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Abstract:  Modelling the respiratory system of intensive care patients can enable individualized mechanical 

ventilation therapy and reduce ventilator induced lung injuries. However, spontaneous breathing (SB) 

efforts result in asynchronous pressure waveforms that mask underlying respiratory mechanics. In this 

study, a nonlinear auto-regressive (NARX) model was identified using a modified Gauss-Newton (GN) 

approach, and demonstrated on data from one SB patient. The NARX model uses three pressure dependent 

basis functions to capture respiratory system elastance, and contains a single resistance coefficient and 

positive end expiratory pressure (PEEP) coefficient. The modified GN method exponentially reduces the 

contribution of large residuals on the step in the coefficients at each GN iteration. This approach allows the 

model to effectively ignore the anomaly in the pressure waveform due to SB efforts, while successfully 

describing the shape of normal breathing cycles. This method has the potential to be used in the ICU to 

more robustly capture patient-specific behaviour, and thus enable clinicians to select optimal ventilator 

settings and improve patient care. 
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1. INTRODUCTION 

Acute respiratory distress syndrome (ARDS) patients in the 

intensive care unit (ICU) require mechanical ventilation (MV) 

for breathing support (Esteban et al., 2002). MV pushes air 

into the lungs and ensures gas exchange is maintained (Girard 

and Bernard, 2007). Positive end expiratory pressure (PEEP) 

is a key MV therapy setting (Gattinoni et al., 2010). A PEEP 

that is too high can damage healthy alveoli (Ricard et al., 

2002), and a PEEP that is too low can result in insufficient 

oxygenation, and cyclic opening and closing of alveoli with 

each breath (Baumgardner et al., 2013). When sub-optimal 

ventilator settings cause injury to the lungs, this is known as 

ventilator induced lung injury (VILI) (Slutsky and Ranieri, 

2013).  A lung model that captures patient-specific behaviour 

could enable individualised mechanical ventilation, reduce the 

incidence of VILI, and help reduce patient morbidity and 

mortality (Fenstermacher and Hong, 2004) (Rees et al., 2006). 

Spontaneously breathing (SB) patients apply their own 

inspiratory efforts on top of a ventilator supported breathing 

cycle. These SB efforts can result in abnormal airway pressure 

curves, or ‘M’ shaped pressure curves (M-waves), 

(Akoumianaki et al., 2013), as shown in Fig. 1. The M-wave 

pressure curve masks the underlying respiratory mechanics 

from identification since the exact SB effort is unknown and 

effectively random. Therefore, a method is required to 

overcome the impact of the M-waves to provide a consistent 

model-based estimation of respiratory mechanics for clinical 

use.  

A nonlinear autoregressive (NARX) model of the respiratory 

system has been proposed by Langdon et al. (2015) that 

successfully describes pressure curves in patient data across 

increasing PEEP steps. The model uses pressure dependent 

elastance by incorporating basis functions, and uses multi-

valued resistance terms to capture lung relaxation during an 

end-inspiratory pause. In this paper, the NARX model is 

applied to M-wave data in conjunction with a modified version 

of the Gauss-Newton (GN) parameter identification algorithm. 

The modified GN method has previously been used to ignore 

contributions from outlying data by finding the parameter set 

that fits the majority of the data points, rather than the least 

squares optima for all data points (Docherty et al., 2014). The 

aim was to use these two approaches to model respiratory 

mechanics while effectively ignoring M-waves in the pressure 

signal.  

 

Fig. 1. Pressure data containing an M-wave and a normal 

breath. 
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2. MATERIALS AND METHODS 

2.1  Data 

Data were obtained from a respiratory failure patient 

diagnosed with pneumonia and ventilated with a Puritan 

Bennett 840 (PB840) ventilator. The available data spans 

approximately 80 minutes, where the patient was ventilated 

using a synchronous mandatory ventilator (SIMV) in volume 

controlled mode at a respiratory rate of 15-16 breathing cycles 

per minute. Over 65% of the breathing cycles contained some 

degree of M-wave shape. PEEP was constant at P0 = 17 

cmH2O. The airway pressure and flow signals from the 

ventilator were recorded using specialised software (Szlavecz 

et al., 2014).  Approval for the use of this data was given by 

the New Zealand South Regional Ethics Committee (Ethics 

no: 13STH84). 

2.2  Respiratory Models 

The first order model (FOM) is a simple model that captures 

the respiratory system in an elastic and resistive component: 

�(�) = ��� (�) + 
�(�) +	��,                                                          (1) 

where P is the measured airway pressure (cmH2O), t is time 

(s), R is the Poiseuille airway resistance (cmH2Os/L), ��  is the 

airway flow rate, E is the pulmonary elastance (cmH2O/L), V 

is the inspired volume (L), and P0 is the offset pressure 

(cmH2O). 

