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GENERALIZED JACOBIANS AND EXPLICIT DESCENTS

BRENDAN CREUTZ

ABSTRACT. We develop a cohomological description of explicit descents in terms of gener-
alized Jacobians, generalizing the known description for hyperelliptic curves. Specifically,
given an integer n dividing the degree of some reduced, effective and base point free divisor
m on a curve C, we show that multiplication by n on the generalized Jacobian Jy, factors
through an isogeny ¢ : Ay — Jin whose kernel is dual to the Galois module of divisor classes
D such that nD is linearly equivalent to some multiple of m. By geometric class field theory,

this corresponds to an abelian covering of Cp := C' Xgpeck Spec(k) of exponent n unrami-
fied outside m. We show that the n-coverings of C parameterized by explicit descents are
the maximal unramified subcoverings of the k-forms of this ramified covering. We present
applications to the computation of Mordell-Weil ranks of nonhyperelliptic curves.

1. INTRODUCTION

Suppose f(x,y) is a binary form of degree d over a field k of characteristic not equal to 2.
Pencils of quadrics with discriminant form f(x,y) have been studied in [BSD63/Cas62./Cre01l,
BG13,Wan18/BGWI5[BGWI7]. When d is even, the SLg4(k)/us-orbits of pairs (A, B) with
discriminant form f(z,y) correspond to a collection of 2-coverings of the hyperelliptic curve
C: 2% = f(z,y). When k = Q these coverings are used in [Bha] and [BGWT7] to compute
the average size of the 2-Selmer set of C, and of the torsor J* parameterizing divisor classes
of degree 1, respectively, from which they deduce the fantastic result that most hyperelliptic
curves over (Q have no rational points.

The same collection of coverings can also be described in terms of the k-algebra L :=
klz]/f(x,1). This description was used in [BS09] and [Crel3] to compute 2-Selmer sets
of C and J*, respectively, for individual hyperelliptic curves. A key step in both [Creld]
and [BGWI1T] is to check that this collection of coverings is large enough to contain the
locally soluble 2-coverings (under suitable hypotheses on C'). In [BGW17] this is achieved
by identifying these coverings as the unramified subcoverings of k-forms of the maximal
abelian covering of exponent 2 unramified outside the pair of points at infinity on the affine
model 22 = f(z,y), a characterization that is quite natural in light of the use of generalized
Jacobians in [PS97].

Meanwhile the theory of explicit descents has expanded to incorporate computable de-
scriptions of certain approximations to Selmer sets, called fake Selmer sets, for all curves.
This is developed for nonhyperelliptic curves of genus at least 2 in [BPS16] and for curves
of genus 1 in [Creld]. In this paper we provide geometric and cohomological descriptions
of these descents in terms of generalized Jacobians, generalizing the description for hyper-
elliptic curves given in [PS97.[BGWI17|. Specifically, given an integer n dividing the degree
of some reduced effective and base point free divisor m on a curve C', we show that mul-
tiplication by n on the generalized Jacobian J, factors through an isogeny of semiabelian

varieties ¢ : Ay, — Jn whose kernel is naturally the dual of the Galois module of classes of
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divisors D on Cf := C Xgpec Spec(k) such that nD is linearly equivalent to a multiple of m.
By geometric class field theory, this corresponds to an abelian covering of exponent n and
conductor m. We show that the fake descents mentioned above have a natural interpreta-
tion in terms of the k-forms of this ramified covering, which we call ¢-coverings. The main
result in this direction is Theorem [4.4] from which we deduce Corollaries and [4.7 giving
an interpretation of the descents on C' and J! in terms of those n-coverings which arise as
maximal unramified subcoverings of the k-forms of this ramified covering.

This description unifies the methods of explicit descent described in [MSS96lBS09,/Crel3|
Creld[BPST6] and allows a more natural interpretation of some of the objects that arise.
Moreover, it yields a number of applications to explicit descent and the arithmetic of curves
described in the following subsections.

