example we are after in the following way. First,
we check that H is G-cr. Then we conjugate H by some particular element u(a)
of G, following the method in [BMRT10, Sec. 7]. We explain the reason for this
particular choice of u(a), which is not explicitly mentioned in [BMRT10, Sec. 7].
Then, we find a reductive subgroup M of G containing u(a)Hu(a)™! such that
w(a)Hu(a)™" is NOT M-cr using the results from geometric invariant theory.

5.2 A G-nonseparable subgroup H
Let G be a simple algebraic group of type E7;. We use the same Levi sub-

group Lagysen Of type Ag, and the same parabolic subgroup Pugyse, of G, as in
Section 4.2.2. We have UH(G), U(Ry(Pagysen)), and Wt (Lagysen) as follows.
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Figure 5.1: Dynkin diagram of E7

UH(G) ={1, - 63},
\IJ(RU< 045’75577)) {1 a42}7
\Il+(Laﬂ’Y5€77) _{437 T 763}

We fix an ordering of W(R,(Psgysen)) in the natural order. Define Py and P, as
follows.

Py =nngn,nang,

Py =ncngn nongnynsng.
Now let
H - <P1, P2>

It is not difficult to calculate how Py and P, act on V(R,(Pagysey)). Let m be
the corresponding representation of H on Sym(¥ (R, (Pagysen))). Then we have

m(P1) =(29)(3 12)(4 5)(6 8)(7 14)(10 17)(11 25)(15 32)(16 18)(19 24)(20 29)

=(2

(22 28)(23 27)(26 30)(31 34)(33 35)(36 38)(37 39)(40 41),
m1(Py) =(19 32353315 2)(3 4 14 25 30 31 22)(5 12 28 34 26 11 7)
(

62429212019 8)(10 13 17 18 27 23 16)(36 38 39 41 42 40 37).
From this, we calculate all orbits of H in W (R, (Pagysen))-

O, = {1,2,9,15,32,33,35},

Os = {3,4,5,7,11,12, 14,22, 25, 26, 28, 30, 31, 34},
Os = {6,8,19,20,21, 24,29},

O = {10,13,16,17,18,23,27},

Oss = {36,37,38,39,40,41,42}.
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Then by Corollary 2.3.3, we have

CLic(Ru(Pagrsey) (H) ={a( D ex) +0( Y ex) +c( D ex) +d( Y en)

€01 )\603 )\EOG )\6010
+m( > e\ |abc,dmek}.
A€O036
Lemma 5.2.1. 3,c0, ex € Lie(Cr,(p,s.5..) (H))-

Proof. Suppose that >°\co, ex € Lie(Cr,(p)(H)). By Corollary [Spr98, Cor. 14.2.7],
CRy,(Pag sy (H)° is isomorphic as a variety to k™ for some n € N. Therefore there
exists a morphism of varieties u : k — Cr,(p,,s.,)(F)° such that u(0) = 1 and
u'(0) = Yxeo, €x- By Lemma 2.3.4, u(a) can be expressed uniquely as

u@) = [  efia)), (5.1)

AE{1, 42}
where f) € k[a].

Note that any f) cannot contain any nonzero constant term since if ¢y = f,(0)
then we have u(0) = [Tye1,.. 421 €x(cx) = 1, which is possible only when ¢\ = 0
for all A € {1,---,42}. Differentiating 5.1, and evaluating at a = 0, we get

0= Y (A Oe.

Ae{l, 42}

Since u'(0) = Y\eo, €r, We get

1 if Ae Og.

(A(0) = {o it A € U(Ry(Pagsen))\Os.

Then we have

f(a) = a+gr(a) A€
X (@) if A € U(Ru(Pagysen))\Os

where gy € k[a] has no constant or linear term.
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Now we have

P -u(a) =Py - ( H GA(f)‘(a))>

Ae{1,- 42}

=P, -

( 11 EA(gx(a))) es(a + gs(a))er(gr(a))es(a + gs(a))

( I1 EA(QA(G))) e19(a + grg(a))ean(a + gao(a))ear(a + ga(a))

Ae{9,,18}

€22(ga2(a))e23(gas(a))eas(a + gaa(a)) ( H GA(QA(G)))

AE{25,- 28}

€20(a + g20(a)) ( 11 6A(9A(a))) 642(g4z(a))]

Ae{30, 41}

= ( H €P1-/\(9/\(a))) ep.6(a+ gs(a))ep 7(g7(a))ep,.s(a + gs(a))

( II €P1~A(9A(a))> epi19(a + gi9(a))ep 20(a + gaola))

Ae{9,-,18}

ep21(a + g21(a))ep, 22(g22(a))ep, 23(g23(a) )ep, 24(a + gau(a))

( 11 €P1~A(9A(a))) €P1-29(a+929(a))( II fPlvx(gx(a)))

Ae{25,-+,28} Ae{30,--,41}
epy.42(gaz(a))
= ( {H }ﬁPl-A(gA(a))) es(a+ go(a))ep,.7(g7(a))es(a + gs(a))

( H €P1~,\(9A(CL))> €24(a + gig(a))eag(a + gao(a))ear(a + gai(a))

Ae{9,--,18}

AE{25,- 28}

€p,22(922(a))ep, 23(g23(a))ero(a + gau(a)) ( I1 €P1~/\(g/\(a))>

€20(a + gag(a)) ( II EPl-A(QA(a))) ep.a2(gaz(a)). (5.2)

Ae{30,-,41}

Now, we reorder the terms in the last expression of 5.2 using Proposition 2.3.5,
Proposition 2.3.7, and (xx). We focus on new a? terms contributing to the eg
term that occur during reordering. First, note that €p,.42(g42) = €12(g42). We get
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a new contribution to the €5 term when we swap a non-commuting pair €, €;
such that i+j = 42 by Proposition 2.3.7. Note that when this happens, we have

ei(fi(a))e;(fi(a)) = €;(fi(a))ei(fi(a))esn(fi(a) fi(a))

Note that each of f; and f; is the zero polynomial, or has lowest degree term a,
or has lowest degree term of degree greater or equal to 2. We divide into 3 cases
depending on the type of the lowest degree term in f; f;.

1. If fz =0or szo, then fzf] =0.

2. If both of f; and f; have lowest degree term a, then the lowest degree term
of fzfj is CLQ.

3. Otherwise, the lowest degree term of f;f; has degree 3 or greater.

Therefore during the reordering, we get a new a? term contributing to the es
term only when we swap a non-commuting pair {ep,.;(a + ¢;(a)), ep,.;(a+ g;(a))}
such that (Py-i)+(P;-j) = 42. Here, we list of all non-commuting root subgroups

{U77U35} {U107U34} {U147 U33} {U157U32}
{U177 U31} {U197 UBO} {U207 U29} {U227 UQB}
{U237 U27} {U247 U26}

Table 5.1: Non-commuting pairs of root subgroups U;, U; in Ry, (Pagysen)

From the last equation and Table 5.1, it is easy to see that during the re-
ordering we need to swap only one such non-commuting pair of ¢;’s whose lowest
degree term is a, namely, €x(a + gog(a)) and €sg(a + gog(a)). Therefore after
reordering, we have

P -u(a) = ( 1T €A<h)\(a))) ea2(a® + has(a) + gaz(a)),

AE{1, 41}
where hy, has, g1 € k[a] with hye having lowest degree term
at least 3 or hyy = 0.

