

ISSN 2053-2296

Received 11 May 2018 Accepted 25 June 2018

Edited by A. L. Spek, Utrecht University, The Netherlands

Keywords: cocrystal; pyrimidine; carboxylic acid; protonation; supramolecular structure; heterosynthon; hydrogen bonding; crystal structure.

CCDC references: 1851467; 1851466; 1851465; 1851464; 1851463; 1851462; 1851461; 1851460; 1851459; 1851458

Supporting information: this article has supporting information at journals.iucr.org/c

^{© 2018} International Union of Crystallography

Design of two series of 1:1 cocrystals involving 4-amino-5-chloro-2,6-dimethylpyrimidine and carboxylic acids

Ammaiyappan Rajam,^a Packianathan Thomas Muthiah,^a* Raymond John Butcher,^b Jerry P. Jasinski^c and Jan Wikaira^d

^aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and ^dDepartment of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand. *Correspondence e-mail: tommtrichy@yahoo.co.in

Two series of a total of ten cocrystals involving 4-amino-5-chloro-2,6-dimethylpyrimidine with various carboxylic acids have been prepared and characterized by single-crystal X-ray diffraction. The pyrimidine unit used for the cocrystals offers two ring N atoms (positions N1 and N3) as proton-accepting sites. Depending upon the site of protonation, two types of cations are possible [Rajam et al. (2017). Acta Cryst. C73, 862–868]. In a parallel arrangement, two series of cocrystals are possible depending upon the hydrogen bonding of the carboxyl group with position N1 or N3. In one series of cocrystals, *i.e.* 4-amino-5chloro-2,6-dimethylpyrimidine-3-bromothiophene-2-carboxylic acid (1/1), 1, 4-amino-5-chloro-2,6-dimethylpyrimidine-5-chlorothiophene-2-carboxylic acid (1/1), 2, 4-amino-5-chloro-2,6-dimethylpyrimidine-2,4-dichlorobenzoic acid (1/1), 3, and 4-amino-5-chloro-2,6-dimethylpyrimidine-2-aminobenzoic acid (1/1), 4, the carboxyl hydroxy group (-OH) is hydrogen bonded to position N1 (O-H···N1) of the corresponding pyrimidine unit (single point supramolecular synthon). The inversion-related stacked pyrimidines are doubly bridged by the carboxyl groups via $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds to form a large cage-like tetrameric unit with an $R_4^2(20)$ graph-set ring motif. These tetrameric units are further connected *via* base pairing through a pair of N-H···N hydrogen bonds, generating $R_2^2(8)$ motifs (supramolecular homosynthon). In the other series of cocrystals, i.e. 4-amino-5-chloro-2,6-dimethylpyrimidine-5-methylthiophene-2-carboxylic acid (1/1), 5, 4-amino-5-chloro-2,6dimethylpyrimidine-benzoic acid (1/1), 6, 4-amino-5-chloro-2,6-dimethylpyrimidine-2-methylbenzoic acid (1/1), 7, 4-amino-5-chloro-2,6-dimethylpyrimidine-3-methylbenzoic acid (1/1), 8, 4-amino-5-chloro-2,6-dimethylpyrimidine-4-methylbenzoic acid (1/1), 9, and 4-amino-5-chloro-2,6-dimethylpyrimidine-4-aminobenzoic acid (1/1), 10, the carboxyl group interacts with position N3 and the adjacent 4-amino group of the corresponding pyrimidine ring via $O - H \cdots N$ and N-H···O hydrogen bonds to generate the robust $R_2^2(8)$ supramolecular heterosynthon. These heterosynthons are further connected by $N-H \cdots N$ hydrogen-bond interactions in a linear fashion to form a chain-like arrangement. In cocrystal 1, a Br \cdots Br halogen bond is present, in cocrystals 2 and 3, Cl \cdots Cl halogen bonds are present, and in cocrystals 5, 6 and 7, Cl...O halogen bonds are present. In all of the ten cocrystals, $\pi - \pi$ stacking interactions are observed.

1. Introduction

In crystal engineering, noncovalent interactions such as hydrogen bonds, halogen bonds, anion $-\pi$, cation $-\pi$ and $\pi-\pi$ interactions, together with other weak forces, play a central role in the self-assembly and molecular recognition processes (García-Raso *et al.*, 2009; Aakeröy *et al.*, 2009; Nandi *et al.*, 2014). In particular, halogen bonding is of current interest and exhibits a wide range of applications, such as in catalysis,

research papers

medicinal chemistry and structural chemistry (Cavallo et al., 2016; Metrangolo & Resnati, 2012). Recently, much consideration has been given to the synthesis of cocrystals related to their wide-ranging applications in the pharmaceutical industry (Zhu et al., 2015; Griffini et al., 2014; Baldrighi et al., 2013). Pyrimidines and aminopyrimidine derivatives are biologically important compounds as they are distributed widely in nature as components of nucleic acids and drugs (Selvam et al., 2012; Sharma et al., 2014). In crystal engineering, carboxylic acid is one of the most commonly used functional groups and hence the formation of robust heterosynthons from the carboxylic acid-pyrimidine moiety has attracted much attention. The pyrimidine-carboxylic acid interaction is also involved in protein-nucleic acid binding and drug-protein recognition processes. Hydrogen-bonding patterns, including base pairing formed by the aminopyrimidines, are important in the structure and functions of nucleic acids (Stanley et al., 2002; Baskar Raj et al., 2003). The hydrogen-bonding patterns present in several aminopyrimidine-carboxylates and cocrystals have been reported by us (Ebenezer et al., 2011; Tamilselvi & Muthiah, 2011; Ebenezer & Muthiah, 2012; Jegan Jennifer & Muthiah, 2014; Karthikeyan et al., 2015; Rajam et al., 2015, 2017; Swinton Darious et al., 2017).

In the present study, we have synthesized and structurally characterized two series of a total of ten cocrystals, namely 4-amino-5-chloro-2,6-dimethylpyrimidine–3-bromothiophene-2-carboxylic acid (1/1), **1**, 4-amino-5-chloro-2,6-dimethylpy-

rimidine-5-chlorothiophene-2-carboxylic acid (1/1).2. 4-amino-5-chloro-2,6-dimethylpyrimidine-2,4-dichlorobenzoic acid (1/1), 3, 4-amino-5-chloro-2,6-dimethylpyrimidine-2-aminobenzoic acid (1/1), 4, 4-amino-5-chloro-2,6-dimethylpyrimidine-5-methylthiophene-2-carboxylic acid (1/1), 5, 4-amino-5-chloro-2,6-dimethylpyrimidine-benzoic acid (1/1), 6, 4-amino-5-chloro-2,6-dimethylpyrimidine-2-methylbenzoic acid (1/1), 7, 4-amino-5-chloro-2,6-dimethylpyrimidine-3-methylbenzoic acid (1/1), 8, 4-amino-5-chloro-2,6-dimethylpyrimidine-4-methylbenzoic acid (1/1), 9, and 4-amino-5-chloro-2,6-dimethylpyrimidine-4-aminobenzoic acid (1/1), **10**. Depending on the nature and position of the substituent present in the carboxylic acids, the carboxyl hydroxy group (-OH) is hydogen bonded to atom N1 (O- $H \cdots N1$) of the corresponding pyrimidine ring, *i.e.* crystal structures 1-4. Atom N1 is flanked by the methyl groups present in the pyrimidine moiety, so a robust heterosynthon motif formation is not possible. For crystal structures 5-10, the carboxyl group interacts with atom N3 and the adjacent 4-amino group of the corresponding pyrimidine ring via O- $H \cdots N$ and $N - H \cdots O$ hydrogen bonds to generate the robust $R_2^2(8)$ supramolecular heterosynthon.

2. Experimental

2.1. Synthesis and crystallization

2.1.1. Cocrystal 1. 4-Amino-5-chloro-2,6-dimethylpyrimidine (39 mg) and 3-bromothiophene-2-carboxylic acid (51 mg) were dissolved in a hot acetonitrile solution (1:1 molar ratio) and warmed over a water bath for half an hour. The resulting clear solution was allowed to evaporate. After a few days,

Table 1Experimental details.

For all determinations, H atoms were treated by a mixture of independent and constrained refinement.

	1	2	3	4
	•	-	5	•
Crystal data				
Chemical formula	$C_5H_3BrO_2S \cdot C_6H_8ClN_3$	$C_6H_8ClN_3 \cdot C_5H_3ClO_2S$	$C_6H_8ClN_3 \cdot C_7H_4Cl_2O_2$	$C_6H_8CIN_3 \cdot C_7H_7NO_2$
$M_{ m r}$	364.65	320.19	348.61	294.74
Crystal system, space group	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$	Triclinic, $P\overline{1}$	Monoclinic, $P2_1/n$
Temperature (K)	100	100	120	120
a, b, c (A)	7.5237 (4), 7.5739 (4),	7.2182 (3), 7.6364 (3),	7.3015 (4), 7.5060 (6),	8.0965 (2), 7.2427 (3),
	12.5089 (7)	12.7516 (6)	14.9665 (8)	24.0738 (9)
α, β, γ (°)	79.629 (2), 79.596 (2),	90.707 (2), 102.629 (2),	92.539 (5), 98.522 (5),	90, 90.831 (3), 90
TT (+ 3)	75.895 (2)	105.338 (2)	113.657 (7)	
$V(\mathbf{A}^{2})$	673.00 (6)	659.61 (5)	738.12 (9)	1411.55 (9)
Z De listice true	2 Mar Kar		2 Cr. Ku	4 C== K==
Radiation type (mm^{-1})	Μο Κα	Μο Κα	Cu Kα 5.70	Cu Ka 2.47
μ (mm)	$0.31 \times 0.27 \times 0.21$	0.05 0.27 × 0.10 × 0.11	$0.51 \times 0.35 \times 0.08$	2.47
Crystar size (mm)	0.31 × 0.27 × 0.21	0.37 × 0.19 × 0.11	0.51 × 0.55 × 0.08	$0.40 \times 0.22 \times 0.00$
Data collection				
Diffractometer	Bruker D8 Quest CMOS	Bruker D8 Quest CMOS	Agilent SuperNova Dual	Agilent SuperNova Dual
			Source diffractometer	Source diffractometer
			with an Atlas detector	with an Atlas detector
Absorption correction	Multi-scan (APEX2:	Multi-scan (APEX2:	Multi-scan (CrysAlis PRO:	Analytical [CrysAlis PRO
Ī	Bruker, 2014)	Bruker, 2014)	Agilent, 2014)	(Oxford Diffraction,
	. ,	· · ·	0, , ,	2011), based on expres-
				sions derived by Clark &
				Reid (1995)]
T_{\min}, T_{\max}	0.539, 0.747	0.477, 0.746	0.538, 1.000	0.547, 0.877
No. of measured, indepen-	13063, 5103, 4471	8796, 3636, 2947	5965, 3050, 2546	6899, 2927, 2481
dent and observed $[I >$				
$2\sigma(I)$] reflections				
R _{int}	0.032	0.051	0.038	0.028
$(\sin \theta / \lambda)_{\rm max} (A^{-1})$	0.770	0.695	0.632	0.631
D.C.				
Refinement $P[F^2 \rightarrow 2\pi(F^2)] \rightarrow P(F^2)$	0.024 0.070 1.04	0.051 0.129 1.15	0.047 0.125 1.05	0.020 0.110 1.05
K[T > 20(T)], WK(T), S	0.034, 0.070, 1.04 5103	0.051, 0.158, 1.15	2050	0.059, 0.110, 1.05
No. of parameters	187	187	204	203
$\Lambda_0 = \Lambda_0 = (e^{\Delta^{-3}})$	0.67 - 0.52	0.76 - 0.56	0.39 = 0.51	0.23 - 0.47
	0.07, 0.02			0.20, 0.17
	5	6	7	8
a				
Crystal data				
Crystal data Chemical formula	$C_6H_8ClN_3\cdot C_6H_6O_2S$	$C_6H_8CIN_3 \cdot C_7H_6O_2$	$C_6H_8ClN_3\cdot C_8H_8O_2$	$C_6H_8ClN_3 \cdot C_8H_8O_2$
Crystal data Chemical formula $M_{\rm r}$	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72	$C_6H_8CIN_3 \cdot C_8H_8O_2$ 293.75	$C_6H_8ClN_3 \cdot C_8H_8O_2$ 293.75
Crystal data Chemical formula M_r Crystal system, space group	$C_6H_8CIN_3 \cdot C_6H_6O_2S$ 299.77 Monoclinic, $P2_1/c$	$C_6H_8CIN_3 \cdot C_7H_6O_2$ 279.72 Monoclinic, $P2_1/c$	$C_6H_8CIN_3 \cdot C_8H_8O_2$ 293.75 Orthorhombic, $P2_12_12_1$	$C_6H_8CIN_3 \cdot C_8H_8O_2$ 293.75 Orthorhombic, <i>Pbcn</i>
Crystal data Chemical formula M_r Crystal system, space group Temperature (K)	$C_6H_8CIN_3 \cdot C_6H_6O_2S$ 299.77 Monoclinic, $P2_1/c$ 100	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, <i>P</i> 2 ₁ / <i>c</i> 120	$C_6H_8CIN_3 \cdot C_8H_8O_2$ 293.75 Orthorhombic, $P2_12_12_1$ 120	$C_6H_8CIN_3 \cdot C_8H_8O_2$ 293.75 Orthorhombic, <i>Pbcn</i> 120
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å)	$C_6H_8CIN_3 \cdot C_6H_6O_2S$ 299.77 Monoclinic, $P2_1/c$ 100 8.273 (3), 12.746 (4),	C ₆ H ₈ ClN ₃ ⋅C ₇ H ₆ O ₂ 279.72 Monoclinic, <i>P</i> 2 ₁ / <i>c</i> 120 10.1421 (5), 10.4218 (5),	$C_6H_8CIN_3 \cdot C_8H_8O_2$ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4),	$C_6H_8CIN_3 \cdot C_8H_8O_2$ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2),
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) $r, \theta, r, (\theta)$	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P2_1/c$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102 320 (5) 00	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 00 107 204 (5) 00	$C_6H_8CIN_3 \cdot C_8H_8O_2$ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8)	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2), 24.9813 (3) 90, 90, 90
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å)	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P2_1/c$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371 8 (8)	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1235 26 (12)	$C_6H_8CIN_3 \cdot C_8H_8O_2$ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8) 90, 90, 90 2702 68 (14)	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2), 24.9813 (3) 90, 90, 90 2588 72 (6)
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³)	$\begin{array}{c} C_{6}H_{8}ClN_{3}\cdot C_{6}H_{6}O_{2}S\\ 299.77\\ Monoclinic, P2_{1}/c\\ 100\\ 8.273\ (3), 12.746\ (4),\\ 13.320\ (4)\\ 90, 102.390\ (5), 90\\ 1371.8\ (8)\\ 4\end{array}$	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, <i>P</i> 2 ₁ / <i>c</i> 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12)	$\begin{array}{c} C_{6}H_{8}ClN_{3}\cdot C_{8}H_{8}O_{2}\\ 293.75\\ Orthorhombic, P2_{1}2_{1}2_{1}\\ 120\\ 7.3992\ (2),\ 13.9842\ (4),\\ 26.9897\ (8)\\ 90,\ 90,\ 90\\ 2792.68\ (14)\\ 8\end{array}$	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2), 24.9813 (3) 90, 90, 90 2858.72 (6)
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P2_1/c$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371.8 (8) 4 Mo K α	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12) 4 CU K α	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8) 90, 90, 90 2792.68 (14) 8 Cu K α	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2), 24.9813 (3) 90, 90, 90 2858.72 (6) 8 Cu Ka
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹)	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P2_1/c$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371.8 (8) 4 Mo K α 0.43	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12) 4 Cu K α 2 56	$\begin{array}{c} C_{6}H_{8}ClN_{3}\cdot C_{8}H_{8}O_{2}\\ 293.75\\ Orthorhombic, P2_{1}2_{1}2_{1}\\ 120\\ 7.3992\ (2),\ 13.9842\ (4),\\ 26.9897\ (8)\\ 90,\ 90\\ 2792.68\ (14)\\ 8\\ Cu\ K\alpha\\ 2\ 47\end{array}$	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2), 24.9813 (3) 90, 90, 90 2858.72 (6) 8 Cu Kα 2 42
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm)	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P2_1/c$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371.8 (8) 4 Mo K α 0.43 0.55 × 0.50 × 0.30	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12) 4 Cu $K\alpha$ 2.56 0.52 × 0.38 × 0.24	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8) 90, 90, 90 2792.68 (14) 8 Cu K α 2.47 0.49 × 0.11 × 0.08	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2), 24.9813 (3) 90, 90, 90 2858.72 (6) 8 Cu $K\alpha$ 2.42 0.42 × 0.24 × 0.19
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm)	$\begin{array}{l} C_{6}H_{8}CIN_{3}\cdot C_{6}H_{6}O_{2}S\\ 299.77\\ Monoclinic, P2_{1}/c\\ 100\\ 8.273\ (3), 12.746\ (4),\\ 13.320\ (4)\\ 90, 102.390\ (5), 90\\ 1371.8\ (8)\\ 4\\ Mo\ K\alpha\\ 0.43\\ 0.55\ \times\ 0.50\ \times\ 0.30\\ \end{array}$	$\begin{array}{c} C_{6}H_{8}ClN_{3}\cdot C_{7}H_{6}O_{2} \\ 279.72 \\ Monoclinic, P2_{1}/c \\ 120 \\ 10.1421 \ (5), \ 10.4218 \ (5), \\ 13.2681 \ (6) \\ 90, \ 107.804 \ (5), \ 90 \\ 1335.26 \ (12) \\ 4 \\ Cu \ K\alpha \\ 2.56 \\ 0.52 \ \times \ 0.38 \ \times \ 0.24 \end{array}$	$\begin{array}{l} C_{6}H_{8}ClN_{3}\cdot C_{8}H_{8}O_{2} \\ 293.75 \\ \text{Orthorhombic, } P2_{1}2_{1}2_{1} \\ 120 \\ 7.3992 (2), 13.9842 (4), \\ 26.9897 (8) \\ 90, 90, 90 \\ 2792.68 (14) \\ 8 \\ \text{Cu } K\alpha \\ 2.47 \\ 0.49 \times 0.11 \times 0.08 \end{array}$	$\begin{array}{l} C_{6}H_{8}ClN_{3}\cdot C_{8}H_{8}O_{2} \\ 293.75 \\ Orthorhombic, Pbcn \\ 120 \\ 8.4524 \ (1), 13.5387 \ (2), \\ 24.9813 \ (3) \\ 90, 90, 90 \\ 2858.72 \ (6) \\ 8 \\ Cu \ K\alpha \\ 2.42 \\ 0.42 \ \times \ 0.24 \ \times \ 0.19 \end{array}$
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm) Data collection	$\begin{array}{l} C_{6}H_{8}CIN_{3}\cdot C_{6}H_{6}O_{2}S\\ 299.77\\ Monoclinic, P2_{1}/c\\ 100\\ 8.273\ (3), 12.746\ (4),\\ 13.320\ (4)\\ 90, 102.390\ (5), 90\\ 1371.8\ (8)\\ 4\\ Mo\ K\alpha\\ 0.43\\ 0.55\ \times\ 0.50\ \times\ 0.30\\ \end{array}$	$\begin{array}{c} C_{6}H_{8}ClN_{3}\cdot C_{7}H_{6}O_{2} \\ 279.72 \\ Monoclinic, P2_{1}/c \\ 120 \\ 10.1421 \ (5), \ 10.4218 \ (5), \\ 13.2681 \ (6) \\ 90, \ 107.804 \ (5), \ 90 \\ 1335.26 \ (12) \\ 4 \\ Cu \ K\alpha \\ 2.56 \\ 0.52 \ \times \ 0.38 \ \times \ 0.24 \end{array}$	$\begin{array}{l} C_{6}H_{8}ClN_{3}\cdot C_{8}H_{8}O_{2}\\ 293.75\\ Orthorhombic, P2_{1}2_{1}2_{1}\\ 120\\ 7.3992\ (2),\ 13.9842\ (4),\\ 26.9897\ (8)\\ 90,\ 90\\ 2792.68\ (14)\\ 8\\ Cu\ K\alpha\\ 2.47\\ 0.49\ \times\ 0.11\ \times\ 0.08\\ \end{array}$	$\begin{array}{l} C_{6}H_{8}ClN_{3}\cdot C_{8}H_{8}O_{2} \\ 293.75 \\ Orthorhombic, Pbcn \\ 120 \\ 8.4524 \ (1), 13.5387 \ (2), \\ 24.9813 \ (3) \\ 90, 90, 90 \\ 2858.72 \ (6) \\ 8 \\ Cu \ K\alpha \\ 2.42 \\ 0.42 \ \times \ 0.24 \ \times \ 0.19 \end{array}$
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm) Data collection Diffractometer	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P2_1/c$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371.8 (8) 4 Mo Kα 0.43 0.55 × 0.50 × 0.30 Bruker APEXII CCD	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12) 4 Cu $K\alpha$ 2.56 0.52 × 0.38 × 0.24 Agilent SuperNova Dual	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8) 90, 90, 90 2792.68 (14) 8 Cu K α 2.47 0.49 × 0.11 × 0.08 Agilent SuperNova Dual	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2), 24.9813 (3) 90, 90, 90 2858.72 (6) 8 Cu $K\alpha$ 2.42 0.42 × 0.24 × 0.19 Agilent SuperNova Dual
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm) Data collection Diffractometer	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P_{2_1/c}$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371.8 (8) 4 Mo K α 0.43 0.55 × 0.50 × 0.30 Bruker APEXII CCD	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12) 4 Cu K α 2.56 0.52 × 0.38 × 0.24 Agilent SuperNova Dual Source diffractometer	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8) 90, 90, 90 2792.68 (14) 8 Cu <i>Kα</i> 2.47 0.49 × 0.11 × 0.08 Agilent SuperNova Dual Source diffractometer	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2), 24.9813 (3) 90, 90, 90 2858.72 (6) 8 Cu <i>Ka</i> 2.42 0.42 \times 0.24 \times 0.19 Agilent SuperNova Dual Source diffractometer
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm) Data collection Diffractometer	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P_{1/c}$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371.8 (8) 4 Mo K α 0.43 0.55 × 0.50 × 0.30 Bruker APEXII CCD	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12) 4 Cu K α 2.56 0.52 × 0.38 × 0.24 Agilent SuperNova Dual Source diffractometer with an Atlas detector	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8) 90, 90, 90 2792.68 (14) 8 Cu <i>Kα</i> 2.47 0.49 × 0.11 × 0.08 Agilent SuperNova Dual Source diffractometer with an Atlas detector	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2), 24.9813 (3) 90, 90, 90 2858.72 (6) 8 Cu <i>Kα</i> 2.42 0.42 × 0.24 × 0.19 Agilent SuperNova Dual Source diffractometer with an Atlas detector
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P2_1/c$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371.8 (8) 4 Mo Kα 0.43 0.55 × 0.50 × 0.30 Bruker APEXII CCD Multi-scan (<i>APEX2</i> ;	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12) 4 Cu Kα 2.56 0.52 × 0.38 × 0.24 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ;	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8) 90, 90, 90 2792.68 (14) 8 Cu Kα 2.47 0.49 × 0.11 × 0.08 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ;	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2), 24.9813 (3) 90, 90, 90 2858.72 (6) 8 Cu <i>Kα</i> 2.42 0.42 × 0.24 × 0.19 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ;
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P2_1/c$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371.8 (8) 4 Mo K α 0.43 0.55 × 0.50 × 0.30 Bruker APEXII CCD Multi-scan (<i>APEX2</i> ; Bruker, 2014)	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12) 4 Cu K α 2.56 0.52 × 0.38 × 0.24 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8) 90, 90, 90 2792.68 (14) 8 Cu Kα 2.47 0.49 × 0.11 × 0.08 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2), 24.9813 (3) 90, 90, 90 2858.72 (6) 8 Cu <i>K</i> α 2.42 0.42 × 0.24 × 0.19 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction T_{min}, T_{max}	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P2_1/c$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371.8 (8) 4 Mo K α 0.43 0.55 × 0.50 × 0.30 Bruker APEXII CCD Multi-scan (<i>APEX2</i> ; Bruker, 2014) 0.608, 0.746	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12) 4 Cu K α 2.56 0.52 × 0.38 × 0.24 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.763, 1.000	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8) 90, 90, 90 2792.68 (14) 8 Cu K α 2.47 0.49 × 0.11 × 0.08 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.740, 1.000	$\begin{array}{c} C_{6}H_{8}ClN_{3}\cdot C_{8}H_{8}O_{2}\\ 293.75\\ Orthorhombic, Pbcn\\ 120\\ 8.4524\ (1),\ 13.5387\ (2),\\ 24.9813\ (3)\\ 90,\ 90,\ 90\\ 2858.72\ (6)\\ 8\\ Cu\ K\alpha\\ 2.42\\ 0.42\ \times\ 0.24\ \times\ 0.19\\ \end{array}$ Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (CrysAlis PRO; Agilent, 2014)\\ 0.680,\ 1.000\\ \end{array}
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction T_{min}, T_{max} No. of measured, indepen-	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P2_1/c$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371.8 (8) 4 Mo K α 0.43 0.55 × 0.50 × 0.30 Bruker APEXII CCD Multi-scan (<i>APEX2</i> ; Bruker, 2014) 0.608, 0.746 8807, 4109, 3735	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12) 4 Cu K α 2.56 0.52 × 0.38 × 0.24 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.763, 1.000 6087, 2760, 2560	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8) 90, 90, 90 2792.68 (14) 8 Cu K α 2.47 0.49 × 0.11 × 0.08 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.740, 1.000 8897, 4966, 4617	$\begin{array}{c} C_{6}H_{8}ClN_{3}\cdot C_{8}H_{8}O_{2}\\ 293.75\\ Orthorhombic, Pbcn\\ 120\\ 8.4524\ (1),\ 13.5387\ (2),\\ 24.9813\ (3)\\ 90,\ 90,\ 90\\ 2858.72\ (6)\\ 8\\ Cu\ K\alpha\\ 2.42\\ 0.42\ \times\ 0.24\ \times\ 0.19\\ \end{array}$ Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan\ (CrysAlis PRO; Agilent,\ 2014)\\ 0.680,\ 1.000\\ 26401,\ 3006,\ 2904\\ \end{array}
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction T_{min}, T_{max} No. of measured, indepen- dent and observed [$I >$	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P2_1/c$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371.8 (8) 4 Mo K α 0.43 0.55 × 0.50 × 0.30 Bruker APEXII CCD Multi-scan (<i>APEX2</i> ; Bruker, 2014) 0.608, 0.746 8807, 4109, 3735	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12) 4 Cu K α 2.56 0.52 × 0.38 × 0.24 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.763, 1.000 6087, 2760, 2560	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8) 90, 90, 90 2792.68 (14) 8 Cu K α 2.47 0.49 × 0.11 × 0.08 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.740, 1.000 8897, 4966, 4617	$\begin{array}{c} C_{6}H_{8}ClN_{3}\cdot C_{8}H_{8}O_{2}\\ 293.75\\ Orthorhombic, Pbcn\\ 120\\ 8.4524\ (1),\ 13.5387\ (2),\\ 24.9813\ (3)\\ 90,\ 90,\ 90\\ 2858.72\ (6)\\ 8\\ Cu\ K\alpha\\ 2.42\\ 0.42\ \times\ 0.24\ \times\ 0.19\\ \end{array}$ Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (CrysAlis PRO; Agilent, 2014)\\ 0.680,\ 1.000\\ 26401,\ 3006,\ 2904\\ \end{array}
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction T_{min}, T_{max} No. of measured, indepen- dent and observed [$I > 2\sigma(I)$] reflections	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P2_1/c$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371.8 (8) 4 Mo K α 0.43 0.55 × 0.50 × 0.30 Bruker APEXII CCD Multi-scan (<i>APEX2</i> ; Bruker, 2014) 0.608, 0.746 8807, 4109, 3735	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12) 4 Cu K α 2.56 0.52 × 0.38 × 0.24 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.763, 1.000 6087, 2760, 2560	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8) 90, 90, 90 2792.68 (14) 8 Cu K α 2.47 0.49 × 0.11 × 0.08 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.740, 1.000 8897, 4966, 4617	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2), 24.9813 (3) 90, 90, 90 2858.72 (6) 8 Cu K α 2.42 0.42 × 0.24 × 0.19 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.680, 1.000 26401, 3006, 2904
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, indepen- dent and observed [$I > 2\sigma(I)$] reflections R_{int} $\alpha = 1$	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P2_1/c$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371.8 (8) 4 Mo K α 0.43 0.55 × 0.50 × 0.30 Bruker APEXII CCD Multi-scan (<i>APEX2</i> ; Bruker, 2014) 0.608, 0.746 8807, 4109, 3735	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12) 4 Cu K α 2.56 0.52 × 0.38 × 0.24 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.763, 1.000 6087, 2760, 2560	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8) 90, 90, 90 2792.68 (14) 8 Cu K α 2.47 0.49 × 0.11 × 0.08 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.740, 1.000 8897, 4966, 4617	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2), 24.9813 (3) 90, 90, 90 2858.72 (6) 8 Cu K α 2.42 0.42 × 0.24 × 0.19 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.680, 1.000 26401, 3006, 2904
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, indepen- dent and observed [$I > 2\sigma(I)$] reflections R_{int} (sin $\theta/\lambda)_{max}$ (Å ⁻¹)	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P_{1/c}$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371.8 (8) 4 Mo K α 0.43 0.55 × 0.50 × 0.30 Bruker APEXII CCD Multi-scan (<i>APEX2</i> ; Bruker, 2014) 0.608, 0.746 8807, 4109, 3735	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12) 4 Cu K α 2.56 0.52 × 0.38 × 0.24 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.763, 1.000 6087, 2760, 2560	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8) 90, 90, 90 2792.68 (14) 8 Cu K α 2.47 0.49 × 0.11 × 0.08 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.740, 1.000 8897, 4966, 4617	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2), 24.9813 (3) 90, 90, 90 2858.72 (6) 8 Cu K α 2.42 0.42 × 0.24 × 0.19 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.680, 1.000 26401, 3006, 2904
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, indepen- dent and observed [$I > 2\sigma(I)$] reflections R_{int} (sin $\theta/\lambda)_{max}$ (Å ⁻¹) Refinement	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P_{1/c}$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371.8 (8) 4 Mo K α 0.43 0.55 × 0.50 × 0.30 Bruker APEXII CCD Multi-scan (<i>APEX2</i> ; Bruker, 2014) 0.608, 0.746 8807, 4109, 3735	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12) 4 Cu K α 2.56 0.52 × 0.38 × 0.24 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.763, 1.000 6087, 2760, 2560	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8) 90, 90, 90 2792.68 (14) 8 Cu K α 2.47 0.49 × 0.11 × 0.08 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.740, 1.000 8897, 4966, 4617	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2), 24.9813 (3) 90, 90, 90 2858.72 (6) 8 Cu K α 2.42 0.42 × 0.24 × 0.19 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.680, 1.000 26401, 3006, 2904
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, indepen- dent and observed [$I > 2\sigma(I)$] reflections R_{int} (sin $\theta/\lambda)_{max}$ (Å ⁻¹) Refinement $R[F^2 > 2\sigma(F^2)] \ wR(F^2) \ S$	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P_{1/c}$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371.8 (8) 4 Mo K α 0.43 0.55 × 0.50 × 0.30 Bruker APEXII CCD Multi-scan (<i>APEX2</i> ; Bruker, 2014) 0.608, 0.746 8807, 4109, 3735 0.028 0.734	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12) 4 Cu K α 2.56 0.52 × 0.38 × 0.24 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.763, 1.000 6087, 2760, 2560 0.029 0.631	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8) 90, 90, 90 2792.68 (14) 8 Cu K α 2.47 0.49 × 0.11 × 0.08 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.740, 1.000 8897, 4966, 4617 0.030 0.631 0.034, 0.091, 1.04	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2), 24.9813 (3) 90, 90, 90 2858.72 (6) 8 Cu K α 2.42 0.42 × 0.24 × 0.19 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.680, 1.000 26401, 3006, 2904 0.033 0.631
Crystal data Chemical formula M_r Crystal system, space group Temperature (K) a, b, c (Å) α, β, γ (°) V (Å ³) Z Radiation type μ (mm ⁻¹) Crystal size (mm) Data collection Diffractometer Absorption correction T_{min}, T_{max} No. of measured, indepen- dent and observed [$I > 2\sigma(I)$] reflections R_{int} (sin $\theta/\lambda)_{max}$ (Å ⁻¹) Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections	C ₆ H ₈ ClN ₃ ·C ₆ H ₆ O ₂ S 299.77 Monoclinic, $P_{1/c}$ 100 8.273 (3), 12.746 (4), 13.320 (4) 90, 102.390 (5), 90 1371.8 (8) 4 Mo K α 0.43 0.55 × 0.50 × 0.30 Bruker APEXII CCD Multi-scan (<i>APEX2</i> ; Bruker, 2014) 0.608, 0.746 8807, 4109, 3735 0.028 0.734	C ₆ H ₈ ClN ₃ ·C ₇ H ₆ O ₂ 279.72 Monoclinic, $P2_1/c$ 120 10.1421 (5), 10.4218 (5), 13.2681 (6) 90, 107.804 (5), 90 1335.26 (12) 4 Cu K α 2.56 0.52 × 0.38 × 0.24 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.763, 1.000 6087, 2760, 2560 0.029 0.631 0.041, 0.118, 1.04 2760	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, $P2_12_12_1$ 120 7.3992 (2), 13.9842 (4), 26.9897 (8) 90, 90, 90 2792.68 (14) 8 Cu K α 2.47 0.49 × 0.11 × 0.08 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.740, 1.000 8897, 4966, 4617 0.030 0.631 0.034, 0.091, 1.04 4966	C ₆ H ₈ ClN ₃ ·C ₈ H ₈ O ₂ 293.75 Orthorhombic, <i>Pbcn</i> 120 8.4524 (1), 13.5387 (2), 24.9813 (3) 90, 90, 90 2858.72 (6) 8 Cu $K\alpha$ 2.42 0.42 × 0.24 × 0.19 Agilent SuperNova Dual Source diffractometer with an Atlas detector Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014) 0.680, 1.000 26401, 3006, 2904 0.033 0.631 0.037, 0.103, 1.04 3006