1.0.1. Applications to explicit descent on J. The fake descent presented in [BPS16] proceeds
by substituting the connecting homomorphism d : J(k) — H'(k,J[n]) in the Kummer
sequence with a more computationally amenable homomorphism f : Pic?(C) — L*/k*L*",
for some étale k-algebra L. Here Pic(C') denotes the group of k-rational divisors on C
modulo linear equivalence and Pic’(C') denotes the subgroup of classes of degree 0. In order
to obtain information about the Selmer group from this, they require some hypothesis (e.g.,
[BPS16, Hypothesis 10.1]) to ensure that Pic’(C) = J(k) globally and locally. In general
one has an injective map Pic’(C') — Pic®(C)%** = J(k) which need not be surjective. We
show how such hypotheses can be omitted in a number of relevant cases (cf. Theorem [5.6]).
In Theorem we use this to determine the Mordell-Weil rank of a Jacobian J of a plane
quartic curve C' for which Pic’(C) # J(k).

1.0.2. Application to explicit descent on C' and J'. In [BPS16] a ‘fake Selmer set’ of a non-
hyperelliptic curve C' over a global field is introduced. Using the machinery of [BPS16] we
introduce a fake Selmer set of the torsor J' parameterizing divisor classes of degree 1 (see
Definition [5.1]). Tt is easy to see that C' and J' cannot have any rational points if the cor-
responding fake Selmer set is empty. Our interpretation in terms of generalized Jacobians
allows us to verify that the obstruction coming from these fake descents is indeed a finite
abelian descent obstruction in the sense of [Sko0ll Section 5.3] and, consequently, that such
counterexamples to the Hasse principle are explained by the Brauer-Manin obstruction (cf.
[SkoO1l, Theorem 6.1.2]). This is given in Theorem [5.2 and [5.3] below.

Particularly in the case of J!, this allows us to obtain deeper knowledge than would
otherwise be obtained from simply knowing that J1(k) is empty. Indeed, we are able to tap
into results in arithmetic duality which would otherwise only be possible conditionally on
deep conjectures concerning finiteness of the Tate-Shafarevich group II(.J). In Section 6T we
give an example of a nonhyperelliptic genus 3 curve over Q with absolutely simple Jacobian
J for which the fake 2-Selmer set of J! is empty. Theorem [5.3]is then used to prove that
I(J)[2°] ~ Z/2Z x Z/27, and consequently to determine that the Mordell-Weil rank is
1. Without making use of Theorem we would only obtain the weaker conclusion that
1 < rank(J(Q)) < 2 and 1 < dimg, TI(J)[2] < 2.

1.0.3. Applications to descent on genus 1 curves. The results of [Creld] describe n-descents
on genus 1 curves of degree n when n is prime. The results just mentioned extend aspects
of this to general n. Namely, for such a curve we have a computable fake Selmer set whose

emptiness implies that the curve is not divisible by n in the Tate-Shafarevich group of its
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Jacobian. This is potentially practical in the case n = 4, enabling 16-descent on elliptic
curves.

1.0.4. Application to Galois descent of unramified abelian coverings of exponent 2. The re-
sults of this paper are used in [Crel6] to prove that if C' is an everywhere locally solvable
curve of genus g = 2 over a global field of characteristic different from 2 and that the Galois
action on J[2] is generic (i.e., Gal(k(J[2])/k) is isomorphic to Syyio or GSpy,(F2) corre-
spondingly as C' is or is not hyperelliptic), then the maximal unramified abelian covering of
(% of exponent 2 descends to k.

The obstruction to Galois descent for the (p-covering mentioned above and its maximal
unramified subcovering are elements of the Galois cohomology groups H?(k, An[¢]) and
H?(k, J[2]), respectively. The proof proceeds by showing that, generically, the locally trivial
subgroup II1?(k, Aw[]) is trivial, which implies that the ramified covering and, hence also,
its unramified subcovering descend to k. The use of p-coverings here seems unavoidable
(and the result all the more surprising) given that the group I1I*(k, .J[2]) can be nontrivial
even when the Galois action on J[2] is generic. In fact, this occurs whenever C' has no
rational theta characterstics and all of the decomposition groups of Gal(k(.J[2])/k) are cyclic,
since in this case the torsor parameterizing theta characteristics gives a nontrivial element
of II'(k, J[2]) (see [Ati71] and [PRII, Remark 3.18]) and III*(k, J[2]) ~ II'(k, J[2]) by
Tate’s duality theorem. Moreover, there are examples of locally solvable curves of genus > 2
for which the maximal unramified abelian covering of exponent 2 does not descend to k (see
[CV15, Theorem 6.7]).