If u(a) € Cr,(p.s,s.,)(H), we must have u = P, - u. So, in particular, we must
have

ga2(a) = a® + haz(a) + gaz(a)
<~ CL2 + h42(a) = 0.
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Since hyo is the zero polynomial or a polynomial of the degree of the lowest
degree term at least 3, the last equation can not hold for all @ € k. This is a
contradiction. O

Proposition 5.2.2. H is non-separable in G.

Proof. This is the consequence of Lemma 5.2.1 and the form of ¢ic(r, (P, s.5.,)) (H)
as given before the lemma.

Proposition 5.2.3. H is G-cr.

Proof. By Theorem 2.2.6, it it enough to show that H is L-cr. We know that H is
L-cr if and only if H is [L, L]-cr from Theorem 2.2.5. We also know that L, gse, 18
of type Ag, 50 [Lagysens Lapysen) = SLz(k) or PGL7(k). From Theorem 2.2.5, we
can assume that [Lagysen, Lagyoen] = SL7(k) in order to prove that H is [L, L]-cr.
From [Spr98, Sec. 9.2.2], there is an isomorphism my from [Lagysen, Lagysen] tO
S L7(k) which satisfies the followings.

(01 0000 0] 100 000 O]
1000000 0010000
0010000 0100000
To(ne) =10 0 0 1 0 0 0|,m(ng)=/000100 0],
0000100 0000100
0000O0T10 0000O0T10
(000000 1| (000000 1|
(100000 O] 100000 O]
0100000 0100000
0001000 0010000
ma(ny) =100 1 00 0 0|,mns)=[0000 10 0],
0000100 0001000
0000O0T10 000O0O0T10
(000000 1| (000000 1|
(100000 O] 100000 0]
0100000 0100000
0010000 0010000
ma(n)=[0 00 10 0 0|,mn,)=[000 1000
0000O0T1O0 0000100
0000100 000O0O0O0°1
(000000 1| (00000 10|
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Consider the permutation representation 73 of (ng,ng,n,,ns,n., n.) on Sz. We
have

Then we get

m3(P1) = (56)(23)(34)(12)(23) = (13)(24)(56),
m3(Py) = (56)(23)(34)(12)(23)(6 7)(45)(23) = (134675 2).

Note that 73(P;) and 73(P,) satisfy the following equations.
(m3(P1))? = (m3(P))" = 1, my(Pr)my(Po)(ma(Pr)) ™" = (my(Po))
Thus it is easy to see that H = Dy4. After relabeling, m3(P) can be expressed as
m3(P2) =(1234567).

or, in matrix form, we have

7T2(P2) =

SO OO oo
DO O o= OO
SO O OO o
SO = OO oo
SO = OO oo o
_ o O O o oo
SO OO OO

The characteristic polynomial of this matrix is A” — 1. Let w be a Tth root of 1.
Then, choosing the suitable basis, the matrix can be diagonalized as

10 0 0O 0 0 O

0O w O O 0 0 0

00wt 0 0 0 0
7T2<P2) = 0 0 0 CU2 0 0 0

00 0 0 w? 0 0

00 0 0 0 w 0

00 0 0 0 0 w?|

Let the 1-dimensional eigenspaces of my(FP2) be Vi, V,, V-1,V 2,V -2,V 3, and
V-3 where the subscripts represent the corresponding eigenvalues. We have

o (P1)ma(Py)(ma(Pr)) ™! = (ma(P2)) 7,
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so it is easy to see that mo(P;) fixes Vi, and permutes V,» with V,-» for n €
{1,2,3}. Therefore mo(P;) must look like

10 0 0 0 0 0
0 0 a O O O O
0Oat 0 0 0 0 O
m(P)=10 0 0 0 b 0 0|, forsomea,b,céek”.
0 0 0b*0 0 O
O 0 0 0 0 0 c
(000 0 0 0 c' 0]

Normalizing the basis, we can assume that a = b =c =1, that is

7T2(P1) =

S OO OO
DO oo = OO
(el olNoNoll S
SO = O OO
_ o O O o O
SO = O OO o o

0

0
0
0
1
0
0
0
{

Let p be the restriction of o to H. For each a € {1,2,3}, define the representation
pa : H — GLy(k) such that

mira =% 2]

01
pa(Pl) = [ 1 0 ] .
From the matrices of P; and P, it is easy to see that

P =pLDp2®ps @ po,
where pg is 1-dimensional trivial representation.

It is obvious that p, is irreducible for any a € {1,2,3}. Therefore H is
[Lopysens Lapysen)-cr, and we are done. n

5.3 A positive example

In this last section, we find a pair of reductive subgroups H and M of G such
that H < M < G and H is G-cr but NOT M-cr. We use the same notation and
the same H = (P, P») and G as in Section 5.2. We define

G; = (U;UU_;), where i € {1,--- ,42}.
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Pick any a € k*, and define

= ] «(a), where Os = {6,8, 19,20, 21,24, 29}.

i€0s
Set
H, = u(a)Hu(a)™ = (u(a)Pyu(a)™", u(a)Pyu(a)™t).
Set
M = (Lapysen Gse, Gar, -+, Gaz).
Then M is a reductive group containing 7" such that
U(M)={£36,---,+63}

because {436, - - -, +63} is a closed subsystem of ¥(G), that is, it is closed under
taking negatives and has the property that for any «, 5 € U(M), if m,n € Zx
and ma +nf € V(G) then ma +np € U(M).

Note that P, = P!. So, we have

u(a)Pyu(a)™" =PiPyu(a)Pru(a)™
=Py(Py - u(a))u(a) ™!

(o) (1)

Q
,_.\_/
e
—
©
/\
\_/
)
[\
o
A
\_/
v
)
N
©
—
IS
N—
M
[\}
=~
—
IS
~—

(o)
Den(a)ean(a) )

(. {H }Ei(fi(a)) e12(a?)eag(a) eaa(a) Mear(a) tenp(a)

-1

619(@)71€8<a) 66(CL>

=P ( {H }ei(fi(a))) esp(a?), where f; € kla).

(5.3)
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We have used the same argument in the proof of 5.2.1 to reorder terms. Also
note that

m(Py') =(12153335329)(322313025144)(57 11 26 34 28 12)
(681920 21 29 24)(10 16 23 27 18 17 13)(36 37 40 42 41 39 38).

Then similarly we have

u(a)Pyu(a)™t =Py Py u(a)Pyu(a)™"
=Py(Py" - u(a))u(a) ™!

=P, (le ' <1_o[ ei(a))) (l_o[ Ei(a))

l;[ €(P2)1.¢(a)) (1;[ Gi(a))

= 2<68((l)619(a)620(a)621(CL)EQQ(CL)Eﬁ(CL)EQ4((I))629(a>_1624(a)_1
( a)es(a) Mes(a)
e20(a)ea(a )624(a)€29(a))

—P,

CL) 620() €19

(16{36 42}

629( ) 624 CL 62 (CL

Ezo(a) 619(a) EB(CL) ! () !