research papers

Table 1 (continued)

				0
5		6	1	8
No. of parameters 18	9	187	376	196
$\Delta \rho_{\text{max}} \Delta \rho_{\text{min}} (e \text{ Å}^{-3}) = 0.5$	55, -0.29	0.33, -0.44	0.24, -0.24	0.30, -0.31
Absolute structure –	·	_	Flack x determined using	g _
			1451 quotients	2
			$[(I^+) - (I^-)]/[(I^+) + (I^-)]$	-)]
			(Parsons <i>et al.</i> 2013)	/]
Absolute structure para-		_	-0.001(10)	_
meter			0.001 (10)	
		9	10	
Crystal data				
Chemical formula		$C_6H_8ClN_3 \cdot C_8H_8O_2$	C ₆ H ₈ ClN ₃ ·C	$C_7H_7NO_2$
M _r		293.75	294.74	
Crystal system, space group		Monoclinic, $P2_1/c$	Monoclinic,	$P2_{1}/c$
Temperature (K)		120	120	-
a, b, c (Å)		8.0223 (5), 13.6901 (10), 13.3346 (10)	7.8899 (2), 1	3.2361 (3), 13.3212 (3)
α, β, γ (°)		90, 101.557 (7), 90	90, 101.254	(2), 90
$V(\dot{A}^3)$		1434.80 (18)	1364.40 (6)	
Z		4	4	
Radiation type		Cu Ka	Cu Ka	
$\mu \text{ (mm}^{-1})$		2.41	2.56	
Crystal size (mm)		$0.51 \times 0.17 \times 0.08$	0.41×0.35	× 0.24
Data collection				
Diffractometer		Agilent SuperNova Dual Source diffract	ometer Agilent Sup	erNova Dual Source diffractometer
		with an Atlas detector	with an A	Atlas detector
Absorption correction		Multi-scan (CrysAlis PRO; Agilent, 2014	4) Multi-scan ((CrysAlis PRO; Agilent, 2014)
T_{\min}, T_{\max}		0.582, 1.000	0.828, 1.000	
No. of measured, independent and	observed	6765, 2966, 2422	6214, 2823,	2749
$[I > 2\sigma(I)]$ reflections				
R _{int}		0.040	0.017	
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$		0.631	0.631	
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$		0.047, 0.140, 1.04	0.036, 0.097	, 1.04
No. of reflections		2966	2823	•
No. of parameters		197	203	
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)		0.28, -0.41	0.27, -0.38	

Computer programs: APEX2 (Bruker, 2014), CrysAlis PRO (Agilent, 2014; Oxford Diffraction, 2011), SAINT (Bruker, 2013, 2014), SHELXS97 (Sheldrick, 2008), SHELXT (Sheldrick, 2015a), SHELXL2018 (Sheldrick, 2015b), SHELXL2014 (Sheldrick, 2015b), shelXle (Hübschle et al., 2011), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

colourless block-shaped crystals of **1** separated out from the mother liquor.

2.1.2. Cocrystal 2. 4-Amino-5-chloro-2,6-dimethylpyrimidine (39 mg) and 5-chlorothiophene-2-carboxylic acid (41 mg) were dissolved in a hot dimethylformamide (DMF) solution (1:1 molar ratio) and warmed over a water bath for half an hour. The clear solution was allowed to evaporate. After a few days, colourless block-shaped crystals of **2** separated out from the mother liquid.

2.1.3. Cocrystal 3. 4-Amino-5-chloro-2,6-dimethylpyrimidine (39 mg) and 2,4-dichlorobenzoic acid (47 mg) were dissolved in hot ethanol (1:1 molar ratio) and warmed over a water bath for half an hour. The clear solution was allowed to evaporate. After a few days, colourless crystals of **3** separated out from the mother liquid.

2.1.4. Cocrystal 4. 4-Amino-5-chloro-2,6-dimethylpyrimidine (39 mg) and 2-aminobenzoic acid (34 mg) were dissolved in hot ethanol (1:1 molar ratio) and warmed over a water bath for half an hour. The clear solution was allowed to evaporate. After a few days, pale yellow–orange crystals of **4** separated out from the mother liquid.

2.1.5. Cocrystal 5. 4-Amino-5-chloro-2,6-dimethylpyrimidine (39 mg) and 5-methylthiophene-2-carboxylic acid (35 mg) were dissolved in hot acetonitrile (1:1 molar ratio) and warmed over a water bath for half an hour. The clear solution was allowed to evaporate. After a few days, colourless plate-like crystals of **5** separated out from the mother liquid.

2.1.6. Cocrystal 6. 4-Amino-5-chloro-2,6-dimethylpyrimidine (39 mg) and benzoic acid (31 mg) were dissolved in hot methanol (1:1 molar ratio) and warmed over a water bath for half an hour. The clear solution was allowed to evaporate. After a few days, colourless crystals of $\mathbf{6}$ separated out from the mother liquid.

2.1.7. Cocrystal 7. 4-Amino-5-chloro-2,6-dimethylpyrimidine (39 mg) and 2-methylbenzoic acid (34 mg) were dissolved in hot ethanol (1:1 molar ratio) and warmed over a water bath for half an hour. The clear solution was allowed to evaporate. After a few days, colourless crystals of **7** separated out from the mother liquid.

2.1.8. Cocrystal 8. 4-Amino-5-chloro-2,6-dimethylpyrimidine (39 mg) and 3-methylbenzoic acid (34 mg) were dissolved in hot ethanol (1:1 molar ratio) and warmed over a water bath

for half an hour. The clear solution was allowed to evaporate. After a few days, colourless crystals of 8 separated out from the mother liquid.

2.1.9. Cocrystal 9. 4-Amino-5-chloro-2,6-dimethylpyrimidine (39 mg) and 4-methylbenzoic acid (34 mg) were dissolved in hot ethanol (1:1 molar ratio) and warmed over a water bath for half an hour. The clear solution was allowed to evaporate. After a few days, colourless crystals of 9 separated out from the mother liquid.

2.1.10. Cocrystal 10. 4-Amino-5-chloro-2,6-dimethylpyrimidine (39 mg) and 4-aminobenzoic acid (34 mg) were dissolved in hot ethanolic solution (1:1 molar ratio) and warmed over a water bath for half an hour. The clear solution was allowed to evaporate. After a few days, colourless crystals of **10** separated out from the mother liquid.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. For cocrystals 1, 2 and 5, the N-H and O-H hydrogens were located in difference Fourier maps and refined isotropically. All other H atoms were placed in calculated positions and refined using a riding-model approximation, with C-H = 0.95 (CH) or 0.98 Å (CH₃). Isotropic displacement parameters for these atoms were set at $1.2U_{eq}$ (for CH) or $1.5U_{eq}$ (for CH₃) of the parent atom. Idealized methyl H atoms were refined as rotating groups. There are larger than expected residual density peaks close to the Cl and S atoms, but these are not chemically sensible and are assumed to be related to the quality of the crystal. For crystals 3, 4 and 6-10, the N-H and O-H hydrogens were located in difference Fourier maps and refined isotropically. All other H atoms were placed in calculated positions and refined using a riding-model approximation, with C-H = 0.95(for H) or 0.98 Å (for CH₃). Isotropic displacement parameters for these atoms were set at $1.2U_{eq}$ (for CH) or $1.5U_{eq}$ (for CH₃) of the parent atom. Idealized methyl H atoms were refined as rotating groups.

3. Results and discussion

The carboxylic acids and 4-amino-5-chloro-2,6-dimethylpyrimidine used in the present study are shown in Schemes 1 and 2. In the crystal structures of 1–10 (except 7), the asymmetric unit contains a molecule of 4-amino-5-chloro-2,6-dimethylpyrimidine and a molecule of the carboxylic acid, whereas in the crystal structure of 7, the asymmetric unit contains two molecules of the pyrimidine base and two molecules of the carboxylic acid. Views of the asymmetric units in each of the ten compounds are shown in Figs. 1-10. In all of the ten cocrystals, the carboxyl H atom was located in a difference Fourier map. The bond lengths and angles of the carboxyl group are similar to those reported for a typical carboxyl group rather than a carboxylate group. In the first series of cocrystals, i.e. 1-4, the carboxyl hydroxy group (-OH) is hydrogen bonded to atom N1 (O-H···N1) of the corresponding pyrimidine (single point supramolecular synthon).

Figure 1

The asymmetric unit of cocrystal **1**, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Dashed lines represent hydrogen bonds.

The asymmetric unit of cocrystal **2**, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Dashed lines represent hydrogen bonds.

The asymmetric unit of cocrystal **3**, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Dashed lines represent hydrogen bonds.

The asymmetric unit of cocrystal **4**, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Dashed lines represent hydrogen bonds.

research papers

Figure 5

The asymmetric unit of cocrystal **5**, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Dashed lines represent hydrogen bonds.

Figure 6

The asymmetric unit of cocrystal 6, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Dashed lines represent hydrogen bonds.

Figure 7

The asymmetric unit of cocrystal **7**, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Dashed lines represent hydrogen bonds.

The inversion-related stacked pyrimidines [pyrimidine–pyrimidine stacking interactions with a centroid-to-centroid $(Cg1\cdots Cg1)$ distance and a slip angle (the angle between the centroid vector and the normal to the plane) of 3.7050 (9) Å and 21.52°, respectively, for **1**, 3.6228 (13) Å and 21.69° for **2**, 3.7374 (16) Å and 24.71° for **3**, and 3.5182 (9) Å and 19.73° for **4**] are doubly bridged by the carboxyl groups *via* N–H···O and O–H···N hydrogen bonds to form a large cage-like

The asymmetric unit of cocrystal $\mathbf{8}$, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Dashed lines represent hydrogen bonds.

Figure 9

The asymmetric unit of cocrystal **9**, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Dashed lines represent hydrogen bonds.

Figure 10

The asymmetric unit of cocrystal **10**, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Dashed lines represent hydrogen bonds.

View of the large cage-like tetrameric unit in cocrystal **1**, with an $R_4^2(20)$ graph-set ring motif, and the π - π interactions between nearby pyrimidine moieties ($Cg1 \cdots Cg1$ centroid-to-centroid interaction; Cg1 is the centroid of the N1A/C1A/N3A/C4A-C6A ring). Dashed lined indicate intermolecular N-H···O and O-H···N hydrogen bonds. Generic centroid labels without symmetry codes have been used.

research papers

View of the large cage-like tetrameric unit in cocrystal **2**, with an $R_4^2(20)$ graph-set ring motif and $\pi - \pi$ interactions between nearby pyrimidine moieties ($Cg1 \cdots Cg1$ centroid-to-centroid interaction; Cg1 is the centroid of the N1A/C1A/N3A/C4A-C6A ring). Dashed lined indicate intermolecular N-H···O and O-H···N hydrogen bonds. Generic centroid labels without symmetry codes have been used.

Figure 13

View of the large cage-like tetrameric unit in cocrystal **3**, with an $R_4^2(20)$ graph-set ring motif and $\pi - \pi$ interactions between nearby pyrimidine moieties ($Cg1 \cdots Cg1$ centroid-to-centroid interaction; Cg1 is the centroid of the N1A/C1A/N3A/C4A-C6A ring). Dashed lined indicate intermolecular N-H···O and O-H···N hydrogen bonds. Generic centroid labels without symmetry codes have been used.

Figure 14

View of the large cage-like tetrameric unit in cocrystal **4**, with an $R_4^2(20)$ graph-set ring motif and $\pi - \pi$ interactions between nearby pyrimidine moieties ($Cg1 \cdots Cg1$ centroid-to-centroid interaction; Cg1 is the centroid of the N1A/C1A/N3A/C4A-C6A ring). Dashed lined indicate intermolecular N-H···O and O-H···N hydrogen bonds. Generic centroid labels without symmetry codes have been used.

Figure 15

Crystal packing for cocrystal 1, viewed along the *a* axis. Cage-like tetrameric units with $R_4^2(20)$ graph-set ring motifs are connected *via* base pairing through a pair of N-H···O and O-H···N hydrogen bonds (dashed lines), generating $R_2^2(8)$ ring motifs forming chains along (010). H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 16

Crystal packing for cocrystal **2**, viewed along the *b* axis. Cage-like tetrameric units with $R_4^2(20)$ graph-set ring motifs are connected *via* base pairing through a pair of N-H···O and O-H···N hydrogen bonds (dashed lines), generating $R_2^2(8)$ ring motifs forming chains along (110). H atoms not involved in hydrogen bonding have been omitted for clarity.

tetrameric unit with an $R_4^2(20)$ graph-set ring motif (Figs. 11– 14). The tetrameric units are further connected *via* base pairing through a pair of N-H···N hydrogen bonds, generating an $R_2^2(8)$ motif (supramolecular homosynthon) to form a single block (Figs. 15–18).

Crystal packing for cocrystal **3**, viewed along the *a* axis. Cage-like tetrameric units with $R_4^2(20)$ graph-set ring motifs are connected *via* base pairing through a pair of N-H···O and O-H···N hydrogen bonds (dashed lines), generating $R_2^2(8)$ ring motifs forming chains along (110). H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 18

Crystal packing for cocrystal **4**, viewed along the *a* axis. Cage-like tetrameric units with $R_4^2(20)$ graph-set ring motifs are further connected *via* base pairing through a pair of N-H···O and O-H···N hydrogen bonds (dashed lines), generating $R_2^2(8)$ ring motifs forming chains along (110). H atoms not involved in hydrogen bonding have been omitted for clarity.

In the second series of cocrystals, *i.e.* **5–10**, the carboxyl group interacts with atom N3 and the adjacent 4-amino group of the corresponding pyrimidine moiety *via* O–H···N and N–H···O hydrogen bonds to generate the robust $R_2^2(8)$ supramolecular heterosynthon. These heterosynthons are further connected by N–H···N hydrogen-bond interactions

Figure 19

Crystal packing for cocrystal 5, viewed along the *a* axis. Adjacent heterosynthons are connected by $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds (dashed lines), forming one-dimensional chains along (001). The heterosynthon occurs through a pair of $N-H\cdots N$ and $O-H\cdots N$ hydrogen bonds (dashed lines), generating $R_2^2(8)$ ring motifs directed along (010). H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 20

Crystal packing for cocrystal **6**, viewed along the *a* axis. Adjacent heterosynthons are connected by $N-H\cdots O$ hydrogen bonds (dashed lines), forming one-dimensional chains along (001). The heterosynthon occurs through a pair of $N-H\cdots N$ and $O-H\cdots N$ hydrogen bonds (dashed lines), generating $R_2^2(8)$ ring motifs directed along (010). H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal packing for cocrystal 7, viewed along the *a* axis. Adjacent heterosynthons are connected by $N-H\cdots N$ hydrogen bonds (dashed lines), forming one-dimensional chains along (001). The heterosynthon occurs through a pair of $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds (dashed lines), generating $R_2^2(8)$ ring motifs directed along (010). H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal packing for cocrystal **8**, viewed along the *c* axis. Adjacent heterosynthons are connected by $N-H\cdots N$ hydrogen bonds (dashed lines), forming one-dimensional chains along (010). The heterosynthon occurs through a pair of $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds (dashed lines), generating $R_2^2(8)$ ring motifs directed along (100). H atoms not involved in hydrogen bonding have been omitted for clarity.

research papers

Figure 23

Crystal packing for cocrystal 9, viewed along the *a* axis. Adjacent heterosynthons are connected by $N-H\cdots N$ hydrogen bonds (dashed lines), forming one-dimensional chains along (001). The heterosynthon occurs through a pair of $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds (dashed lines), generating $R_2^2(8)$ ring motifs directed along (010). H atoms not involved in hydrogen bonding have been omitted for clarity.

in a linear fashion to form a chain-like arrangement (Figs. 19–24). The occurrence of two series of cocrystals (depending upon the carboxyl –OH binding with N1 or N3) is reminiscent of the occurrence of two types of protonation (N1 or N3) in 6-amino-5-chloro-2,4-dimethylpyrimidin-1-ium 5-chloro-2-hydroxybenzoate, **I**, and 4-amino-5-chloro-2,6-dimethylpyrimidin-1-ium 5-chloro-2-hydroxybenzoate, **II** (Rajam *et al.*, 2017).

In the crystal structure of **1**, neighbouring blocks of the tetrameric units are connected by weak Br····Br halogen bonding [3.5693 (3) Å; Mukherjee & Desiraju, 2014; Tothadi *et al.*, 2013] and a C-H···Br hydrogen-bond interaction. In addition to this, π - π stacking interactions are present between the thiophene rings, with an observed interplanar distance of 3.504 Å, a centroid-to-centroid ($Cg2 \cdots Cg2$; Cg2 is the cen-

Figure 24

Crystal packing for cocrystal **10**, viewed along the *a* axis. Adjacent heterosynthons are connected by $N-H\cdots N$ hydrogen bonds (dashed lines), forming one-dimensional chains along (001). The heterosynthon occurs through a pair of $N-H\cdots O$ and $O-H\cdots N$ hydrogen bonds (dashed lines), generating $R_2^2(8)$ ring motifs directed along (010). H atoms not involved in hydrogen bonding have been omitted for clarity.

An overall packing view of cocrystal **1** containing large cage-like tetrameric units with $R_4^2(20)$ graph-set ring motifs derived from intermolecular N—H···O and O—H···N hydrogen bonds (dashed lines) and π - π interactions between nearby pyrimidine moieties. Neighbouring blocks are connected by weak Br(acid)···Br(acid), C—H···Br and $\pi(acid)$ - $\pi(acid)$ (Cg2···Cg2) stacking of thiophene (pink) moieties. H atoms not involved in hydrogen bonding have been omitted for clarity. Generic atom and centroid labels without symmetry codes are shown

troid of the S1*B*/C2*B*–C5*B* ring) distance of 3.6133 (10) Å and a slip angle (the angle between the centroid vector and the normal to the plane) of 14.15° , stabilizing the crystal structure and forming a three-dimensional superstructure (Fig. 25).

For the crystal structure of **2**, neighbouring blocks of the tetrameric units are connected by weak Cl···Cl halogen bonds [3.3736 (9) Å; Mukherjee & Desiraju, 2014; Tothadi *et al.*, 2013] and C—H···Cl hydrogen-bond interactions. In addition to this, π - π interactions are observed between the thiophene rings, with an observed interplanar distance of 3.493 Å, a centroid-to-centroid (Cg2···Cg2; Cg2 is the centroid of the S1B/C2B-C5B ring) distance of 3.8466 (14) Å and a slip angle of 24.77° (Fig. 26).

In the crystal structure of **3**, neighbouring blocks of the tetrameric units are connected by a Cl···Cl halogen bond [3.4967 (9) Å; Mukherjee & Desiraju, 2014; Tothadi *et al.*, 2013]. In addition to this, π - π stacking interactions between the benzene rings, with an observed interplanar distance of 3.477 Å, a centroid-to-centroid ($Cg2 \cdot \cdot Cg2$; Cg2 is the centroid of the C1*B*-C6*B* ring) distance of 3.8815 (17) Å and a slip angle of 26.39°, are also present to stabilize the supra-molecular architecture (Fig. 27).

In the crystal structure of **4**, neighbouring blocks of the tetrameric units are connected by aromatic $C-H\cdots\pi$ interactions, with the distance from the proton to the acceptor ring, *i.e.* (C4*B*-)H4*BA*···*Cg*2, being 2.66 Å (*Cg*2 is the centroid of the C1*B*-C6*B* ring), forming a three-dimensional superstructure (Fig. 28).

In the crystal structure of 5, two inversion-related heterotetramers are connected through $N-H\cdots N$ hydrogen bonds

Figure 26

An overall packing view of cocrystal **2** containing large cage-like tetrameric units with $R_4^2(20)$ graph-set ring motifs derived from intermolecular N-H···O and O-H···N hydrogen bonds (dashed lines) and π - π interactions between nearby pyrimidine moieties. Neighbouring blocks are connected by weak Cl(acid)···Cl(acid), C-H···Cl and π (acid)- π (acid) ($Cg_2\cdots Cg_2$) stacking of thiophene (pink) moieties. H atoms not involved in hydrogen bonding have been omitted for clarity. Generic atom and centroid labels without symmetry codes are shown

and a Cl···O halogen bond (3.2022 Å; Mukherjee & Desiraju, 2014; Lu *et al.*, 2009) to form a cyclic ring motif. In addition to this, π - π stacking interactions between the pyrimidine and the acid ring, with an observed interplanar distance of 3.520 Å, a centroid-to-centroid (Cg1···Cg2; Cg1 is the centroid of the N1A/C2A/N3A/C4A-C6A ring and Cg2 is the centroid of the S1B/C1B-C5B ring) distance of 3.8002 (16) Å and a slip angle of 21.06°, are also present to stabilize the crystal structure (Fig. 29).

In the crystal structure of 6, the hydrogen-bonded ring is formed by the interconnection of two inversion-related heterotetramers through $N-H\cdots N$ hydrogen bonds and a Cl···O halogen bond (2.9926 Å; Mukherjee & Desiraju, 2014; Lu *et al.*, 2009) (Fig. 30).

In the crystal structure of **7**, two of the heterotetramers are connected through N-H···N hydrogen bonds and a Cl···O halogen bond [3.121 (18) Å; Mukherjee & Desiraju, 2014; Lu *et al.*, 2009] to form a cyclic ring. Two distinct π - π stacking interactions between pyrimidine/pyrimidine [with an observed interplanar distance of 3.429 Å, a centroid-to-centroid (*Cg*1···*Cg*2; *Cg*1 is the centroid of the N1*A*/C2*A*/N3*A*/C4*A*-C6*A* ring and *Cg*2 is the centroid of the N1*B*/C2*B*/N3*B*/C4*B*-C6*B* ring) distance of 3.6946 (15) Å and slip angle of 21.87°] and acid/acid [with an observed interplanar distance of

Figure 27

An overall packing view of cocrystal **3** containing large cage-like tetrameric units with $R_4^2(20)$ graph-set ring motifs derived from intermolecular N-H···O and O-H···N hydrogen bonds (dashed lines) and π - π interactions, *i.e.* Cg1···Cg1 centroid-to-centroid interactions (blue), of nearby pyrimidine moieties. Neighbouring blocks are further connected by weak Cl(pyrimidine)···Cl(acid), C-H···Cl and $\pi(acid)-\pi(acid)$ (Cg2···Cg2) stacking of phenyl (pink) moieties. H atoms not involved in hydrogen bonding have been omitted for clarity. Generic atom and centroid labels without symmetry codes are shown

Figure 28

An overall packing view of cocrystal **4** containing large cage-like tetrameric units with $R_4^2(20)$ graph-set ring motifs derived from intermolecular N-H···O and O-H···N hydrogen bonds (dashed lines) and π - π interactions, *i.e.* Cg1···Cg1 centroid-to-centroid interactions (blue), of nearby pyrimidine moieties. Neighbouring blocks are connected by weak Cg2··· π interactions (C-H···Cg2, pink) of nearby phenyl moieties (dashed lines) contribute to form a three-dimensional superstructure. H atoms not involved in hydrogen bonding have been omitted for clarity. Generic atom and centroid labels without symmetry codes are shown

3.353 Å, a centroid-to-centroid ($Cg3 \cdots Cg4$; Cg3 is the centroid of the C1*C*-C6*C* ring and Cg4 is the centroid of the C1*D*-C6*D* ring) distance of 3.6319 (17) Å and a slip angle of 22.61°] are also observed (Fig. 31).