The FOM was used as a comparison with the NARX model, 

which is described:         

�(�) = 	∑ ��∅�,���(�)��(�)�
���                                             (2) 

+	∑ ���� (���)�
��� +	��        

where ai and bj, are the parameters to be identified. M is the 

number of basis-functions to be used, ∅�,� is a particular basis 

function of degree d, ai is the coefficient for a given basis 

function, and ∅�,���(�)� is the basis function value for a given 

pressure measurement. The sum of the basis functions 

multiplied by their ai coefficients represent elastance through 

pressure. There are L bj coefficients that represent the effect of 

airway resistance to flow and changes in flow. The FOM can 

be replicated with M = L = 1, and d = 0. 

Hence, the pressure dependent elastance can be defined: 


(�) = 	∑ ��∅�,���(�)��
���          (2a) 

Zeroth order basis-functions (d = 0) are square functions: 

∅�,�(�) = 	 �1						��	�� 	≤ �	 < 	��"�0																				$�ℎ&'(�)&                                      (3) 

where Pi are division points (also known as knots) that 

subdivide the interval 0 ≤ P ≤ Pmax. Basis functions of higher 

degrees are defined recursively (de Boor, 1972): 

∅�,�(�) = 	 *�	*+
*+,-�	*+

∅�,���(�)	                                                (4) 

+		 *+,-,.�*
*+,-,.�	*+,.

∅�"�,���(�)  

In previous work, the NARX model parameter values were M 

= 5, d = 1, L = 350 to provide a good fit to the data (Langdon 

et al., 2015). The large L value allowed an end-expiratory 

pause to be captured. However, the M-wave data set does not 

contain this pause, and thus L = 1 is appropriate for this study.  

First degree basis functions are appropriate in this case as 

previous work indicated an improvement over zeroth degree 

functions, and no significant difference in outcomes for second 

degree functions. The choice of M depends on the range of 

pressures in the data. As the M-wave data set contains a 

constant PEEP, the range of pressures is limited. Thus, a 

smaller number of basis functions can be used. An M value of 

3 was used in this analysis as it provided a robust result for the 

smaller pressure range data (Fig. 2). 

 

Fig. 2. First degree basis functions for 12 ≤ P ≤ 32 with Pi ∈ 

[12, 22, 32] cmH2O. 

2.3  Modified Gauss-Newton 

The original Gauss-Newton parameter identification method 

uses an iterative process which updates the parameter set at 

each iteration, i: 

0�"� =	0� − (232)��234                                                      (5) 

where: 
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4 = [I�] = [ P(xi, tj) – PM,j ] = 
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and PM is the measured pressure, x is the vector of model 

parameters, 4 is the residual vector, J is the Jacobian of 4, j 

is the sample index (j = 1…m), k is the parameter index (k = 

1…n), P(xi, tj) is the simulated value of P at t = tj, and PM,j is 

the measured value of P at t = tj. 
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The original GN method leads to a least squares optimisation. 

The adapted method replaces 4 with 4M : 

4M = [IO�] = 	I�&
Q|S8|
T|SU |                                                            (7) 

where |IV|is the median of the absolute values of the residuals, 

and β is a scaling factor. It is important to note that the 

Jacobian is a function of the residual vector 4, but not a 

function of 4M .  

4M	changes how each residual error value contributes to the 

magnitude of the step to adjust x, compared to the original GN 

method. In the original GN, the contribution to the change in 

x at each iteration increases with the square of the error. 

Therefore, if undesired outliers exist in the data, they have a 

large effect on the direction of convergence, and the resulting 

model may not represent the majority of the data points.  

When 4M	is used, the contribution of residuals greater than a 

certain value decreases exponentially. Therefore, large outliers 

will not greatly affect the result. The value of β determines 

where the exponential decrease becomes influential, with 

respect to model residuals at the ith iteration. A β value of 

infinity means that the original GN method is applied as I�is 

multiplied by one. However, if β is small, the approach will 

ignore important characteristics that define the system 

(Docherty et al., 2014).  

2.4  Analysis 

The FOM and the NARX model were identified using the 

entire ~80 minutes of ventilation data. The β parameter was 

varied to determine an optimal number for ignoring M-waves, 

and results were compared to the original GN method (β = Inf) 

for both the FOM and NARX model. The GN initial values 

were chosen by evaluating the FOM and the NARX model via 

direct inversion. All  analysis  was  undertaken  on  an  i7  quad  

core  PC  with  16GB  RAM  using  64 bit MATLAB,  version 

2014a (MathWorks, Natick, MA). 