_p, ( il a(fi(a)))  where f; € kla).

ic{36---42}

Then it is easy to see that u(a)Piu(a)™ = Pvi(a) € M and u(a)Pu(a)™ =
Pyvy(a) € M, where each of v1(a) and vy(a) is the product of some €;(a)’s corre-
sponding to weight-2 roots. Therefore we have

H, < M<AQG.

Note that Pivi(a) ¢ H because v1(a) contains e45(a?) which is a nontrivial weight-
2 term.

Theorem 5.3.1. Let a € k*. Then H, is G-cr, but not M-cr.

5



Proof. In Section 5.2 we have shown that H is G-cr. Now H, is G-conjugate to
H, therefore, H, is G-cr. Let

A=3a’+68Y + 97" + 126" + 8" +4nY + 70",

Then we have

<Oé,>\> 0, <67)‘>_O <’7>)‘>_0
(6,2) = 0, {6, A) = 0, (n, \) = 0
(o, Ay =2

Therefore we have

Pozﬁ'y&en = Pz\a La,ﬁ’yéen = L/\-

We have a homomorphism ¢y : Py — Ly (see Definition 2.2.2). By Theorem 2.2.7,
it is enough to find an element h € H, such that c¢,(h) exists and cy(h) is not
M- conjugate to h in order to prove that H, is not M-cr. Set h := u(a)Pyu(a)™*
We know that u(a)Piu(a)™! € H,. Also we have

ex(u(a) Pru(a) ") = lim(A(w)u(a) Pru(a) "Ax) ™)
—hm()\(x)Pl"Ul( JA(z)™)
:ilg(lj(Pl)\(:C)U1(a))\<x)71>

:Pl.

The last equation holds since vy (a) € R,(Py). Therefore cy(u(a)Piu(a)™") exists.
By Theorem 2.2.8, it suffices to show that cy(u(a)Piu(a)™!) is not R,(P\(M))-
conjugate to u(a)Pu(a)™t in order to prove that H, is not M-cr. Suppose the
contrary. Then there exists m € R, (Py(M)) such that

u(a)Pru(a)™t = mPm™ (5.4)
Note that we have
U(R,(PA(M))) = {36, - , 42},
So, by Lemma 2.3.1, m can be expressed uniquely as

m = H €;(a;), for some a; € k.
i€{36,- 42}

76



Then by 5.4 we have

u(a)Pru(a)™ =mPym™

=P P ( H (—:Z-(ai)) Pm™!
}

i€{36,-- 42

=P, ( 11 ePl.,-(ai)) m1
}

i€{36,--- 42
=P (638(a36)€39(a37)€36(a38)€37(a39)€41(a4o)€4o(a41)€42(a42))
(642(a42)€41(a41)640(a40)€39(G39)€38(a38)€37(a37)€36(a36))
=P <€36(a36 + asg)esr(asy + asg)ess(azs + ass)
€39(asr + azg)€ao(ao + asr)ear(aso + a41)>.
This is a contradiction because u(a)Pyu(a)™! contains a nontrivial €45 term by 5.3.

Therefore ¢y (u(a) Piu(a)™t) is not R, (Py\(M))-conjugate to u(a)Piu(a)™t, and we
are done. [
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Appendix A

Calculation in Eg with Maple

We use Maple to calculate Cr,(p, ;5. (H). Here, M[29],---  M[120] rep-
resent the roots of Ry (Pagysene), and the vector M][i] gives the coefficients of
the root ¢ with respect to o,«, 3,7,9d,€,1n,& in this order. For example, M [29]
represents o, M[48] represents o + v + 20 + 2¢ + 2n, and M[100] represents
20 + B+ 27+ 30 + 4e + 3n + 2¢, etc.

> M[29]:=[1,0,0,0,0,0,0,0]:M[30]:=[1,0,0,0,0,1,0,0]:
> M[31]:=[1,0,0,0,1,1,0,0]:M[32]:=[1,0,0,0,0,1,1,0]:
> M[33]:=[1,0,0,1,1,1,0,0]:M[34]:=[1,0,0,0,1,1,1,0]:
> M[35]:=[1,0,0,0,0,1,1,1]:M[36]:=[1,0,1,1,1,1,0,0]:
> M[37]:=[1,0,0,1,1,1,1,0]:M[38]:=[1,0,0,0,1,2,1,0]:
> M[39]:=[1,0,0,0,1,1,1,1]:M[40] :=[1,1,1,1,1,1,0,0]:
> M[41]:=[1,0,1,1,1,1,1,0]:M[42]:=[1,0,0,1,1,2,1,0]:
> M[43]:=[1,0,0,1,1,1,1,1]1:M[44]:=[1,0,0,0,1,2,1,1]:
> M[45]:=[1,1,1,1,1,1,1,0]:M[46]:=[1,0,1,1,1,2,1,0]:
> M[(47]:=[1,0,1,1,1,1,1,1]:M[48]:=[1,0,0,1,2,2,1,0]:
> M[49]:=[1,0,0,1,1,2,1,1]:M[50] :=[1,0,0,0,1,2,2,1]:
> M[51]:=[1,1,1,1,1,2,1,0]:M[52] :=[1,1,1,1,1,1,1,1]:
> M[63]:=[1,0,1,1,2,2,1,0]:M[54]:=[1,0,1,1,1,2,1,1]:
> M[565]:=[1,0,0,1,2,2,1,1]:M[566]:=[1,0,0,1,1,2,2,1]:
> M[67]:=[1,1,1,1,2,2,1,0]:M[68] :=[1,1,1,1,1,2,1,1]:
> M[59]:=[1,0,1,2,2,2,1,0] :M[60] :=[1,0,1,1,2,2,1,1]:
> M[61]:=[1,0,1,1,1,2,2,1]:M[62]:=[1,0,0,1,2,2,2,1]:
> M[63]:=[1,1,1,2,2,2,1,0]:M[64]:=[1,1,1,1,2,2,1,1]:
> M[65]:=[1,1,1,1,1,2,2,1]:M[66]:=[1,0,1,2,2,2,1,1]:
> M[67]:=[1,0,1,1,2,2,2,1]:M[68]:=[1,0,0,1,2,3,2,1]:
> M[69]:=[1,1,2,2,2,2,1,0] :M[70] :=[1,1,1,2,2,2,1,1]:
> M[71]:=[1,1,1,1,2,2,2,1]:M[72]:=[1,0,1,2,2,2,2,1]:
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> M[73]:=[1,0,1,1,2,3,2,1]1:M[74]:=[1,1,2,2,2,2,1,1]:

> M[75]:=[1,1,1,2,2,2,2,1]:M[76]:=[1,1,1,1,2,3,2,1]:

> M[77]:=[1,0,1,2,2,3,2,1] :M[78] :=[1,1,2,2,2,2,2,1]:

> M[79]:=[1,1,1,2,2,3,2,1]:M[80] :=[1,0,1,2,3,3,2,1]:

> M[81]:=[1,1,2,2,2,3,2,1]1:M[82]:=[1,1,1,2,3,3,2,1]:

> M[83]:=[1,1,2,2,3,3,2,1]1:M[84]:=[1,1,2,3,3,3,2,1]:

> M[85]:=[2,0,0,1,2,3,2,1]:M[86]:=[2,0,1,1,2,3,2,1]:

> M[87]:=[2,1,1,1,2,3,2,1] :M[88] :=[2,0,1,2,2,3,2,1]:

> M[89]:=[2,1,1,2,2,3,2,1] :M[90] :=[2,0,1,2,3,3,2,1]:

> M[91]:=[2,1,2,2,2,3,2,1]1:M[92] :=[2,1,1,2,3,3,2,1]:

> M[93]:=[2,0,1,2,3,4,2,1]1:M[94] :=[2,1,2,2,3,3,2,1]:

> M[95]:=[2,1,1,2,3,4,2,1]:M[96] :=[2,0,1,2,3,4,3,1]:

> M[97]:=[2,1,2,3,3,3,2,1]:M[98] :=[2,1,2,2,3,4,2,1]:

> M[99]:=[2,1,1,2,3,4,3,1]:M[100] :=[2,0,1,2,3,4,3,2]:
> M[101]:=[2,1,2,3,3,4,2,1]:M[102] :=[2,1,2,2,3,4,3,1]:
> M[103]:=[2,1,1,2,3,4,3,2]:M[104]:=[2,1,2,3,4,4,2,1]:
> M[105]:=[2,1,2,3,3,4,3,1]:M[106] :=[2,1,2,2,3,4,3,2]:
> M[107]:=[2,1,2,3,4,4,3,1]:M[108]:=[2,1,2,3,3,4,3,2]:
> M[109]:=[2,1,2,3,4,5,3,1]:M[110] :=[2,1,2,3,4,4,3,2] :
> M[111]:=[2,1,2,3,4,5,3,2] :M[112]:=[2,1,2,3,4,5,4,2] :
> M[113]:=[3,1,2,3,4,5,3,1]:M[114] :=[3,1,2,3,4,5,3,2] :
> M[115]:=[3,1,2,3,4,5,4,2]:M[116]:=[3,1,2,3,4,6,4,2]:
> M[117]:=[3,1,2,3,5,6,4,2]:M[118]:=[3,1,2,4,5,6,4,2]:
> M[119]:=[3,1,3,4,5,6,4,2]:M[120] :=[3,2,3,4,5,6,4,2]:

The next code lists all roots {i, j,i+;} such that [U;,U;] # 0. For example,
the output [29, 68, 85] means [Usg, Ugs] # 0 and 29+68 = 85.

> S:=NULL:

> for i from 29 to 120
> do

> for j from i+1 to 120
> do

> for k from 29 to 120
> do

> if M[iJ+M[j1=M[k]

> then S:=S,[i,j,k]:

> end if

> end do

> end do

> end do;
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> S;
We get

[29, 68, 85], [29, 73, 86], [29, 76, 87], [29, 77, 88], [29, 79, 89)], [29, 80, 90],
29, 81,91], [29, 82, 92], [29, 83, 94], [29, 84, 97], [29, 109, 113], [29, 111, 114],
29,112, 115, [30, 62, 85], [30, 67, 86], [30, 71, 87], [30, 72, 88], [30, 75, 89,
30, 78,91, [30, 80, 93], [30, 82, 95], [30, 83, 98], [30, 84, 101], [30, 107, 113],
30,110, 114], [30, 112, 116], [31, 56, 85], [31, 61, 86], [31, 65, 87], [31, 72, 90],
31, 75,92, [31,77,93], [31, 78,94], [31, 79, 95], [31, 81, 98], [31, 84, 104],
31,105, 113],[31, 108, 114], [31, 112, 117], [32, 55, 85], [32, 60, 86], [32, 64, 87],
32, 66,88], [32, 70, 89], [32, 74, 91], [32, 80, 96], [32, 82, 99], [32, 83, 102,
32,84, 105], [32, 104, 113], [32, 110, 115], [32, 111, 116], [33, 50, 85], [33, 61, 88,
33, 65, 89], [33,67,90], [33, 71, 92], [33, 73, 93], [33, 76, 95], [33, 78, 97],
33,81, 101], [33, 83, 104], [33, 102, 113], [33, 106, 114], [33, 112, 118], [34, 49, 85],
34, 54, 86], [34, 58, 87], [34, 66, 90], [34, 70, 92], [34, 74, 94], [34, 77, 96],

