Constructive aspects of Riemann's permutation theorem for series

J. Berger, D. Bridges, H. Diener, H. Schwichtenberg

July 13, 2018

Abstract

The notions of permutable and weak-permutable convergence of a series $\sum_{n=1}^{\infty} a_{n}$ of real numbers are introduced. Classically, these two notions are equivalent, and, by Riemann's two main theorems on the convergence of series, a convergent series is permutably convergent if and only if it is absolutely convergent. Working within Bishop-style constructive mathematics, we prove that Ishihara's principle BD-N implies that every permutably convergent series is absolutely convergent. Since there are models of constructive mathematics in which the Riemann permutation theorem for series holds but BD-N does not, the best we can hope for as a partial converse to our first theorem is that the absolute convergence of series with a permutability property classically equivalent to that of Riemann implies BD-N. We show that this is the case when the property is weak-permutable convergence.

1 Introduction

This paper follows on from [2], in which the first two authors gave proofs, within the framework of Bishop-style constructive analysis (BISH) 1 of the two famous series theorems of Riemann [17] ${ }^{2}$
$\mathbf{R S T}_{1}$ If a series $\sum a_{n}$ of real numbers is absolutely convergent, then for each permutation σ of the set \mathbf{N}^{+}of positive integers, the series $\sum a_{\sigma(n)}$ converges to the same sum as $\sum a_{n}$.
$\mathbf{R S T}_{2}$ If a series $\sum a_{n}$ of real numbers is conditionally convergent, then for each real number x there exists a permutation σ of \mathbf{N}^{+}such that $\sum a_{\sigma(n)}$ converges to x.

It is not hard to extend the conclusion of $\mathbf{R S T}_{2}$ to what we call its full, extended version, which includes the existence of permutations of the series $\sum a_{n}$ that diverge to ∞ and to $-\infty$. In consequence, a simple reductio ad absurdum argument

[^0]proves classically that if a real series $\sum a_{n}$ is permutably convergent-that is, every permutation of $\sum a_{n}$ converges in \mathbf{R}-then it is absolutely convergent. An intuitionistic proof of this last result was provided by Troelstra ([19], pages 95 ff .), using Brouwer's continuity principle for choice sequences. That result actually has one serious intuitionistic application: Spitters ([18], pages 2101-2) uses it to give an intuitionistic proof of the characterisation of normal linear functionals on the space of bounded operators on a Hilbert space; he also asks whether there is a proof of the Riemann-Troelstra result within BISH alone. In Section 3 below, we give a proof, within BISH supplemented by the constructive-foundationally important principle BD-N, that permutable convergence implies absolute convergence. While this proof steps outside unadorned BISH, it is valid in both intuitionistic and constructive recursive mathematics, in which BD-N is derivable.

This raises the question: over BISH, does the absolute convergence of every permutably convergent series imply BD-N? Thanks to Diener and Lubarsky [8], we now know that in certain formal systems of BISH, the answer is negative; in other words, the result about permutably convergent series is weaker than BD-N. In turn, this raises another question: is there a proposition that is classically equivalent to, and clearly cognate with, the absolute convergence of permutably convergent series and that, added to BISH, implies BD-N? In order to answer this question affirmatively, we introduce in Section 2 the notion of weak-permutable convergence and then derive some of its fundamental properties, including its classical equivalence to permutable convergence. In Section 4 we show that the absolute convergence of weak-permutably convergent series implies BD-N. Thus, in BISH, we have the implications

Every weak-permutably convergent series is absolutely convergent
\Longrightarrow BD-N
\Longrightarrow Every permutably convergent series is absolutely convergent.
In view of the Diener-Lubarsky results in [8], neither of these implications can be reversed.

2 Weak-permutably convergent series in BISH

By a bracketing of a real series $\sum a_{n}$ we mean a pair comprising

- a strictly increasing mapping $f: \mathbf{N}^{+} \rightarrow \mathbf{N}^{+}$with $f(1)=1$, and
- the sequence \mathbf{b} defined by

$$
b_{k} \equiv \sum_{i=f(k)}^{f(k+1)-1} a_{i} \quad(k \geqslant 1)
$$

We also refer, loosely, to the series $\sum b_{k}$ as a bracketing of $\sum a_{n}$.
We say that $\sum a_{n}$ is weak-permutably convergent if it is convergent and if for each permutation σ of \mathbf{N}^{+}, there exists a convergent bracketing of $\sum a_{\sigma(n)}$. Clearly, permutable convergence implies weak-permutable convergence. As we shall see in this section, the converse holds classically; later we shall show that it does not hold constructively. As a first step towards this, we have:

Proposition 1. Let $\sum a_{n}$ be a weak-permutably convergent series of real numbers, with sum s, and let σ be a permutation of \mathbf{N}^{+}. Then every convergent bracketing of $\sum a_{\sigma(n)}$ converges to s.