1.0.5. Potential application to average sizes of Selmer sets. We expect our interpretation
may also be of relevance to future efforts to compute these Selmer sets on average. Namely,
it should be possible to identify the collection Covl(J') with the orbits in some coregular
representation (as is done in [BGW17| for the hyperelliptic case). The results in Theorems[3.§]
and [Z.I] would then have implications for the structure of the space of orbits. Thorne has
recently made progress understanding the situation for nonhyperelliptic genus 3 curves with
a marked rational point [Thol5lTho]. It is our hope that the results of this paper may shed
light on the corresponding situation when there are no rational points.

1.1. Notation. Throughout this paper n is an integer and k is a field of characteristic
not divisible by n, with separable closure k and absolute Galois group Gal, = Gal(k/k).
We will use C' to denote a nice curve over k, i.e. a smooth, projective and geometrically
integral k-variety of dimension 1. For a nonempty finite étale k-scheme A = Spec(L) we use
Resa = Resp ;. to denote the restriction of scalars functor taking L-schemes to k-schemes. For
a commutative étale k-group scheme G, we use H (G) to denote the Galois cohomolgy group
H'(Galg, G(k)). For k a global field, equivalence classes of absolute values on k (whether
archimedean or not) will be referred to as primes.

Acknowledgements. I would like to thank: Michael Stoll and Bjorn Poonen for comments
and discussions concerning the material in this article and Nils Bruin for providing me
with Magma code for a number of the algorithms described in [BPS16]. In developing the
algorithms and examples in Section [0l I have made use of a list quartic curves of small

discriminant provided by Denis Simon as well as the database [Sutl8] developed by Andrew
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Sutherland. Computations were performed using the Magma Computer Algebra System
described in [BCP97].

2. THE MODULUS SETUP

Definition 2.1. Let C' be a nice curve over k. A modulus setup for C is a pair (n,m)
consisting of a positive integer n not divisible by the characteristic of k, and a reduced,
effective and base point free divisor m € Div(C) of degree m, with n dividing m.

Given a modulus setup (n, m) we define ¢ := deg(m)/n. We are primarily interested in the
following examples.

M.1 Suppose 7 : C — P! is a double cover which is not ramified over co € P!. Let n = 2
and m = %00,

M.2 Suppose C' is a genus 1 curve of degree m in P™~!. Take m to be any reduced
hyperplane section and take n = m.

M.3 Suppose C' is any nice nonhyperelliptic curve of genus at least 3, n = 2 and m is a
canonical divisor. Then m =2g —2 and ¢ = g — 1.

2.1. The generalized Jacobian associated to a modulus setup. Let C' be a nice curve
over k with a modulus setup (n,m). We may view m as a finite étale subscheme m =
Spec M < C, or as a modulus in the sense of geometric class field theory (see [Ser8§|). Let
Cy denote the singular curve associated to m as in [Ser88, IV.4]. Let Pices and Pice,, be the
commutative group schemes over k representing the Picard functors of C' and C,. There is
an exact sequence of commutative group schemes over k,

(2.1) 1 —- T — Picg, — Pice — 0,

where T is an algebraic torus. The restriction of (2.I]) to the identity components is an exact
sequence of semiabelian varieties,

(2.2) 1T — Jy—J—0,

where Jy, is the generalized Jacobian of C' associated to the modulus m and J is the usual
Jacobian of C.
Let G* denote the multiplicative group schemell

Lemma 2.2. T' ~ Res,, G*/G* is isomorphic to the quotient of Resy G* by the diagonal
embedding of G*, and there is an exact sequence of finite group schemes

Res; fin
L,

1 —

where Resrln [y, 1S the kernel of the norm map N : Resy fin — tin-

Proof. The first statement, that T = Res,, G*/G*, follows from well known results on the
structure of generalized Jacobians (see [Ser88, §V Prop. 7]). Let Resl G* denote the kernel
of the norm map Res, G* — G*. The inclusion map Res. G* — Res, G* induces a

n conjunction with our use of m for the modulus and m for its degree, the standard notation G,, for
the multiplicative group might lead to confusion.
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surjective map onto Res,, G*/G* with kernel p,,. This gives the middle rows of the following
commutative and exact diagram.