34, 79,99], [34, 81, 102], [34, 84, 107], [34, 101, 113], [34, 108, 115], [34, 111, 117],
35, 48, 85], [35, 53, 86], [35, 57, 87], [35, 59, 88], [35, 63, 89, [35, 69, 91],
35,80, 100], [35, 82, 103], [35, 83, 106], [35, 84, 108], [35, 104, 114], [35, 107, 115],
35,109, 116], [36, 50, 86, [36, 56, 88], [36, 62, 90], [36, 65, 91], [36, 68, 93],
36,71, 94], [36, 75, 97], [36, 76, 98], [36, 79, 101], [36, 82, 104], [36, 99, 113],
36,103, 114], [36, 112, 119], [37, 44, 85, [37, 54, 88], [37, 58, 89], [37, 60, 90],
37,64, 92], [37,73,96], [37, 74, 97], [37, 76, 99], [37, 81, 105], [37, 83, 107],
37,98, 113], [37, 106, 115], [37, 111, 118], [38, 43, 85], [38, 47, 86], [38, 52, 87],
38,66, 93], [38,70,95], [38, 72, 96], [38, 74, 98], [38, 75, 99], [38, 78, 102],
38,84, 109], [38,97, 113], [38, 108, 116], [38, 110, 117], [39, 42, 85], [39, 46, 86],
39,51, 87], [39,59,90], [39, 63, 92], [39, 69, 94], [39, 77, 100], [39, 79, 103],
39,81, 106], [39, 84, 110], [39, 101, 114], [39, 105, 115], [39, 109, 117], [40, 50, 87],
40, 56, 89], [40, 61, 91], [40, 62, 92], [40, 67, 94], [40, 68, 95], [40, 72, 97], [40, 73, 98],
40, 77,101], [40, 80, 104], [40, 96, 113], [40, 100, 114], [40, 112, 120], [41, 44, 86],
[41,49,88], [41, 55, 90], [41, 58, 91], [41, 64, 94], [41, 68, 96], [41, 70, 97],
[41,76,102], [41, 79, 105], [41, 82, 107], [41, 95, 113], [41, 103, 115], [41, 111, 119],
[42, 47, 88], [42, 52, 89], [42, 60, 93], [42, 64, 95], [42, 67, 96], [42, 71, 99],
42,74, 101], [42, 78, 105], [42, 83, 109], [42, 94, 113], [42, 106, 116], [42, 110, 118],
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43, 46,88], [43, 51,89], [43, 53,90], [43, 57,92], [43, 69, 97], [43, 73, 100],
43,76, 103], [43, 81, 108], [43, 83, 110], [43, 98, 114], [43, 102, 115], [43, 109, 118],
[44, 45, 87], [44, 59, 93], [44, 63, 95], [44, 69, 98], [44, 72, 100], [44, 75, 103)],
44, 78,106], [44, 84, 111], [44, 97, 114], [44, 105, 116], [44, 107, 117], [45, 49, 89,
[45, 54, 91], [45, 55, 92], [45, 60, 94], [45, 66, 97], [45, 68, 99], [45, 73, 102,
45,77, 105, [45, 80, 107], [45, 93, 113], [45, 100, 115], [45, 111, 120], [46, 52, 91],
46, 55, 93], [46, 62, 96], [46, 64, 98], [46, 70, 101], [46, 71, 102], [46, 75, 105],
46, 82, 109], [46, 92, 113], [46, 103, 116], [46, 110, 119], [47, 48, 90], [47, 51,91],
[47,57,94], [47, 63, 97], [47, 68, 100], [47, 76, 106], [47, 79, 108], [47, 82, 110],
(47,95, 114], [47,99, 115], [47, 109, 119], [48, 52, 92], [48, 54, 93], [48, 58, 95],
48,61, 96], [48, 65, 99], [48, 74, 104], [48, 78, 107], [48, 81, 109], [48, 91, 113],
48,106, 117], [48, 108, 118], [49, 53, 93], [49, 57, 95], [49, 67, 100], [49, 69, 101],
49, 71,103], [49, 78, 108], [49, 83, 111], [49, 94, 114], [49, 102, 116], [49, 107, 118],
[50, 59, 96], [50, 63, 99], [50, 66, 100], [50, 69, 102], [50, 70, 103], [50, 74, 106],
50,84, 112], [50, 97, 115], [50, 101, 116], [50, 104, 117], [51, 55, 95], [51, 60, 98],
51,62,99], [51, 66, 101], [51, 67, 102], [51, 72, 105], [51, 80, 109], [51, 90, 113],
51,100, 116], [51, 110, 120], [52, 53, 94], [52, 59, 97], [52, 68, 103], [52, 73, 106],
52,77, 108], [52, 80, 110], [52, 93, 114], [52, 96, 115], [52, 109, 120], [53, 56, 96],
53,58, 98], [53, 65, 102], [53, 70, 104], [53, 75, 107], [53, 79, 109], [53, 89, 113],
53,103, 117], [53, 108, 119], [54, 57, 98], [54, 62, 100], [54, 63, 101], [54, 71, 106],
54,75, 108], [54, 82, 111], [54, 92, 114], [54, 99, 116], [54, 107, 119], [55, 61, 100],
[55, 65, 103], [55, 69, 104], [55, 78, 110], [55, 81, 111], [55, 91, 114], [55, 102, 117],
55,105, 118], [56, 57, 99], [56, 60, 100], [56, 64, 103], [56, 69, 105], [56, 74, 108],
56,83, 112], [56, 94, 115], [56, 98, 116], [56, 104, 118], [57, 61, 102], [57, 66, 104],
57,72,107], [57, 77, 109], [57, 88, 113], [57, 100, 117], [57, 108, 120], [58, 59, 101],
58,62, 103], [58, 67, 106], [58, 72, 108], [58, 80, 111], [58, 90, 114], [58, 96, 116],
58,107, 120], [59, 64, 104], [59, 65, 105], [59, 71, 107], [59, 76, 109], [59, 87, 113],
59, 103, 118], [59, 106, 119], [60, 63, 104], [60, 65, 106], [60, 75, 110], [60, 79, 111],
60,89, 114], [60, 99, 117], [60, 105, 119], [61, 63, 105], [61, 64, 106], [61, 70, 108],
61,82, 112], (61,92, 115], [61, 95, 116], [61, 104, 119], [62, 69, 107], [62, 74, 110],
62,81,112], [62, 91, 115], [62, 98, 117], [62, 101, 118], [63, 67, 107], [63, 73, 109],
(63, 86, 113], [63, 100, 118], [63, 106, 120], [64, 72, 110], [64, 77, 111], [64, 88, 114],
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64,96, 117, [64, 105, 120], [65, 66, 108], [65, 80, 112], [65, 90, 115], [65, 93, 116],
(65,104, 120], [66, 71, 110], [66, 76, 111], [66, 87, 114], [66, 99, 118], [66, 102, 119],
67,70,110], [67, 79, 112], [67, 89, 115], [67, 95, 117], [67, 101, 119], [68, 69, 109],
68,74, 111], [68, 78, 112], [68, 91, 116], [68, 94, 117], [68, 97, 118], [69, 85, 113],
69, 100, 119], [69, 103, 120], [70, 73, 111], [70, 86, 114], [70, 96, 118], [70, 102, 120],
[71,77,112], [71,88, 115], [71,93, 117], [71, 101, 120], [72, 76, 112], [72, 87, 115],
72,95, 118], [72, 98, 119], [73, 75, 112], [73, 89, 116], [73, 92, 117], [73, 97, 119],
74,85, 114], [74, 96, 119], [74, 99, 120], [75, 86, 115], [75, 93, 118], [75, 98, 120],
76,88, 116], [76, 90, 117, [76, 97, 120], [77, 87, 116], [77, 92, 118], [77, 94, 119],
78,85, 115, [78, 93, 119], [78, 95, 120], [79, 86, 116], [79, 90, 118], [79, 94, 120],
80,87, 117], [80, 89, 118], [80, 91, 119], [81, 85, 116], [81, 90, 119], [81, 92, 120],
82,86, 117], [82, 88, 118], [82, 91, 120], [83, 85, 117], [83, 88, 119], [83 ]
84,85, 118], [84, 86, 119], [84, 87, 120]

,89,120],

In the next code, we input [T\cqa9.... 543 €nc-a(a) for ¢ € {a, 8,7, 6,¢,n,&}. Here,

“alpha” represent [Tye(oo.... 84} €no-r(@), and [29,a] in “alpha” represents exg(a).

V V V V V V V V V V V V V V

V V V V V

alpha:=[[29,a],[30,a],[31,a],[32,al,[33,al],[34,a],[35,a], [40,a],
[37,a],[38,a],[39,al],[36,a],[45,a],[42,a], [43,a],[44,a], [41,a],
[51,al,[52,a],[48,a], [49,a],[50,a], [46,a], [47,a], [57,a], [58,a],
[55,al, [56,al,[53,a],[54,a],[63,a],[64,a],[65,a],[62,a],[59,a],
[60,a],[61,a],[70,a],[71,al,[68,al,[69,al,[66,a],[67,a],[75,al,
[76,a],[74,a],[72,a],[73,al],[79,al],[78,a],[77,a],[82,a],[81,a],
[80,a],[83,a],[84,al];

beta:=[[29,a], [30,a],[31,a],[32,a],[36,al, [34,a], [35,a], [33,a],
[41,a],[38,a],[39,a], [40,a],[37,a],[46,a], [47,a], [44,a], [45,a],
[42,a], [43,a],[53,a], [54,a],[50,a],[51,a],[52,a],[48,a], [49,a],
[60,a],[61,a],[57,a],[58,a],[59,a],[55,al],[56,al,[67,a],[69,a],
[64,a],[65,a],[66,a],[62,a],[73,al,[63,al,[74,al,[71,a],[72,a],
[68,al],[70,al,[78,al,[76,al,[77,al,[75,al,[81,a],[80,al,[79,al,
[83,a],[82,a],[84,al];