The proof of this proposition will depend on some lemmas.
Lemma 2. Let $\sum a_{n}$ be a convergent series of real numbers, with sum s, and let σ be a permutation of \mathbf{N}^{+}. If there exists a bracketing (f, \mathbf{b}) of $\sum a_{\sigma(n)}$ that converges to a sum $t \neq s$, then there exist a permutation τ of \mathbf{N}^{+}and a strictly increasing sequence $\left(k_{i}\right)_{i \geqslant 1}$ of positive integers such

$$
\begin{equation*}
\left|\sum_{n=f\left(k_{i}\right)+1}^{f\left(k_{i+1}\right)} a_{\tau(n)}\right|>\frac{1}{3}|s-t| \tag{1}
\end{equation*}
$$

for all i.
Proof. Consider, to illustrate, the case where $s<t$. For convenience, let $\varepsilon \equiv$ $\frac{1}{3}(t-s)$. Pick k_{1} such that

$$
\left|\sum_{n=j}^{k} a_{n}\right|<\frac{\varepsilon}{2} \quad\left(k>j>f\left(k_{1}\right)\right) .
$$

Then $\sum_{n=1}^{f\left(k_{1}\right)} a_{n}<s+\varepsilon$. Set $\tau(k) \equiv k$ for $1 \leqslant k \leqslant f\left(k_{1}\right)$. Next pick $k_{2}>k_{1}$ such that

- $\left\{1, \ldots, f\left(k_{1}\right)\right\} \subset\left\{\sigma(n): 1 \leqslant n \leqslant f\left(k_{2}\right)\right\}$ and
- $\left|\sum_{n=f(j)}^{f(k)} a_{\sigma(n)}\right|<\varepsilon / 2$ whenever $k>j>f\left(k_{2}\right)$.

Define $\tau(n)$ for $f\left(k_{1}\right)<n \leqslant f\left(k_{2}\right)$ so that

$$
\left\{\sigma(n) \mid 1 \leqslant n \leqslant f\left(k_{2}\right), \sigma(n)>f\left(k_{1}\right)\right\}=\left\{\tau\left(f\left(k_{1}\right)+1\right), \ldots, \tau\left(f\left(k_{2}\right)\right)\right\}
$$

Note that

$$
\sum_{n=1}^{f\left(k_{2}\right)} a_{\tau(n)}=\sum_{n=1}^{f\left(k_{2}\right)} a_{\sigma(n)}>t-\varepsilon
$$

Next, pick $k_{3}>k_{2}$ such that

$$
\left\{\tau(1), \ldots, \tau\left(f\left(k_{2}\right)\right)\right\} \subset\left\{1, \ldots, f\left(k_{3}\right)\right\}
$$

Define $\tau(n)$ for $f\left(k_{2}\right)<n \leqslant f\left(k_{3}\right)$ so that

$$
\left\{n: 1 \leqslant n \leqslant f\left(k_{3}\right), n>\tau\left(f\left(k_{2}\right)\right)\right\}=\left\{\tau\left(f\left(k_{2}\right)+1\right), \ldots, \tau\left(f\left(k_{3}\right)\right)\right\} .
$$

Then

$$
\sum_{n=1}^{f\left(k_{3}\right)} a_{\tau(n)}=\sum_{n=1}^{f\left(k_{3}\right)} a_{n}<s+\varepsilon .
$$

Carrying on in this way, we construct, inductively, a strictly increasing sequence $\left(k_{i}\right)_{i \geqslant 1}$ of positive integers, and a permutation τ of \mathbf{N}^{+}, such that for each j,

$$
\sum_{n=1}^{f\left(k_{2 j-1}\right)} a_{\tau(n)}<s+\varepsilon \text { and } \sum_{n=1}^{f\left(k_{2 j}\right)} a_{\tau(n)}>t-\varepsilon
$$

When $i \in \mathbf{N}^{+}$is even, we obtain

$$
\left|\sum_{n=f\left(k_{i}\right)+1}^{f\left(k_{i+1}\right)} a_{\tau(n)}\right| \geqslant \sum_{n=1}^{f\left(k_{i}\right)} a_{\tau(n)}-\sum_{n=1}^{f\left(k_{i+1}\right)} a_{\tau(n)}>t-s-2 \varepsilon>\frac{1}{3}(t-s) .
$$

A similar argument gives (11) when i is odd.
Lemma 3. Under the hypotheses of Lemma 2, the series $\sum\left|a_{n}\right|$ diverges.
Proof. Construct the permutation τ and the sequence $\left(k_{i}\right)_{i \geqslant 1}$ as in Lemma 2. Given $C>0$, compute j such that $(j-1)|s-t|>3 C$. Then

$$
\sum_{n=1}^{f\left(k_{j}\right)}\left|a_{\tau(n)}\right| \geqslant \sum_{i=1}^{j-1}\left|\sum_{n=f\left(k_{i}\right)+1}^{f\left(k_{i+1}\right)} a_{\tau(n)}\right|>\frac{j-1}{3}|s-t|>C
$$

Then compute M such that

$$
\left\{a_{\tau(1)}, \ldots, a_{\tau\left(f\left(k_{j}\right)\right)}\right\} \subset\left\{a_{1}, \ldots, a_{M}\right\}
$$

Then

$$
\sum_{n=1}^{M}\left|a_{n}\right| \geqslant \sum_{n=1}^{f\left(k_{j}\right)}\left|a_{\tau(n)}\right|>C
$$

Since $C>0$ is arbitrary, the conclusion follows.
Lemma 4. Let $\sum a_{n}$ be a convergent series of real numbers, and τ a permutation of \mathbf{N}^{+}such that $\sum a_{\tau(n)}$ diverges to infinity. Then it is impossible that $\sum a_{\tau(n)}$ have a convergent bracketing.