In the crystal structure of **8**, two of the inversion-related heterotetramers are connected through $N-H\cdots N$ and C-

Figure 29

An overall packing view of cocrystal **5**, viewed along the *c* axis, containing large cage-like hydrogen bonded units with $R_4^4(24)$ graph-set ring motifs derived from intermolecular N-H···N and O-H···N hydrogen bonds (dashed lines) connecting the pyrimidine (blue) and thiophene (pink) rings and C-Cl···O intermolecular interactions which are displayed. Additional weak π - π Cg1(pyrimidine)···Cg2(thiophene) intermolecular interactions are also present forming a two-dimensional network along (001). H atoms not involved in hydrogen bonding have been omitted for clarity

H···O hydrogen-bond interactions to form a cyclic ring motif. π - π stacking interactions between the pyrimidine rings, with an observed interplanar distance of 3.508 Å, a centroid-tocentroid ($Cg_1 \cdots Cg_1$; Cg_1 is the centroid of the N1A/C2A/

An overall packing view of cocrystal 6, viewed along the *c* axis, containing large cage-like hydrogen bonded units with $R_4^4(24)$ graph-set ring motifs derived from intermolecular N-H···N and O-H···N hydrogen bonds (dashed lines) connecting the pyrimidine and phenyl rings and C-Cl···O intermolecular interactions which are displayed. Additional weak π - π Cg1(pyrimidine)···Cg2(phenyl) intermolecular interactions (not indicated) are also present forming a two-dimensional network along (001). H atoms not involved in hydrogen bonding have been omitted for clarity

research papers

Figure 31

An overall packing view of cocrystal **7**, viewed along the *c* axis containing large cage-like hydrogen bonded units with $R_4^4(20)$ graph-set ring motifs derived from intermolecular N-H···N and O-H···N hydrogen bonds (dashed lines) connecting the pyrimidine and phenyl rings and C-Cl···O intermolecular interactions which are displayed. Additional weak π - π Cg(pyrimidine)···Cg2(phenyl) intermolecular interactions (not indicated) are also present forming a two-dimensional network along (001). H atoms not involved in hydrogen bonding have been omitted for clarity

N3A/C4A–C6A ring) distance of 3.6145 (7) Å and a slip angle of 13.91° , are also observed (Fig. 32).

In the crystal structure of **9**, two inversion-related heterotetramers are connected through N-H···N and C-H···O hydrogen-bond interactions to form a cyclic ring motif. In addition to this, π – π stacking interactions between the pyrimidine moiety and the acid ring, with an observed interplanar distance of 3.384 Å, a centroid-to-centroid (*Cg*1···*Cg*2; *Cg*1 is the centroid of the N1*A*/C2*A*/N3*A*/C4*A*–C6*A* ring and *Cg*2 is the centroid of the C1*B*–C6*B* ring) distance of 3.6186 Å and a slip angle of 18.94° are also present to help stabilize the crystal structure (Fig. 33).

Figure 32

An overall packing view of cocrystal **8**, viewed along the *c* axis, containing large cage-like hydrogen-bonded units with $R_8^8(34)$ graph-set ring motifs derived from intermolecular N-H···N and O-H···N hydrogen bonds (dashed lines) connecting the pyrimidine and phenyl rings and N-H···N intermolecular interactions which are displayed. Additional weak π - π Cg1(pyrimidine)···Cg1(pyrimidine) intermolecular interactions (not indicated) are also present forming a two-dimensional network along (010). H atoms not involved in hydrogen bonding have been omitted for clarity

Figure 33

An overall packing view of cocrystal 9, viewed along the *c* axis containing large cage-like hydrogen bonded units with $R_8^8(34)$ graph-set ring motifs derived from intermolecular N-H···N and O-H···N hydrogen bonds (dashed lines) connecting the pyrimidine and phenyl rings and N-H···N intermolecular interactions which are displayed. Additional weak π - π Cg1(pyrimidine)···Cg2(phenyl) intermolecular interactions are also present forming a two-dimensional network along (111). H atoms not involved in hydrogen bonding have been omitted for clarity

In the crystal structure of **10**, two of the inversion-related heterotetramers are connected through $N-H\cdots N$ and $N-H\cdots O$ hydrogen-bond interactions to form a cyclic ring motif. In addition to this, $\pi-\pi$ stacking interactions between the rings of the pyrimidine and acid molecules are observed, with an

An overall packing view of cocrystal **10**, viewed along the *c* axis containing large cage-like hydrogen-bonded units with $R_8^8(34)$ graph-set ring motifs derived from intermolecular N-H···N and O-H···N hydrogen bonds (dashed lines) connecting the pyrimidine and phenyl rings and N-H···N intermolecular interactions which are displayed. Additional weak π - π Cg1(pyrimidine)···Cg2(phenyl) intermolecular interactions are also present forming a two-dimensional network along (111). H atoms not involved in hydrogen bonding have been omitted for clarity

It is very interesting to observe two series of cocrystals involving 4-amino-5-chloro-2,6-dimethylpyrimidine and carboxylic acids. In one series of cocrystals, the carboxyl hydroxy group (-OH) is hydrogen bonded to atom N1 (O-H \cdots N1) of the corresponding pyrimidine ring (single point supramolecular synthon). In the other series, the carboxyl group interacts with atom N3 and the adjacent 4-amino group of the corresponding pyrimidine via O-H···N and N-H···O hydrogen bonds to generate a robust $R_2^2(8)$ supramolecular heterosynthon. This is similarly reminiscent of two types of protonation, at N1 or N3 of 4-amino-5-chloro-2,6-dimethylpyrimidine, reported recently (Rajam et al., 2017). Further studies may reveal whether each of the cocrystals of one series will have a polymorphic form corresponding to the other series of cocrystals, similar to the cation tautomerism reported for this type of pyrimidine interaction (Rajam et al., 2017).

Acknowledgements

PTM thanks UGC, New Delhi, for a UGC–Emeritus Fellowship. The authors acknowledge funding from Youngstown State University and the assistance of Dr Matthias Zeller of Youngstown State University (now at Purdue University) in the collection of the diffraction data (for crystals **1**, **2** and **5**). RJB wishes to acknowledge the assistance of the University of Canterbury in allowing him to use their diffractometer during a visit in May 2015 (for crystals **3**, **4** and **6–10**).

Funding information

Funding for this research was provided by: National Science Foundation (grant No. DMR 1337296, funds to purchase the diffractometer at Youngstown State University; grant No. CHE 0087210); Ohio Board of Regents (grant No. CAP-491).

References

- Aakeröy, C. B., Schultheiss, N. C., Rajbanshi, A., Desper, J. & Moore, C. (2009). Cryst. Growth Des. 9, 432–441.
- Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
- Baldrighi, M., Cavallo, G., Chierotti, M. R., Gobetto, R., Metrangolo, P., Pilati, T., Resnati, G. & Terraneo, G. (2013). *Mol. Pharm.* 10, 1760–1772.
- Baskar Raj, S., Muthiah, P. T., Rychlewska, U. & Warzajtis, B. (2003). *CrystEngComm*, **5**, 48–53.

- Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). *Chem. Rev.* **116**, 2478–2601.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Ebenezer, S. & Muthiah, P. T. (2012). Cryst. Growth Des. 12, 3766–3785.
- Ebenezer, S., Muthiah, P. T. & Butcher, R. J. (2011). Cryst. Growth Des. 11, 3579–3592.
- García-Raso, A., Albertí, F. M., Fiol, J. J., Tasada, A., Barceló-Oliver, M., Molins, E., Estarellas, C., Frontera, A., Quiñonero, D. & Deyà, P. M. (2009). *Cryst. Growth Des.* 9, 2363–2376.
- Griffini, G., Brambilla, L., Levi, M., Castiglioni, C., Del Zoppo, M. & Turri, S. (2014). RSC Adv. 4, 9893–9897.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Jennifer, S. J. & Muthiah, P. T. (2014). *Chem. Cent. J.* **8**, article number 20.
- Karthikeyan, A., Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2015). *Acta Cryst.* C71, 985–990.
- Lu, Y., Shi, T., Wang, Y., Yang, H., Yan, X., Luo, X., Jiang, H. & Zhu, W. (2009). J. Med. Chem. 52, 2854–2862.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Metrangolo, P. & Resnati, G. (2012). Cryst. Growth Des. 12, 5835-5838.
- Mukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375–1385.
- Nandi, G., Titi, H. M. & Goldberg, I. (2014). Cryst. Growth Des. 14, 3557–3566.
- Oxford Diffraction (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rajam, A., Muthiah, P. T., Butcher, R. J. & Jasinski, J. P. (2015). Acta Cryst. E71, 0479–0480.
- Rajam, A., Muthiah, P. T., Butcher, R. J., Jasinski, J. P. & Glidewell, C. (2017). Acta Cryst. C73, 862–868.
- Selvam, T. P., James, C. R., Dniandev, V. & Valzita, S. K. (2012). *Res. Pharm.* **2**, 1–9.
- Sharma, V., Chitranshi, C. & Agarwal, A. K. (2014). Int. J. Med. Chem. article number 202784.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stanley, N., Sethuraman, V., Muthiah, P. T., Luger, P. & Weber, M. (2002). Cryst. Growth Des. 2, 631–635.
- Swinton Darious, R., Thomas Muthiah, P. & Perdih, F. (2017). Acta Cryst. C73, 743–748.
- Tamilselvi, D. & Muthiah, P. T. (2011). Acta Cryst. C67, o192o194.
- Tothadi, S., Joseph, S. & Desiraju, G. R. (2013). Cryst. Growth Des. 13, 3242–3254.
- Zhu, W., Zheng, R., Fu, X., Fu, H., Shi, Q., Zhen, Y., Dong, H. & Hu, W. (2015). Angew. Chem. Int. Ed. 54, 6785–6789.

Acta Cryst. (2018). C74, 1007-1019 [https://doi.org/10.1107/S2053229618009154]

Design of two series of 1:1 cocrystals involving 4-amino-5-chloro-2,6-dimethylpyrimidine and carboxylic acids

Ammaiyappan Rajam, Packianathan Thomas Muthiah, Raymond John Butcher, Jerry P. Jasinski and Jan Wikaira

Computing details

Data collection: APEX2 (Bruker, 2014) for COCRYSTAL-1, COCRYSTAL-2, COCRYSTAL-5; CrysAlis PRO (Agilent, 2014) for COCRYSTAL-3, COCRYSTAL-6, COCRYSTAL-7, COCRYSTAL-8, COCRYSTAL-9, COCRYSTAL-10; CrysAlis PRO (Oxford Diffraction, 2011) for COCRYSTAL-4. Cell refinement: SAINT (Bruker, 2014) for COCRYSTAL-1, COCRYSTAL-2; CrysAlis PRO (Agilent, 2014) for COCRYSTAL-3, COCRYSTAL-6, COCRYSTAL-7, COCRYSTAL-8, COCRYSTAL-9, COCRYSTAL-10; CrysAlis PRO (Oxford Diffraction, 2011) for COCRYSTAL-4; SAINT (Bruker, 2013) for COCRYSTAL-5. Data reduction: SAINT (Bruker, 2014) for COCRYSTAL-1, COCRYSTAL-2; CrysAlis PRO (Agilent, 2014) for COCRYSTAL-3, COCRYSTAL-6, COCRYSTAL-7, COCRYSTAL-8, COCRYSTAL-9, COCRYSTAL-10; CrysAlis PRO (Oxford Diffraction, 2011) for COCRYSTAL-4; SAINT (Bruker, 2013) for COCRYSTAL-5. Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for COCRYSTAL-1, COCRYSTAL-2, COCRYSTAL-5; SHELXT (Sheldrick, 2015a) for COCRYSTAL-3, COCRYSTAL-4, COCRYSTAL-6, COCRYSTAL-7, COCRYSTAL-8, COCRYSTAL-9, COCRYSTAL-10. Program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b) for COCRYSTAL-1, COCRYSTAL-2; SHELXL2014 (Sheldrick, 2015b) for COCRYSTAL-3, COCRYSTAL-4, COCRYSTAL-6, COCRYSTAL-7, COCRYSTAL-8, COCRYSTAL-9, COCRYSTAL-10; SHELXL2014 (Sheldrick, 2015b) and shelXle (Hübschle et al., 2011) for COCRYSTAL-5. Molecular graphics: SHELXTL (Sheldrick, 2008) for COCRYSTAL-1, COCRYSTAL-2, COCRYSTAL-3, COCRYSTAL-4, COCRYSTAL-7, COCRYSTAL-8, COCRYSTAL-9, COCRYSTAL-10; SHELXT (Sheldrick, 2008) for COCRYSTAL-6. Software used to prepare material for publication: SHELXTL (Sheldrick, 2008) for COCRYSTAL-1, COCRYSTAL-2, COCRYSTAL-3, COCRYSTAL-4, COCRYSTAL-7, COCRYSTAL-8, COCRYSTAL-9, COCRYSTAL-10; SHELXT (Sheldrick, 2008) for COCRYSTAL-6.

4-Amino-5-chloro-2,6-dimethylpyrimidine-3-bromothiophene-2-carboxylic acid (1/1) (COCRYSTAL-1)

Crystal data	
$C_5H_3BrO_2S \cdot C_6H_8ClN_3$	Z = 2
$M_r = 364.65$	F(000) = 364
Triclinic, P1	$D_{\rm x} = 1.799 { m Mg} { m m}^{-3}$
a = 7.5237 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 7.5739 (4) Å	Cell parameters from 9311 reflections
c = 12.5089 (7) Å	$\theta = 2.8 - 33.2^{\circ}$
$\alpha = 79.629 \ (2)^{\circ}$	$\mu = 3.41 \text{ mm}^{-1}$
$\beta = 79.596 \ (2)^{\circ}$	T = 100 K
$\gamma = 75.895 \ (2)^{\circ}$	Block, colourless
$V = 673.00 (6) Å^3$	$0.31 \times 0.27 \times 0.21 \text{ mm}$

Data collection

Bruker D8 Quest CMOS	13063 measured reflections
diffractometer	5103 independent reflections
Radiation source: I-mu-S microsource X-ray	4471 reflections with $I > 2\sigma(I)$
tube	$R_{int} = 0.032$
ω and phi scans	$\theta_{max} = 33.2^{\circ}, \ \theta_{min} = 2.8^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 10$
(APEX2; Bruker, 2014)	$k = -11 \rightarrow 11$
$T_{min} = 0.539, T_{max} = 0.747$	$l = -19 \rightarrow 19$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: mixed
$wR(F^2) = 0.070$	H atoms treated by a mixture of independent
S = 1.04	and constrained refinement
5103 reflections	$w = 1/[\sigma^2(F_o^2) + (0.010P)^2 + 0.8813P]$
187 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.67$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.52$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	0.17359 (2)	-0.20786 (2)	0.99807 (2)	0.01468 (5)	
S1	0.71218 (6)	-0.09607 (6)	0.83962 (4)	0.01414 (9)	
O1B	0.4649 (2)	0.1721 (2)	0.71276 (12)	0.0203 (3)	
H1A	0.396 (5)	0.264 (5)	0.673 (3)	0.050 (10)*	
O2B	0.1948 (2)	0.1035 (2)	0.79633 (13)	0.0221 (3)	
C1B	0.3626 (3)	0.0767 (2)	0.78633 (15)	0.0134 (3)	
C2B	0.4747 (2)	-0.0686 (2)	0.85783 (14)	0.0113 (3)	
C3B	0.4191 (2)	-0.1903 (2)	0.94601 (15)	0.0108 (3)	
C4B	0.5662 (2)	-0.3038 (2)	0.99870 (15)	0.0131 (3)	
H4AA	0.550993	-0.393948	1.061103	0.016*	
C5B	0.7327 (3)	-0.2678 (2)	0.94879 (16)	0.0156 (3)	
H5AA	0.847630	-0.331186	0.972153	0.019*	
Cl1	0.20623 (6)	0.53889 (6)	0.26918 (4)	0.01714 (9)	
N1A	0.2875 (2)	0.4395 (2)	0.58151 (13)	0.0135 (3)	
C1A	0.2123 (2)	0.6060 (2)	0.61071 (15)	0.0128 (3)	
N3A	0.1304 (2)	0.7519 (2)	0.54593 (13)	0.0127 (3)	
N4A	0.0334 (2)	0.8728 (2)	0.37794 (14)	0.0146 (3)	
H4B1	-0.013 (4)	0.970 (4)	0.401 (2)	0.027 (7)*	
H4B2	0.012 (4)	0.856 (4)	0.318 (2)	0.027 (7)*	
C4A	0.1219 (2)	0.7307 (2)	0.44175 (14)	0.0111 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C5A	0.2057 (2)	0.5596 (2)	0.40456 (14)	0.0117 (3)		
C6A	0.2853 (2)	0.4153 (2)	0.47652 (15)	0.0129 (3)		
C7A	0.2190 (3)	0.6288 (3)	0.72665 (16)	0.0184 (4)		
H7BA	0.346202	0.583683	0.742949	0.028*		
H7BB	0.137498	0.558307	0.777376	0.028*		
H7BC	0.177617	0.759176	0.735254	0.028*		
C8A	0.3708 (3)	0.2269 (3)	0.44675 (17)	0.0193 (4)		
H8B1	0.413316	0.144726	0.511493	0.029*	0.50 (3)	
H8B2	0.476348	0.233326	0.388531	0.029*	0.50 (3)	
H8B3	0.278688	0.179407	0.420768	0.029*	0.50 (3)	
H8B4	0.376237	0.229615	0.367619	0.029*	0.50 (3)	
H8B5	0.295740	0.140367	0.486933	0.029*	0.50 (3)	
H8B6	0.496375	0.187476	0.466240	0.029*	0.50 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U^{23}
Br1	0.01179 (8)	0.01544 (8)	0.01657 (9)	-0.00349 (6)	-0.00291 (6)	-0.00006 (6)
S 1	0.01211 (18)	0.01347 (19)	0.0168 (2)	-0.00285 (14)	-0.00211 (15)	-0.00203 (15)
O1B	0.0187 (6)	0.0178 (6)	0.0202 (7)	-0.0021 (5)	-0.0034 (5)	0.0064 (5)
O2B	0.0174 (6)	0.0246 (7)	0.0219 (8)	-0.0032 (5)	-0.0092 (6)	0.0072 (6)
C1B	0.0168 (8)	0.0131 (7)	0.0107 (8)	-0.0022 (6)	-0.0044 (6)	-0.0018 (6)
C2B	0.0122 (7)	0.0107 (7)	0.0115 (8)	-0.0014 (6)	-0.0042 (6)	-0.0018 (6)
C3B	0.0104 (7)	0.0098 (7)	0.0131 (8)	-0.0016 (5)	-0.0033 (6)	-0.0034 (6)
C4B	0.0161 (7)	0.0106 (7)	0.0139 (8)	-0.0024 (6)	-0.0075 (6)	-0.0002 (6)
C5B	0.0147 (7)	0.0130 (8)	0.0196 (9)	-0.0008 (6)	-0.0076 (7)	-0.0019 (6)
Cl1	0.0222 (2)	0.0184 (2)	0.01073 (19)	-0.00160 (16)	-0.00411 (16)	-0.00395 (15)
N1A	0.0160 (7)	0.0110 (6)	0.0125 (7)	-0.0013 (5)	-0.0039 (5)	0.0004 (5)
C1A	0.0138 (7)	0.0125 (7)	0.0118 (8)	-0.0030 (6)	-0.0034 (6)	0.0006 (6)
N3A	0.0156 (7)	0.0112 (6)	0.0111 (7)	-0.0026 (5)	-0.0035 (5)	-0.0004(5)
N4A	0.0205 (7)	0.0100 (7)	0.0123 (7)	0.0002 (6)	-0.0063 (6)	-0.0002(5)
C4A	0.0112 (7)	0.0110 (7)	0.0111 (7)	-0.0030 (5)	-0.0019 (6)	-0.0005 (6)
C5A	0.0146 (7)	0.0115 (7)	0.0090 (7)	-0.0025 (6)	-0.0023 (6)	-0.0012 (5)
C6A	0.0131 (7)	0.0118 (7)	0.0130 (8)	-0.0029 (6)	-0.0012 (6)	-0.0001 (6)
C7A	0.0242 (9)	0.0207 (9)	0.0106 (8)	-0.0035 (7)	-0.0062 (7)	-0.0012 (6)
C8A	0.0225 (9)	0.0122 (8)	0.0203 (9)	0.0017 (7)	-0.0032 (7)	-0.0023 (7)

Geometric parameters (Å, °)

Br1—C3B	1.8729 (17)	C1A—N3A	1.335 (2)	
Br1—Br1 ⁱ	3.5693 (4)	C1A—C7A	1.502 (3)	
Br1—Cl1 ⁱⁱ	3.6014 (5)	N3A—C4A	1.356 (2)	
Br1—S1 ⁱⁱⁱ	3.6656 (5)	N4A—C4A	1.331 (2)	
S1—C5B	1.7083 (19)	N4A—H4B1	0.81 (3)	
S1—C2B	1.7253 (17)	N4A—H4B2	0.83 (3)	
O1B—C1B	1.318 (2)	C4A—C5A	1.416 (2)	
O1B—H1A	0.89 (3)	C5A—C6A	1.373 (2)	
O2B—C1B	1.216 (2)	C6A—C8A	1.499 (3)	

C1B—C2B	1.479 (2)	С7А—Н7ВА	0.9800
C2B—C3B	1.377 (2)	C7A—H7BB	0.9800
C3B—C4B	1.412 (2)	C7A—H7BC	0.9800
C4B—C5B	1.362 (3)	C8A—H8B1	0.9800
C4B—H4AA	0.9500	C8A—H8B2	0.9800
C5B—H5AA	0.9500	C8A—H8B3	0.9800
C11 - C5A	1 7276 (18)	C8A—H8B4	0.9800
N1A—C1A	1.7270(10) 1.337(2)	C8A—H8B5	0.9800
N1A—C6A	1.357(2) 1.362(2)	C8A - H8B6	0.9800
	1.302 (2)		0.9800
C3B—Br1—Br1 ⁱ	118.11 (5)	C4A—N4A—H4B2	118.9 (19)
C3B—Br1—C11 ⁱⁱ	102.47 (5)	H4B1—N4A—H4B2	120 (3)
$Br1^{i}$ $Br1$ $C11^{ii}$	111 923 (11)	N4A—C4A—N3A	118 32 (16)
$C3B$ — $Br1$ — $S1^{iii}$	73 14 (5)	N4A—C4A—C5A	122.24 (16)
$Br1^{i}$ $Br1$ $S1^{iii}$	69 809 (10)	N3A - C4A - C5A	122.21(10) 119.44(15)
$C11^{ii} Br1 S1^{iii}$	73 552 (12)	C64 - C54 - C44	119.30 (16)
C5B S1 $C2B$	91.90(0)	C6A C5A C11	117.30(10) 121.77(14)
C_{1}^{1} C_{1}^{1} C_{2}^{1} C_{2	91.90(9)	$C_{0A} = C_{0A} = C_{11}$	121.77(14) 11803(12)
CIB-OIB-DIA	112(2) 12482(17)	C4A - C5A - C11	110.93 (13)
$O_{2}D = C_{1}D = O_{1}D$	124.03(17)	NIA - C(A - C)A	119.82(10)
02B— $C1B$ — $C2B$	122.74(17)	NIA = C6A = C8A	110.05 (10)
OIB—CIB—C2B	112.43 (15)	$C_{A} = C_{A} = C_{A}$	123.52 (17)
C3B—C2B—C1B	129.82 (16)	CIA - C/A - H/BA	109.5
C3B—C2B—S1	110.12 (12)	CIA—C/A—H/BB	109.5
C1B—C2B—S1	119.99 (13)	Н7ВА—С7А—Н7ВВ	109.5
C2B—C3B—C4B	113.85 (15)	C1A—C7A—H7BC	109.5
C2B—C3B—Br1	125.30 (13)	Н7ВА—С7А—Н7ВС	109.5
C4B—C3B—Br1	120.84 (13)	H7BB—C7A—H7BC	109.5
C5B—C4B—C3B	111.48 (16)	C6A—C8A—H8B1	109.5
C5B—C4B—H4AA	124.3	C6A—C8A—H8B2	109.5
C3B—C4B—H4AA	124.3	H8B1—C8A—H8B2	109.5
C4B—C5B—S1	112.65 (13)	C6A—C8A—H8B3	109.5
C4B—C5B—H5AA	123.7	H8B1—C8A—H8B3	109.5
S1—C5B—H5AA	123.7	H8B2—C8A—H8B3	109.5
C1A—N1A—C6A	118.14 (15)	C6A—C8A—H8B4	109.5
N3A—C1A—N1A	125.43 (17)	C6A—C8A—H8B5	109.5
N3A—C1A—C7A	117.73 (16)	H8B4—C8A—H8B5	109.5
N1A—C1A—C7A	116.83 (15)	C6A—C8A—H8B6	109.5
C1A—N3A—C4A	117.78 (15)	H8B4—C8A—H8B6	109.5
C4A—N4A—H4B1	121 (2)	H8B5—C8A—H8B6	109.5
	(-)		
O2B—C1B—C2B—C3B	-2.5 (3)	C3B—C4B—C5B—S1	0.7 (2)
O1B—C1B—C2B—C3B	177.09 (18)	C2B—S1—C5B—C4B	-0.41 (15)
O2B—C1B—C2B—S1	-179.15 (15)	C6A—N1A—C1A—N3A	1.6 (3)
O1B—C1B—C2B—S1	0.4 (2)	C6A—N1A—C1A—C7A	-179.29 (16)
C5B—S1—C2B—C3B	0.04 (14)	N1A—C1A—N3A—C4A	0.1 (3)
C5B—S1—C2B—C1B	177.34 (15)	C7A—C1A—N3A—C4A	-179.07 (16)
C1B—C2B—C3B—C4B	-176.64 (17)	C1A—N3A—C4A—N4A	177.07 (16)
S1—C2B—C3B—C4B	0.32 (19)	C1A—N3A—C4A—C5A	-2.6 (2)

C1B—C2B—C3B—Br1	2.0 (3)	N4A—C4A—C5A—C6A	-176.19 (17)
S1—C2B—C3B—Br1	178.93 (9)	N3A—C4A—C5A—C6A	3.4 (3)
Br1 ⁱ —Br1—C3B—C2B	-39.37 (17)	N4A—C4A—C5A—Cl1	4.3 (2)
Cl1 ⁱⁱ —Br1—C3B—C2B	-162.85 (14)	N3A—C4A—C5A—Cl1	-176.06 (13)
S1 ⁱⁱⁱ —Br1—C3B—C2B	-94.57 (15)	C1A—N1A—C6A—C5A	-0.6 (3)
Br1 ⁱ —Br1—C3B—C4B	139.14 (12)	C1A—N1A—C6A—C8A	-179.97 (16)
Cl1 ⁱⁱ —Br1—C3B—C4B	15.66 (15)	C4A—C5A—C6A—N1A	-1.8 (3)
S1 ⁱⁱⁱ —Br1—C3B—C4B	83.94 (14)	Cl1—C5A—C6A—N1A	177.67 (13)
C2B—C3B—C4B—C5B	-0.6 (2)	C4A—C5A—C6A—C8A	177.52 (17)
Br1—C3B—C4B—C5B	-179.30 (13)	Cl1—C5A—C6A—C8A	-3.0 (3)

Symmetry codes: (i) -*x*, -*y*, -*z*+2; (ii) *x*, *y*-1, *z*+1; (iii) -*x*+1, -*y*, -*z*+2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
O1 <i>B</i> —H1 <i>A</i> ···N1 <i>A</i>	0.89 (3)	1.73 (4)	2.618 (2)	172 (3)
C5 <i>B</i> —H5 <i>AA</i> ···Br1 ^{iv}	0.95	2.92	3.6281 (18)	133
$N4A$ — $H4B1$ ··· $N3A^{v}$	0.81 (3)	2.25 (3)	3.058 (2)	176 (3)
N4 A —H4 $B2$ ···O2 B^{vi}	0.83 (3)	2.23 (3)	2.965 (2)	148 (3)
C8A—H8B4…C11	0.98	2.59	3.119 (2)	114

Symmetry codes: (iv) *x*+1, *y*, *z*; (v) –*x*, –*y*+2, –*z*+1; (vi) –*x*, –*y*+1, –*z*+1.