Gamma:=[[29,a], [30,a], [33,a], [32,a],[31,a],[37,a],[35,a],[36,a],
[34,a],[42,a],[43,a],[40,a],[41,a],[38,al],[39,a],[49,a],[45,a],
[46,a],[47,a], [48,a],[44,a],[56,a],[51,al,[52,a],[59,a],[54,a],
[55,a],[50,a],[63,a],[58,a],[53,al,[66,al],[61,a],[62,a],[57,al,
[70,al,[65,a],[60,al,[72,al,[68,al,[69,al,[64,a],[75,a],[67,a],
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\4

[77,al,[74,a],[71,a],[79,al,[73,al,[78,al],[76,a],[80,a],[81,a],
[82,a],[83,a],[84,al];

\2

Delta:=[[29,a], [31,a],[30,a],[34,a],[33,a],[32,a],[39,a],[36,a],
[37,a],[38,al,[35,a], [40,a],[41,a],[48,a], [43,a],[44,a], [45,a],
[63,a],[47,al, [42,a],[55,al],[50,a],[57,al,[52,a],[46,a],[60,a],
[49,a],[62,a],[51,a],[64,a],[59,a],[54,a],[67,al,[56,al,[63,a],
[58,al],[71,a],[66,a],[61,a],[68,al,[69,al,[70,al,[65,a],[72,al,
[73,al,[74,a],[75,a],[76,a],[80,a],[78,al,[82,a],[77,a],[83,a]l,
[79,a],[81,a],[84,al];

V V V V V V V

epsilon:=[[30,a], [29,a],[31,al,[32,a],[33,a],[38,a],[35,a],[36,a],
[42,a],[34,a],[44,a], [40,a],[46,a],[37,a], [49,a],[39,a], [51,a],
[41,a],[54,al,[48,a],[43,a],[50,a],[45,a],[58,al,[53,a], [47,a],
[55,a],[56,a],[57,a],[52,a],[59,a],[60,al,[61,a],[68,a],[63,a],
[64,a],[65,a],[66,a],[73,al,[62,a],[69,a]l,[70,a]l,[76,al,[77,a],
[67,a],[74,a],[79,a],[71,a],[72,a],[81,a]l,[75,a],[80,a]l,[78,a],
[82,a],[83,al,[84,al];

V V V V V V V

eta:=[[29,a],[32,a],[34,a],[30,a],[37,al,[31,al,[35,a],[41,a],
[33,a],[38,a],[39,a],[45,a],[36,a],[42,a],[43,a],[50,a], [40,a],
[46,a],[47,a],[48,a],[56,a], [44,a],[51,a],[52,a],[53,a],[61,a],
[62,a],[49,a],[57,a],[65,a],[59,a],[67,al,[54,a], [55,a],[63,a],
[71,al,[58,a],[72,a],[60,a],[68,al,[69,al,[75,a], [64,a],[66,a],
[73,al,[78,a],[70,a],[76,al,[77,a],[74,al,[79,a],[80,a],[81,a],
[82,a],[83,al,[84,al];

V V V V V V V

xi:=[[29,a],[30,a],[31,a],[35,al,[33,a],[39,a],[32,a],[36,a],
[43,a],[44,a],[34,a],[40,a],[47,a],[49,a],[37,a],[38,a],[52,a],
[54,a],[41,a],[55,a],[42,a],[50,a],[58,a],[45,a],[60,a],[46,a],
[48,a],[56,a],[64,a],[51,a],[66,a],[53,al,[61,a],[62,a],[70,a]l,
[57,al,[65,a],[59,al,[67,a],[68,al,[74,a],[63,al,[71,al,[72,a],
[73,al],[69,al,[75,al],[76,a],[77,a],[78,a],[79,a],[80,a],[81,a],
[82,a],[83,a],[84,al];

V V V V V V V

The next code checks whether {U;, U;} is a non-commuting pair of root subgroups
or not, and if so, gives [true,i + j].

IsInList:=proc(a,b,F)

local i, x, K;

for i from 1 to nops(F) do
x:=[op(1,0p(i,F)),op(2,0p(i,F))];

vV V V V
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if [a,bl=x then
K:=[true,op(3,op(i,F))];
end if;

end do;

K;

end proc;

V V V V VvV V

The next procedure reorders [[\cqog.... a3 €nc-a(@) for ¢ € {a, 3,7,6,¢,1,£} and
produces extra terms if they occur.

> Reorder:=proc (W)

> local i,j,z,s,t,M,L;

> L:=W:

> for i from 1 to 200 do

> for j from 1 to nops(L)-1 do

> if op(1, op(j,L)) > op(l, op(j+1,L)) then

> z:=IsInList(op(1,0p(j+1,L)),op(1,0p(j,L)),[S]);

> if z[1] = true then

> s:=op(2,0p(j,L));

> t:=op(2,0p(j+1,L));

> M:=op(l..j-1,L),0p(j+1,L),op(j,L), [z[2],s%t],0p(j+2. .nops(L),L);
> L:=[M];

> else M:=op(1l..j-1,L),op(j+1,L),op(j,L),op(j+2..nops(L),L);
> L:=[M];

> end if;

> end if;

> end do;

> end do;

> print(L);

> end proc;

Using this procedure, we get

> Reorder (alpha);
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29, ], [30, a], [31, a], [32, a], [33, a|, [34, a], [35, a], [36, al, [37, al, [38, al, [39, a], [40, a],
41, a], [42, a], [43, a], [44, a], [45, a], [46, a], [47, a], [48, al, [49, a], [50, a], [51, a], [52, a],
53, al, [54, al, [55, a], [56, a], [57, a], [58, a], [59, a], [60, a], [61, a], [62, al, [63, al, [64, a],
65, al, [66, al, [67, a], [68, a], [69, a], [70, a], [71,a], [72, al, [73, al, 74, a], [75, a], [76, a],
[77,a),[78,a], [79, a], [80, a], [81, a], [82, al, [83, a], [84, a], [86, a*], [87, a*], [90, a?],
[91,a?],[91,a?],[92, a?], [96, a?], [98, a?], [98, a?], [99, a?], [104, a?], [104, a?],
[105, a?], [105, a?], [106, a*], [106, a*], [110, a*], [110, a?], [112, a*], [112, a?],
[113, 6%, [113,a°], [113, %], [113,a®], [114, a”], [114, a®], [114, a”], [114, a®],
(114, 6%, [114,a®), [115, 6%, [115,a®], [115, %], [115, a®], [115, a*], [115, a®],
[116, a%], [116,a”],[116, %], [116,a?], [116, "], [116,a®], [117, "], [117, a®],
[117, 6%, [117,a°], [117,a%], [117,a®], [117, %], [117, a®], [118, a”], [118, a®],
[ L1 L1 L1 L 1 L1 1 )
[ L1 L I L1 1 L1 1 )
[ L1 1 L1 1 I ]