Proof. Suppose there exists a bracketing (f, \mathbf{b}) of $\sum a_{\tau(n)}$ that converges to a sum s. Compute $N>1$ such that

$$
\begin{equation*}
\sum_{n=1}^{\nu} a_{\tau(n)}>s+1 \quad(\nu \geqslant N) \tag{2}
\end{equation*}
$$

There exists $N_{1}>N$ such that

$$
\left|\sum_{i=1}^{N_{1}} \sum_{n=f(i)}^{f(i+1)-1} a_{\tau(n)}-s\right|<1
$$

and therefore

$$
\left|\sum_{n=1}^{f\left(N_{1}+1\right)-1} a_{\tau(n)}\right|<s+1
$$

Since $f\left(N_{1}+1\right)>N$, this contradicts (2).

Lemma 5. Let $\sum a_{n}$ be a weak-permutably convergent series of real numbers, and σ a permutation of \mathbf{N}^{+}. Then it is impossible that $\sum\left|a_{\sigma(n)}\right|$ diverge.

Proof. Suppose that $\sum\left|a_{\sigma(n)}\right|$ does diverge. Then, by the full, extended version of $\mathbf{R S T}_{2}$, there is a permutation τ of \mathbf{N}^{+}such that $\sum a_{\tau(n)}$ diverges to infinity. Since $\sum a_{n}$ is weak-permutably convergent, there exists a bracketing of $\sum a_{\tau(n)}$ that converges. This is impossible, in view of Lemma 4 .

Arguing with classical logic, we see that if $\sum a_{n}$ is weak-permutably convergent, then, by Lemma [5] $\sum\left|a_{n}\right|$ must converge; whence $\sum a_{n}$ is permutably convergent, by RST_{1}.

Returning to intuitionistic logic, we have reached the proof of Proposition 1 .

Proof. Suppose that there exists a bracketing of $\sum a_{\sigma(n)}$ that converges to a sum distinct from s. Then, by Lemma 3, $\sum\left|a_{n}\right|$ diverges. Lemma 5 shows that this is impossible. It follows from the tightness of the inequality on \mathbf{R} that every convergent bracketing of $\sum a_{\sigma(n)}$ converges to s.

Since permutable convergence implies convergence and is a special case of weakpermutable convergence, we also have:

Corollary 6. Let $\sum a_{n}$ be a permutably convergent series of real numbers, and let σ be a permutation of \mathbf{N}. Then $\sum a_{\sigma(n)}=\sum a_{n}$.

$3 \quad \mathrm{BD}-\mathrm{N}$ and permutable convergence

A subset S of \mathbf{N}^{+}is said to be pseudobounded if for each sequence $\left(s_{n}\right)_{n \geqslant 1}$ in S, there exists N such that $s_{n} / n<1$ for all $n \geqslant N$-or, equivalently, if $s_{n} / n \rightarrow 0$ as $n \rightarrow \infty$. Every bounded subset of \mathbf{N}^{+}is pseudobounded; the converse holds classically, intuitionistically, and in recursive constructive mathematics, but Lietz [14] and Lubarsky [15] have produced models of BISH in which it fails to hold for inhabited, countable, pseudobounded sets. Thus the principle

BD-N Every inhabited, countable, pseudobounded subset of \mathbf{N}^{+}is bounded ${ }^{3}$
is independent of BISH. It is a serious problem of constructive reverse mathematics [5, 12, 13] to determine which classical theorems are equivalent to BISH + BD-N. For example, it is known that the full form of Banach's inverse mapping theorem in functional analysis is equivalent, over BISH, to BD-N; see [11].

This section is devoted to our version of the Riemann permutability theorem:
Theorem 7. In BISH $+\mathbf{B D}-\mathbf{N}$, every permutably convergent series of real numbers is absolutely convergent.

[^1]Proof. Let $\sum_{i=1}^{\infty} a_{i}$ be a permutably convergent series of real numbers. To begin with, assume that each a_{i} is rational. Write

$$
a_{n}^{+}=\max \left\{a_{n}, 0\right\}, a_{n}^{-}=\max \left\{-a_{n}, 0\right\} .
$$

Given a positive rational number ε, define a binary mapping ϕ on $\mathbf{N}^{+} \times \mathbf{N}^{+}$ such that

$$
\begin{aligned}
& \phi(m, n)=0 \Rightarrow m>n \wedge \sum_{i=n+1}^{m} a_{i}^{+} \geqslant \varepsilon \\
& \phi(m, n)=1 \Rightarrow m \leqslant n \vee \sum_{i=n+1}^{m} a_{i}^{+}<\varepsilon
\end{aligned}
$$