4-Amino-5-chloro-2,6-dimethylpyrimidine-5-chlorothiophene-2-carboxylic acid (1/1) (COCRYSTAL-2)

Crystal data

 $C_{6}H_{8}ClN_{3}\cdot C_{5}H_{3}ClO_{2}S$ $M_{r} = 320.19$ Triclinic, *P*I *a* = 7.2182 (3) Å *b* = 7.6364 (3) Å *c* = 12.7516 (6) Å *a* = 90.707 (2)° *β* = 102.629 (2)° *γ* = 105.338 (2)° *V* = 659.61 (5) Å³

Data collection

Bruker D8 Quest CMOS diffractometer Radiation source: I-mu-S microsource X-ray tube ω and phi scans Absorption correction: multi-scan (APEX2; Bruker, 2014) $T_{min} = 0.477, T_{max} = 0.746$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.138$ Z = 2 F(000) = 328 $D_x = 1.612 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5911 reflections $\theta = 2.8-29.6^{\circ}$ $\mu = 0.65 \text{ mm}^{-1}$ T = 100 KRod, colourless $0.37 \times 0.19 \times 0.11 \text{ mm}$

8796 measured reflections 3636 independent reflections 2947 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$ $\theta_{max} = 29.6^{\circ}, \ \theta_{min} = 2.8^{\circ}$ $h = -10 \rightarrow 9$ $k = -10 \rightarrow 10$ $l = -17 \rightarrow 17$

S = 1.153636 reflections 187 parameters 0 restraints

Primary atom site location: structure-invariant direct methods	H atoms treated by a mixture of independent and constrained refinement
Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0554P)^2 + 0.5883P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: mixed	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.76 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1B	-0.28477 (8)	-0.34293 (8)	0.00245 (5)	0.01882 (16)	
S1B	0.04024 (8)	-0.07368 (8)	0.15616 (5)	0.01421 (15)	
O1B	0.3910 (3)	0.1819 (2)	0.29123 (14)	0.0189 (4)	
H1A	0.498 (6)	0.281 (6)	0.332 (4)	0.059 (13)*	
O2B	0.6159 (2)	0.1262 (3)	0.20660 (15)	0.0212 (4)	
C1B	0.4469 (3)	0.0974 (3)	0.21763 (19)	0.0155 (5)	
C2B	0.2832 (3)	-0.0399 (3)	0.14660 (18)	0.0133 (4)	
C3B	0.2971 (3)	-0.1483 (3)	0.06501 (19)	0.0153 (4)	
H3AA	0.418792	-0.147819	0.047805	0.018*	
C4B	0.1128 (3)	-0.2620(3)	0.00817 (19)	0.0161 (5)	
H4AA	0.096144	-0.346000	-0.050993	0.019*	
C5B	-0.0382 (3)	-0.2356 (3)	0.04925 (18)	0.0142 (4)	
Cl1A	0.94838 (8)	0.51403 (8)	0.72886 (4)	0.01724 (15)	
N1A	0.6580 (3)	0.4397 (3)	0.42204 (16)	0.0134 (4)	
C2A	0.7088 (3)	0.6114 (3)	0.39334 (18)	0.0128 (4)	
N3A	0.8311 (3)	0.7539 (3)	0.45660 (15)	0.0133 (4)	
N4A	1.0414 (3)	0.8636 (3)	0.62157 (16)	0.0144 (4)	
H4B1	1.076 (5)	0.974 (5)	0.602 (3)	0.035 (9)*	
H4B2	1.119 (4)	0.855 (4)	0.683 (3)	0.021 (8)*	
C4A	0.9120 (3)	0.7244 (3)	0.55926 (18)	0.0117 (4)	
C5A	0.8567 (3)	0.5476 (3)	0.59597 (17)	0.0119 (4)	
C6A	0.7326 (3)	0.4068 (3)	0.52538 (18)	0.0135 (4)	
C7A	0.6204 (4)	0.6424 (4)	0.27936 (19)	0.0177 (5)	
H7BA	0.652565	0.773352	0.270051	0.027*	
H7BB	0.476747	0.591891	0.264024	0.027*	
H7BC	0.674362	0.582116	0.229662	0.027*	
C8A	0.6708 (4)	0.2145 (3)	0.5550 (2)	0.0171 (5)	
H8B1	0.610279	0.133235	0.489367	0.026*	0.50 (4)
H8B2	0.574907	0.204034	0.600045	0.026*	0.50 (4)
H8B3	0.786587	0.180211	0.595054	0.026*	0.50 (4)
H8B4	0.718728	0.209791	0.632726	0.026*	0.50 (4)
H8B5	0.726639	0.137893	0.515809	0.026*	0.50 (4)

supporting information 0.169796 0.535931 0.026* 0.50 (4)

Alomic displacement parameters (A	Atomic	displ	lacement	parameters	$(Å^2$
-----------------------------------	--------	-------	----------	------------	--------

0.526406

H8B6

лютис и	uspiacemeni parai	neiers (A)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1B	0.0139 (3)	0.0185 (3)	0.0179 (3)	-0.0015 (2)	-0.0017 (2)	-0.0007 (2)
S1B	0.0142 (3)	0.0142 (3)	0.0121 (3)	0.0010 (2)	0.0022 (2)	-0.0021 (2)
O1B	0.0167 (8)	0.0180 (9)	0.0170 (9)	-0.0026 (7)	0.0025 (7)	-0.0078 (7)
O2B	0.0129 (8)	0.0256 (10)	0.0209 (9)	0.0020 (7)	-0.0009 (7)	-0.0037 (7)
C1B	0.0169 (11)	0.0118 (11)	0.0139 (11)	0.0007 (9)	-0.0007(8)	0.0001 (9)
C2B	0.0114 (10)	0.0147 (11)	0.0116 (10)	0.0018 (8)	-0.0002 (8)	0.0022 (8)
C3B	0.0141 (10)	0.0150 (11)	0.0158 (11)	0.0036 (9)	0.0022 (8)	0.0009 (9)
C4B	0.0195 (11)	0.0152 (11)	0.0099 (10)	0.0023 (9)	-0.0013 (8)	-0.0041 (9)
C5B	0.0143 (10)	0.0127 (11)	0.0118 (10)	0.0007 (8)	-0.0015 (8)	0.0001 (8)
Cl1A	0.0200 (3)	0.0183 (3)	0.0099 (3)	0.0019 (2)	0.0002 (2)	0.0015 (2)
N1A	0.0117 (9)	0.0128 (9)	0.0131 (9)	-0.0008 (7)	0.0028 (7)	-0.0024 (7)
C2A	0.0107 (10)	0.0156 (11)	0.0106 (10)	0.0022 (8)	0.0014 (8)	-0.0028 (8)
N3A	0.0122 (9)	0.0143 (9)	0.0120 (9)	0.0018 (7)	0.0022 (7)	0.0001 (7)
N4A	0.0167 (9)	0.0121 (10)	0.0101 (9)	-0.0005 (8)	-0.0002 (7)	-0.0025 (8)
C4A	0.0105 (10)	0.0125 (10)	0.0120 (10)	0.0036 (8)	0.0018 (8)	-0.0009 (8)
C5A	0.0127 (10)	0.0145 (11)	0.0071 (9)	0.0025 (8)	0.0010 (7)	-0.0001 (8)
C6A	0.0142 (10)	0.0142 (11)	0.0122 (10)	0.0026 (9)	0.0046 (8)	-0.0008(8)
C7A	0.0178 (11)	0.0220 (12)	0.0118 (11)	0.0045 (10)	0.0013 (8)	0.0029 (9)
C8A	0.0193 (11)	0.0103 (11)	0.0171 (11)	-0.0026 (9)	0.0031 (9)	0.0006 (9)

Geometric parameters (Å, °)

Cl1B—C5B	1.717 (2)	N3A—C4A	1.360 (3)	
S1B—C5B	1.720 (2)	N4A—C4A	1.328 (3)	
S1B—C2B	1.735 (2)	N4A—H4B1	0.87 (4)	
O1B—C1B	1.322 (3)	N4A—H4B2	0.87 (3)	
O1B—H1A	0.97 (5)	C4A—C5A	1.419 (3)	
O2B—C1B	1.221 (3)	C5A—C6A	1.372 (3)	
C1B—C2B	1.473 (3)	C6A—C8A	1.497 (3)	
C2B—C3B	1.359 (3)	С7А—Н7ВА	0.9800	
C3B—C4B	1.414 (3)	C7A—H7BB	0.9800	
СЗВ—НЗАА	0.9500	C7A—H7BC	0.9800	
C4B—C5B	1.366 (3)	C8A—H8B1	0.9800	
C4B—H4AA	0.9500	C8A—H8B2	0.9800	
Cl1A—C5A	1.728 (2)	C8A—H8B3	0.9800	
N1A—C2A	1.343 (3)	C8A—H8B4	0.9800	
N1A—C6A	1.364 (3)	C8A—H8B5	0.9800	
C2A—N3A	1.332 (3)	C8A—H8B6	0.9800	
C2A—C7A	1.503 (3)			
C5B—S1B—C2B	90.45 (11)	N4A—C4A—C5A	122.4 (2)	
C1B—O1B—H1A	113 (3)	N3A—C4A—C5A	119.4 (2)	
O2B-C1B-O1B	125.2 (2)	C6A—C5A—C4A	119.5 (2)	

O2B—C1B—C2B	121.2 (2)	C6A—C5A—Cl1A	121.36 (18)
O1B—C1B—C2B	113.6 (2)	C4A—C5A—Cl1A	119.13 (17)
C3B—C2B—C1B	126.5 (2)	N1A—C6A—C5A	119.7 (2)
C3B—C2B—S1B	111.65 (18)	N1A—C6A—C8A	116.7 (2)
C1B—C2B—S1B	121.84 (18)	C5A—C6A—C8A	123.7 (2)
C2B—C3B—C4B	113.5 (2)	С2А—С7А—Н7ВА	109.5
С2В—С3В—НЗАА	123.3	C2A—C7A—H7BB	109.5
С4В—С3В—НЗАА	123.3	H7BA—C7A—H7BB	109.5
C5B—C4B—C3B	111.3 (2)	C2A—C7A—H7BC	109.5
C5B—C4B—H4AA	124.3	H7BA—C7A—H7BC	109.5
C3B—C4B—H4AA	124.3	H7BB—C7A—H7BC	109.5
C4B—C5B—Cl1B	126.31 (19)	C6A—C8A—H8B1	109.5
C4B—C5B—S1B	113.09 (18)	C6A—C8A—H8B2	109.5
Cl1B—C5B—S1B	120.59 (14)	H8B1—C8A—H8B2	109.5
C2A—N1A—C6A	118.1 (2)	C6A—C8A—H8B3	109.5
N3A—C2A—N1A	125.6 (2)	H8B1—C8A—H8B3	109.5
N3A—C2A—C7A	118.0 (2)	H8B2—C8A—H8B3	109.5
N1A—C2A—C7A	116.4 (2)	C6A—C8A—H8B4	109.5
C2A—N3A—C4A	117.65 (19)	C6A—C8A—H8B5	109.5
C4A—N4A—H4B1	124 (2)	H8B4—C8A—H8B5	109.5
C4A—N4A—H4B2	125 (2)	C6A—C8A—H8B6	109.5
H4B1—N4A—H4B2	110 (3)	H8B4—C8A—H8B6	109.5
N4A—C4A—N3A	118.2 (2)	H8B5—C8A—H8B6	109.5
	/		
O2B—C1B—C2B—C3B	0.8 (4)	N1A—C2A—N3A—C4A	-0.1 (3)
01B—C1B—C2B—C3B	-179.3 (2)	C7A—C2A—N3A—C4A	-179.31 (19)
O2B—C1B—C2B—S1B	-176.30 (18)	C2A—N3A—C4A—N4A	176.8 (2)
O1B—C1B—C2B—S1B	3.6 (3)	C2A—N3A—C4A—C5A	-2.9 (3)
C5B—S1B—C2B—C3B	0.25 (18)	N4A—C4A—C5A—C6A	-175.5(2)
C5B—S1B—C2B—C1B	177.78 (19)	N3A—C4A—C5A—C6A	4.3 (3)
C1B—C2B—C3B—C4B	-177.6 (2)	N4A—C4A—C5A—C11A	4.2 (3)
S1B—C2B—C3B—C4B	-0.2 (3)	N3A—C4A—C5A—Cl1A	-176.07 (16)
C2B—C3B—C4B—C5B	0.0 (3)	C2A—N1A—C6A—C5A	-0.4(3)
C3B—C4B—C5B—C11B	178.81 (17)	C2A—N1A—C6A—C8A	179.17 (19)
C3B—C4B—C5B—S1B	0.1 (3)	C4A—C5A—C6A—N1A	-2.5 (3)
C2B—S1B—C5B—C4B	-0.22 (19)	Cl1A—C5A—C6A—N1A	177.80 (16)
C2B—S1B—C5B—C11B	-178.97 (15)	C4A—C5A—C6A—C8A	177.9 (2)
C6A—N1A—C2A—N3A	1.8 (3)	Cl1A—C5A—C6A—C8A	-1.7 (3)
C6A—N1A—C2A—C7A	-178.94 (19)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A
O1 <i>B</i> —H1 <i>A</i> …N1 <i>A</i>	0.97 (5)	1.66 (5)	2.623 (3)	169 (4)
C4B—H4AA···Cl1A ⁱ	0.95	2.86	3.734 (2)	154
N4A—H4B1···N3A ⁱⁱ	0.87 (4)	2.20 (4)	3.070 (3)	176 (3)
$N4A - H4B2 \cdots O2B^{iii}$	0.87 (3)	2.08 (3)	2.907 (3)	157 (3)
C7A—H7BB····Cl1A ^{iv}	0.98	2.98	3.938 (2)	166

C7A—H7BC····Cl1A ⁱⁱⁱⁱ	0.98	2.94	3.638 (2)	129
C8A—H8B4…C11A	0.98	2.58	3.110 (3)	114
$C8A$ — $H8B5$ ···N4 A^{iii}	0.98	2.68	3.523 (3)	145

Symmetry codes: (i) x-1, y-1, z-1; (ii) -x+2, -y+2, -z+1; (iii) -x+2, -y+1, -z+1; (iv) -x+1, -y+1, -z+1.

4-Amino-5-chloro-2,6-dimethylpyrimidine—2,4-dichlorobenzoic acid (1/1) (COCRYSTAL-3)

Crystal data

$C_6H_8ClN_3$ · $C_7H_4Cl_2O_2$	Z = 2
$M_r = 348.61$	F(000) = 356
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.568 {\rm Mg} {\rm m}^{-3}$
a = 7.3015 (4) Å	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
b = 7.5060 (6) Å	Cell parameters from 2184 reflections
c = 14.9665 (8) Å	$\theta = 3.0-75.8^{\circ}$
$\alpha = 92.539 \ (5)^{\circ}$	$\mu = 5.70 \text{ mm}^{-1}$
$\beta = 98.522 \ (5)^{\circ}$	T = 120 K
$\gamma = 113.657 \ (7)^{\circ}$	Plate, colorless
$V = 738.12 (9) Å^3$	$0.51 \times 0.35 \times 0.08 \text{ mm}$

Data collection

Agilent SuperNova Dual Source	5965 measured reflections
diffractometer with an Atlas detector	3050 independent reflections
Radiation source: sealed X-ray tube	2546 reflections with $I > 2\sigma(I)$
Detector resolution: 10.6501 pixels mm ⁻¹	$R_{\rm int} = 0.038$
ω scans	$\theta_{\rm max} = 76.9^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -4 \rightarrow 9$
(CrysAlis PRO; Agilent, 2014)	$k = -9 \longrightarrow 8$
$T_{\min} = 0.538, \ T_{\max} = 1.000$	$l = -18 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.047$	and constrained refinement
$wR(F^2) = 0.135$	$w = 1/[\sigma^2(F_o^2) + (0.0781P)^2 + 0.423P]$
<i>S</i> = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
3050 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
204 parameters	$\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$		
Cl1	0.92360 (9)	0.67568 (9)	1.08079 (4)	0.02879 (18)		
N1A	0.5642 (3)	0.4615 (3)	0.84009 (15)	0.0255 (5)		
C2A	0.4796 (4)	0.2733 (4)	0.85176 (17)	0.0249 (5)		
N3A	0.5203 (3)	0.1957 (3)	0.92717 (15)	0.0239 (4)		

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

N4A	0.6923 (4)	0.2415 (4)	1.07384 (16)	0.0278 (5)
H41	0.624 (5)	0.118 (5)	1.077 (2)	0.024 (8)*
H42	0.760 (6)	0.318 (6)	1.124 (3)	0.047 (11)*
C4A	0.6537 (4)	0.3192 (4)	0.99820 (17)	0.0232 (5)
C5A	0.7488 (4)	0.5206 (4)	0.98982 (18)	0.0246 (5)
C6A	0.7034 (4)	0.5891 (4)	0.90944 (18)	0.0251 (5)
C7A	0.3234 (4)	0.1328 (4)	0.77562 (18)	0.0295 (6)
H7AA	0.2789	0.2062	0.7313	0.044*
H7AB	0.2064	0.0450	0.8001	0.044*
H7AC	0.3828	0.0556	0.7458	0.044*
C8A	0.8001 (5)	0.7990 (4)	0.8943 (2)	0.0349 (6)
H8AA	0.7555	0.8135	0.8310	0.052*
H8AB	0.9483	0.8446	0.9068	0.052*
H8AC	0.7600	0.8771	0.9351	0.052*
Cl2	-0.04948 (10)	0.74463 (11)	0.61458 (4)	0.03186 (19)
C13	0.20778 (12)	0.87604 (12)	0.29833 (4)	0.0372 (2)
O1B	0.4692 (4)	0.5681 (4)	0.68251 (15)	0.0382 (5)
H1B	0.503 (7)	0.540 (8)	0.739 (4)	0.080 (16)*
O2B	0.2353 (4)	0.6429 (4)	0.73334 (14)	0.0446 (6)
C1B	0.2906 (4)	0.6968 (4)	0.58101 (17)	0.0243 (5)
C2B	0.1298 (4)	0.7480 (4)	0.54990 (18)	0.0253 (5)
C3B	0.1030 (4)	0.8021 (4)	0.46282 (18)	0.0275 (5)
H3BA	-0.0074	0.8352	0.4420	0.033*
C4B	0.2400 (4)	0.8069 (4)	0.40696 (17)	0.0269 (5)
C5B	0.4022 (4)	0.7595 (4)	0.43580 (19)	0.0297 (6)
H5BA	0.4956	0.7643	0.3970	0.036*
C6B	0.4252 (4)	0.7051 (4)	0.52212 (19)	0.0280 (6)
H6BA	0.5361	0.6721	0.5423	0.034*
C7B	0.3271 (4)	0.6335 (4)	0.67360 (18)	0.0262 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0287 (3)	0.0286 (3)	0.0280 (3)	0.0116 (3)	0.0029 (2)	0.0030 (2)
N1A	0.0263 (11)	0.0300 (11)	0.0245 (10)	0.0148 (9)	0.0056 (9)	0.0107 (9)
C2A	0.0243 (12)	0.0306 (13)	0.0246 (12)	0.0154 (10)	0.0056 (10)	0.0079 (10)
N3A	0.0246 (10)	0.0270 (11)	0.0236 (10)	0.0131 (9)	0.0054 (8)	0.0093 (8)
N4A	0.0312 (12)	0.0272 (12)	0.0237 (11)	0.0110 (10)	0.0021 (9)	0.0100 (9)
C4A	0.0220 (11)	0.0282 (13)	0.0240 (12)	0.0137 (10)	0.0064 (9)	0.0075 (10)
C5A	0.0250 (12)	0.0271 (13)	0.0245 (12)	0.0131 (10)	0.0053 (10)	0.0056 (10)
C6A	0.0239 (12)	0.0281 (13)	0.0291 (13)	0.0150 (10)	0.0077 (10)	0.0098 (10)
C7A	0.0320 (13)	0.0322 (14)	0.0245 (12)	0.0140 (11)	0.0029 (11)	0.0076 (10)
C8A	0.0362 (15)	0.0311 (15)	0.0389 (16)	0.0147 (12)	0.0059 (12)	0.0141 (12)
C12	0.0287 (3)	0.0419 (4)	0.0303 (3)	0.0192 (3)	0.0063 (3)	0.0086 (3)
C13	0.0436 (4)	0.0511 (4)	0.0232 (3)	0.0265 (3)	0.0023 (3)	0.0115 (3)
O1B	0.0455 (12)	0.0577 (14)	0.0298 (11)	0.0366 (11)	0.0114 (9)	0.0233 (10)
O2B	0.0569 (14)	0.0731 (17)	0.0245 (10)	0.0463 (13)	0.0097 (10)	0.0133 (10)
C1B	0.0267 (12)	0.0211 (12)	0.0228 (12)	0.0092 (10)	-0.0004 (9)	0.0021 (9)

C2B	0.0262 (12)	0.0239 (12)	0.0258 (12)	0.0109 (10)	0.0030 (10)	0.0042 (9)
C3B	0.0274 (12)	0.0268 (13)	0.0269 (13)	0.0123 (11)	-0.0025 (10)	0.0034 (10)
C4B	0.0342 (14)	0.0271 (13)	0.0190 (11)	0.0133 (11)	0.0007 (10)	0.0053 (9)
C5B	0.0317 (14)	0.0338 (14)	0.0263 (13)	0.0163 (12)	0.0048 (11)	0.0062 (11)
C6B	0.0290 (13)	0.0320 (14)	0.0270 (13)	0.0176 (11)	0.0016 (10)	0.0066 (10)
C7B	0.0301 (13)	0.0243 (12)	0.0250 (12)	0.0127 (11)	0.0026 (10)	0.0037 (10)

Geometric parameters (Å, °)

Cl1—C5A	1.729 (3)	С8А—Н8АС	0.9800
N1A—C2A	1.327 (4)	Cl2—C2B	1.733 (3)
N1A—C6A	1.359 (4)	Cl3—C4B	1.740 (3)
C2A—N3A	1.341 (3)	O1B—C7B	1.307 (3)
C2A—C7A	1.502 (4)	O1B—H1B	0.90 (5)
N3A—C4A	1.349 (3)	O2B—C7B	1.210 (4)
N4A—C4A	1.340 (3)	C1B—C6B	1.399 (4)
N4A—H41	0.87 (4)	C1B—C2B	1.400 (4)
N4A—H42	0.87 (4)	C1B—C7B	1.506 (3)
C4A—C5A	1.408 (4)	C2B—C3B	1.392 (4)
C5A—C6A	1.377 (4)	C3B—C4B	1.387 (4)
C6A—C8A	1.489 (4)	СЗВ—НЗВА	0.9500
С7А—Н7АА	0.9800	C4B—C5B	1.384 (4)
C7A—H7AB	0.9800	C5B—C6B	1.379 (4)
C7A—H7AC	0.9800	C5B—H5BA	0.9500
C8A—H8AA	0.9800	C6B—H6BA	0.9500
C8A—H8AB	0.9800		
C2A—N1A—C6A	118.5 (2)	C6A—C8A—H8AC	109.5
N1A—C2A—N3A	125.4 (2)	H8AA—C8A—H8AC	109.5
N1A—C2A—C7A	118.4 (2)	H8AB—C8A—H8AC	109.5
N3A—C2A—C7A	116.2 (2)	C7B—O1B—H1B	115 (3)
C2A—N3A—C4A	117.6 (2)	C6B—C1B—C2B	117.7 (2)
C4A—N4A—H41	119 (2)	C6B—C1B—C7B	118.3 (2)
C4A—N4A—H42	119 (3)	C2B—C1B—C7B	124.0 (2)
H41—N4A—H42	119 (3)	C3B—C2B—C1B	121.0 (2)
N4A—C4A—N3A	117.5 (2)	C3B—C2B—C12	115.8 (2)
N4A—C4A—C5A	122.9 (2)	C1B—C2B—Cl2	123.2 (2)
N3A—C4A—C5A	119.6 (2)	C4B—C3B—C2B	118.9 (2)
C6A—C5A—C4A	119.6 (2)	C4B—C3B—H3BA	120.5
C6A—C5A—C11	121.5 (2)	С2В—С3В—Н3ВА	120.5
C4A—C5A—Cl1	118.9 (2)	C5B—C4B—C3B	121.6 (2)
N1A—C6A—C5A	119.3 (2)	C5B—C4B—C13	119.4 (2)
N1A—C6A—C8A	117.7 (2)	C3B—C4B—C13	119.0 (2)
C5A—C6A—C8A	123.0 (3)	C6B—C5B—C4B	118.5 (3)
С2А—С7А—Н7АА	109.5	C6B—C5B—H5BA	120.8
С2А—С7А—Н7АВ	109.5	C4B—C5B—H5BA	120.8
Н7АА—С7А—Н7АВ	109.5	C5B—C6B—C1B	122.2 (3)
C2A—C7A—H7AC	109.5	С5В—С6В—Н6ВА	118.9

Н7АА—С7А—Н7АС	109.5	C1B—C6B—H6BA	118.9
Н7АВ—С7А—Н7АС	109.5	O2B—C7B—O1B	123.7 (2)
С6А—С8А—Н8АА	109.5	O2B—C7B—C1B	123.7 (2)
C6A—C8A—H8AB	109.5	O1B—C7B—C1B	112.7 (2)
H8AA—C8A—H8AB	109.5		
C6A—N1A—C2A—N3A	-0.2 (4)	C7B—C1B—C2B—C3B	-178.9 (2)
C6A—N1A—C2A—C7A	179.1 (2)	C6B—C1B—C2B—Cl2	179.8 (2)
N1A—C2A—N3A—C4A	2.0 (4)	C7B—C1B—C2B—Cl2	-0.1 (4)
C7A—C2A—N3A—C4A	-177.3 (2)	C1B—C2B—C3B—C4B	-0.7 (4)
C2A—N3A—C4A—N4A	179.3 (2)	Cl2—C2B—C3B—C4B	-179.6 (2)
C2A—N3A—C4A—C5A	-2.0 (4)	C2B—C3B—C4B—C5B	-0.1 (4)
N4A—C4A—C5A—C6A	179.1 (2)	C2B—C3B—C4B—C13	-179.6 (2)
N3A—C4A—C5A—C6A	0.4 (4)	C3B—C4B—C5B—C6B	0.5 (4)
N4A—C4A—C5A—Cl1	0.1 (4)	Cl3—C4B—C5B—C6B	180.0 (2)
N3A—C4A—C5A—Cl1	-178.59 (19)	C4B—C5B—C6B—C1B	-0.1 (4)
C2A—N1A—C6A—C5A	-1.5 (4)	C2B—C1B—C6B—C5B	-0.6 (4)
C2A—N1A—C6A—C8A	178.6 (2)	C7B—C1B—C6B—C5B	179.3 (3)
C4A—C5A—C6A—N1A	1.4 (4)	C6B—C1B—C7B—O2B	171.1 (3)
Cl1—C5A—C6A—N1A	-179.66 (19)	C2B—C1B—C7B—O2B	-8.9 (4)
C4A—C5A—C6A—C8A	-178.8 (2)	C6B—C1B—C7B—O1B	-8.7 (4)
Cl1—C5A—C6A—C8A	0.2 (4)	C2B—C1B—C7B—O1B	171.3 (3)
C6B—C1B—C2B—C3B	1.1 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A
N4A—H41…N3A ⁱ	0.87 (4)	2.15 (4)	3.014 (3)	172 (3)
N4 <i>A</i> —H42····O2 <i>B</i> ⁱⁱ	0.87 (4)	2.14 (4)	2.884 (3)	143 (4)
O1 <i>B</i> —H1 <i>B</i> …N1 <i>A</i>	0.90 (5)	1.71 (5)	2.610 (3)	174 (5)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+2.