[
[
[
[

1
1

118,a%),[118, a%], [119, a®], [119, a®], [119, ¢®], [119, a?], [119, a®], [119, @],
119,a%),[119, %], [119, a®], [119, a®], [120, a®], [120, a*], [120, a®
120, a®], [120, a®], [120, a?], [120, a®], [120, a®], [120, a®

,[120, a®],
]
> Reorder(beta);

29, a], [30, a], [31, a], [32, a], [33, a], [34, a], [35, a], [36, al, [37, al, [38, al, [39, a], [40, a],

41, a],[42, a], [43, a], [44, a], [45, a], [46, a], [47, al, [48, al, [49, a], [50, a], [51, a], [52, a],

53, al, [54, al, [55, a], [56, a], [57, a], [58, a], [59, a], [60, al, [61, al, [62, a], [63, a], [64, a],

65, al, [66, al, [67, a], [68, a], [69, a], [70, a], [71,a], [72, a], [73, al, [74, al, [75, al, [76, a],
[77,a),[78,al, [79, al, [80, a], [81, a], [82, al, [83, a], [84, a], [88, a*], [88, a?], [92, a?],

[93,a2L[93 a’],[94, a?],[99, a*], [100, a*], [100, a?], [102, a*], [107, a*], [107, a*],
[ ,[109,a%], [111, %], [111,a?], [113, %], [113, a®], [114, a”], [114, a®],

[ 1, [114,a?)],[115, 6%, [115,a®], [115, %], [115, a®], [116, a*], [116, a®],

[116 a3L[116 a’],[117, 6%, [117,a°], [117, %], [117,a®], [117, a"], [117, a?],

[ 3, [118,a%], [118,a”], [118,a®], [118, a’], [118, a®], [118, a®], [118, a’]

[ L1 L1 L1 L1 1 L1 [ ]

[ 1 L1 1 )

[
[
[
[

Y ? Y

[ S

119, %], [119, ¢%], [119, ¢®], [119, a®], [119, ¢®], [119, ¢?], [119, a?],

120, %], [120, a®], [120, a®], [120, a*]]

> Reorder (Gamma) ;
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[[29, a], [30, al, [31, al, [32, a], [33, al, [34, a], [35, a], [36, al, [37, a], [38, a], [39, al, [40, a],
[41,al, [42, a], [43, al, [44, a], [45, a], [46, a], [47, a], [48, al, [49, a], [50, a], [51, a], [52, a],
(53, al, [54, a], [55, a], [56, a|, [57, a], [58, a], [59, al, [60, al, [61, a], [62, a], [63, a], [64, a],
(65, a], [66, a], [67, a], [68, a], [69, a], [70, a], [71,al, [72,al,[73, al, [74, al, [75, a], [76, a],
[77,a),[78,a], [79, a], [80, a], [81, a], [82, al, [83, a], [84, a], [85, a*], [85, a*], [87, a?],
89, a?],[96, a?], [96, a?], [98, a?], [101, a?], [102, a?], [104, a?], [104, a?], [105, a?],

106, a?], [108, a?], [110, a?], [110, a?], [112, a?], [112, a?], [113, @], [113, a®],
13,03, [113, a%], [114, %], [114, a®], [114, a®], [114, a®], [115, a®], [115, a®],
116, a?, [116, %], [116, a®],

118, 6%, [118,a%], [118, a%], [118, a®], [119, a®
119, 3], [119, a®], [120, a®], [120, a®], [120, a®
120, a%], [120, a®

,[119, ], [119, ¢*], [119, a?],

[ [ L1 [ L [ [ [
[113,a”], | L1 1 L1 1 L1 1 ]
(115, 6%, [115,a®], [ 1,1 I, ],[116,a?], [116, a%], [116, a®],
(117, 6%, [117,a?), [117, 6%, [117,a®], [117, %], [117, a®], [118, a”], [118, a®],
[ I L1 I L1 1 L1 1 ]
[ I L1 I L1 J, [120, a”], [120, a’], [120, a”],
[ L1 I

> Reorder(Delta);

29, al, [30, al, [31, a], [32, a], [33, a], [34, a], [35, a], [36, al, [37, al, [38, al, [39, a], [40, a],
[41,al, [42, a], [43, al, [44, a], [45, a], [46, a], [47, a], [48, al, [49, a], [50, a], [51, a], [52, a],
(53, al, [54, a], [55, a], [56, a|, [57, a], [58, a], [59, al, [60, al, [61, a], [62, a], [63, a], [64, a],
65, al, [66, a], [67, a], [68, a], [69, a], [70, a], [71,al,[72,al,[73, al, 74, a], [75, a], [76, a],
[77,a),[78,a], [79, al, [80, a], [81, a], [82, al, [83, a], [84, a], [88, a*], [90, a?], [91, a?],

[93,a?], (93, a®], [94, a?], [95, a*], [95, a?], [98, a*], [98, a?], [99, a*], [99, a?],

[100, a?], [100, a?], [101, a?], [103, a*], [103, a?], [104, a*], [105, a?], [106, a?],
[106, a?], [107,a?], [108,a?], [110,a?], [113, a%], [113, %], [114, a®], [114, a*],
[114, %], [114,a®], [115, %], [115, a®], [115, a”], [115, a®], [116, a”], [116, a®],
[116,a?],[116,a”],[116,a?],[116,a”], [116,a?], [116,a’], [116,a’], [117,a?],
(117, 6%, [117,a°], [117, 6%, [117,a®], [117, %], [117, a®], [117, "], [117, a®],
[118, a%], [118,a”], [118, %], [118,a?], [118, a”], [118, a®], [118, a”], [118, a®],
[ L1 L1 L1 L1 L1 1 )
[ L1 L1 I L1 L1 1 )
[ 1 L1 1 L1 I I 1 ]

[ L1 Il L1 L1 ]

118,a%),[118, a%], [118, a®], [118, a®], [119, ¢®], [119, a?], [119, a®], [119, @],
119,a%),[119, %], [119, ¢, [119, a®], [119, ¢®], [119, a?], [119, a®], [119, @],
120, a*], [120, a®], [120, a®], [120, a®], [120, a®], [120, a®], [120, a*
120, a®], [120, a®], [120, a®], [120, a®], [120, a®], [120, a®

L1
I
L1
L1
I
L1
I
L1
10 ,[120, a”],
I ]
> Reorder (epsilon);
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29, al, [30, al, [31, a], [32, a], [33, a], [34, a], [35, a], [36, al, [37, al, [38, al, [39, a], [40, a],
[41,al, [42, a], [43, al, [44, a], [45, a], [46, a], [47, a], [48, al, [49, a], [50, a], [51, a], [52, a],
(53, al, [54, a], [55, a], [56, a|, [57, a], [58, a], [59, al, [60, al, [61, a], [62, a], [63, a], [64, a],
65, al, [66, a], [67, a], [68, a], [69, a], [70, a], [71,al,[72,al,[73, al, 74, a], [75, a], [76, a],
[77,a),[78,a], [79, al, [80, a], [81, a], [82, al, [83, a], [84, a], [85, a*], [85, a*], [86, a?],