We may assume that $\phi(2,1)=0$. Let

$$
S \equiv\left\{n: \exists_{m}(\phi(m, n)=0)\right\}
$$

Then S is countable and downward closed. In order to prove that S is pseudobounded, let $\left(s_{n}\right)_{n \geqslant 1}$ be an increasing sequence in S. We may assume that $s_{1}=1$. Define a map $\kappa: S \rightarrow \mathbf{N}^{+}$by

$$
\kappa(n) \equiv \min \left\{m: m>n \wedge \sum_{i=n+1}^{m} a_{i}^{+} \geqslant \varepsilon\right\} .
$$

Setting $\lambda_{1}=0$, we construct inductively a binary sequence $\lambda \equiv\left(\lambda_{n}\right)_{n \geqslant 1}$ with the following properties:

$$
\begin{gather*}
\forall_{n}\left(\left(\lambda_{n}=0 \wedge \lambda_{n+1}=1\right) \Rightarrow n+1 \in S\right) \tag{3}\\
\forall_{n} \exists_{m}\left(\lambda_{n}=1 \Rightarrow \lambda_{n+m}=0\right) \tag{4}\\
\forall_{n}\left(\left(\lambda_{n}=0 \wedge \lambda_{n+1}=0\right) \Rightarrow s_{n+1} \leqslant n+1\right) \tag{5}
\end{gather*}
$$

Suppose that $\lambda_{1}, \ldots, \lambda_{n}$ have been defined such that

$$
\begin{equation*}
\forall_{k<n}\left(\left(\lambda_{k}=0 \wedge \lambda_{k+1}=1\right) \Rightarrow k+1 \in S\right) . \tag{6}
\end{equation*}
$$

In the case $\lambda_{n}=0$, if $s_{n+1} \leqslant n+1$, we set $\lambda_{n+1}=0$; and if $s_{n+1}>n+1$, we set $\lambda_{n+1}=1$, noting that $n+1 \in S$ since S is downward closed. In the case $\lambda_{n}=1$, we define

$$
n^{\prime} \equiv \min \left\{i \leqslant n: \forall_{j}\left(i \leqslant j \leqslant n \Rightarrow \lambda_{j}=1\right)\right\}
$$

Then the hypothesis (6) ensures that $n^{\prime} \in S$. If $\kappa\left(n^{\prime}\right)=n$, then $\sum_{i=n^{\prime}+1}^{n} a_{i}^{+} \geqslant \varepsilon$ and we set $\lambda_{n+1}=0$; otherwise, we set $\lambda_{n+1}=1$. This concludes the inductive construction of the sequence λ. Note that in the case $\lambda_{n}=\lambda_{n+1}=1$, this construction will eventually give $\lambda_{n+1+m}=0$ for some m, since

$$
\kappa\left(n^{\prime}\right) \geqslant n+1, \sum_{i=n^{\prime}+1}^{\kappa\left(n^{\prime}\right)-1} a_{i}^{+}<\varepsilon, \text { and } \sum_{i=n^{\prime}+1}^{\kappa\left(n^{\prime}\right)} a_{i}^{+} \geqslant \varepsilon .
$$

Hence the sequence λ has all three properties (3)-(5).
For convenience, if $n \leqslant m$ and the following hold, we call the interval $I=$ $[n, m]$ of \mathbf{N}^{+}a bad interval:

- if $n>1$ then $\lambda_{n-1}=0$,
$-\lambda_{m+1}=0$, and
- $\lambda_{i}=1$ for all $i \in I$.

Define a permutation σ of \mathbf{N}^{+}as follows. If $\lambda_{n}=0$, then $\sigma(n) \equiv n$. If $[n, m]$ is a bad interval, then the construction of the sequence λ ensures that $\kappa(n)=m$, so $\sum_{i=n+1}^{m} a_{i}^{+} \geqslant \varepsilon$. Let σ map an initial segment $[n, n+k-1]$ of $[n, m]$ onto

$$
\left\{i: n \leqslant i \leqslant m \wedge a_{i}^{+}>0\right\}
$$

and map the remaining elements of $[n, m]$ onto

$$
\left\{i: n \leqslant i \leqslant m \wedge a_{i}^{+}=0\right\} .
$$

Note that for all $n \geqslant 1$,

$$
\begin{equation*}
\left(\lambda_{n-1}=0 \wedge \lambda_{n}=1\right) \Rightarrow \exists_{j, k}\left(n \leqslant j<k \wedge \sum_{i=j+1}^{k} a_{\sigma(i)} \geqslant \varepsilon\right) \tag{7}
\end{equation*}
$$

Since $\sum_{i=1}^{\infty} a_{\sigma(i)}$ is convergent, there exists J such that $\sum_{i=j+1}^{k} a_{\sigma(i)}<\varepsilon$ whenever $J \leqslant j<k$. In view of (4), we can assume that $\lambda_{J}=0$. If $n \geqslant J$ and $\lambda_{J}=1$, then there exists ν such that $J \leqslant \nu<n, \lambda_{\nu}=0$, and $\lambda_{\nu+1}=1$; whence there exist j, k such that $J \leqslant \nu \leqslant j<k$ and $\sum_{i=j+1}^{k} a_{\sigma(i)} \geqslant \varepsilon$, a contradiction. Thus $\lambda_{n}=0$ for all $n \geqslant J$, and therefore, by (5), $s_{n} \leqslant n$ for all $n>J$. This concludes the proof that S is pseudobounded.