4-Amino-5-chloro-2,6-dimethylpyrimidine-2-aminobenzoic acid (1/1) (COCRYSTAL-4)

Crystal data

$C_6H_8ClN_3 \cdot C_7H_7NO_2$
$M_r = 294.74$
Monoclinic, $P2_1/n$
a = 8.0965 (2) Å
b = 7.2427 (3) Å
<i>c</i> = 24.0738 (9) Å
$\beta = 90.831 \ (3)^{\circ}$
V = 1411.55 (9) Å ³
Z = 4
F(000) = 616
$D_{\rm x} = 1.387 {\rm ~Mg} {\rm ~m}^{-3}$
Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å

Cell parameters from 3296 reflections $\theta = 3.7-76.5^{\circ}$ $\mu = 2.47 \text{ mm}^{-1}$ T = 120 KThe symmetry employed for this shelxl refinement is uniquely defined by the following loop, which should always be used as a source of symmetry information in preference to the above space-group names. They are only intended as comments., pale yellow-orange $0.46 \times 0.22 \times 0.06 \text{ mm}$ Data collection

Agilent SuperNova Dual Source	$T_{\min} = 0.547, T_{\max} = 0.877$
diffractometer with an Atlas detector	6899 measured reflections
Radiation source: sealed X-ray tube	2927 independent reflections
Detector resolution: 10.6501 pixels mm ⁻¹	2481 reflections with $I > 2\sigma(I)$
ω scans	$R_{int} = 0.028$
Absorption correction: analytical	$\theta_{\max} = 76.7^{\circ}, \theta_{\min} = 3.7^{\circ}$
[CrysAlis PRO (Oxford Diffraction, 2011),	$h = -10 \rightarrow 6$
based on expressions derived by Clark & Reid	$k = -8 \rightarrow 9$
(1995)]	$l = -30 \rightarrow 28$
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.039$	and constrained refinement
$wR(F^2) = 0.110$	$w = 1/[\sigma^2(F_o^2) + (0.0615P)^2 + 0.465P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
2927 reflections	$(\Delta/\sigma)_{max} = 0.001$
203 parameters	$\Delta\rho_{max} = 0.23$ e Å ⁻³
0 restraints	$\Delta\rho_{min} = -0.46$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.11199 (5)	0.49692 (6)	0.38012 (2)	0.02408 (14)	
N1A	0.27995 (17)	0.51697 (19)	0.53553 (6)	0.0192 (3)	
C2A	0.22132 (19)	0.6818 (2)	0.55060 (7)	0.0198 (3)	
N3A	0.12834 (16)	0.79300 (19)	0.51880 (6)	0.0189 (3)	
N4A	-0.00933 (18)	0.8419 (2)	0.43543 (6)	0.0213 (3)	
H4A1	-0.048 (3)	0.946 (4)	0.4501 (10)	0.034 (6)*	
H4A2	-0.050 (3)	0.800 (4)	0.4043 (11)	0.042 (7)*	
C4A	0.08865 (19)	0.7343 (2)	0.46684 (7)	0.0179 (3)	
C5A	0.15295 (19)	0.5643 (2)	0.44778 (7)	0.0187 (3)	
C6A	0.24751 (19)	0.4579 (2)	0.48289 (7)	0.0194 (3)	
C7A	0.2642 (2)	0.7482 (3)	0.60803 (7)	0.0259 (4)	
H7AA	0.1778	0.8320	0.6209	0.039*	
H7AB	0.3701	0.8137	0.6075	0.039*	
H7AC	0.2728	0.6423	0.6333	0.039*	
C8A	0.3162 (2)	0.2746 (3)	0.46605 (7)	0.0246 (4)	
H8AA	0.3960	0.2322	0.4943	0.037*	
H8AB	0.3715	0.2869	0.4303	0.037*	
H8AC	0.2262	0.1847	0.4625	0.037*	
O1B	0.46209 (15)	0.30141 (19)	0.59902 (5)	0.0268 (3)	
H1B	0.379 (4)	0.383 (5)	0.5759 (14)	0.083 (11)*	
O2B	0.25284 (14)	0.25583 (18)	0.65694 (5)	0.0242 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

N1B	0.2989 (2)	0.0084 (2)	0.74083 (7)	0.0299 (4)
H1B1	0.225 (3)	0.086 (4)	0.7235 (10)	0.038 (6)*
H1B2	0.275 (3)	-0.052 (4)	0.7695 (11)	0.042 (7)*
C1B	0.50618 (19)	0.0925 (2)	0.67226 (7)	0.0188 (3)
C2B	0.4524 (2)	-0.0091 (2)	0.71897 (7)	0.0200 (3)
C3B	0.5643 (2)	-0.1364 (2)	0.74338 (7)	0.0244 (4)
H3BA	0.5304	-0.2075	0.7744	0.029*
C4B	0.7206 (2)	-0.1595 (3)	0.72327 (8)	0.0265 (4)
H4BA	0.7931	-0.2459	0.7406	0.032*
C5B	0.7748 (2)	-0.0575 (3)	0.67756 (8)	0.0250 (4)
H5BA	0.8837	-0.0726	0.6641	0.030*
C6B	0.6672 (2)	0.0649 (2)	0.65261 (7)	0.0208 (3)
H6BA	0.7026	0.1329	0.6212	0.025*
C7B	0.3958 (2)	0.2228 (2)	0.64266 (7)	0.0197 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0307 (2)	0.0245 (2)	0.0170 (2)	0.00267 (15)	-0.00203 (16)	-0.00299 (15)
N1A	0.0199 (6)	0.0193 (7)	0.0182 (7)	0.0009 (5)	-0.0010 (5)	0.0013 (5)
C2A	0.0193 (7)	0.0194 (8)	0.0207 (8)	-0.0019 (6)	-0.0001 (6)	0.0002 (6)
N3A	0.0204 (6)	0.0183 (7)	0.0180 (7)	0.0001 (5)	-0.0005 (5)	0.0011 (5)
N4A	0.0240 (7)	0.0209 (7)	0.0189 (7)	0.0035 (6)	-0.0033 (6)	0.0008 (6)
C4A	0.0179 (7)	0.0177 (8)	0.0182 (7)	-0.0020 (6)	0.0013 (6)	0.0017 (6)
C5A	0.0210 (7)	0.0185 (8)	0.0165 (7)	-0.0010 (6)	0.0010 (6)	-0.0003 (6)
C6A	0.0189 (7)	0.0196 (8)	0.0197 (8)	-0.0011 (6)	0.0021 (6)	0.0005 (6)
C7A	0.0307 (9)	0.0244 (9)	0.0225 (8)	0.0027 (7)	-0.0060 (7)	-0.0031 (7)
C8A	0.0263 (8)	0.0227 (9)	0.0248 (8)	0.0045 (7)	0.0006 (7)	-0.0014 (7)
O1B	0.0246 (6)	0.0320 (7)	0.0239 (6)	0.0051 (5)	0.0017 (5)	0.0103 (5)
O2B	0.0229 (6)	0.0283 (7)	0.0213 (6)	0.0043 (5)	0.0006 (5)	0.0003 (5)
N1B	0.0282 (8)	0.0341 (9)	0.0275 (8)	0.0037 (7)	0.0068 (7)	0.0111 (7)
C1B	0.0214 (7)	0.0181 (8)	0.0170 (7)	-0.0003 (6)	-0.0025 (6)	-0.0017 (6)
C2B	0.0231 (8)	0.0195 (8)	0.0175 (8)	-0.0015 (6)	-0.0024 (6)	-0.0015 (6)
C3B	0.0324 (9)	0.0213 (9)	0.0194 (8)	-0.0008 (7)	-0.0027 (7)	0.0021 (7)
C4B	0.0318 (9)	0.0222 (9)	0.0252 (9)	0.0050 (7)	-0.0077 (7)	0.0016 (7)
C5B	0.0232 (8)	0.0263 (9)	0.0256 (9)	0.0053 (7)	-0.0010 (7)	-0.0006 (7)
C6B	0.0234 (8)	0.0202 (8)	0.0186 (8)	-0.0009 (6)	-0.0001 (6)	-0.0008 (7)
C7B	0.0218(7)	0.0209(8)	0.0164(7)	-0.0010(6)	-0.0020(6)	-0.0014(6)

Geometric parameters (Å, °)

Cl1—C5A	1.7279 (16)	O1B—C7B	1.316 (2)	
N1A—C2A	1.337 (2)	O1B—H1B	1.05 (4)	
N1A—C6A	1.360 (2)	O2B—C7B	1.235 (2)	
C2A—N3A	1.336 (2)	N1B—C2B	1.363 (2)	
C2A—C7A	1.500 (2)	N1B—H1B1	0.91 (3)	
N3A—C4A	1.355 (2)	N1B—H1B2	0.84 (3)	
N4A—C4A	1.338 (2)	C1B—C6B	1.408 (2)	

N4A—H4A1	0.89 (3)	C1B—C2B	1.417 (2)
N4A—H4A2	0.87 (3)	C1B—C7B	1.476 (2)
C4A—C5A	1.416 (2)	C2B—C3B	1.415 (2)
C5A—C6A	1 369 (2)	C3B—C4B	1 372 (3)
C6A - C8A	1.307(2) 1 497(2)	C3B—H3BA	0.9500
	0.0800	CAB C5B	1.401(3)
	0.9800	CAB = HABA	0.9500
	0.9800	$C_{4}D_{$	1.275(2)
$C/A = H^2 A$	0.9800		1.373(2)
	0.9800	Сэв—нэва	0.9500
C8A—H8AB	0.9800	С6В—Н6ВА	0.9500
С8А—Н8АС	0.9800		
C2A—N1A—C6A	118.00 (15)	H8AA—C8A—H8AC	109.5
N3A—C2A—N1A	125.62 (16)	H8AB—C8A—H8AC	109.5
N3A—C2A—C7A	117 11 (15)	C7B - O1B - H1B	113.6 (18)
N1A - C2A - C7A	117.28 (15)	C^2B NIB HIB	118.2(15)
$C_{2A} = N_{3A} = C_{4A}$	117.63 (15)	C2B N1B H1B2	110.2(19)
$C_{AA} N_{AA} H_{AA}$	117.05(15) 118.4(16)	U1D1 V1D U1D2	119.2(10)
C4A = N4A = H4A2	110.4(10)	$\frac{\Pi B \Pi - \Pi B}{\Pi B} = \frac{\Pi B}{\Omega}$	125(2)
C4A - N4A - H4A2	119.7 (17)	C_{0B} C_{1B} C_{2B}	119.32 (15)
H4A1—N4A—H4A2	121(2)	C_{0B} C_{1B} C_{2B}	119.05 (15)
N4A—C4A—N3A	118.01 (15)	C2B = C1B = C7B	121.61 (14)
N4A—C4A—C5A	122.76 (15)	N1B—C2B—C3B	118.84 (16)
N3A—C4A—C5A	119.23 (15)	N1B—C2B—C1B	123.39 (16)
C6A—C5A—C4A	119.62 (15)	C3B—C2B—C1B	117.77 (15)
C6A—C5A—C11	121.40 (13)	C4B—C3B—C2B	121.41 (16)
C4A—C5A—C11	118.98 (13)	C4B—C3B—H3BA	119.3
N1A—C6A—C5A	119.79 (16)	С2В—С3В—Н3ВА	119.3
N1A—C6A—C8A	117.64 (15)	C3B—C4B—C5B	120.93 (17)
C5A—C6A—C8A	122.56 (15)	C3B—C4B—H4BA	119.5
С2А—С7А—Н7АА	109.5	C5B—C4B—H4BA	119.5
С2А—С7А—Н7АВ	109.5	C6B—C5B—C4B	118.65 (16)
Н7АА—С7А—Н7АВ	109.5	C6B—C5B—H5BA	120.7
C_{A} C_{7A} H_{7A}	109.5	C4B-C5B-H5BA	120.7
H7AA - C7A - H7AC	109.5	C5B-C6B-C1B	121.90 (16)
H7AB - C7A - H7AC	109.5	C5B - C6B - H6BA	119.0
	109.5	CIB C6B H6BA	119.0
C6A C8A H8AB	109.5	O^{2} C^{7} O^{1} O^{2}	119.0
	109.5	O2D = C7D = C1D	122.20(10) 122.54(15)
$n_{0}AA - C_{0}A - n_{0}AB$	109.5	$O_{2}B - C_{7}B - C_{1}B$	123.34(13)
Соа—Сба—пбас	109.5	01BC/BC1B	114.25 (14)
C6A—N1A—C2A—N3A	2.1 (2)	C6B—C1B—C2B—N1B	-179.98 (17)
C6A—N1A—C2A—C7A	-177.53 (14)	C7B—C1B—C2B—N1B	-1.7 (3)
N1A—C2A—N3A—C4A	0.4 (2)	C6B—C1B—C2B—C3B	-0.8(2)
C7A—C2A—N3A—C4A	-179.93 (14)	C7B—C1B—C2B—C3B	177.48 (15)
C2A—N3A—C4A—N4A	177.65 (14)	N1B-C2B-C3B-C4B	-179.78(17)
C_{A} N3A C_{A} C5A	-3.0(2)	C1B— $C2B$ — $C3B$ — $C4B$	1.0 (3)
N4A - C4A - C5A - C6A	-17758(15)	C2B— $C3B$ — $C4B$ — $C5B$	-0.1(3)
N3A - C4A - C5A - C6A	31(2)	C3B $C4B$ $C5B$ $C6B$	-0.9(3)
	5.1 (2)		0.9 (5)

N4A—C4A—C5A—C11	3.2 (2)	C4B—C5B—C6B—C1B	1.1 (3)
N3A—C4A—C5A—C11	-176.17 (12)	C2B—C1B—C6B—C5B	-0.3 (3)
C2A—N1A—C6A—C5A	-2.0 (2)	C7B—C1B—C6B—C5B	-178.55 (16)
C2A—N1A—C6A—C8A	178.93 (14)	C6B—C1B—C7B—O2B	-179.88 (16)
C4A—C5A—C6A—N1A	-0.5 (2)	C2B—C1B—C7B—O2B	1.9 (3)
Cl1—C5A—C6A—N1A	178.68 (12)	C6B—C1B—C7B—O1B	0.5 (2)
C4A—C5A—C6A—C8A	178.53 (14)	C2B-C1B-C7B-O1B	-177.71 (15)
Cl1—C5A—C6A—C8A	-2.3 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N4A—H4A1····N3A ⁱ	0.89 (3)	2.14 (3)	3.027 (2)	176 (2)
N4 <i>A</i> —H4 <i>A</i> 2···O2 <i>B</i> ⁱⁱ	0.87 (3)	2.23 (3)	3.034 (2)	154 (2)
C8A—H8AA…O1B	0.98	2.62	3.402 (2)	137
O1 <i>B</i> —H1 <i>B</i> …N1 <i>A</i>	1.05 (4)	1.58 (4)	2.6235 (19)	170 (3)
N1 <i>B</i> —H1 <i>B</i> 1····O2 <i>B</i>	0.91 (3)	2.04 (3)	2.722 (2)	131 (2)
N1 <i>B</i> —H1 <i>B</i> 2····O2 <i>B</i> ⁱⁱⁱ	0.84 (3)	2.27 (3)	3.100 (2)	171 (2)

Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1/2, y-1/2, -z+3/2.

4-Amino-5-chloro-2,6-dimethylpyrimidine-5-methylthiophene-2-carboxylic acid (1/1) (COCRYSTAL-5)

Crystal data

 $C_{6}H_{8}ClN_{3} \cdot C_{6}H_{6}O_{2}S$ $M_{r} = 299.77$ Monoclinic, $P2_{1}/c$ a = 8.273 (3) Å b = 12.746 (4) Å c = 13.320 (4) Å $\beta = 102.390 (5)^{\circ}$ $V = 1371.8 (8) Å^{3}$ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine focus sealed tube Graphite monochromator ω and phi scans Absorption correction: multi-scan (APEX2; Bruker, 2014) $T_{\min} = 0.608, T_{\max} = 0.746$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.092$ S = 1.054109 reflections 189 parameters 0 restraints F(000) = 624 $D_x = 1.452 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5891 reflections $\theta = 2.2-31.4^{\circ}$ $\mu = 0.43 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.55 \times 0.50 \times 0.30 \text{ mm}$

8807 measured reflections 4109 independent reflections 3735 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 31.4^\circ$, $\theta_{min} = 2.2^\circ$ $h = -11 \rightarrow 12$ $k = -17 \rightarrow 17$ $l = -11 \rightarrow 18$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0473P)^{2} + 0.5783P] \qquad \Delta \rho_{n}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{n}$ $(\Delta/\sigma)_{max} = 0.001$

$\begin{array}{l} \Delta \rho_{\rm max} = 0.55 ~{\rm e}~{\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.29 ~{\rm e}~{\rm \AA}^{-3} \end{array}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C11	0.38618 (3)	0.84503 (2)	0.35758 (2)	0.01547 (8)	
N1A	0.54569 (12)	0.74068 (7)	0.64354 (7)	0.01340 (18)	
C2A	0.62308 (14)	0.65402 (8)	0.62325 (8)	0.0128 (2)	
N3A	0.63936 (12)	0.62204 (7)	0.52992 (7)	0.01266 (18)	
N4A	0.59228 (14)	0.65222 (8)	0.35501 (8)	0.0163 (2)	
H41	0.560 (2)	0.6922 (15)	0.3027 (15)	0.032 (5)*	
H42	0.647 (2)	0.5971 (15)	0.3525 (14)	0.026 (4)*	
C4A	0.57179 (13)	0.68167 (8)	0.44758 (8)	0.01177 (19)	
C5A	0.48186 (13)	0.77260 (8)	0.46351 (8)	0.01156 (19)	
C6A	0.47182 (13)	0.80027 (8)	0.56179 (8)	0.01207 (19)	
C7A	0.69907 (16)	0.58473 (10)	0.71194 (9)	0.0190 (2)	
H7A1	0.7278	0.5169	0.6859	0.028*	0.282 (19)
H7A2	0.6198	0.5740	0.7561	0.028*	0.282 (19)
H7A3	0.7992	0.6181	0.7518	0.028*	0.282 (19)
H7A4	0.7034	0.6224	0.7766	0.028*	0.718 (19)
H7A5	0.8115	0.5653	0.7064	0.028*	0.718 (19)
H7A6	0.6320	0.5212	0.7107	0.028*	0.718 (19)
C8A	0.38111 (15)	0.89640 (9)	0.58452 (9)	0.0167 (2)	
H8A1	0.3804	0.8984	0.6580	0.025*	0.717 (18)
H8A2	0.2670	0.8944	0.5444	0.025*	0.717 (18)
H8A3	0.4367	0.9591	0.5660	0.025*	0.717 (18)
H8A4	0.3424	0.9362	0.5210	0.025*	0.283 (18)
H8A5	0.4557	0.9403	0.6345	0.025*	0.283 (18)
H8A6	0.2860	0.8755	0.6129	0.025*	0.283 (18)
S1	0.94879 (4)	0.25627 (2)	0.33202 (2)	0.01614 (8)	
O1B	0.81492 (12)	0.44704 (7)	0.53060 (7)	0.02158 (19)	
H1B	0.752 (3)	0.5071 (18)	0.5248 (16)	0.044 (6)*	
O2B	0.76792 (12)	0.45470 (7)	0.35803 (7)	0.02004 (18)	
C1B	0.82798 (14)	0.41179 (9)	0.43965 (9)	0.0150 (2)	
C2B	0.92271 (14)	0.31337 (9)	0.44446 (9)	0.0145 (2)	
C3B	0.99609 (16)	0.25478 (9)	0.52815 (10)	0.0185 (2)	
H3BA	0.9950	0.2734	0.5971	0.022*	
C4B	1.07400 (16)	0.16312 (10)	0.50029 (10)	0.0200 (2)	
H4BA	1.1305	0.1137	0.5488	0.024*	
C5B	1.05905 (15)	0.15343 (9)	0.39617 (10)	0.0162 (2)	
C6B	1.12401 (17)	0.06825 (10)	0.33793 (11)	0.0232 (3)	

H6BA	1.1161	0.0007	0.3716	0.035*
H6BB	1.2400	0.0826	0.3368	0.035*
H6BC	1.0584	0.0658	0.2673	0.035*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.01899 (14)	0.01426 (13)	0.01211 (13)	0.00442 (9)	0.00102 (10)	0.00099 (8)
N1A	0.0154 (4)	0.0144 (4)	0.0109 (4)	-0.0005 (3)	0.0039 (3)	-0.0008 (3)
C2A	0.0143 (5)	0.0139 (5)	0.0105 (5)	-0.0008(4)	0.0032 (4)	0.0004 (3)
N3A	0.0151 (4)	0.0126 (4)	0.0104 (4)	0.0015 (3)	0.0029 (3)	0.0003 (3)
N4A	0.0248 (5)	0.0146 (4)	0.0096 (4)	0.0071 (4)	0.0039 (4)	0.0000 (3)
C4A	0.0134 (5)	0.0116 (4)	0.0103 (5)	-0.0005 (4)	0.0026 (4)	-0.0011 (4)
C5A	0.0124 (5)	0.0113 (4)	0.0105 (4)	0.0007 (3)	0.0014 (4)	0.0003 (3)
C6A	0.0120 (5)	0.0120 (4)	0.0126 (5)	-0.0014 (4)	0.0034 (4)	-0.0020 (4)
C7A	0.0246 (6)	0.0203 (5)	0.0121 (5)	0.0044 (4)	0.0040 (4)	0.0040 (4)
C8A	0.0189 (5)	0.0149 (5)	0.0173 (5)	0.0025 (4)	0.0062 (4)	-0.0032 (4)
S1	0.01864 (15)	0.01600 (14)	0.01424 (14)	0.00445 (9)	0.00458 (11)	0.00057 (9)
O1B	0.0302 (5)	0.0194 (4)	0.0160 (4)	0.0103 (4)	0.0069 (4)	-0.0002 (3)
O2B	0.0276 (5)	0.0161 (4)	0.0166 (4)	0.0066 (3)	0.0050 (3)	0.0004 (3)
C1B	0.0156 (5)	0.0128 (4)	0.0175 (5)	0.0005 (4)	0.0053 (4)	-0.0010 (4)
C2B	0.0149 (5)	0.0140 (5)	0.0154 (5)	0.0015 (4)	0.0045 (4)	-0.0008 (4)
C3B	0.0204 (6)	0.0197 (5)	0.0149 (5)	0.0038 (4)	0.0027 (4)	0.0001 (4)
C4B	0.0203 (6)	0.0186 (5)	0.0197 (6)	0.0067 (4)	0.0014 (4)	0.0033 (4)
C5B	0.0136 (5)	0.0144 (5)	0.0205 (5)	0.0028 (4)	0.0034 (4)	0.0001 (4)
C6B	0.0210 (6)	0.0191 (5)	0.0305 (7)	0.0051 (5)	0.0078 (5)	-0.0050 (5)

Geometric parameters (Å, °)

Cl1—C5A	1.7293 (11)	C8A—H8A3	0.9800
N1A—C2A	1.3331 (14)	C8A—H8A4	0.9800
N1A—C6A	1.3603 (15)	C8A—H8A5	0.9800
C2A—N3A	1.3421 (14)	C8A—H8A6	0.9800
C2A—C7A	1.5007 (16)	S1—C5B	1.7163 (12)
N3A—C4A	1.3528 (14)	S1—C2B	1.7199 (12)
N4A—C4A	1.3340 (14)	O1B—C1B	1.3180 (15)
N4A—H41	0.86 (2)	O1B—H1B	0.92 (2)
N4A—H42	0.842 (19)	O2B—C1B	1.2232 (15)
C4A—C5A	1.4175 (15)	C1B—C2B	1.4732 (16)
C5A—C6A	1.3753 (15)	C2B—C3B	1.3706 (16)
C6A—C8A	1.5013 (15)	C3B—C4B	1.4215 (17)
C7A—H7A1	0.9800	СЗВ—НЗВА	0.9500
С7А—Н7А2	0.9800	C4B—C5B	1.3712 (18)
С7А—Н7А3	0.9800	C4B—H4BA	0.9500
С7А—Н7А4	0.9800	C5B—C6B	1.4994 (17)
С7А—Н7А5	0.9800	C6B—H6BA	0.9800
С7А—Н7А6	0.9800	C6B—H6BB	0.9800
C8A—H8A1	0.9800	C6B—H6BC	0.9800

C8A—H8A2	0.9800		
C2A—N1A—C6A	116.94 (10)	C6A—C8A—H8A3	109.5
N1A—C2A—N3A	125.97 (10)	H8A1—C8A—H8A3	109.5
N1A—C2A—C7A	117.79 (10)	H8A2—C8A—H8A3	109.5
N3A—C2A—C7A	116.23 (10)	C6A—C8A—H8A4	109.5
C2A—N3A—C4A	118.30 (9)	H8A1—C8A—H8A4	141.1
C4A—N4A—H41	120.2(13)	H8A2 - C8A - H8A4	56.3
C4A - N4A - H42	1167(12)	H8A3 - C8A - H8A4	56.3
H41—N4A—H42	122.8(18)	C6A - C8A - H8A5	109 5
N/A = C/A = N/3 A	118 61 (10)	$H8 \Delta 1 - C8 \Delta - H8 \Delta 5$	56.3
N4A - C4A - C5A	122 91 (10)	H8A2— $C8A$ — $H8A5$	141 1
$N_{3A} C_{AA} C_{5A}$	122.91(10) 118.48(10)	H8A3 C8A H8A5	563
C6A C5A C4A	110.40(10) 110.53(10)		100.5
C6A C5A C11	119.55(10) 121.05(0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C0A - C3A - C11	121.93 (9)	UQA = CQA = HQAC	109.5
C4A = C5A = C11	110.32(0)	H8A2 = C8A = H8A6	50.5
NIA-COA-COA	120.08 (10)		30.3
NIA - C6A - C8A	116.90 (10)		141.1
CSA - C6A - C8A	122.42 (10)		109.5
C2A - C/A - H/A1	109.5	H8A5—C8A—H8A6	109.5
С2А—С/А—Н/А2	109.5	C5B—S1—C2B	92.42 (6)
H7A1—C7A—H7A2	109.5	C1B—O1B—H1B	111.3 (13)
C2A—C7A—H7A3	109.5	O2B—C1B—O1B	124.53 (11)
H7A1—C7A—H7A3	109.5	O2B—C1B—C2B	122.02 (11)
H7A2—C7A—H7A3	109.5	O1B—C1B—C2B	113.46 (10)
C2A—C7A—H7A4	109.5	C3B—C2B—C1B	129.64 (11)
H7A1—C7A—H7A4	141.1	C3B—C2B—S1	111.17 (9)
H7A2—C7A—H7A4	56.3	C1B—C2B—S1	119.18 (9)
H7A3—C7A—H7A4	56.3	C2B—C3B—C4B	112.46 (11)
C2A—C7A—H7A5	109.5	C2B—C3B—H3BA	123.8
H7A1—C7A—H7A5	56.3	C4B—C3B—H3BA	123.8
H7A2—C7A—H7A5	141.1	C5B—C4B—C3B	112.98 (11)
H7A3—C7A—H7A5	56.3	C5B—C4B—H4BA	123.5
H7A4—C7A—H7A5	109.5	C3B—C4B—H4BA	123.5
C2A—C7A—H7A6	109.5	C4B—C5B—C6B	128.60 (11)
H7A1—C7A—H7A6	56.3	C4B—C5B—S1	110.96 (9)
H7A2—C7A—H7A6	56.3	C6B-C5B-S1	120.44 (10)
Н7А3—С7А—Н7А6	141.1	C5B—C6B—H6BA	109.5
H7A4—C7A—H7A6	109.5	C5B—C6B—H6BB	109.5
H7A5—C7A—H7A6	109.5	H6BA—C6B—H6BB	109.5
C6A—C8A—H8A1	109.5	C5B—C6B—H6BC	109.5
C6A—C8A—H8A2	109.5	H6BA—C6B—H6BC	109.5
H8A1—C8A—H8A2	109.5	H6BB—C6B—H6BC	109.5
	10,10	1022 002 11020	10,10
C6A—N1A—C2A—N3A	2.31 (17)	Cl1—C5A—C6A—C8A	-1.57 (15)
C6A—N1A—C2A—C7A	-177.41 (10)	O2B—C1B—C2B—C3B	-179.21 (12)
N1A—C2A—N3A—C4A	-0.18 (17)	O1B—C1B—C2B—C3B	0.46 (18)
C7A—C2A—N3A—C4A	179.55 (10)	O2B-C1B-C2B-S1	-0.45 (16)

C2A—N3A—C4A—N4A	177.78 (10)	O1B—C1B—C2B—S1	179.21 (9)
C2A—N3A—C4A—C5A	-2.41 (15)	C5B—S1—C2B—C3B	-0.20 (10)
N4A—C4A—C5A—C6A	-177.34 (11)	C5B—S1—C2B—C1B	-179.17 (10)
N3A—C4A—C5A—C6A	2.85 (16)	C1B—C2B—C3B—C4B	178.92 (12)
N4A—C4A—C5A—C11	3.19 (15)	S1—C2B—C3B—C4B	0.09 (14)
N3A—C4A—C5A—C11	-176.62 (8)	C2B—C3B—C4B—C5B	0.11 (17)
C2A—N1A—C6A—C5A	-1.75 (16)	C3B—C4B—C5B—C6B	-179.99 (12)
C2A—N1A—C6A—C8A	178.53 (10)	C3B—C4B—C5B—S1	-0.25 (15)
C4A—C5A—C6A—N1A	-0.72 (16)	C2B—S1—C5B—C4B	0.26 (10)
Cl1—C5A—C6A—N1A	178.72 (8)	C2B—S1—C5B—C6B	-179.98 (10)
C4A—C5A—C6A—C8A	178.98 (10)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
$N4A$ — $H41$ ··· $N1A^{i}$	0.86 (2)	2.27 (2)	3.0790 (16)	158.0 (18)
N4 <i>A</i> —H42···O2 <i>B</i>	0.842 (19)	2.065 (19)	2.9028 (15)	173.6 (18)
O1 <i>B</i> —H1 <i>B</i> …N3 <i>A</i>	0.92 (2)	1.74 (2)	2.6607 (14)	173 (2)

Symmetry code: (i) x, -y+3/2, z-1/2.