ftn — Resl p, — T[n]

1 X Resm G*
1 —— pi, — Res G on, 1
n n l’ﬂ
1 Resm G*
1 —— py, — Res, G~ o= 1

m/n

fhy ——— 1

The exact sequence in the statement of the lemma follows by applying the snake lemma. [

2.2. The isogeny associated to a modulus setup.

Lemma 2.3. Given a modulus setup (n,m) there is a commutative group scheme A over k
1

and isogenies 1 : Picg, — A and ¢ : A — Pice, such that ker(y) = W c T[n] and

p o1 = [n]. Moreover, we have a commutative and exact diagram

1 T 2 Picc —— 0

Pl

1—— T —— Picg, —— Pice —— 0.
where T" is a torus and T'[@] ~ py,.

Proof. By Lemma 2.2 Pic¢,, contains a finite group scheme isomorphic to Res}, jin/ptn. The
quotient of Pice,, by this subgroup scheme yields an isogeny 1 : Pice,, — 2. The existence
of ¢ follows from the fact that ker(¢)) is contained in the kernel of multiplication by n.
Since ker(¢)) < T, 2 is an extension of Picc. The assertion that T'[p] ~ u, follows from
Lemma [2.2] O

Remark 2.4. When n = m = deg(m) = 2, we have that T'[n] ~ u,. Hence 1) is the identity
map on A = Pice,, and ¢ s multiplication by 2.

2.3. Description using divisor classes. A function f € k(C)* that is regular on m gives,
by restriction, an element f|, € M, where Spec(M) = m. We use Div,,(C) to denote the
divisors of C' that have support disjoint from m.

Lemma 2.5. Let A be as defined in Lemmal2.3. Then
Picc(k) = Div(Cy)/{div(f) : f e k(C7)*},
Pica, (F) = Diva(Co)/Adiv(f) : f € H(CY™, fln =1},
A(F) = Diva(C/AdIV(S) = [ €TCR*, flu € Resh un}

Moreover, ¢ : A — Picg,, is induced by multiplication by n on Divy,(Cy).
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Proof. The first two statements are well known (see [Ser88]; note that f|, = 1 if and only if
f =1 mod m, since m is reduced). The k-points of the subgroup 7' = Res,, G*/G* < Picg,,
are represented by divisors of functions which do not vanish on m,

Py - A4v() + f €FCD* fln € TT)
{div(f) : fek(Cy)*, flm=1}
The description of 2((k) in the statement then follows from the fact that 2l is the quotient

of Pice,, by the image of Res}, 1, in T. The final statement follows easily from the fact that
© o1 is multiplication by n on Picg,,. U

2.4. Component groups. The component groups of Picg, , Pico and 2 are all isomorphic
to Z, the isomorphism being given by the degree map on divisor classes. The degree 0
component of 2 is a semiabelian variety A, fitting into an exact sequence,

(2.3) 1-T - A, —>J—0.

In particular, A, is geometrically connected. We label the components

(2.4) Pico = | |J*,  Picg, =| |75, 2A=] AL,
1€Z €7 €7

so that the superscripts denote the image under the degree map. To ease notation we also
denote the degree 0 components by J = J°, J, = J2 and A, = A%. For any i € Z, J" and
Ji are torsors under J and J,, respectively.

Let m’ € Divy,(C) be an effective reduced k-rational divisor linearly equivalent to and
with disjoint support from m (which exists by Bertini’s theorem, provided & has sufficiently
many elements). Then m’ determines classes in Pice, Pice,, and 21, which generate, in each,
a subgroup scheme isomorphic to the constant group scheme Z. Let J, Jn and A, denote
the corresponding quotient group schemes, which exist since the category of commutative
algebraic groups is abelian. We have,

m— . m—1
(2.5) J = PICC |_| T 1= P;;f/“" = |_| Jt Ap = Zm’ |_| Al
i=0 i=0

where we have abused notation slightly by writing m’ to also denote its class in Picg, Pice,
and 2, respectively.