Applying BD-N, we obtain a positive integer N such that $n<N$ for all $n \in S$. If $m>n \geqslant N$ and $\sum_{i=n+1}^{m} a_{i}^{+}>\varepsilon$, then $\phi(m, n) \neq 1$, so $\phi(m, n)=0$ and therefore $n \in S$, a contradiction. Hence $\sum_{i=n+1}^{m} a_{i}^{+} \leqslant \varepsilon$ whenever $m>n \geqslant N$. Likewise, there exists N^{\prime} such that $\sum_{i=n+1}^{m} a_{i}^{-} \leqslant \varepsilon$ whenever $m>n \geqslant N^{\prime}$. Thus if $m>n \geqslant \max \left\{N, N^{\prime}\right\}$, then

$$
\sum_{i=n+1}^{m}\left|a_{i}\right|=\sum_{i=n+1}^{m} a_{i}^{+}+\sum_{i=n+1}^{m} a_{i}^{-} \leqslant 2 \varepsilon .
$$

Since $\varepsilon>0$ is arbitrary, we conclude that the partial sums of the series $\sum\left|a_{n}\right|$ form a Cauchy sequence, and hence that the series converges.

It remains to remove the restriction that the terms a_{i} be rational. In the general case, for each i pick b_{i} such that $a_{i}+b_{i}$ is rational and $0<b_{i}<2^{-i}$. Note that the series $\sum_{i=1}^{\infty} b_{i}$ converges absolutely and so, by $\mathbf{R S T}_{1}$, is permutably convergent. Hence $\sum_{i=1}^{\infty}\left(a_{i}+b_{i}\right)$ is permutably convergent. By the first part of the proof, $\sum_{i=1}^{\infty}\left|a_{i}+b_{i}\right|$ is convergent, as therefore is $\sum_{i=1}^{\infty}\left|a_{i}\right|$.

4 Weak-permutable convergence and BD-N

Diener and Lubarsky [8] have recently constructed topological models showing that the absolute convergence of every permutably convergent series in \mathbf{R} neither implies BD-N nor is provable within the Aczel-Rathjen set-theoretic formulation of BISH [1], and may therefore be of constructive reverse-mathematical significance
in its own right. Their models lead us to ask: is there a variant of the Riemann permutability theorem that is classically equivalent to the original form and that implies BD-N? Since weak-permutable and permutable convergence are classically equivalent, the main result of this section provides an affirmative answer:

Theorem 8. The statement
(*) Every weak-permutably convergent series in \mathbf{R} is absolutely convergent

implies $\boldsymbol{B D} \mathbf{D} \mathbf{- N}$.

The hard part of the proof is isolated in the complicated construction in the following lemma.

Lemma 9. Let $S \equiv\left\{s_{1}, s_{2}, \ldots\right\}$ be an inhabited, countable, pseudobounded subset of \mathbf{N}. Then there exists a sequence $\left(a_{n}\right)_{n \geqslant 1}$ of nonnegative rational numbers with the following properties.
(i) $\sum(-1)^{n} a_{n}$ is convergent and weak-permutably convergent.
(ii) If $\sum a_{n}$ converges, then S is bounded.

Proof. To perform this construction, we first replace each s_{n} by $\max \left\{s_{k}: k \leqslant n\right\}$, thereby obtaining $s_{1} \leqslant s_{2} \leqslant \cdots$. Now construct a binary sequence $\left(\lambda_{k}\right)_{k \geqslant 1}$ such that

$$
\begin{aligned}
& \lambda_{k}=0 \Rightarrow s_{2^{k+1}}=s_{2^{k}} \\
& \lambda_{k}=1 \Rightarrow s_{2^{k+1}}>s_{2^{k}}
\end{aligned}
$$

For $2^{k}+1 \leqslant n+1<2^{k+1}$, set $a_{n}=\lambda_{k} /(n+1)$. Note that if $\lambda_{k}=1$, then $\sum_{n=2^{k}+1}^{2^{k+1}} a_{n}>\frac{1}{2}$. In order to show that $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges in \mathbf{R}, first observe that if $\lambda_{k}=1$ and $2^{k}<m_{1} \leqslant m_{2} \leqslant 2^{k+1}$, then

$$
\begin{equation*}
\left|\sum_{n=m_{1}}^{m_{2}}(-1)^{n} a_{n}\right|=\left|\sum_{n=m_{1}}^{m_{2}} \frac{(-1)^{n}}{n+1}\right|<\frac{1}{2^{k}} . \tag{8}
\end{equation*}
$$

If j, k, m_{1}, m_{2} are positive integers with $2^{k}<m_{1} \leqslant 2^{k+1} \leqslant 2^{j}<m_{2} \leqslant 2^{j+1}$, then

$$
\begin{aligned}
& \left|\sum_{n=m_{1}}^{m_{2}}(-1)^{n} a_{n}\right| \\
& \leqslant\left|\sum_{n=m_{1}}^{2^{k+1}}(-1)^{n} a_{n}\right|+\sum_{\substack{k<\nu<j, \lambda_{\nu}=1}}\left|\sum_{n=2^{\nu}+1}^{2^{\nu+1}}(-1)^{n} a_{n}\right|+\left|\sum_{n=2^{j}+1}^{m_{2}}(-1)^{n} a_{n}\right| \\
& \leqslant \frac{1}{2^{k}}+\sum_{\substack{k<\nu<j, \lambda_{\nu}=1}} \frac{1}{2^{\nu}}+\frac{1}{2^{j}} \\
& \leqslant \sum_{n=k}^{\infty} \frac{1}{2^{n}}=\frac{1}{2^{k-1}} .
\end{aligned}
$$

Hence the partial sums of $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ form a Cauchy sequence, and so the series converges to a sum $s \in \mathbf{R}$.