4-Amino-5-chloro-2,6-dimethylpyrimidine-benzoic acid (1/1) (COCRYSTAL-6)

Crystal data

 $C_{6}H_{8}ClN_{3}\cdot C_{7}H_{6}O_{2}$ $M_{r} = 279.72$ Monoclinic, $P2_{1}/c$ a = 10.1421 (5) Å b = 10.4218 (5) Å c = 13.2681 (6) Å $\beta = 107.804$ (5)° V = 1335.26 (12) Å³ Z = 4

Data collection

Agilent SuperNova Dual Source diffractometer with an Atlas detector Radiation source: sealed X-ray tube Detector resolution: 10.6501 pixels mm⁻¹ ω scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) $T_{\min} = 0.763$, $T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.118$ S = 1.042760 reflections 187 parameters 0 restraints F(000) = 584 $D_x = 1.391 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 2966 reflections $\theta = 4.2-76.3^{\circ}$ $\mu = 2.56 \text{ mm}^{-1}$ T = 120 KChunk, colorless $0.52 \times 0.38 \times 0.24 \text{ mm}$

6087 measured reflections 2760 independent reflections 2560 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 76.6^\circ, \ \theta_{min} = 4.6^\circ$ $h = -12 \rightarrow 12$ $k = -9 \rightarrow 12$ $l = -16 \rightarrow 16$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0793P)^2 + 0.3948P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.33$ e Å⁻³ $\Delta\rho_{min} = -0.44$ e Å⁻³ Extinction correction: SHELXL2014 (Sheldrick, 2015b), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0032 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.39577 (4)	0.14749 (3)	0.34668 (3)	0.02536 (16)	
N1A	0.54933 (13)	0.30904 (13)	0.63034 (9)	0.0215 (3)	
C2A	0.63967 (14)	0.38934 (15)	0.60876 (11)	0.0204 (3)	
N3A	0.66375 (12)	0.40143 (12)	0.51529 (9)	0.0201 (3)	
N4A	0.61835 (15)	0.33300 (14)	0.34212 (10)	0.0241 (3)	
H41	0.682 (2)	0.386 (2)	0.3405 (16)	0.028 (5)*	
H42	0.583 (2)	0.273 (2)	0.2896 (17)	0.030 (5)*	
C4A	0.59268 (15)	0.32453 (14)	0.43453 (11)	0.0196 (3)	
C5A	0.49274 (15)	0.23975 (14)	0.45181 (11)	0.0208 (3)	
C6A	0.47284 (15)	0.23477 (15)	0.54949 (12)	0.0214 (3)	
C7A	0.72207 (17)	0.47425 (16)	0.69690 (12)	0.0266 (3)	
H7AA	0.6936	0.4592	0.7601	0.040*	
H7AB	0.7056	0.5643	0.6754	0.040*	
H7AC	0.8208	0.4547	0.7127	0.040*	
C8A	0.36724 (17)	0.14862 (16)	0.57215 (13)	0.0277 (4)	
H8AA	0.3599	0.1683	0.6425	0.042*	
H8AB	0.3955	0.0590	0.5701	0.042*	
H8AC	0.2772	0.1622	0.5187	0.042*	
O1B	0.81428 (11)	0.52642 (10)	0.33828 (8)	0.0236 (3)	
O2B	0.84927 (12)	0.58025 (11)	0.50792 (8)	0.0261 (3)	
H2B	0.787 (3)	0.521 (2)	0.5057 (18)	0.040 (6)*	
C1B	0.96195 (14)	0.70251 (14)	0.40863 (12)	0.0207 (3)	
C2B	1.03036 (16)	0.77548 (16)	0.49703 (12)	0.0271 (3)	
H2BA	1.0184	0.7568	0.5638	0.032*	
C3B	1.11636 (19)	0.87588 (18)	0.48757 (14)	0.0322 (4)	
H3BA	1.1636	0.9253	0.5480	0.039*	
C4B	1.13303 (18)	0.90380 (17)	0.38984 (14)	0.0307 (4)	
H4BA	1.1919	0.9722	0.3835	0.037*	
C5B	1.06404 (19)	0.83225 (18)	0.30168 (14)	0.0317 (4)	
H5BA	1.0750	0.8521	0.2348	0.038*	
C6B	0.97869 (17)	0.73133 (16)	0.31075 (12)	0.0272 (3)	
H6BA	0.9318	0.6820	0.2502	0.033*	
C7B	0.86845 (14)	0.59440 (14)	0.41483 (11)	0.0200 (3)	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0262 (2)	0.0295 (2)	0.0204 (2)	-0.00904 (13)	0.00707 (15)	-0.00331 (12)
N1A	0.0225 (6)	0.0257 (7)	0.0168 (6)	-0.0013 (5)	0.0069 (5)	0.0004 (5)
C2A	0.0209 (7)	0.0233 (7)	0.0180 (6)	0.0017 (6)	0.0073 (5)	0.0011 (6)
N3A	0.0205 (6)	0.0230 (6)	0.0175 (6)	-0.0014 (5)	0.0069 (5)	-0.0008(5)
N4A	0.0270 (7)	0.0298 (7)	0.0175 (6)	-0.0099 (6)	0.0097 (5)	-0.0038 (5)
C4A	0.0186 (6)	0.0226 (7)	0.0179 (7)	0.0007 (5)	0.0061 (5)	0.0003 (5)
C5A	0.0201 (7)	0.0233 (7)	0.0190 (7)	-0.0022 (5)	0.0058 (5)	0.0001 (5)
C6A	0.0199 (7)	0.0237 (7)	0.0214 (7)	0.0003 (5)	0.0073 (5)	0.0026 (6)
C7A	0.0300 (8)	0.0303 (8)	0.0196 (7)	-0.0042 (6)	0.0079 (6)	-0.0038 (6)
C8A	0.0271 (8)	0.0331 (9)	0.0255 (8)	-0.0078 (6)	0.0119 (7)	0.0017 (6)
O1B	0.0252 (5)	0.0249 (6)	0.0220 (5)	-0.0050 (4)	0.0092 (4)	-0.0015 (4)
O2B	0.0303 (6)	0.0296 (6)	0.0204 (5)	-0.0098 (5)	0.0109 (4)	-0.0009 (4)
C1B	0.0188 (6)	0.0213 (7)	0.0226 (7)	-0.0003 (5)	0.0073 (5)	0.0020 (6)
C2B	0.0296 (8)	0.0302 (8)	0.0210 (7)	-0.0069 (6)	0.0070 (6)	-0.0004 (6)
C3B	0.0346 (9)	0.0332 (9)	0.0270 (8)	-0.0126 (7)	0.0068 (7)	-0.0021 (7)
C4B	0.0312 (8)	0.0290 (8)	0.0330 (8)	-0.0094 (7)	0.0111 (7)	0.0014 (7)
C5B	0.0375 (9)	0.0347 (9)	0.0263 (8)	-0.0102 (7)	0.0148 (7)	0.0010 (7)
C6B	0.0306 (8)	0.0303 (8)	0.0228 (7)	-0.0073 (7)	0.0113 (6)	-0.0019 (6)
C7B	0.0180 (6)	0.0224 (7)	0.0203 (7)	0.0018 (5)	0.0070 (5)	0.0020 (5)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cl1—C5A	1.7316 (15)	C8A—H8AC	0.9800
N1A—C2A	1.335 (2)	O1B—C7B	1.2224 (18)
N1A—C6A	1.357 (2)	O2B—C7B	1.3160 (18)
C2A—N3A	1.3411 (18)	O2B—H2B	0.87 (3)
C2A—C7A	1.500 (2)	C1B—C2B	1.392 (2)
N3A—C4A	1.3557 (19)	C1B—C6B	1.393 (2)
N4A—C4A	1.3320 (19)	C1B—C7B	1.491 (2)
N4A—H41	0.86 (2)	C2B—C3B	1.392 (2)
N4A—H42	0.92 (2)	C2B—H2BA	0.9500
C4A—C5A	1.415 (2)	C3B—C4B	1.389 (2)
C5A—C6A	1.372 (2)	СЗВ—НЗВА	0.9500
C6A—C8A	1.497 (2)	C4B—C5B	1.383 (2)
C7A—H7AA	0.9800	C4B—H4BA	0.9500
C7A—H7AB	0.9800	C5B—C6B	1.391 (2)
C7A—H7AC	0.9800	C5B—H5BA	0.9500
C8A—H8AA	0.9800	C6B—H6BA	0.9500
C8A—H8AB	0.9800		
C2A—N1A—C6A	116.86 (12)	C6A—C8A—H8AC	109.5
N1A—C2A—N3A	126.03 (14)	Н8АА—С8А—Н8АС	109.5
N1A—C2A—C7A	117.24 (12)	H8AB—C8A—H8AC	109.5
N3A—C2A—C7A	116.73 (13)	C7B—O2B—H2B	111.1 (15)
C2A—N3A—C4A	118.18 (12)	C2B—C1B—C6B	119.75 (14)

C4A—N4A—H41	115.3 (14)	C2B—C1B—C7B	121.87 (13)
C4A—N4A—H42	120.6 (13)	C6B—C1B—C7B	118.37 (13)
H41—N4A—H42	122.8 (19)	C1B—C2B—C3B	119.95 (15)
N4A—C4A—N3A	118.82 (13)	C1B—C2B—H2BA	120.0
N4A—C4A—C5A	122.81 (14)	C3B—C2B—H2BA	120.0
N3A—C4A—C5A	118.36 (13)	C4B—C3B—C2B	120.00 (16)
C6A—C5A—C4A	119.74 (13)	С4В—С3В—Н3ВА	120.0
C6A—C5A—C11	121.90 (11)	С2В—С3В—Н3ВА	120.0
C4A—C5A—Cl1	118.34 (11)	C5B—C4B—C3B	120.14 (15)
N1A—C6A—C5A	120.74 (13)	C5B—C4B—H4BA	119.9
N1A—C6A—C8A	117.03 (13)	C3B—C4B—H4BA	119.9
C5A—C6A—C8A	122.23 (14)	C4B—C5B—C6B	120.12 (15)
С2А—С7А—Н7АА	109.5	C4B—C5B—H5BA	119.9
С2А—С7А—Н7АВ	109.5	C6B—C5B—H5BA	119.9
Н7АА—С7А—Н7АВ	109.5	C5B—C6B—C1B	120.02 (15)
С2А—С7А—Н7АС	109.5	С5В—С6В—Н6ВА	120.0
Н7АА—С7А—Н7АС	109.5	C1B—C6B—H6BA	120.0
H7AB—C7A—H7AC	109.5	O1B—C7B—O2B	123.85 (13)
С6А—С8А—Н8АА	109.5	O1B—C7B—C1B	121.60 (13)
C6A—C8A—H8AB	109.5	O2B—C7B—C1B	114.54 (13)
H8AA—C8A—H8AB	109.5		
C6A—N1A—C2A—N3A	-1.5 (2)	C4A—C5A—C6A—C8A	179.03 (14)
C6A—N1A—C2A—C7A	178.46 (13)	Cl1—C5A—C6A—C8A	0.6 (2)
N1A—C2A—N3A—C4A	-1.2 (2)	C6B—C1B—C2B—C3B	-0.7 (2)
C7A—C2A—N3A—C4A	178.89 (13)	C7B—C1B—C2B—C3B	-179.78 (15)
C2A—N3A—C4A—N4A	-178.15 (14)	C1B—C2B—C3B—C4B	0.5 (3)
C2A—N3A—C4A—C5A	2.7 (2)	C2B—C3B—C4B—C5B	0.2 (3)
N4A—C4A—C5A—C6A	179.16 (14)	C3B—C4B—C5B—C6B	-0.6 (3)
N3A—C4A—C5A—C6A	-1.7 (2)	C4B—C5B—C6B—C1B	0.3 (3)
N4A—C4A—C5A—C11	-2.3 (2)	C2B—C1B—C6B—C5B	0.3 (2)
N3A—C4A—C5A—Cl1	176.75 (11)	C7B—C1B—C6B—C5B	179.40 (15)
C2A—N1A—C6A—C5A	2.5 (2)	C2B—C1B—C7B—O1B	-176.15 (14)
C2A—N1A—C6A—C8A	-177.49 (13)	C6B—C1B—C7B—O1B	4.8 (2)
C4A—C5A—C6A—N1A	-0.9 (2)	C2B—C1B—C7B—O2B	4.4 (2)
Cl1—C5A—C6A—N1A	-179.35 (11)	C6B—C1B—C7B—O2B	-174.61 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
N4 <i>A</i> —H41…O1 <i>B</i>	0.86 (2)	1.99 (2)	2.8419 (17)	173 (2)
$N4A - H42 \cdots N1A^{i}$	0.92 (2)	2.21 (2)	3.0617 (18)	153.5 (18)
C8A—H8AB····Cl1 ⁱⁱ	0.98	2.98	3.8571 (18)	149
O2 <i>B</i> —H2 <i>B</i> ···N3 <i>A</i>	0.87 (3)	1.80 (3)	2.6712 (17)	174 (2)

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) -*x*+1, -*y*, -*z*+1.

4-Amino-5-chloro-2,6-dimethylpyrimidine-2-methylbenzoic acid (1/1) (COCRYSTAL-7)

 $D_{\rm x} = 1.397 {\rm Mg} {\rm m}^{-3}$

 $\theta = 3.6 - 76.5^{\circ}$

 $\mu = 2.47 \text{ mm}^{-1}$

Needle, colorless

 $0.49 \times 0.11 \times 0.08 \text{ mm}$

T = 120 K

Cu K α radiation, $\lambda = 1.54184$ Å Cell parameters from 3914 reflections

Crystal data

 $C_6H_8CIN_3 \cdot C_8H_8O_2$ $M_r = 293.75$ Orthorhombic, $P2_12_12_1$ a = 7.3992 (2) Å b = 13.9842 (4) Å c = 26.9897 (8) Å V = 2792.68 (14) Å³ Z = 8F(000) = 1232

Data collection

Agilent SuperNova Dual Source	8897 measured reflections
diffractometer with an Atlas detector	4966 independent reflections
Radiation source: sealed X-ray tube	4617 reflections with $I > 2\sigma(I)$
Detector resolution: 10.6501 pixels mm ⁻¹	$R_{\rm int} = 0.030$
ω scans	$\theta_{\rm max} = 76.8^\circ, \ \theta_{\rm min} = 3.3^\circ$
Absorption correction: multi-scan	$h = -7 \rightarrow 9$
(CrysAlis PRO; Agilent, 2014)	$k = -17 \rightarrow 14$
$T_{\min} = 0.740, \ T_{\max} = 1.000$	$l = -22 \rightarrow 34$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0488P)^2 + 0.3891P]$
Least-squares matrix: full	where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.034$	$(\Delta/\sigma)_{\rm max} = 0.002$
$wR(F^2) = 0.091$	$\Delta ho_{ m max} = 0.24 \ { m e} \ { m \AA}^{-3}$
S = 1.04	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$
4966 reflections	Extinction correction: SHELXL2014
376 parameters	(Sheldrick, 2015b),
0 restraints	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Hydrogen site location: mixed	Extinction coefficient: 0.00039 (10)
H atoms treated by a mixture of independent	Absolute structure: Flack x determined using
and constrained refinement	1451 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons
	<i>al.</i> , 2013)
	Absolute structure parameter: -0.001 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C11	0.91235 (8)	0.87398 (4)	0.43040 (2)	0.02206 (15)	
N1A	0.7729 (3)	1.10678 (15)	0.50704 (8)	0.0201 (4)	
C2A	0.7196 (4)	1.06463 (18)	0.54874 (9)	0.0192 (5)	
N3A	0.7172 (3)	0.97006 (15)	0.55756 (8)	0.0191 (4)	
N4A	0.7653 (4)	0.81632 (16)	0.53005 (8)	0.0234 (5)	
H4AA	0.7255	0.7950	0.5587	0.028*	

et

H4AB	0.8004	0.7757	0.5071	0.028*
C4A	0.7723 (4)	0.91023 (18)	0.52138 (9)	0.0183 (5)
C5A	0.8346 (4)	0.95017 (19)	0.47634 (9)	0.0185 (5)
C6A	0.8313 (4)	1.0482 (2)	0.47023 (10)	0.0204 (5)
C7A	0.6540 (4)	1.12797 (19)	0.58987 (9)	0.0231 (5)
H7AA	0.7146	1.1902	0.5878	0.035*
H7AB	0.6814	1.0982	0.6219	0.035*
H7AC	0.5231	1.1370	0.5868	0.035*
C8A	0.8890 (4)	1.0961 (2)	0.42303(10)	0.0258 (6)
Н8АА	0.9284	1 1616	0.4302	0.039*
H8AB	0.7871	1.0978	0.3999	0.039*
H8AC	0.9892	1.0603	0.4082	0.039*
C12	0.88558 (8)	0.36846(4)	0.56903 (2)	0.039
N1B	0.00330(0) 0.7984(3)	0.50840(4) 0.60749(15)	0.30903(2) 0.49210(8)	0.02200(13) 0.0203(4)
C2P	0.7345(4)	0.00749(13)	0.45210(0)	0.0205(4)
N2P	0.7343(4) 0.7075(3)	0.30800(18) 0.47481(15)	0.43000(9) 0.44210(8)	0.0180(3)
NJD	0.7075(3)	0.47401(13) 0.21088(16)	0.44219(8)	0.0190(4)
	0.7243 (4)	0.31988 (10)	0.40998 (8)	0.0231(3)
H4BA	0.6796	0.3010	0.4414	0.028*
H4BB	0.7517	0.2775	0.4929	0.028*
C4B	0.7514 (4)	0.41261 (18)	0.47854 (9)	0.0190 (5)
C5B	0.8238 (4)	0.44877 (19)	0.52313 (9)	0.0186 (5)
C6B	0.8434 (3)	0.54633 (19)	0.52929 (9)	0.0190 (5)
C7B	0.6863 (4)	0.63491 (19)	0.40878 (10)	0.0250 (5)
H7BA	0.6899	0.7012	0.4205	0.037*
H7BB	0.5645	0.6200	0.3968	0.037*
H7BC	0.7732	0.6268	0.3817	0.037*
C8B	0.9118 (4)	0.59057 (19)	0.57601 (10)	0.0238 (5)
H8BA	0.9847	0.6470	0.5680	0.036*
H8BB	0.9864	0.5441	0.5939	0.036*
H8BC	0.8094	0.6096	0.5968	0.036*
O1C	0.6542 (4)	0.92635 (14)	0.65200 (7)	0.0346 (6)
H1C	0.675 (7)	0.938 (4)	0.6173 (19)	0.071 (16)*
O2C	0.6384 (3)	0.77291 (14)	0.63071 (7)	0.0288 (5)
C1C	0.5787 (4)	0.81731 (18)	0.71489 (9)	0.0191 (5)
C2C	0.5895 (4)	0.72517 (18)	0.73568 (9)	0.0195 (5)
C3C	0.5330 (4)	0.71465 (18)	0.78504 (9)	0.0217 (5)
H3CA	0.5403	0.6535	0.8002	0.026*
C4C	0.4672 (4)	0.7903 (2)	0.81212 (9)	0.0245 (5)
H4CA	0.4281	0.7805	0.8453	0.029*
C5C	0.4574 (4)	0.88148 (19)	0.79126 (10)	0.0239 (5)
H5CA	0.4119	0.9339	0.8098	0.029*
C6C	0.5155 (4)	0.89400 (17)	0.74291 (9)	0.0213 (5)
H6CA	0.5121	0.9560	0.7286	0.026*
C7C	0.6283 (4)	0.83490 (18)	0.66198 (10)	0.0205 (5)
C8C	0.6594 (4)	0.63891 (18)	0.70853 (10)	0.0228 (5)
H8CA	0.7754	0.6544	0.6930	0.034*
H8CB	0 5723	0 6200	0.6830	0.034*
HSCC	0.6759	0.5861	0.7320	0.034*
11000	0.0757	0.0001	0.1520	0.007

O1D	0.5864 (3)	0.43696 (13)	0.35050(7)	0.0299 (5)
H1D	0.633 (6)	0.443 (3)	0.3830 (16)	0.049 (12)*
O2D	0.5744 (3)	0.28307 (13)	0.37102 (7)	0.0258 (4)
C1D	0.4706 (4)	0.33139 (18)	0.29067 (9)	0.0187 (5)
C2D	0.4639 (4)	0.23980 (18)	0.26889 (9)	0.0206 (5)
C3D	0.3967 (4)	0.23334 (19)	0.22030 (10)	0.0224 (5)
H3DA	0.3961	0.1729	0.2042	0.027*
C4D	0.3317 (4)	0.3120 (2)	0.19525 (10)	0.0246 (5)
H4DA	0.2858	0.3050	0.1626	0.029*
C5D	0.3330 (4)	0.40158 (19)	0.21763 (10)	0.0242 (5)
H5DA	0.2869	0.4558	0.2006	0.029*
C6D	0.4023 (4)	0.41093 (18)	0.26514 (10)	0.0209 (5)
H6DA	0.4036	0.4720	0.2806	0.025*
C7D	0.5482 (4)	0.34623 (18)	0.34092 (9)	0.0198 (5)
C8D	0.5261 (4)	0.14993 (18)	0.29421 (10)	0.0250 (6)
H8DA	0.5127	0.0956	0.2715	0.037*
H8DB	0.4529	0.1390	0.3239	0.037*
H8DC	0.6534	0.1566	0.3037	0.037*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0255 (3)	0.0205 (3)	0.0201 (3)	0.0010 (2)	0.0027 (2)	-0.0043 (2)
N1A	0.0225 (11)	0.0162 (10)	0.0217 (9)	-0.0022 (9)	0.0007 (9)	0.0010 (8)
C2A	0.0203 (12)	0.0162 (12)	0.0211 (11)	-0.0015 (10)	-0.0003 (10)	-0.0003 (9)
N3A	0.0231 (10)	0.0153 (10)	0.0190 (9)	-0.0012 (9)	0.0020 (8)	-0.0005 (8)
N4A	0.0345 (13)	0.0151 (10)	0.0207 (9)	-0.0004 (10)	0.0053 (10)	-0.0011 (8)
C4A	0.0196 (12)	0.0148 (11)	0.0206 (11)	0.0015 (10)	-0.0021 (10)	-0.0010 (9)
C5A	0.0200 (12)	0.0188 (12)	0.0168 (10)	0.0004 (10)	0.0008 (10)	-0.0023 (10)
C6A	0.0197 (12)	0.0209 (12)	0.0204 (11)	0.0014 (11)	0.0004 (10)	0.0002 (10)
C7A	0.0301 (13)	0.0165 (11)	0.0227 (11)	0.0000 (11)	0.0038 (11)	-0.0013 (10)
C8A	0.0303 (13)	0.0241 (12)	0.0231 (12)	0.0008 (12)	0.0052 (12)	0.0042 (11)
Cl2	0.0268 (3)	0.0200 (3)	0.0210 (3)	0.0018 (2)	-0.0034 (2)	0.0040 (2)
N1B	0.0237 (11)	0.0161 (9)	0.0212 (9)	0.0016 (9)	-0.0007 (9)	-0.0019 (8)
C2B	0.0215 (12)	0.0141 (11)	0.0202 (11)	0.0021 (10)	0.0012 (10)	-0.0005 (9)
N3B	0.0242 (10)	0.0153 (10)	0.0175 (9)	0.0003 (9)	0.0006 (8)	-0.0007 (8)
N4B	0.0333 (12)	0.0149 (9)	0.0211 (9)	-0.0012 (10)	-0.0050 (10)	0.0009 (8)
C4B	0.0205 (12)	0.0161 (11)	0.0204 (11)	0.0008 (10)	0.0035 (10)	0.0000 (9)
C5B	0.0204 (12)	0.0165 (11)	0.0188 (11)	0.0041 (10)	0.0001 (10)	0.0006 (10)
C6B	0.0178 (12)	0.0194 (12)	0.0199 (11)	0.0023 (10)	0.0002 (10)	-0.0015 (10)
C7B	0.0348 (14)	0.0166 (11)	0.0235 (11)	-0.0006 (12)	-0.0045 (11)	0.0028 (10)
C8B	0.0255 (13)	0.0215 (12)	0.0244 (12)	0.0018 (11)	-0.0060 (11)	-0.0050 (10)
O1C	0.0660 (17)	0.0175 (9)	0.0202 (9)	-0.0079 (10)	0.0104 (10)	-0.0017 (7)
O2C	0.0468 (13)	0.0190 (9)	0.0206 (8)	-0.0022 (9)	0.0030 (9)	-0.0005 (7)
C1C	0.0196 (12)	0.0166 (11)	0.0211 (11)	-0.0019 (10)	-0.0006 (10)	-0.0001 (9)
C2C	0.0200 (12)	0.0173 (11)	0.0211 (11)	-0.0024 (11)	-0.0010 (10)	0.0004 (9)
C3C	0.0257 (13)	0.0173 (11)	0.0221 (11)	-0.0039 (11)	-0.0018 (11)	0.0037 (9)
C4C	0.0281 (13)	0.0269 (13)	0.0186 (11)	-0.0054 (12)	0.0015 (11)	0.0003 (10)

C5C	0.0284 (13)	0.0211 (12)	0.0222 (11)	-0.0011 (11)	0.0030 (11)	-0.0029 (10)	
C6C	0.0257 (13)	0.0156 (10)	0.0227 (11)	-0.0017 (10)	-0.0008 (11)	0.0019 (10)	
C7C	0.0227 (12)	0.0168 (11)	0.0218 (11)	-0.0034 (10)	-0.0005 (10)	0.0014 (9)	
C8C	0.0276 (13)	0.0149 (11)	0.0260 (12)	-0.0016 (11)	0.0011 (11)	0.0013 (10)	
O1D	0.0491 (13)	0.0156 (8)	0.0250 (9)	-0.0055 (9)	-0.0112 (10)	-0.0004 (7)	
O2D	0.0385 (11)	0.0180 (8)	0.0208 (8)	-0.0034 (9)	-0.0039 (9)	0.0012 (7)	
C1D	0.0198 (12)	0.0175 (11)	0.0186 (10)	-0.0012 (10)	0.0005 (10)	-0.0001 (9)	
C2D	0.0218 (13)	0.0184 (11)	0.0215 (11)	-0.0002 (10)	0.0015 (10)	-0.0004 (9)	
C3D	0.0236 (13)	0.0213 (12)	0.0222 (12)	-0.0030 (11)	0.0010 (10)	-0.0057 (10)	
C4D	0.0235 (13)	0.0287 (13)	0.0215 (11)	-0.0035 (11)	-0.0031 (11)	0.0001 (10)	
C5D	0.0249 (13)	0.0210 (12)	0.0266 (12)	-0.0006 (11)	-0.0034 (11)	0.0046 (10)	
C6D	0.0228 (12)	0.0153 (10)	0.0246 (12)	-0.0016 (11)	0.0013 (11)	-0.0010 (9)	
C7D	0.0219 (11)	0.0173 (11)	0.0203 (11)	-0.0019 (10)	0.0021 (10)	-0.0026 (9)	
C8D	0.0320 (14)	0.0170 (11)	0.0258 (12)	0.0019 (11)	-0.0012 (11)	-0.0024 (10)	