3. RESULTS 

Figs. 3 and 4 show a section of the data containing both M-

wave breaths and normal breaths. The FOM produced similar 

results with the original GN method and modified GN with β 

= 4. In comparison with the FOM, the NARX model was able 

to better match the peak pressure in normal breaths and better 

fit the expiration curve in all breaths. The NARX model with 

β = 4 is also able to successfully ignore M-waves. When β = 

Inf, the NARX model provides a better fit to the data than the 

FOM, as expected, because the NARX model is more complex 

as it contains a larger number of identified parameters. 

However, in this case, this improvement is undesirable 

because our aim is to ignore M-waves rather than capture 

them. 

 

Fig. 3. M-wave pressure data and the NARX model identified 

with original GN method (β = Inf) and modified GN method 

(β = 4). 

 

Fig. 4. M-wave pressure data and the FOM identified with 

original GN method (β = Inf) and modified GN method (β = 

4). 

Fig. 5 shows the effect of varying β on the NARX model 

output pressure. A β value that is too low means that the model 

is unable to capture the shape of the inspiratory curve, and 

unable to reach the peak pressure in the breath. If β is too high 

the model tends to start following the M-wave curve rather 

than ignoring it, and also tends to slightly undershoot the 

inspiratory curve. In this analysis, β = 4 was the optimal 

number that allowed the model to capture the shape of normal 

breaths as well as ignore M-waves. 

Of note, for the NARX model, 2000 GN iterations were 

required for coefficient convergence for β = 2, whereas 150 

iterations were sufficient for β = 4, 6, and 8. For the original 

GN method, only two iterations were required. For β = 1, the 

coefficients did not converge when tested up to 3000 

iterations. Fig. 6 verifies that the NARX model coefficients 

have converged after 150 iterations of the modified GN 

algorithm. 150 iterations took approximately 12.5 seconds to 

complete. 
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Fig. 5. Airway pressure data and the NARX model identified 

with GN for β = 2, 4, 6, 8, and Inf. 

 

Fig. 6. Convergence of NARX model coefficients with β = 4. 

Table 1 presents the root mean square (RMS) residuals for 

both the NARX model and FOM for the original and modified 

GN methods. Table 2 shows the identified coefficient values. 

Both methods applied to the FOM resulted in similar 

coefficients and residuals, giving rise to the similar plots in 

Fig. 4. The FOM resistance coefficients are 25% or more 

higher than the corresponding NARX model resistance 

coefficients. Fig. 7 shows how the elastance coefficients in the 

NARX models change through pressure. In contrast, one 

elastance parameter exists for all pressure in the FOM. 

Table 1.  FOM and NARX RMS residuals for the original 

and modified GN 

 RMS residual (cmH2O) 

NARX β = Inf 0.853 

NARX β = 4 1.123 

FOM β = Inf 1.128 

FOM β = 4 1.182 

 

 

 

Table 2.  FOM and NARX model coefficients for the 

original and modified GN 

 Elastance 

(cmH2O/L) 

Resistance 

(cmH2Os/L) 

NARX β = Inf 0.254 0.428 0.733 7.286 

NARX β = 4 0.055 0.644 0.606 8.521 

FOM β = Inf 0.521 9.547 

FOM β = 4 0.525 10.765 

 

 

Fig. 7. Elastance coefficients through pressure for the NARX 

and FOM models. 

Fig. 8 (a) and (b) shows undesirable behaviour in expiration 

that the models sometimes exhibit. The behaviour corresponds 

with oscillation in the flow measurements that are caused by 

the patient’s SB efforts when the ventilator is in expiration 

mode (Fig. 8 (c)). The upwards blips in the airway pressure 

during expiration exists in both the FOM and NARX models, 

and with both the original and modified GN methods.  
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(a) 

 
(b) 

 
(c) 

Fig. 8. Airway pressure with undesired model behaviour in 

expiration for the NARX (a), and FOM (b), and the 

corresponding flow measurement data (c). 

4. DISCUSSION 

The NARX model was successfully fitted to the patient data 

using the modified GN method with β = 4. The approach was 

able to effectively describe the shape of inspiration in normal 

breaths and ignore the M-waves in breaths where SB occurred. 

In comparison to the FOM, the NARX model was able to 

better capture the expiratory curve, and fit to the peak pressure 

of each normal breath, as shown in Fig. 3 and Fig. 4.  

Fig. 5 indicates that β = 4 was optimal in this analysis for 

effectively ignoring M-waves. Assuming the residual error is 

normally distributed, the value of β equals the number of 

standard deviations (SD) of the error distribution that is 

between the peaks of the objective contribution shape 

(Docherty et al., 2014). For example, when β = 2, the largest 

contribution to the step in x happens for residuals that are two 

SDs from the mean. For residuals smaller than two SD, the 

contribution increases with the square of the residual, and for 

errors larger than two, the contributions decrease 

exponentially. Thus, when β was small, the contribution of 

much of the valuable information was small and the model was 

not able to capture the shape of the breaths. However, when β 

is large, the contributions from only very large residuals are 

preferentially reduced by GN, so the method approaches the 

original GN method, and the model becomes a better fit to the 

measured data so M-waves begin to be followed rather than 

ignored.  