Consider any permutation σ of \mathbf{N}^{+}. In order to show that $\sum_{n=1}^{\infty}(-1)^{\sigma(n)} a_{\sigma(n)}$ converges, we construct strictly increasing sequences $\left(j_{k}\right)_{k \geqslant 1}$ and $\left(n_{k}\right)_{k \geqslant 1}$ of positive integers such that for each k,
(a) $2^{j_{k}}<n_{k}<2^{j_{k+1}}$,
(b) $\left\{n: n+1<2^{j_{k}}\right\} \subset\left\{\sigma(n): n+1<n_{k}\right\} \subset\left\{1,2, \ldots 2^{j_{k+1}}-1\right\}$, and
(c) $\left|\sum_{n=2^{j_{k}}}^{i}(-1)^{n} a_{n}\right|<2^{-k+1}$ for all $k \geqslant 1$ and $i \geqslant 2^{j_{k}}$.

Setting $j_{1}=2$, pick $n_{1}>4$ such that

$$
\{1,2\} \subset\left\{\sigma(n): n+1<n_{1}\right\} .
$$

Then pick $j_{2}>j_{1}$ such that $n_{1}<2^{j_{2}}$,

$$
\left\{\sigma(n): n+1<n_{1}\right\} \subset\left\{n: n+1<2^{j_{2}}\right\},
$$

and $\left|\sum_{n=2^{j_{2}}}^{i}(-1)^{n} a_{n}\right|<2^{-1}$ for all $i \geqslant 2^{j_{2}}$. Next pick, in turn, $n_{2}>2^{j_{2}}$ and $j_{3}>j_{2}$ such that

$$
\left\{n: n+1<2^{j_{2}}\right\} \subset\left\{\sigma(n): n+1<n_{2}\right\} \subset\left\{n: n+1<2^{j_{3}}\right\}
$$

and $\left|\sum_{n=2^{j_{3}}}^{i}(-1)^{n} a_{n}\right|<2^{-2}$ for all $i \geqslant 2^{j_{3}}$. Carrying on in this way, we complete the construction of our sequences $\left(j_{k}\right)_{k \geqslant 1},\left(n_{k}\right)_{k \geqslant 1}$ with properties (a)-(c).

Now consider the sequence $\left(s_{2^{j_{k}+1}}\right)_{k \geqslant 1}$. Since S is pseudobounded, there exists a positive integer K_{1} such that $s_{2^{j_{k+1}}}<k$ for all $k \geqslant K_{1}$. Suppose that for each positive integer $k \leqslant K_{1}$, there exists i_{k} such that $j_{k} \leqslant i_{k}<j_{k+1}$ and $\lambda_{i_{k}}=1$. Then

$$
s_{2^{i_{1}}}<s_{2^{i_{2}}}<\cdots<s_{2^{i} K_{1}}<s_{2^{j} K_{1}+1},
$$

so $K_{1} \leqslant s_{2^{j} K_{1}+1}<K_{1}$, a contradiction. Hence there exists $k_{1} \leqslant K_{1}$ such that for each i with $j_{k_{1}} \leqslant i<j_{k_{1}+1}$, we have $\lambda_{i}=0$, and therefore $a_{n}=0$ whenever $2^{i} \leqslant n+1<2^{i+1}$. Thus $a_{n}=0$ whenever $2^{j_{k_{1}}} \leqslant n+1<2^{j_{k_{1}+1}}$. It follows that

$$
\begin{aligned}
\left\{a_{n}: n+1<2^{j_{k_{1}}}\right\} & \subset\left\{a_{\sigma(n)}: n+1<n_{k_{1}}\right\} \\
& \subset\left\{a_{n}: n+1<2^{j_{k_{1}+1}}\right\} \\
& =\left\{a_{n}: n+1<2^{j_{k_{1}}}\right\} \cup\left\{a_{n}: 2^{j_{k_{1}}} \leqslant n+1<2^{j_{k_{1}+1}}\right\} \\
& =\left\{a_{n}: n+1<2^{j_{k_{1}}}\right\} \cup\{0\} .
\end{aligned}
$$

Without loss of generality, we may assume that $a_{1}=0$. Then

$$
\left\{a_{n}: n+1<2^{j_{k_{1}}}\right\}=\left\{a_{\sigma(n)}: n+1<n_{k_{1}}\right\} .
$$