Remark 2.6. It is not generally true that all effective divisors linearly equivalent to and
disjoint from m give the same class in Pice,,, so the quotient maps Pice,, — Jn and A — Ay,
may depend on the choice for w'. However, the map Picc — J depends only on m.

The maps ¥ and ¢ of Lemma 2.3 induce maps ¢ : Jn — An and ¢ : A, — Jn whose
composition is multiplication by n. The map ¢ induces a morphism of exact sequences of
group schemes,

(2.6) 0T —— Ay —— T ——0

S
Q
“O



and in particular an isogeny of semiabelian varieties,
(2.7) 0 Ap — I
Lemma 2.7. There is a commutative and exact diagram,

(2'8) Hp = Hn

[ 1

+ deg

| |

J[n|—— T[n]| —» Z/nZ.

Proof. The first and second columns are, respectively, the kernels of the morphism of exact
sequences appearing in Lemma 23] and Diagram (2.0). They are exact by the snake lemma,
since ¢ : T — T is an epimorphism. By Lemma 25 a divisor D € Div,(C%) represents
a class in Ay[p] if and only if nD = am’ + div(f), for some a € Z and f € k(C%)* with
flm € Resl p1,. In particular, ndeg(D) = deg(nD) = deg(am’) = anf. So ¢ divides deg(D).
As every class in A, can be represented by a divisor of degree 1 < d < m this shows that the
maps in the first row are well defined. By definition, A,[¢] is the intersection of the kernels
of the maps ¢ and deg on A,,. Surjectivity in the middle row follows from the fact that Ay

is a divisible group. Namely, there exists n’ € Div(C'), necessarily of degree /, such that the
class of nn’ is equal to that of m’ in (k). By Lemma 2.5 ¢([n']) = [nn] = [m’] =0 in A.
Thus the middle row is exact. The same argument (applied to J in place of A,) shows the

same for the bottom row. O

2.5. Extended Weil pairings. We now define a bilinear pairing

e: Junln] x Tuln] — pn .
Fix f € k(C)* such that div(f) = m’ — m. Given Dy, Dy € Ju[n], choose representative
divisors Dy, Dy € Divy(Cy), and let d; = deg(D;)/¢, where we remind the reader that
¢ := m/n. There exist unique functions h; € k(C%)* such that nD; = div(h}) + d;m’ and
hllm = 1. Set h; = fdih., so that nD; = div(h;) + d;m. Define:

ordp Dj
)h2 -—X

(2.9) (D1, D) = (=) [ (im0t )b (P ek
PeC(k) 1

We note that when D; and D, have disjoint support, this can be written as

ha(D1)
2.10 Dy, Dy) = (—1)h 220
( ) 6( 1, 2) ( ) hl(Dg)
Proposition 2.8. The pairing e is Galois equivariant and induces, via the surjective map
U Tuln] = Anle] and the maps in ([2Z8)), nondegenerate Galois equivariant pairings

et Au[p] X Aule] = pn,

e Anlp] x T[n] — pa,

e: J[n] x J[n] — .
Moreover, the pairing on J|n]| x J[n] coincides with the Weil pairing.
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Remark 2.9. The definition of e given above depends on the choice of m' in (Z3]) and the
function f with div(f) = m' —m. However, as shown in the proof below, the induced pairings
on Anle] x J[n] and J[n] x J[n] do not depend on these choices.

Proof. One can check that the pairing e : Jn[n] x Jn[n] — p, is Galois equivariant exactly
as is done in [PS97, Section 7] where the situation of is considered (one need
only replace the function x there with the function f in the definition above).

We will show that the orthogonal complements of Res}, i/, and T[n] with respect to
e are Ju[n] and Jy[n], respectively. This is enough to ensure that e induces the pairings
stated. The pairing induced on J[n] is evidently the Weil pairing (see [How96l, Theorem 1]),
which is known to be nondegenerate. Nondegeneracy of the other pairings follows from the
exactness of (2.8). Alternatively, Lemma below gives an alternative description of this
pairing using class field theory which is readily seen to be nondegenerate.