Geometric parameters (Å, °)

Cl1—C5A	1.733 (3)	O1C—C7C	1.321 (3)
N1A—C2A	1.330 (3)	O1C—H1C	0.96 (5)
N1A—C6A	1.359 (3)	O2C—C7C	1.212 (3)
C2A—N3A	1.344 (3)	C1C—C6C	1.393 (4)
C2A—C7A	1.501 (4)	C1C—C2C	1.408 (3)
N3A—C4A	1.349 (3)	C1C—C7C	1.495 (3)
N4A—C4A	1.335 (3)	C2C—C3C	1.404 (3)
N4A—H4AA	0.8800	C2C—C8C	1.503 (4)
N4A—H4AB	0.8800	C3C—C4C	1.375 (4)
C4A—C5A	1.415 (4)	СЗС—НЗСА	0.9500
C5A—C6A	1.380 (4)	C4C—C5C	1.395 (4)
C6A—C8A	1.502 (4)	C4C—H4CA	0.9500
С7А—Н7АА	0.9800	C5C—C6C	1.385 (4)
C7A—H7AB	0.9800	C5C—H5CA	0.9500
C7A—H7AC	0.9800	С6С—Н6СА	0.9500
C8A—H8AA	0.9800	C8C—H8CA	0.9800
C8A—H8AB	0.9800	C8C—H8CB	0.9800
C8A—H8AC	0.9800	C8C—H8CC	0.9800
Cl2—C5B	1.734 (3)	O1D—C7D	1.325 (3)
N1B—C2B	1.332 (3)	O1D—H1D	0.95 (4)
N1B—C6B	1.360 (3)	O2D—C7D	1.216 (3)
C2B—N3B	1.346 (3)	C1D—C6D	1.402 (4)
C2B—C7B	1.504 (3)	C1D—C2D	1.410 (4)
N3B—C4B	1.351 (3)	C1D—C7D	1.487 (3)
N4B—C4B	1.332 (3)	C2D—C3D	1.406 (4)
N4B—H4BA	0.8800	C2D—C8D	1.503 (4)
N4B—H4BB	0.8800	C3D—C4D	1.378 (4)
C4B—C5B	1.411 (4)	C3D—H3DA	0.9500
C5B—C6B	1.382 (4)	C4D—C5D	1.391 (4)
C6B—C8B	1.493 (3)	C4D—H4DA	0.9500
С7В—Н7ВА	0.9800	C5D—C6D	1.387 (4)

C7B—H7BB	0.9800	C5D—H5DA	0.9500
C7B—H7BC	0.9800	C6D—H6DA	0.9500
C8B—H8BA	0.9800	C8D—H8DA	0.9800
C8B—H8BB	0.9800	C8D—H8DB	0.9800
C8B—H8BC	0.9800	C8D—H8DC	0.9800
C2A—N1A—C6A	116.5 (2)	H8BB—C8B—H8BC	109.5
N1A—C2A—N3A	126.1 (2)	C7C—O1C—H1C	112 (3)
N1A—C2A—C7A	117.4 (2)	C6C—C1C—C2C	120.5 (2)
N3A—C2A—C7A	116.5 (2)	C6C—C1C—C7C	118.3 (2)
C2A—N3A—C4A	118.6 (2)	C2C—C1C—C7C	121.2 (2)
C4A—N4A—H4AA	120.0	C3C—C2C—C1C	117.2 (2)
C4A—N4A—H4AB	120.0	C3C—C2C—C8C	118.7 (2)
H4AA—N4A—H4AB	120.0	C1C—C2C—C8C	124.1 (2)
N4A—C4A—N3A	118.1 (2)	C4C—C3C—C2C	121.9 (2)
N4A—C4A—C5A	123.5 (2)	C4C—C3C—H3CA	119.0
N3A—C4A—C5A	118.4 (2)	С2С—С3С—Н3СА	119.0
C6A - C5A - C4A	119.3 (2)	C3C-C4C-C5C	120.5 (2)
C6A - C5A - C11	122.06(19)	$C_{3}C_{-}C_{4}C_{-}H_{4}C_{A}$	119.8
C4A - C5A - C11	1187(2)	$C_5C-C_4C-H_4C_A$	119.8
N1A - C6A - C5A	121.2(2)	C6C-C5C-C4C	119.0 118.7(3)
N1A—C6A—C8A	121.2(2) 1162(2)	C6C - C5C - H5CA	120.7
C_{5A} C_{6A} C_{8A}	110.2(2) 122.7(2)	C4C - C5C - H5CA	120.7
$C_{2}A - C_{7}A - H_{7}A A$	109.5	$C_{10} = C_{10} = C$	120.7 121.2(2)
$C_2A = C_7A = H_7AB$	109.5	$C_{5}C_{-}C_{6}C_{-}H_{6}C_{4}$	121.2 (2)
H7AA - C7A - H7AB	109.5	C1C - C6C - H6CA	119.4
C_{2A} C_{7A} H_{7AC}	109.5	$O_{1}^{2}C$ $C_{1}^{2}C$ $O_{1}^{2}C$	117.7 122.8(2)
$H_{7AA} = C_{7A} = H_{7AC}$	109.5	02C - C7C - C1C	122.0(2) 124.2(2)
H7AR C7A H7AC	109.5	010 - 070 - 010	124.2(2) 1120(2)
$\Pi/AD - C/A - \Pi/AC$	109.5	C_{C}	112.9 (2)
C6A C8A H8AD	109.5	$C_2C = C_8C = H_8CR$	109.5
	109.5		109.5
$\square \square $	109.5	$H_{0}CA = C_{0}C = H_{0}CB$	109.5
	109.5		109.5
$H_{A} = C_{A} = H_{A} C$	109.5	$H_{0}CA = C_{0}C = H_{0}CC$	109.5
$H\delta AB - C\delta A - H\delta AC$	109.5	$H\delta CB = C\delta C = H\delta CC$	109.5
C2B—NIB—C0B	110.8(2)	C/D—OID—HID	110(3) 1202(3)
NIB-C2B-N3B	126.3(2)	$C_{0}D = C_{1}D = C_{2}D$	120.2(2)
NIB-C2B-C7B	11/.6 (2)	$C_{0}D = C_{1}D = C_{2}D$	118.4 (2)
N3B = C2B = C/B	116.1 (2)	C_{2D} C_{1D} C_{1D}	121.3 (2)
C2B—N3B—C4B	118.0 (2)	C3D—C2D—CID	11/.4 (2)
C4B—N4B—H4BA	120.0	C3DC2DC8D	118.6 (2)
C4B—N4B—H4BB	120.0	C1DC2DC8D	124.0 (2)
H4BA—N4B—H4BB	120.0	C4D—C3D—C2D	122.0 (2)
N4B—C4B—N3B	117.7 (2)	C4D—C3D—H3DA	119.0
N4B—C4B—C5B	123.6 (2)	C2D—C3D—H3DA	119.0
N3B—C4B—C5B	118.7 (2)	C3D—C4D—C5D	120.2 (2)
C6B—C5B—C4B	119.7 (2)	C3D—C4D—H4DA	119.9
C6B—C5B—C12	121.73 (19)	C5D—C4D—H4DA	119.9

C4B—C5B—Cl2	118.5 (2)	C6D—C5D—C4D	119.3 (3)
N1B—C6B—C5B	120.4 (2)	C6D—C5D—H5DA	120.4
N1B—C6B—C8B	116.5 (2)	C4D—C5D—H5DA	120.4
C5B—C6B—C8B	123.1 (2)	C5D—C6D—C1D	120.8 (2)
С2В—С7В—Н7ВА	109.5	C5D—C6D—H6DA	119.6
C2B—C7B—H7BB	109.5	C1D—C6D—H6DA	119.6
H7BA—C7B—H7BB	109.5	O2DC7DO1D	122.1 (2)
C2B—C7B—H7BC	109.5	O2D	124.7 (2)
H7BA—C7B—H7BC	109.5	01D	113.2 (2)
H7BB—C7B—H7BC	109.5	C2D—C8D—H8DA	109.5
C6B—C8B—H8BA	109.5	C2D—C8D—H8DB	109.5
C6B—C8B—H8BB	109.5	H8DA—C8D—H8DB	109.5
H8BA—C8B—H8BB	109.5	C2D—C8D—H8DC	109.5
C6B—C8B—H8BC	109.5	H8DA—C8D—H8DC	109.5
H8BA—C8B—H8BC	109.5	H8DB—C8D—H8DC	109.5
C6A—N1A—C2A—N3A	-0.4 (4)	Cl2—C5B—C6B—C8B	-2.3 (4)
C6A—N1A—C2A—C7A	-179.8 (2)	C6C—C1C—C2C—C3C	0.5 (4)
N1A—C2A—N3A—C4A	-0.4 (4)	C7C—C1C—C2C—C3C	-177.4 (2)
C7A—C2A—N3A—C4A	179.0 (2)	C6C—C1C—C2C—C8C	-178.8(3)
C2A—N3A—C4A—N4A	-178.4 (3)	C7C—C1C—C2C—C8C	3.4 (4)
C2A—N3A—C4A—C5A	1.7 (4)	C1C—C2C—C3C—C4C	0.9 (4)
N4A—C4A—C5A—C6A	177.9 (3)	C8C—C2C—C3C—C4C	-179.8 (3)
N3A—C4A—C5A—C6A	-2.2 (4)	C2C—C3C—C4C—C5C	-1.1 (4)
N4A—C4A—C5A—C11	-1.9 (4)	C3C—C4C—C5C—C6C	-0.1 (4)
N3A—C4A—C5A—C11	178.0 (2)	C4C—C5C—C6C—C1C	1.5 (4)
C2A—N1A—C6A—C5A	-0.1 (4)	C2C—C1C—C6C—C5C	-1.7 (4)
C2A—N1A—C6A—C8A	179.2 (2)	C7C—C1C—C6C—C5C	176.2 (3)
C4A—C5A—C6A—N1A	1.4 (4)	C6C—C1C—C7C—O2C	-159.6 (3)
Cl1—C5A—C6A—N1A	-178.8 (2)	C2C—C1C—C7C—O2C	18.3 (4)
C4A—C5A—C6A—C8A	-177.9 (2)	C6C—C1C—C7C—O1C	18.1 (4)
Cl1—C5A—C6A—C8A	1.9 (4)	C2C—C1C—C7C—O1C	-164.0 (3)
C6B—N1B—C2B—N3B	1.1 (4)	C6D—C1D—C2D—C3D	3.6 (4)
C6B—N1B—C2B—C7B	-179.2 (2)	C7D—C1D—C2D—C3D	-176.8 (2)
N1B—C2B—N3B—C4B	-1.2 (4)	C6D-C1D-C2D-C8D	-177.2 (3)
C7B—C2B—N3B—C4B	179.1 (2)	C7D—C1D—C2D—C8D	2.4 (4)
C2B—N3B—C4B—N4B	-180.0 (3)	C1D-C2D-C3D-C4D	-2.9 (4)
C2B—N3B—C4B—C5B	-0.3 (4)	C8D—C2D—C3D—C4D	177.8 (3)
N4B—C4B—C5B—C6B	-178.5 (3)	C2D—C3D—C4D—C5D	0.8 (4)
N3B—C4B—C5B—C6B	1.9 (4)	C3D—C4D—C5D—C6D	0.8 (4)
N4B—C4B—C5B—C12	1.3 (4)	C4DC5DC6DC1D	-0.1 (4)
N3B-C4B-C5B-Cl2	-178.3 (2)	C2D-C1D-C6D-C5D	-2.2 (4)
C2B—N1B—C6B—C5B	0.5 (4)	C7D—C1D—C6D—C5D	178.2 (2)
C2B—N1B—C6B—C8B	-179.0 (2)	C6D—C1D—C7D—O2D	162.9 (3)
C4B-C5B-C6B-N1B	-2.0 (4)	C2D—C1D—C7D—O2D	-16.7 (4)
Cl2—C5B—C6B—N1B	178.2 (2)	C6D—C1D—C7D—O1D	-16.7 (4)
C4B—C5B—C6B—C8B	177.5 (2)	C2D—C1D—C7D—O1D	163.7 (3)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N4 <i>A</i> —H4 <i>AA</i> ···O2 <i>C</i>	0.88	2.07	2.938 (3)	169
N4 <i>A</i> —H4 <i>AB</i> ···N1 <i>B</i>	0.88	2.39	3.104 (3)	139
C7A—H7AA···Cl2 ⁱ	0.98	2.84	3.816 (3)	173
C7A—H7AB…O1C	0.98	2.54	3.281 (3)	132
N4 <i>B</i> —H4 <i>BA</i> ···O2 <i>D</i>	0.88	2.07	2.938 (3)	170
N4B—H4BB…N1A ⁱⁱ	0.88	2.42	3.164 (3)	142
C7B—H7BA…Cl1	0.98	2.94	3.783 (3)	145
01 <i>C</i> —H1 <i>C</i> ···N3 <i>A</i>	0.96 (5)	1.70 (5)	2.662 (3)	174 (5)
O1 <i>D</i> —H1 <i>D</i> …N3 <i>B</i>	0.95 (4)	1.75 (4)	2.685 (3)	170 (4)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, *y*-1, *z*.

4-Amino-5-chloro-2,6-dimethylpyrimidine-3-methylbenzoic acid (1/1) (COCRYSTAL-8)

Crystal data

C₆H₈ClN₃·C₈H₈O₂ $M_r = 293.75$ Orthorhombic, *Pbcn* a = 8.4524 (1) Å b = 13.5387 (2) Å c = 24.9813 (3) Å V = 2858.72 (6) Å³ Z = 8F(000) = 1232

Data collection

Data collection	
Agilent SuperNova Dual Source	26401 measured reflections
diffractometer with an Atlas detector	3006 independent reflections
Radiation source: sealed X-ray tube	2904 reflections with $I > 2\sigma(I)$
Detector resolution: 10.6501 pixels mm ⁻¹	$R_{\rm int} = 0.033$
ω scans	$\theta_{\rm max} = 76.8^{\circ}, \theta_{\rm min} = 3.5^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 10$
(CrysAlis PRO; Agilent, 2014)	$k = -15 \rightarrow 16$
$T_{\min} = 0.680, \ T_{\max} = 1.000$	$l = -30 \rightarrow 31$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.103$ S = 1.043006 reflections 196 parameters 0 restraints $D_x = 1.365 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 15282 reflections $\theta = 3.6-76.6^{\circ}$ $\mu = 2.42 \text{ mm}^{-1}$ T = 120 KPrism, colorless $0.42 \times 0.24 \times 0.19 \text{ mm}$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0616P)^2 + 1.3483P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.30 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.31 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.15056 (4)	0.43229 (2)	0.19457 (2)	0.02742 (13)
N1A	0.27927 (13)	0.68415 (8)	0.26427 (4)	0.0221 (2)
C2A	0.35774 (15)	0.64739 (10)	0.30611 (5)	0.0203 (3)
N3A	0.38017 (13)	0.55115 (8)	0.31659 (4)	0.0201 (2)
N4A	0.33933 (14)	0.38852 (9)	0.29368 (5)	0.0238 (3)
H41	0.391 (2)	0.3742 (13)	0.3208 (7)	0.024 (4)*
H42	0.297 (2)	0.3408 (15)	0.2732 (8)	0.041 (5)*
C4A	0.31709 (15)	0.48386 (9)	0.28280 (5)	0.0196 (3)
C5A	0.23205 (15)	0.51817 (9)	0.23781 (5)	0.0208 (3)
C6A	0.21632 (15)	0.61794 (10)	0.22941 (5)	0.0218 (3)
C7A	0.42722 (17)	0.71901 (9)	0.34549 (5)	0.0272 (3)
H7AA	0.4024	0.7867	0.3343	0.041*
H7AB	0.5423	0.7104	0.3468	0.041*
H7AC	0.3824	0.7068	0.3810	0.041*
C8A	0.13053 (17)	0.65888 (11)	0.18186 (6)	0.0292 (3)
H8AA	0.1421	0.7309	0.1812	0.044*
H8AB	0.0181	0.6418	0.1843	0.044*
H8AC	0.1752	0.6308	0.1490	0.044*
O1B	0.56542 (12)	0.51547 (7)	0.40098 (4)	0.0260 (2)
H1B	0.502 (3)	0.5220 (17)	0.3730 (9)	0.056 (6)*
O2B	0.51805 (11)	0.35371 (7)	0.39001 (4)	0.0259 (2)
C1B	0.68785 (15)	0.40432 (10)	0.46069 (5)	0.0218 (3)
C2B	0.73386 (15)	0.48174 (10)	0.49402 (5)	0.0231 (3)
H2BA	0.6996	0.5470	0.4863	0.028*
C3B	0.82943 (16)	0.46448 (11)	0.53845 (5)	0.0254 (3)
C4B	0.87966 (17)	0.36796 (11)	0.54822 (6)	0.0296 (3)
H4BA	0.9452	0.3549	0.5783	0.035*
C5B	0.83573 (18)	0.29079 (11)	0.51486 (6)	0.0324 (3)
H5BA	0.8722	0.2257	0.5220	0.039*
C6B	0.73882 (17)	0.30830 (10)	0.47111 (6)	0.0277 (3)
H6BA	0.7075	0.2554	0.4485	0.033*
C7B	0.58274 (15)	0.42178 (9)	0.41389 (5)	0.0213 (3)
C8B	0.87751 (18)	0.54831 (12)	0.57482 (6)	0.0312 (3)
H8BA	0.9427	0.5226	0.6041	0.047*
H8BB	0.7827	0.5798	0.5896	0.047*
H8BC	0.9384	0.5970	0.5544	0.047*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

)
1

C4A	0.0195 (5)	0.0194 (6)	0.0200 (6)	-0.0012 (5)	0.0031 (5)	-0.0003 (4)	
C5A	0.0205 (6)	0.0227 (6)	0.0193 (6)	-0.0011 (5)	0.0001 (5)	-0.0018 (4)	
C6A	0.0197 (6)	0.0252 (6)	0.0206 (6)	0.0016 (5)	0.0012 (5)	0.0012 (5)	
C7A	0.0323 (7)	0.0204 (6)	0.0290 (7)	-0.0019 (5)	-0.0043 (5)	-0.0012 (5)	
C8A	0.0313 (7)	0.0290 (7)	0.0271 (7)	0.0044 (6)	-0.0052 (6)	0.0044 (6)	
O1B	0.0317 (5)	0.0204 (5)	0.0260 (5)	0.0007 (4)	-0.0091 (4)	0.0009 (4)	
O2B	0.0292 (5)	0.0226 (5)	0.0259 (5)	-0.0029 (4)	-0.0062 (4)	0.0006 (3)	
C1B	0.0189 (6)	0.0249 (6)	0.0217 (6)	-0.0010 (5)	-0.0001 (5)	0.0023 (5)	
C2B	0.0208 (6)	0.0257 (7)	0.0229 (6)	0.0008 (5)	0.0005 (5)	-0.0003 (5)	
C3B	0.0206 (6)	0.0336 (7)	0.0222 (6)	-0.0019 (5)	0.0005 (5)	-0.0006 (5)	
C4B	0.0250 (6)	0.0359 (8)	0.0278 (7)	-0.0007 (6)	-0.0064 (5)	0.0060 (6)	
C5B	0.0320 (7)	0.0262 (7)	0.0390 (8)	0.0002 (6)	-0.0101 (6)	0.0074 (6)	
C6B	0.0265 (7)	0.0244 (7)	0.0323 (7)	-0.0022 (5)	-0.0059 (5)	0.0023 (5)	
C7B	0.0198 (6)	0.0227 (6)	0.0214 (6)	0.0005 (5)	0.0013 (5)	0.0009 (5)	
C8B	0.0287 (7)	0.0394 (8)	0.0254 (7)	-0.0002 (6)	-0.0042 (5)	-0.0063 (6)	

Geometric parameters (Å, °)

Cl1—C5A	1.7301 (13)	O1B—C7B	1.3169 (16)
N1A—C2A	1.3342 (17)	O1B—H1B	0.88 (2)
N1A—C6A	1.3584 (17)	O2B—C7B	1.2264 (16)
C2A—N3A	1.3424 (17)	C1B—C6B	1.3940 (18)
C2A—C7A	1.5011 (18)	C1B—C2B	1.3940 (18)
N3A—C4A	1.3516 (16)	C1B—C7B	1.4874 (18)
N4A—C4A	1.3325 (17)	C2B—C3B	1.3924 (18)
N4A—H41	0.829 (18)	C2B—H2BA	0.9500
N4A—H42	0.90 (2)	C3B—C4B	1.396 (2)
C4A—C5A	1.4125 (18)	C3B—C8B	1.510 (2)
C5A—C6A	1.3735 (19)	C4B—C5B	1.387 (2)
C6A—C8A	1.4979 (18)	C4B—H4BA	0.9500
С7А—Н7АА	0.9800	C5B—C6B	1.386 (2)
C7A—H7AB	0.9800	C5B—H5BA	0.9500
C7A—H7AC	0.9800	C6B—H6BA	0.9500
C8A—H8AA	0.9800	C8B—H8BA	0.9800
C8A—H8AB	0.9800	C8B—H8BB	0.9800
C8A—H8AC	0.9800	C8B—H8BC	0.9800
C2A—N1A—C6A	116.79 (11)	C7B—O1B—H1B	110.9 (15)
N1A—C2A—N3A	125.81 (12)	C6B—C1B—C2B	120.23 (12)
N1A—C2A—C7A	117.83 (12)	C6B—C1B—C7B	118.66 (12)
N3A—C2A—C7A	116.35 (11)	C2B—C1B—C7B	121.11 (12)
C2A—N3A—C4A	118.47 (11)	C3B—C2B—C1B	120.78 (13)
C4A—N4A—H41	117.9 (12)	C3B—C2B—H2BA	119.6
C4A—N4A—H42	121.6 (13)	C1B—C2B—H2BA	119.6
H41—N4A—H42	120.5 (18)	C2B—C3B—C4B	118.23 (13)
N4A—C4A—N3A	118.03 (12)	C2B—C3B—C8B	120.65 (14)
N4A—C4A—C5A	123.55 (12)	C4B—C3B—C8B	121.12 (13)
N3A—C4A—C5A	118.42 (11)	C5B—C4B—C3B	121.25 (13)

C6A—C5A—C4A	119.62 (11)	C5B—C4B—H4BA	119.4
C6A—C5A—Cl1	121.80 (10)	C3B—C4B—H4BA	119.4
C4A—C5A—C11	118.58 (10)	C6B—C5B—C4B	120.20 (14)
N1A—C6A—C5A	120.87 (11)	C6B—C5B—H5BA	119.9
N1A—C6A—C8A	116.99 (12)	C4B—C5B—H5BA	119.9
C5A—C6A—C8A	122.14 (12)	C5B—C6B—C1B	119.30 (13)
С2А—С7А—Н7АА	109.5	C5B—C6B—H6BA	120.3
С2А—С7А—Н7АВ	109.5	C1B—C6B—H6BA	120.3
Н7АА—С7А—Н7АВ	109.5	O2B—C7B—O1B	123.72 (12)
C2A—C7A—H7AC	109.5	O2B—C7B—C1B	121.95 (12)
Н7АА—С7А—Н7АС	109.5	O1B—C7B—C1B	114.33 (11)
Н7АВ—С7А—Н7АС	109.5	C3B—C8B—H8BA	109.5
C6A—C8A—H8AA	109.5	C3B—C8B—H8BB	109.5
C6A—C8A—H8AB	109.5	H8BA—C8B—H8BB	109.5
H8AA—C8A—H8AB	109.5	C3B—C8B—H8BC	109.5
C6A—C8A—H8AC	109.5	H8BA—C8B—H8BC	109.5
H8AA—C8A—H8AC	109.5	H8BB—C8B—H8BC	109.5
H8AB—C8A—H8AC	109.5		
C6A—N1A—C2A—N3A	0.22 (19)	Cl1—C5A—C6A—C8A	-1.18 (18)
C6A—N1A—C2A—C7A	-179.47 (11)	C6B—C1B—C2B—C3B	-0.8 (2)
N1A—C2A—N3A—C4A	-0.97 (19)	C7B—C1B—C2B—C3B	178.57 (12)
C7A—C2A—N3A—C4A	178.73 (11)	C1B—C2B—C3B—C4B	0.9 (2)
C2A—N3A—C4A—N4A	-179.68 (12)	C1B-C2B-C3B-C8B	-179.30 (13)
C2A—N3A—C4A—C5A	0.64 (18)	C2B—C3B—C4B—C5B	-0.2 (2)
N4A—C4A—C5A—C6A	-179.33 (12)	C8B—C3B—C4B—C5B	-179.97 (14)
N3A—C4A—C5A—C6A	0.33 (18)	C3B—C4B—C5B—C6B	-0.7 (2)
N4A—C4A—C5A—C11	0.54 (18)	C4B-C5B-C6B-C1B	0.8 (2)
N3A—C4A—C5A—Cl1	-179.80 (9)	C2B-C1B-C6B-C5B	-0.1 (2)
C2A—N1A—C6A—C5A	0.82 (18)	C7B—C1B—C6B—C5B	-179.46 (13)
C2A—N1A—C6A—C8A	-178.96 (11)	C6B—C1B—C7B—O2B	12.8 (2)
C4A—C5A—C6A—N1A	-1.09 (19)	C2B—C1B—C7B—O2B	-166.53 (12)
Cl1—C5A—C6A—N1A	179.04 (10)	C6B—C1B—C7B—O1B	-167.53 (12)
C4A—C5A—C6A—C8A	178.68 (12)	C2B-C1B-C7B-01B	13.12 (18)

Hydrogen-bond geometry (Å, °)

	ע ת	TT 4		
D—H···A	<i>D</i> —H	H···A	$D^{\dots}A$	D—H···A
N4 <i>A</i> —H41····O2 <i>B</i>	0.829 (18)	2.055 (19)	2.8802 (15)	174.2 (17)
$N4A$ — $H42$ ··· $N1A^{i}$	0.90 (2)	2.23 (2)	3.0332 (16)	149.0 (17)
C7A—H7AA····Cl1 ⁱⁱ	0.98	2.97	3.5919 (14)	123
C7A—H7AA····N4A ⁱⁱⁱ	0.98	2.67	3.4667 (18)	139
$C8A$ — $H8AA$ ···· $O2B^{iv}$	0.98	2.65	3.3295 (17)	127
O1 <i>B</i> —H1 <i>B</i> ···N3 <i>A</i>	0.88 (2)	1.79 (2)	2.6701 (15)	173 (2)

Symmetry codes: (i) -x+1/2, y-1/2, z; (ii) x+1/2, y+1/2, -z+1/2; (iii) -x+1/2, y+1/2, z; (iv) x-1/2, y+1/2, -z+1/2.