Next consider the sequence $\left(s_{2^{j_{k_{1}+k+1}}}\right)_{k \geqslant 1}$. Since S is pseudobounded, there exists a positive integer K_{2} such that $s_{2^{j_{k_{1}+k+1}}}<k$ for all $k \geqslant K_{2}$. Suppose that
for each positive integer $k \leqslant K_{2}$, there exists i_{k} such that $j_{k_{1}+k} \leqslant i_{k}<j_{k_{1}+k+1}$ and $\lambda_{i_{k}}=1$. Then

$$
s_{2^{i_{1}}}<s_{2^{i_{2}}}<\cdots<s_{2^{i_{K}}}<s_{2^{j_{k_{1}+K_{2}+1}}}
$$

so $K_{2} \leqslant s_{2^{j_{k_{1}+K_{2}+1}}}<K_{2}$, which is absurd. Hence there exists $\kappa \leqslant K_{2}$ such that for each i with $j_{k_{1}+\kappa} \leqslant i<j_{k_{1}+\kappa+1}$, we have $\lambda_{i}=0$, and therefore $a_{n}=0$ whenever $2^{i} \leqslant n+1<2^{i+1}$. Setting $k_{2} \equiv k_{1}+\kappa$, we have $a_{n}=0$ for all n with $2^{j_{k_{2}}} \leqslant n+1<2^{j_{k_{2}+1}}$. Hence

$$
\begin{aligned}
\left\{a_{n}: n+1<2^{j_{k_{2}}}\right\} & \subset\left\{a_{\sigma(n)}: n+1<n_{k_{2}}\right\} \\
& \subset\left\{a_{n}: n+1<2^{j_{k_{2}+1}}\right\} \\
& =\left\{a_{n}: n+1<2^{j_{k_{2}}}\right\} \cup\left\{a_{n}: 2^{j_{k_{2}}} \leqslant n+1<2^{j_{k_{2}+1}}\right\} \\
& =\left\{a_{n}: n+1<2^{j_{k_{2}}}\right\} \cup\{0\} .
\end{aligned}
$$

Thus, since $a_{1}=0$,

$$
\left\{a_{n}: n+1<2^{j_{k_{2}}}\right\}=\left\{a_{\sigma(n)}: n+1<n_{k_{2}}\right\} .
$$

Carrying on in this way, we construct positive integers $k_{1}<k_{2}<k_{3}<\cdots$ such that for each i,

$$
\left\{a_{n}: n+1<2^{j_{k_{i}}}\right\}=\left\{a_{\sigma(n)}: n+1<n_{k_{i}}\right\} .
$$

Since both σ and σ^{-1} are injective, it readily follows that for each i,

$$
\left\{\sigma(n): n_{k_{i}} \leqslant n+1<n_{k_{i+1}}\right\}=\left\{m: 2^{j_{k_{i}}} \leqslant m<2^{j_{k_{i+1}}}\right\}
$$

and therefore

$$
\left|\sum_{n=n_{k_{i}}}^{n_{k_{i+1}}-1}(-1)^{\sigma(n)} a_{\sigma(n)}\right|=\left|\sum_{m=2^{j_{k_{i}}}}^{2^{j_{k_{i}+1}-1}}(-1)^{m} a_{m}\right|<\frac{1}{2^{k_{i}}} .
$$

We now see that

$$
\sum_{i=1}^{\infty} \sum_{n=n_{k_{i}}}^{n_{k_{i+1}-1}}(-1)^{\sigma(n)} a_{\sigma(n)}
$$

converges, by comparison with $\sum_{i=1}^{\infty} 2^{-k_{i}}$. Thus $\sum_{n=1}^{\infty} a_{n}$ is weak-permutably convergent.

Finally, suppose that $\sum_{n=1}^{\infty} a_{n}$ converges. Then there exists N such that $\sum_{n=N+1}^{\infty} a_{n}<1 / 2$. It follows that $\lambda_{n}=0$, and therefore that $s_{n}=s_{2^{N}}$, for all $n \geqslant N$; whence $s_{n} \leqslant s_{2^{N}}$ for all n, and therefore S is a bounded set.

The proof of Theorem 8 is now straightforward:

Proof. Given an inhabited, countable, pseudobounded subset S of \mathbf{N}, construct a sequence $\left(a_{n}\right)_{n \geqslant 1}$ of nonnegative rational numbers with properties (i) and (ii) in Lemma 9 . Assuming $\left(^{*}\right)$, we see that $\sum a_{n}$ converges; whence, by property (ii), S is a bounded set.

5 Concluding remarks

We have shown that, over BISH,

- with BD-N, every permutably convergent series is absolutely convergent;
- the absolute convergence of every weak-permutably convergent series implies BD-N.

It follows from the latter result that if weak-permutable convergence constructively implies, and is therefore equivalent to, permutable convergence, then the absolute convergence of every permutably convergent series implies, and is therefore equivalent to, BD-N. Since the topological models in [8] show that this is not the case, we see that, relative to BISH, weak-permutable convergence is a strictly weaker notion than permutable convergence. In fact, the Diener-Lubarsky result shows that there is no algorithm which, applied to any inhabited, countable, pseudobounded subset S of \mathbf{N} and the corresponding weak-permutably convergent series $\sum a_{n}$ constructed in the proof of Lemma 9 proves that that series is permutably convergent. Nevertheless, weak-permutable convergence and permutable convergence are classically equivalent notions; the constructive distinction between them is that the former implies, but is not implied by, BD-N, which in turn implies, but is not implied by, the latter.