86, a?], [88, a*], [88, a?], [89, a*], [89, a?], [90, a*], [91, a?], [91, a*], [93, a?],

94, %], [98, @], [110, @], [111, @], [112, a?], [112, a?], [113, a®], [113, a®],
[113, 6%, [113,a”],[113, a%], [113,a?], [113, %], [113, a®], [113, a”], [113, a?],
[114, %], [114,a®], [114, a%], [114, a®], [114, a”], [114, a®], [114, a”], [114, a®],
(114, 6%, [114,a®), [114, %], [114, a®], [115, %], [115, a®], [115, a*], [115, a®],
[115, 6%, [115,a”], [115, %], [115,a®], [115, %], [115, a®], [115, a”], [115, a®],
[116, a”], [116,a”],[116, "], [116,a°], [116, "], [116, a®], [116, a’], [116, a®],
(116, a%], [116,a”],[116, a%], [116,a®], [117,a%], [117,a®], [117,a%], [117, a®],
[117, 6%, [117,a°], [117, 6%, [117,a?], [118, a”], [118, a®], [118, a”], [118, a®],
[118,a%],[118,a?], [118,a?], [118,a?], [119, a®], [119, a®], [119, a®], [119, a?],
[119, 6%, [119,a?],[119, a%], [119, a®], [119, a”], [119, a®], | 1,1 ]

[120, a®], [120, a®], [120, a®], [120, a®]

,[120, ¢, [120, @],
]
> Reorder(eta);

29, a], [30, a], [31, a], [32, a], [33, a], [34, a], [35, a], [36, al, [37, al, [38, al, [39, a], [40, a],
41, a],[42, a], 43, a], [44, a], [45, a], [46, a], [47, a], [48, al, [49, a], [50, a], [51, a], [52, a],
53, al, [54, al, [55, a], [56, a], [57, a], [58, a], [59, a], [60, a], [61, a], [62, al, [63, al, [64, a],
65, al, [66, a, [67, a], [68, a], [69, a], [70, a], [71,a], [72,a], [73, al, [74, al,[75, al, [76, a],
[77,a),[78,a], [79, al, [80, a], [81, a], [82, al, [83, a], [84, a], [87, a*], [87, a*], [93, a?],
(96, a?], [98, a?], [100, a?], [100, a*], [101, a*], [102, a?], [103, a?], [103, @],
104, @], [105, a?], [106, a?], [106, a?], [107, a*], [110, a?], [110, a*], [111, a?],
112, a%], [113,a%], [113, a*], [114, a®], [114, a®], [115, a®], [115, a®], [116, a®],
116, a%], [116, a”],[116, a’], [117,a’], [117,a”], [117,a?], [117,a?], [117, a®
117,a%), [118,a%], [118, %], [118, a%], [118, a%], [118, a”], [118, a”], [119, @
b1 I L1 I b1 [
b1 L1 L1 L1 b1 [

[
[ 151, al, [
[ 63, al, [
[

) Y

119,a%),[119, %], [119, ¢, [119, a®], [119, ¢®], [119, ¢?], [119, a®], [120, @],
120, a®], [120, a®], [120, a®], [120, a®], [120, a®], [120, a*], [120, a®

[
[
[
[
[
[ ,
(120, a*]]

B
B
L
1
|
L

[ S S T S

]
]
],
]
]
,[120, @,
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>
Reorder(xi)

[[29, al
yal, (30
[53 |, 42,4 [43’a]’[32’a] 33
,a], [54 a0 ,a], [44 a]’ ,a],[34,a
[65 a ’ ]7[55 a ’ 7[45,a ! ]7[35 a
’ ]a[66 a ’ ]7[56 a] ]7[46 CL] ) },[36 a
[77 ,a], [67, a] va], [57,a] ,a], [47, d] ,a], [37,d]
,al, [78 ,al, (68, d] ,a], 58, d] , 48, a] ,al, (38, al
[86 a27]a%7 [79’ CL] [8’0 7][69’ CL]’ [70 a]’ %59’ Cl]’ [60 a]’ {497 (l]) [50 ’a] a[[39, a]’ [40 a]
’ 788 2 ’ 7a,[8 ! 771 ! 761 ! 751 » Wl
93, a?] ,a], [88 1,a],[8 ,al, [72 ,al, [62 ,al, [52
) 7[93 9 ) 7@2] [8 ) 27(1] [8 ,a]7 [73 761], [63 7@]7
G ks P
1 104,47, 1 ], 95, 0” 89,67, 91, 1,],[8 al, 175 .al,
113, 0% o] 1054 1 AE 191,091, 5,0, [8 ), [76
a’], 11 ,[105 a2 , 196, a2] ,a”],[91 o2 , 189, a2] ,al,
113.09), 3,09, 13, 1,106, a2 (98, %] 95, 1, [92, (86, 0]
’ ] []_]_ ’ [113 CL3 @ ]7 [107 2 ’ [987 (12] @ ]a [92 2 )
[114 a3 ’ 37a3] ) ]7 [113 3 7a ] [1 7[]_00 2 ?a/ ]’
@), [11 4.0 114 0 113, o). 08,2, (110, 1,[102, a2
115, . 4.0%) 114, ], [114, ¢? a1 [110, a? o
’ ] [11 ’[114 CL3 @ ]7[114 3 ’ 137 CL3] ’ ]7[113 3 ’
’ ] []_1 ’[115 (IS @ ]7[114 ' 14; CLS] ’ ]7[113 3 ’
(116 ag’ 6,a’] ,a’], [115, ,a’], [1 (114, a® ,a’
@], 11 [116,a” ¥, [115, 4%, 15,0, [115. 1114, .
,a’], [11 ,[116,a° ,a’], [116 5 15, a”] ,a’], [115 5
,a’], [11 117 a’ ,a’],[116 (116, a3] ,a’],[115 3 ’
Ja’],[11 17,4 ), (1176, 16,0, [116. 1116, .
’ ] [11 ’[118 a3 @ ]7[117 ’ 17; CLS] ’ ]7[116 3 ’
119.09), 8,09, [118, ], [118, 6" ), [1 117, o’
,a’], [11 ,[118,a° ,a’], [118 o 17, 4] L%, [117, d® ’
[119 a3 ) 97a3] ? ]; [118 3 70/ ] [1 ) []_]_7 a3 70, ]
Ja], (11 [119,a® ), 118, 18, a). 118, 1118, .
[120 a3 ’ 9,@3] ’ ]7 [119 3 ,a ] [1 7[118 CL3 ,a ]
’ ] [120 3 ’ [119 a3] @ ]7 [119 ’ 19; 0,3] ’ ]7 [118 3 ’
(14U, a ,a’],[120, a® ,a’ ,[119, ¢® ,a®],
1,120, a®, [120, ag], 120, a%? 519, o, [1197 33], 119, a*]
,a’], [1207(13]7 20, a?], [1207 3]7 [119,a3]’
120, ¢ ,[120, @] o], [120, a° :
’[1207a3] '@ ]7
’[12076L3]
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