4-Amino-5-chloro-2,6-dimethylpyrimidine-4-methylbenzoic acid (1/1) (COCRYSTAL-9)

F(000) = 616

 $\theta = 4.7 - 76.5^{\circ}$

 $\mu = 2.41 \text{ mm}^{-1}$

Plate, colorless

 $0.51 \times 0.17 \times 0.08 \text{ mm}$

T = 120 K

 $D_{\rm x} = 1.360 {\rm Mg} {\rm m}^{-3}$

Cu *Ka* radiation, $\lambda = 1.54184$ Å Cell parameters from 2368 reflections

Crystal data

 $C_{6}H_{8}CIN_{3}\cdot C_{8}H_{8}O_{2}$ $M_{r} = 293.75$ Monoclinic, $P2_{1}/c$ a = 8.0223 (5) Å b = 13.6901 (10) Å c = 13.3346 (10) Å $\beta = 101.557$ (7)° V = 1434.80 (18) Å³ Z = 4

Data collection

Agilent SuperNova Dual Source 6765 measured reflections diffractometer with an Atlas detector 2966 independent reflections 2422 reflections with $I > 2\sigma(I)$ Radiation source: sealed X-ray tube Detector resolution: 10.6501 pixels mm⁻¹ $R_{\rm int} = 0.040$ $\theta_{\rm max} = 76.7^{\circ}, \ \theta_{\rm min} = 4.7^{\circ}$ ω scans $h = -8 \rightarrow 10$ Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) $k = -17 \rightarrow 17$ $l = -16 \rightarrow 15$ $T_{\rm min} = 0.582, T_{\rm max} = 1.000$ Refinement Refinement on F^2 H atoms treated by a mixture of independent Least-squares matrix: full and constrained refinement $R[F^2 > 2\sigma(F^2)] = 0.047$ $w = 1/[\sigma^2(F_0^2) + (0.0813P)^2 + 0.4428P]$ $wR(F^2) = 0.140$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.04 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$ 2966 reflections 197 parameters

 $\Delta \rho_{\min} = -0.41 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc²\lambda³/sin(2 θ)]^{-1/4} Extinction coefficient: 0.0014 (4)

Special details

Hydrogen site location: mixed

0 restraints

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	1.08463 (7)	0.85968 (4)	0.61237 (4)	0.03229 (19)	
N1A	0.9592 (2)	0.72109 (13)	0.34491 (13)	0.0271 (4)	
C2A	0.8839 (3)	0.64300 (15)	0.37583 (16)	0.0264 (4)	
N3A	0.8637 (2)	0.62518 (13)	0.47148 (13)	0.0262 (4)	
N4A	0.8970 (2)	0.67557 (14)	0.63951 (14)	0.0297 (4)	
H41	0.852 (3)	0.625 (2)	0.647 (2)	0.030 (7)*	
H42	0.934 (3)	0.719 (2)	0.691 (2)	0.042 (7)*	
C4A	0.9222 (2)	0.69202 (15)	0.54527 (15)	0.0253 (4)	

C5A	1.0068 (2)	0.77534 (15)	0.51821 (15)	0.0265 (4)
C6A	1.0238 (2)	0.78780 (15)	0.41779 (15)	0.0259 (4)
C7A	0.8182 (3)	0.56630 (16)	0.29745 (16)	0.0323 (5)
H7AA	0.8067	0.5941	0.2287	0.048*
H7AB	0.7069	0.5434	0.3073	0.048*
H7AC	0.8980	0.5113	0.3051	0.048*
C8A	1.1093 (3)	0.87516 (16)	0.38284 (17)	0.0308 (4)
H8AA	1.1603	0.8570	0.3246	0.046*
H8AB	1.1984	0.8986	0.4390	0.046*
H8AC	1.0252	0.9270	0.3621	0.046*
O1B	0.7077 (2)	0.45998 (12)	0.49384 (12)	0.0375 (4)
H1B	0.757 (5)	0.519 (3)	0.492 (3)	0.089 (13)*
O2B	0.7255 (2)	0.48776 (12)	0.66154 (12)	0.0373 (4)
C1B	0.5926 (3)	0.34164 (16)	0.58705 (17)	0.0288 (4)
C2B	0.5582 (3)	0.30639 (17)	0.67918 (17)	0.0310 (5)
H2BA	0.5902	0.3436	0.7401	0.037*
C3B	0.4773 (3)	0.21712 (17)	0.68174 (17)	0.0321 (5)
H3BA	0.4540	0.1940	0.7447	0.038*
C4B	0.4296 (3)	0.16065 (16)	0.59342 (17)	0.0304 (5)
C5B	0.4629 (3)	0.19749 (17)	0.50191 (17)	0.0328 (5)
H5BA	0.4295	0.1608	0.4407	0.039*
C6B	0.5437 (3)	0.28656 (16)	0.49835 (16)	0.0304 (5)
H6BA	0.5658	0.3100	0.4352	0.037*
C7B	0.6814 (3)	0.43686 (16)	0.58525 (16)	0.0298 (4)
C8B	0.3480 (3)	0.06233 (18)	0.59702 (19)	0.0384 (5)
H8BA	0.2421	0.0597	0.5456	0.058*
H8BB	0.3230	0.0518	0.6652	0.058*
H8BC	0.4258	0.0114	0.5826	0.058*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0424 (3)	0.0267 (3)	0.0290 (3)	-0.00801 (19)	0.0100 (2)	-0.00421 (18)
N1A	0.0310 (8)	0.0251 (9)	0.0267 (8)	-0.0005 (7)	0.0094 (6)	-0.0003 (7)
C2A	0.0289 (9)	0.0233 (10)	0.0279 (10)	0.0017 (7)	0.0083 (8)	-0.0017 (8)
N3A	0.0303 (8)	0.0220 (8)	0.0274 (8)	-0.0006 (7)	0.0080 (6)	0.0003 (7)
N4A	0.0422 (10)	0.0216 (9)	0.0263 (9)	-0.0077 (8)	0.0096 (7)	-0.0003 (7)
C4A	0.0281 (9)	0.0222 (9)	0.0262 (9)	0.0017 (7)	0.0068 (7)	0.0010 (8)
C5A	0.0282 (9)	0.0226 (10)	0.0298 (10)	0.0008 (8)	0.0081 (8)	-0.0012 (8)
C6A	0.0257 (9)	0.0225 (10)	0.0307 (10)	0.0021 (7)	0.0086 (7)	0.0019 (8)
C7A	0.0425 (11)	0.0280 (11)	0.0286 (10)	-0.0036 (9)	0.0124 (8)	-0.0041 (9)
C8A	0.0351 (10)	0.0279 (10)	0.0312 (10)	-0.0025 (9)	0.0112 (8)	0.0020 (8)
O1B	0.0513 (10)	0.0307 (8)	0.0339 (8)	-0.0130 (7)	0.0165 (7)	-0.0017 (7)
O2B	0.0485 (9)	0.0316 (8)	0.0331 (8)	-0.0099 (7)	0.0113 (7)	-0.0036 (7)
C1B	0.0282 (10)	0.0251 (10)	0.0340 (10)	-0.0005 (8)	0.0088 (8)	0.0000 (8)
C2B	0.0321 (10)	0.0306 (11)	0.0309 (10)	-0.0025 (9)	0.0076 (8)	-0.0012 (9)
C3B	0.0330 (10)	0.0334 (12)	0.0315 (10)	-0.0023 (9)	0.0105 (8)	0.0042 (9)
C4B	0.0272 (10)	0.0266 (10)	0.0383 (11)	0.0003 (8)	0.0091 (8)	0.0008 (9)

C5B	0.0359 (11)	0.0276 (11)	0.0352 (11)	-0.0023 (9)	0.0081 (9)	-0.0044 (9)
C6B	0.0341 (10)	0.0287 (11)	0.0295 (10)	-0.0016 (8)	0.0087 (8)	0.0009 (8)
C7B	0.0305 (10)	0.0274 (10)	0.0329 (10)	0.0000 (8)	0.0092 (8)	0.0005 (9)
C8B	0.0407 (12)	0.0297 (12)	0.0470 (13)	-0.0035 (9)	0.0138 (10)	0.0027 (10)

Geometric parameters (Å, °)

Cl1—C5A	1.728 (2)	O1B—C7B	1.317 (3)
N1A—C2A	1.333 (3)	O1B—H1B	0.90 (4)
N1A—C6A	1.358 (3)	O2B—C7B	1.225 (3)
C2A—N3A	1.340 (3)	C1B—C6B	1.391 (3)
C2A—C7A	1.501 (3)	C1B—C2B	1.398 (3)
N3A—C4A	1.357 (3)	C1B—C7B	1.488 (3)
N4A—C4A	1.331 (3)	C2B—C3B	1.387 (3)
N4A—H41	0.79 (3)	C2B—H2BA	0.9500
N4A—H42	0.91 (3)	C3B—C4B	1.397 (3)
C4A—C5A	1.410 (3)	СЗВ—НЗВА	0.9500
C5A—C6A	1.383 (3)	C4B—C5B	1.395 (3)
C6A—C8A	1.499 (3)	C4B—C8B	1.502 (3)
С7А—Н7АА	0.9800	C5B—C6B	1.386 (3)
C7A—H7AB	0.9800	C5B—H5BA	0.9500
C7A—H7AC	0.9800	C6B—H6BA	0.9500
C8A—H8AA	0.9800	C8B—H8BA	0.9800
C8A—H8AB	0.9800	C8B—H8BB	0.9800
C8A—H8AC	0.9800	C8B—H8BC	0.9800
C2A—N1A—C6A	116.70 (17)	C7B—O1B—H1B	113 (3)
N1A—C2A—N3A	126.09 (19)	C6B-C1B-C2B	119.2 (2)
N1A—C2A—C7A	117.61 (18)	C6B—C1B—C7B	121.0 (2)
N3A—C2A—C7A	116.28 (18)	C2B—C1B—C7B	119.7 (2)
C2A—N3A—C4A	118.50 (18)	C3B—C2B—C1B	120.1 (2)
C4A—N4A—H41	114.9 (19)	C3B—C2B—H2BA	120.0
C4A—N4A—H42	121.2 (18)	C1B—C2B—H2BA	120.0
H41—N4A—H42	124 (3)	C2B—C3B—C4B	121.2 (2)
N4A—C4A—N3A	118.32 (19)	С2В—С3В—Н3ВА	119.4
N4A—C4A—C5A	123.37 (19)	С4В—С3В—Н3ВА	119.4
N3A—C4A—C5A	118.31 (18)	C5B—C4B—C3B	118.0 (2)
C6A—C5A—C4A	119.55 (19)	C5B—C4B—C8B	120.9 (2)
C6A—C5A—C11	121.97 (16)	C3B—C4B—C8B	121.1 (2)
C4A—C5A—Cl1	118.48 (15)	C6B—C5B—C4B	121.4 (2)
N1A—C6A—C5A	120.80 (18)	C6B—C5B—H5BA	119.3
N1A—C6A—C8A	116.54 (18)	C4B—C5B—H5BA	119.3
C5A—C6A—C8A	122.64 (19)	C5B—C6B—C1B	120.1 (2)
С2А—С7А—Н7АА	109.5	C5B—C6B—H6BA	119.9
С2А—С7А—Н7АВ	109.5	C1B—C6B—H6BA	119.9
Н7АА—С7А—Н7АВ	109.5	O2B—C7B—O1B	124.0 (2)
С2А—С7А—Н7АС	109.5	O2B—C7B—C1B	123.0 (2)
Н7АА—С7А—Н7АС	109.5	O1B—C7B—C1B	113.06 (19)

Н7АВ—С7А—Н7АС	109.5	C4B—C8B—H8BA	109.5
C6A—C8A—H8AA	109.5	C4B—C8B—H8BB	109.5
C6A—C8A—H8AB	109.5	H8BA—C8B—H8BB	109.5
H8AA—C8A—H8AB	109.5	C4B—C8B—H8BC	109.5
C6A—C8A—H8AC	109.5	H8BA—C8B—H8BC	109.5
H8AA—C8A—H8AC	109.5	H8BB—C8B—H8BC	109.5
H8AB—C8A—H8AC	109.5		
C6A—N1A—C2A—N3A	1.2 (3)	Cl1—C5A—C6A—C8A	-0.5 (3)
C6A—N1A—C2A—C7A	-177.48 (18)	C6B—C1B—C2B—C3B	0.5 (3)
N1A—C2A—N3A—C4A	0.8 (3)	C7B—C1B—C2B—C3B	-179.18 (19)
C7A—C2A—N3A—C4A	179.52 (18)	C1B—C2B—C3B—C4B	0.3 (3)
C2A—N3A—C4A—N4A	177.86 (18)	C2B—C3B—C4B—C5B	-1.1 (3)
C2A—N3A—C4A—C5A	-2.2 (3)	C2B—C3B—C4B—C8B	177.7 (2)
N4A—C4A—C5A—C6A	-178.43 (19)	C3B—C4B—C5B—C6B	1.2 (3)
N3A—C4A—C5A—C6A	1.6 (3)	C8B—C4B—C5B—C6B	-177.6 (2)
N4A—C4A—C5A—Cl1	1.0 (3)	C4B—C5B—C6B—C1B	-0.4 (3)
N3A—C4A—C5A—C11	-178.94 (14)	C2B-C1B-C6B-C5B	-0.4 (3)
C2A—N1A—C6A—C5A	-1.8 (3)	C7B—C1B—C6B—C5B	179.21 (19)
C2A—N1A—C6A—C8A	179.60 (17)	C6B—C1B—C7B—O2B	179.5 (2)
C4A—C5A—C6A—N1A	0.4 (3)	C2B—C1B—C7B—O2B	-0.8 (3)
Cl1—C5A—C6A—N1A	-179.01 (15)	C6B—C1B—C7B—O1B	-0.7 (3)
C4A—C5A—C6A—C8A	178.96 (18)	C2B—C1B—C7B—O1B	178.94 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
N4 <i>A</i> —H41···O2 <i>B</i>	0.79 (3)	2.17 (3)	2.958 (2)	178 (3)
N4A—H42···N1A ⁱ	0.91 (3)	2.18 (3)	3.034 (2)	156 (2)
O1 <i>B</i> —H1 <i>B</i> ····N3 <i>A</i>	0.90 (4)	1.74 (4)	2.630 (2)	171 (4)

Symmetry code: (i) x, -y+3/2, z+1/2.

4-Amino-5-chloro-2,6-dimethylpyrimidine-4-aminobenzoic acid (1/1) (COCRYSTAL-10)

Crystal data

 $\begin{array}{l} C_{6}H_{8}CIN_{3}\cdot C_{7}H_{7}NO_{2}\\ M_{r}=294.74\\ \text{Monoclinic, }P2_{1}/c\\ a=7.8899\ (2)\ \text{\AA}\\ b=13.2361\ (3)\ \text{\AA}\\ c=13.3212\ (3)\ \text{\AA}\\ \beta=101.254\ (2)^{\circ}\\ V=1364.40\ (6)\ \text{\AA}^{3}\\ Z=4 \end{array}$

Data collection

Agilent SuperNova Dual Source diffractometer with an Atlas detector Radiation source: sealed X-ray tube F(000) = 616 $D_x = 1.435 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54184 \u00e5 Cell parameters from 4256 reflections $\theta = 3.3-76.1^{\circ}$ $\mu = 2.56 \text{ mm}^{-1}$ T = 120 KChunk, colorless $0.41 \times 0.35 \times 0.24 \text{ mm}$

Detector resolution: 10.6501 pixels mm⁻¹ ω scans

$R_{\rm int} = 0.017$
$\theta_{\rm max} = 76.7^{\circ}, \theta_{\rm min} = 4.8^{\circ}$
$h = -9 \rightarrow 9$
$k = -16 \rightarrow 15$
$l = -14 \rightarrow 16$
Hydrogen site location: mixed
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0596P)^2 + 0.5634P]$
where $P = (F_o^2 + 2F_c^2)/3$

S = 1.042823 reflections 203 parameters 0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $(\Delta/\sigma)_{\rm max} = 0.002$

 $\Delta \rho_{\text{max}} = 0.27 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.38 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates an	d isotropic or	equivalent isotropic	displacement	parameters	$(Å^2)$
----------------------------------	----------------	----------------------	--------------	------------	---------

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	1.05069 (4)	0.86469 (2)	0.60646 (2)	0.02693 (12)	
N1A	0.93400 (14)	0.71297 (8)	0.34395 (8)	0.0197 (2)	
C2A	0.86103 (17)	0.63206 (10)	0.37710 (10)	0.0193 (3)	
N3A	0.84090 (14)	0.61587 (8)	0.47345 (8)	0.0185 (2)	
N4A	0.86802 (16)	0.67391 (9)	0.63872 (9)	0.0230 (3)	
H4A1	0.817 (2)	0.6176 (15)	0.6497 (14)	0.028 (4)*	
H4A2	0.897 (3)	0.7162 (16)	0.6858 (16)	0.037 (5)*	
C4A	0.89549 (16)	0.68774 (10)	0.54425 (10)	0.0184 (3)	
C5A	0.97806 (16)	0.77421 (9)	0.51419 (10)	0.0187 (3)	
C6A	0.99586 (16)	0.78486 (10)	0.41444 (10)	0.0184 (3)	
C7A	0.7941 (2)	0.55104 (11)	0.30121 (11)	0.0265 (3)	
H7AA	0.8015	0.5740	0.2322	0.040*	
H7AB	0.6734	0.5364	0.3040	0.040*	
H7AC	0.8637	0.4898	0.3177	0.040*	
C8A	1.07803 (18)	0.87473 (10)	0.37573 (11)	0.0226 (3)	
H8AA	1.1481	0.8527	0.3266	0.034*	
H8AB	1.1519	0.9092	0.4332	0.034*	
H8AC	0.9880	0.9212	0.3420	0.034*	
O1B	0.70377 (14)	0.43906 (8)	0.50497 (8)	0.0281 (2)	
H1B	0.748 (3)	0.501 (2)	0.5011 (19)	0.052 (6)*	
O2B	0.71164 (14)	0.47720 (7)	0.66954 (8)	0.0260 (2)	
N1B	0.37076 (18)	0.03549 (10)	0.62891 (11)	0.0289 (3)	
H1B1	0.352 (3)	0.0138 (16)	0.6885 (17)	0.035 (5)*	
H1B2	0.329 (3)	0.0044 (17)	0.5724 (18)	0.041 (5)*	

C1B	0.59620 (17)	0.31826 (10)	0.60438 (10)	0.0201 (3)
C2B	0.57168 (17)	0.28210 (10)	0.69932 (10)	0.0222 (3)
H2BA	0.6064	0.3224	0.7588	0.027*
C3B	0.49760 (18)	0.18860 (11)	0.70760 (10)	0.0232 (3)
H3BA	0.4834	0.1649	0.7728	0.028*
C4B	0.44307 (17)	0.12835 (10)	0.62039 (11)	0.0208 (3)
C5B	0.46641 (18)	0.16502 (10)	0.52511 (10)	0.0224 (3)
H5BA	0.4293	0.1257	0.4652	0.027*
C6B	0.54303 (17)	0.25799 (11)	0.51799 (10)	0.0225 (3)
H6BA	0.5598	0.2813	0.4532	0.027*
C7B	0.67560 (17)	0.41846 (10)	0.59684 (10)	0.0211 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Cl1	0.0366 (2)	0.02105 (19)	0.02460 (19)	-0.01009 (12)	0.00947 (14)	-0.00687 (11)
N1A	0.0223 (5)	0.0179 (5)	0.0195 (5)	-0.0010 (4)	0.0059 (4)	-0.0004 (4)
C2A	0.0207 (6)	0.0180 (6)	0.0198 (6)	0.0001 (5)	0.0055 (5)	-0.0016 (5)
N3A	0.0217 (5)	0.0154 (5)	0.0191 (5)	-0.0017 (4)	0.0055 (4)	-0.0010 (4)
N4A	0.0335 (6)	0.0181 (6)	0.0181 (6)	-0.0068(5)	0.0070 (5)	-0.0015 (4)
C4A	0.0194 (6)	0.0160 (6)	0.0197 (6)	0.0016 (4)	0.0037 (5)	-0.0001 (5)
C5A	0.0201 (6)	0.0154 (6)	0.0207 (6)	-0.0007 (5)	0.0046 (5)	-0.0015 (5)
C6A	0.0165 (5)	0.0163 (6)	0.0225 (6)	0.0015 (4)	0.0042 (5)	0.0010 (5)
C7A	0.0356 (7)	0.0226 (7)	0.0228 (7)	-0.0065 (6)	0.0095 (5)	-0.0056 (5)
C8A	0.0256 (6)	0.0189 (6)	0.0243 (7)	-0.0025 (5)	0.0074 (5)	0.0023 (5)
O1B	0.0412 (6)	0.0209 (5)	0.0248 (5)	-0.0089 (4)	0.0130 (4)	-0.0005 (4)
O2B	0.0358 (5)	0.0186 (5)	0.0255 (5)	-0.0047 (4)	0.0104 (4)	-0.0020 (4)
N1B	0.0371 (7)	0.0233 (6)	0.0274 (7)	-0.0114 (5)	0.0093 (5)	-0.0017 (5)
C1B	0.0200 (6)	0.0171 (6)	0.0241 (6)	-0.0002(5)	0.0064 (5)	0.0006 (5)
C2B	0.0248 (6)	0.0205 (6)	0.0221 (6)	-0.0012 (5)	0.0064 (5)	-0.0015 (5)
C3B	0.0265 (7)	0.0225 (6)	0.0221 (6)	-0.0024 (5)	0.0088 (5)	0.0006 (5)
C4B	0.0177 (6)	0.0191 (6)	0.0263 (7)	-0.0008(5)	0.0062 (5)	0.0006 (5)
C5B	0.0242 (6)	0.0211 (6)	0.0215 (6)	-0.0023 (5)	0.0034 (5)	-0.0028 (5)
C6B	0.0250 (6)	0.0222 (6)	0.0210 (6)	-0.0002 (5)	0.0062 (5)	0.0020 (5)
C7B	0.0225 (6)	0.0185 (6)	0.0234 (6)	0.0012 (5)	0.0069 (5)	0.0014 (5)

Geometric parameters (Å, °)

Cl1—C5A	1.7316 (13)	O1B—C7B	1.3145 (17)
N1A—C2A	1.3314 (17)	O1B—H1B	0.90 (3)
N1A—C6A	1.3589 (17)	O2B—C7B	1.2311 (17)
C2A—N3A	1.3410 (17)	N1B—C4B	1.3691 (17)
C2A—C7A	1.4975 (18)	N1B—H1B1	0.89 (2)
N3A—C4A	1.3497 (17)	N1B—H1B2	0.86 (2)
N4A—C4A	1.3307 (17)	C1B—C6B	1.3958 (19)
N4A—H4A1	0.87 (2)	C1B—C2B	1.4005 (19)
N4A—H4A2	0.84 (2)	C1B—C7B	1.4785 (18)
C4A—C5A	1.4129 (18)	C2B—C3B	1.3823 (19)

С5А—С6А	1.3704 (18)	C2B—H2BA	0.9500
C6A—C8A	1.4939 (17)	C3B—C4B	1.4056 (19)
С7А—Н7АА	0.9800	СЗВ—НЗВА	0.9500
С7А—Н7АВ	0.9800	C4B—C5B	1.4041 (19)
C7A—H7AC	0.9800	C5B—C6B	1.3824 (19)
C8A—H8AA	0.9800	C5B—H5BA	0.9500
C8A—H8AB	0.9800	C6B—H6BA	0.9500
C8A - H8AC	0.9800		0.9000
	0.9000		
C2A - N1A - C6A	117 02 (11)		109 5
N1A $C2A$ $N3A$	117.02(11) 125.85(12)	HAR CAN HAAC	109.5
N1A - C2A - C7A	125.05(12) 118.06(12)	C7B - 01B - H1B	112 3 (16)
$N_{A} = C_{A} = C_{A}$	116.00(12)	C/B = OIB = IIIB	112.3(10) 120.0(13)
$N_{3A} = C_{2A} = C_{7A}$	110.06(11) 118.35(11)	C4D N1D H1D1 C4B N1B H1D2	120.9(13)
C_{A} N/A H_{A}	116.35(11) 116.2(12)	C+D $-N1D$ $-111D2U1D1$ $N1D$ $U1D2$	110.0(14)
C4A = N4A = H4A2	110.2(13) 123.1(14)	$\begin{array}{c} \Pi 1 D \Pi 1 D \Pi 1 D \\ \Gamma 1$	122(2) 118/10(12)
C4A - N4A - H4A2	125.1(14) 120.7(10)	C0B - C1B - C2B	118.49(12)
H4A1 - N4A - H4A2	120.7 (19)	C_{0B} C_{1B} C_{7B}	121.32(12)
N4A—C4A—N3A	118.37 (12)	C_{2B} C_{1B} C_{1B}	120.19 (12)
N4A—C4A—C5A	123.28 (12)	$C_{3B} = C_{2B} = C_{1B}$	120.87 (13)
N3A—C4A—C5A	118.35 (11)	C3B—C2B—H2BA	119.6
С6А—С5А—С4А	119.89 (12)	C1B—C2B—H2BA	119.6
C6A—C5A—Cl1	122.33 (10)	C2B—C3B—C4B	120.53 (13)
C4A—C5A—Cl1	117.77 (10)	С2В—С3В—Н3ВА	119.7
N1A—C6A—C5A	120.47 (12)	С4В—С3В—Н3ВА	119.7
N1A—C6A—C8A	116.14 (11)	N1B—C4B—C5B	121.03 (13)
C5A—C6A—C8A	123.37 (12)	N1B—C4B—C3B	120.40 (13)
С2А—С7А—Н7АА	109.5	C5B—C4B—C3B	118.56 (12)
C2A—C7A—H7AB	109.5	C6B—C5B—C4B	120.40 (12)
Н7АА—С7А—Н7АВ	109.5	C6B—C5B—H5BA	119.8
C2A—C7A—H7AC	109.5	C4B—C5B—H5BA	119.8
Н7АА—С7А—Н7АС	109.5	C5B—C6B—C1B	121.15 (12)
Н7АВ—С7А—Н7АС	109.5	C5B—C6B—H6BA	119.4
С6А—С8А—Н8АА	109.5	C1B—C6B—H6BA	119.4
С6А—С8А—Н8АВ	109.5	O2B—C7B—O1B	123.12 (12)
H8AA—C8A—H8AB	109.5	O2B—C7B—C1B	123.29 (12)
C6A—C8A—H8AC	109.5	O1B—C7B—C1B	113.59 (12)
C6A—N1A—C2A—N3A	1.0 (2)	Cl1—C5A—C6A—C8A	-0.28(18)
C6A—N1A—C2A—C7A	-179.14(12)	C6B—C1B—C2B—C3B	0.4 (2)
N1A—C2A—N3A—C4A	1.3 (2)	C7B—C1B—C2B—C3B	179.99 (12)
C7A - C2A - N3A - C4A	-17849(12)	C1B - C2B - C3B - C4B	-0.9(2)
C2A—N3A— $C4A$ —N4A	176 81 (12)	C2B— $C3B$ — $C4B$ — $N1B$	17958(13)
C2A—N3A— $C4A$ — $C5A$	-2.83(18)	C2B— $C3B$ — $C4B$ — $C5B$	03(2)
N4A - C4A - C5A - C6A	-17752(12)	N1B-C4B-C5B-C6B	-17859(13)
N3A - C4A - C5A - C6A	2 10(19)	C3B - C4B - C5B - C6B	0.6(2)
N44 - C44 - C54 - C11	2.10(19) 1 49(18)	C4B - C5B - C6B - C1B	-11(2)
N3A C AA C 5A C 11	-178.00(0)	$C^{2}B$ $C^{1}B$ $C^{6}B$ $C^{5}B$	0.6(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1.78(19)	$C_{2}D$ $C_{1}D$ $C_{0}D$ $C_{2}D$ C	-178.00(12)
UZA-INTA-UOA-UJA	1./0(10)		1/0.99(12)

C2A—N1A—C6A—C8A	179.69 (11)	C6B—C1B—C7B—O2B	174.06 (13)
C4A—C5A—C6A—N1A	0.26 (19)	C2B—C1B—C7B—O2B	-5.5 (2)
Cl1—C5A—C6A—N1A	-178.69 (9)	C6B—C1B—C7B—O1B	-5.78 (19)
C4A—C5A—C6A—C8A	178.68 (12)	C2B—C1B—C7B—O1B	174.67 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D^{\dots}A$	D—H···A
N4 <i>A</i> —H4 <i>A</i> 1···O2 <i>B</i>	0.87 (2)	2.07 (2)	2.9441 (15)	174.7 (18)
$N4A - H4A2 \cdots N1A^{i}$	0.84 (2)	2.27 (2)	3.0710 (16)	159.5 (19)
C7A—H7AA···Cl1 ⁱⁱ	0.98	2.94	3.7580 (15)	142
C8A—H8AC···Cl1 ⁱⁱⁱ	0.98	2.95	3.6163 (14)	127
O1 <i>B</i> —H1 <i>B</i> ····N3 <i>A</i>	0.90 (3)	1.76 (3)	2.6459 (15)	170 (2)
N1 B —H1 B 1····O2 B^{iv}	0.89 (2)	2.10 (2)	2.9847 (17)	173.4 (19)

Symmetry codes: (i) x, -y+3/2, z+1/2; (ii) x, -y+3/2, z-1/2; (iii) -x+2, -y+2, -z+1; (iv) -x+1, y-1/2, -z+3/2.