Acknowledgements. This work was supported by (i) a Marie Curie IRSES award from the European Union, with counterpart funding from the Ministry of Research, Science \& Technology of New Zealand, for the project Construmath; and (ii) a Feodor Lynen Return Fellowship for Berger, from the Humboldt Foundation. The authors also thank the Department of Mathematics \& Statistics at the University of Canterbury, for releasing Bridges to visit Munich under the terms of the IRSES award.

References

[1] P. Aczel and M. Rathjen: Notes on Constructive Set Theory, Report No. 40, Institut Mittag-Leffler, Royal Swedish Academy of Sciences, 2001.
[2] J. Berger and D.S. Bridges: 'Rearranging series constructively', J. Univ. Comp. Sci. 15(17), 3160-3168, 2009.
[3] E.A. Bishop, Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
[4] E.A. Bishop and D.S. Bridges: Constructive Analysis, Grundlehren der Math. Wiss. 279, Springer Verlag, Heidelberg, 1985.
[5] D.S. Bridges: 'A reverse look at Brouwer's fan theorem', in: One Hundred Years of Intuitionism (1907-2007) (Eds: van Atten, M.; Boldini, P.; Bourdeau, M.; Heinzmann, G.), Publications of the Henri Poincaré Archives, Birkhäuser, Basel, 316-325, 2008.
[6] D.S. Bridges and F. Richman, Varieties of Constructive Mathematics, London Math. Soc. Lecture Notes 97, Cambridge Univ. Press, Cambridge, 1987.
[7] D.S. Bridges and L.S. Vitță: Techniques of Constructive Analysis, Universitext, Springer-Verlag, Heidelberg, 2006.
[8] H. Diener and R. Lubarsky: 'Principles weaker than BD-N', preprint, Florida Atlantic University, Boca Raton, FL, 2011.
[9] H. Ishihara: 'Continuity and nondiscontinuity in constructive mathematics', J. Symb. Logic 56(4), 1349-1354, 1991.
[10] H. Ishihara: 'Continuity properties in metric spaces', J. Symb. Logic 57(2), 557-565, 1992.
[11] H. Ishihara: 'A constructive version of Banach's inverse mapping theorem', New Zealand J. Math.23, 71-75, 1994.
[12] H. Ishihara: 'Constructive reverse mathematics: compactness properties', In: From Sets and Types to Analysis and Topology: Towards Practicable Foundations for Constructive Mathematics (L. Crosilla and P.M. Schuster, eds), Oxford Logic Guides 48, Oxford Univ. Press, 245-267, 2005.
[13] H. Ishihara: 'Reverse mathematics in Bishop's constructive mathematics', Philosophia Scientiae, Cahier Special 6, 43-59, 2006.
[14] P. Lietz and T. Streicher: 'Realizability models refuting Ishihara's boundedness principle', preprint, Tech. Universität Darmstadt, Germany, 2011.
[15] R. Lubarsky: 'On the failure of BD-N', preprint, Florida Atlantic University, Boca Raton, FL, 2010.
[16] F. Richman: 'Intuitionistic notions of boundedness in \mathbf{N}^{+}', Math. Logic Quart. 55(1), 31-36, 2009.
[17] G.F.B. Riemann: 'Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe', in Gesammelte Werke, 227-264. Originally in: Habilitationsschrift, 1854, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 13.
[18] B. Spitters: 'Constructive results on operator algebras', J. Univ. Comp. Sci. 11(12), 2096-2113, 2005.
[19] A.S. Troelstra: Choice Sequences. A Chapter of Intuitionistic Mathematics, Oxford Logic Guides, Clarendon Press, Oxford, 1977.

Keywords: Permutation of series, constructive reverse mathematics
MR Classifications (2010): 03F60, 26A03, 26E40

Authors' addresses:

Berger: Institut für Mathematik und Informatik, Walther-Rathenau-Straße 47, D17487 Greifswald, Germany
jberger@math.lmu.de
Bridges: Department of Mathematics \& Statistics, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
d.bridges@math.canterbury.ac.nz

Diener: Fakultät IV: Mathematik, Emmy-Noether-Campus, Walter-Flex-Str. 3, 57072 Siegen, Germany
diener@math.uni-siegen.de
Schwichtenberg: Mathematisches Institut der LMU, Theresienstr. 39, 80333 München, Germany
schwicht@math.lmu.de

[^0]: ${ }^{1}$ That is, analysis using intuitionistic logic, a related set theory such as that of Aczel and Rathjen 1], and dependent choice. For more on BISH, see 3 , $4,7$.
 ${ }^{2}$ We use shorthand like $\sum a_{n}$ and $\sum a_{\sigma(n)}$ for series when it is clear what the index of summation is.

[^1]: ${ }^{3} \mathbf{B D}-\mathbf{N}$ was introduced by Ishihara in 10 (see also [16]).