Let Dy € T[n]. Then D, is represented by D; = div(f) for some f € k(Cy)* with
flw € Resy fin. Since nD; = div(f") and f"|, = 1 we must use h; = f™ in the definition
of the pairing. Suppose Dy € J[n]| and let Dy, hy, dy be as in the definition of the pairing.
Then we have
hordp f
€(D1, Dg) _ 1_[ (_l)n(ordp f)(ordp D2) '°2

PeC(k)

m(m

dp f
hg™ "

= ] (—1)lordrDlordrhatdzordrm) (P)  (since nDy = div(hy) + dom.)

fOI‘dp ha+d2 ordp m

PeC(k)

= H (—1)dz(ordp Hlerdpm) g=dyordpm( py (by Weil reciprocity)
PeC(k)

= H frzordrm(p) (since fly is invertible)
PeC(k)

= N(f|m)7d2 )

where N denotes the induced norm Res,, G* — G*. From this one easily sees that Res}n Ln/ b
lies in the kernel of the pairing and that T'[n]| pairs trivially with the degree 0 subgroup,
Juln] © Tuln]. O

Taking Galois cohomology of (2.8)) yields a commutative and exact diagram

(2.11) R S R

ZnZ — 1 (Anlp]) — H' (Anlo]) ~% H' (2/n2)

Z/n7 — s/ (Jn]) ——s HY(T[n]) — 7Y (2/nZ)




Lemma 2.10. The images of (1) and ¢'(1) in H'(J) and H'(Ay) are the classes of J¢ and
AL respectively. The maps Y and Y’ are given by

T(&) =&ued1), and
T(E) = € U (),
where U, denotes the cup product pairings
U, : H'(J[n]) x H(J[n]) — H*(u,) = Br(k)[n], and
Ue : H' (T [n]) x H (An[]) — H(1a) = Br(k)[n]
determined by the e-pairings of Proposition[2.8 (cf. [NSWOS, page 38]).
Proof. At the level of cocycles, d(1) is represented by Gal, 3 0 — [o(D) — D] € J[n], where

D e Div(C) is such that nD is linearly equivalent to m’ and the square parentheses denote
the class of a divisor in Pic(C). The divisor D necessarily has degree m/n = ¢, so the image
of this cocycle in H'(J) represents J*. The claim that ¢'(1) represents A’ is established
similarly.

The e-pairings of Proposition 2.8 give commutative diagrams of pairings

n X LML — o X Z/nZ —
l f I l f I
(2.12) Aule] x T[] — pn Anle] x Aulp] —  pn
! ! I { ! I
Jn] x Jn] — un Jn] x Awle] — pn-

Since the maps T and T’ are coboundary maps from the first columns and the maps ¢ and
0" are coboundary maps from the second columns we may apply [NSWO08, Corollary 1.4.5]
once to each of the diagrams in (2.12) to deduce that Y (&) = £ u.d(1) and Y'(§) = £u.d'(1).

O

2.6. Brauer class of a k-rational divisor class. Given a nice curve C, there is a well
known exact sequence

(2.13) 0 — Pic(C) — Pice (k) 25 Br(k)

(see [Lic69]). The map O¢ gives the obstruction to a k-rational divisor class being represented
by a k-rational divisor.

Lemma 2.11. Let d : J(k) — H'(J[n]) denote the connecting homomorphism in the Kum-
mer sequence. For any x € J(k) we have YT od(z) = (- O¢(x).

Proof. The image of d is isotropic with respect to the Weil-pairing cup product u.. This
gives a commutative diagram of pairings
Ue: HY(J[n]) x H'(J[n]) — Br(k)
dl ! I
Gy Jk) < HYJ) - Br(k)
By a result of Lichtenbaum (see the proof of [Lic69, Corollary 1]) we have that (z,[J']) =
O©¢(x). By the previous lemma we have

Tod(z) =d(x) v, (1) = (x, [é]é]> =z, [J']) = Oc(x).