Table 1 indicates that the NARX model with the original GN 

method was better than the FOM at providing a best fit to the 

data, according to least squares criterion. This outcome is 

primarily facilitated by the use of three elastance coefficients 

that depend on pressure, compared to the single elastance 

FOM coefficient (Table 2, Fig. 7). The difference in resistance 

coefficients of over 25% between the FOM and NARX model 

would have also played a role. These factors allowed the 

NARX model to partially capture M-waves (Fig. 3), which the 

simpler FOM was unable to do (Fig. 4). 

The NARX model with the modified GN method resulted in a 

larger RMS residual value compared to the original GN 

method (Table 1). This outcome is an expected and desired 

result because the modified GN method has allowed the M-

waves in the data to be ignored. The model follows the shape 

of normal inspiration in breaths where M-waves exist. Thus, 

the model residuals are large in these regions. Since most 

breaths contain some degree of M-wave, the NARX RMS 

residual for the modified GN method is significantly larger 

than for the NARX identified with the original GN.  

The NARX model with β = 4 resulted in an RMS residual that 

was similar to those of the FOM models. This result occurred 

because the FOM similarly did not fit the M-waves, as the 

model is too simple to capture this type of behaviour. However 

the FOM was not able to reach the peak inspiratory pressure in 

normal breaths, and also tended to provide a worse fit to the 

data during expiration, compared to the NARX model. Thus, 

the NARX model with β = 4 had a slightly lower RMS 

residual.  

Assuming the residuals are normally distributed, use of the 

modified GN method should have no negative effects when 

outlier behaviour does not exist in the data, and the result in 

this case should closely match the outcome of the original GN 

method (Docherty et al., 2014). Thus, the method could safely 

be used to provide clinicians with patient-specific information 

in situations where the patient is not spontaneously breathing, 

as well as when SB is present. A small time penalty would 

occur due to the extra calculations per iteration, in order to 

compute	4M , but this would be negligible over the small 

number of GN iterations that are required for coefficient 

convergence. 

Fig. 7 showed that oscillations in the flow measurements cause 

the models to fail to capture the appropriate expiratory curve. 

This flow characteristic is caused by the patient’s spontaneous 

breathing efforts while the ventilator is in the expiration part 

of the breathing cycle. As the inspiratory pressure curve is the 

important part of the breath used by clinicians to determine 

ventilator settings, this effect is not a significant problem.   A 

method to smooth out the flow oscillation before identifying 

the model could be employed in future work, e.g. by using the 
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expiratory time constant calculated from other breaths (Van 

Drunen et al., 2013). 

The patient had many instances of SB during the ventilation 

period, as over 65% of breaths contained an M-wave. The 

success of the method under these conditions suggests it could 

be useful in monitoring many SB patients, though it is not clear 

whether the approach would still be useful in situations where 

an even larger percentage of breaths contain M-waves. The β 

value or NARX model parameters could potentially be 

adjusted to allow the model to successfully fit other situations 

such as this.  

The modified GN method cannot be used to identify the model 

across data where the patient state changes, e.g. due to lung 

recruitment or over-distension caused by a PEEP increase. The 

reason for this limitation is because breaths that have different 

characteristics to the majority of data will be treated as outliers 

and will not be tracked by the model. This issue could be 

reduced by accounting for known PEEP changes in the model 

and identification, though investigation with a larger patient 

cohort is required to further establish the efficacy of the 

method.  

The method requires only the use of airway pressure and flow 

data which are typically measured for each patient in the ICU, 

and it was identifiable in real time with only 150 GN iterations 

(Fig. 6), taking 12.5 seconds. Therefore the method is simple 

enough to be used in the ICU to track patient state. The output 

pressure data could be used by clinicians to set patient-specific 

ventilator settings, leading to improved patient care and 

outcomes. Comparing the output pressure with the original M-

wave pressure curves could also give clinicians an indication 

of the breathing effort of the patient, which can be useful in 

determining when to extubate the patient (Boles et al., 2007). 

5.  CONCLUSION 

A nonlinear autoregressive model was used to model the 

airway pressure curve in a patient breathing spontaneously on 

top of mechanical ventilation support. The model was 

identified using a modified Gauss-Newton parameter 

identification method, which allowed M-waves caused by SB 

efforts to be successfully ignored. The NARX model provided 

an improvement over the FOM, which was unable to match the 

peak pressure in normal breaths. The successful elimination of 

M-waves allows respiratory mechanics to be more accurately 

estimated, which could enable patient-specific ventilation, and 

thus improve conditions for patients. 
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