O

Let J(k), denote the kernel of the composition Y o d : J(k) — H'(J[n]) — Br(k).
Then Pic’(C) < J(k). = J(k) and, in general, any of these containments can be proper.
Lemma 1T shows that Pic’(C') = J(k). when ¢ = 1 (e.g., for the modulus setups of
and while the following corollary shows that J(k), = J(k)
when k is a local or global field and C' has a modulus setup as in [Example M.3]

Corollary 2.12. If

(1) the period of C divides €, or

(2) k is a local or global field and ged(m, g — 1) divides ¢,
then T od = 0.

Proof. The image of O¢ : J(k) — Br(k) is isomorphic to the cokernel of Pic’(C) — J(k),
which is annihilated by the period of C' ([PS97, Prop. 3.2]). Over a local field, the period of
C' divides g — 1 ([PS97, Prop. 3.4]). Since the period also divides m = deg(m), (2) implies
that ¢ is divisible by the period locally. Hence T o d = 0 locally. This must also be true
globally by the local-global principle for Br(k). O

We recall that the situation for Pice, is different.

Lemma 2.13. The natural map Divy(C) — Picg, (k) is surjective. In particular, for any
i =1, Div'(C) # & if and only if Ji (k) # &.

Proof. The first statement follows from [PS97, Lemma 3.5]. The second follows from the
first by the moving lemma. O

3. N-COVERINGS, ¢@-COVERINGS AND THE DESCENT SETUP
3.1. n-coverings and p-coverings.

Definition 3.1. Suppose ¢ : A — B is an isogeny of semiabelian varieties over k and V
is a B-torsor. We say m: V' — V is a ¢-covering of V' if there exist isomorphisms a,b of
k-varieties such that a is compatible with the torsor structure of V, fitting into a commutative
diagram

/ b
VE—>AE

A
Vi —% B

Let Cov? (V) denote the set of isomorphism classes of ¢-covering of V', considered as objects
in the category of V -schemes.

To say that a is compatible with the torsor structure means that a(z + y) = a(z) + y.
Note that the isomorphism b endows V' with the structure of a torsor under A by the rule
r 4y = b (b(x) + y). The classes of these torsors satisfy ¢.[V’] = [V] € H(B). When
nonempty, Cov?(V) is a principal homogeneous space for the group H'(ker(¢)) acting by
twisting. The isogenies ¢ : A, — Jy and n : J — J give distinguished points in Cov¥(Jy,)
and Cov"(J), endowing these sets with the structure of an abelian group and isomorphisms
to H' (An[p]) and H*(J[n]), respectively.
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Suppose (n,m) is a modulus setup for a nice curve C' over k. The isogenies ¢ : Ap — Jn
and n : J — J give rise to the notions of p-coverings of J! and n-coverings of J* for each
i > 0. The pullback of a ¢-covering V' — J! along the canonical map (C' —m) — J! sending
a geometric point x to the class of the divisor z in JL(k) < Pice, (k) yields an unramified
covering of (C'— m). Corresponding to this is a unique (up to isomorphism) morphism
7 :Y — C of smooth projective curves over k which is unramifed outside m.

Definition 3.2. Suppose (n,m) is a modulus setup for a nice curve C' over k. A morphism
m:Y — C of nice curves is a @-covering of C' if it is the unique extension of the pullback
of a p-covering of J. along the canonical map (C —m) — JL. A morphism 7 : X — C
is an n-covering of C if it is the pullback of an n-covering of J* along the canonical map
C — Jt. Let Cov™(C) and Cov¥(C) denote, respectively, the sets of isomorphism classes of
n-coverings and @-coverings of C' (considered as objects in the category of C-schemes).

Proposition 3.3. An n-covering of C' is a k-form of the maximal unramified abelian covering
of C' of exponent n. A p-covering of C' is an abelian covering of exponent n and conductor
m whose maximal unramified subcovering is an n-covering.

Proof. Any unramified abelian extension of k(C') of exponent n is obtained by adjoining n-th
roots of functions f € k(C) with div(f) = nD e nDiv(C). For any such function, the class
of the divisor D lies in J[n]. For the (unique up to isomorphism) n-covering = : C' — C
we have J[n](k) = ker(z* : Pic?(C) — Pic’(C")). Thus k(C’) contains n-th roots of all
functions f as above. This proves the first statement.

Similarly, the field extension of k(C%) corresponding to a ¢-covering is the compositum
of the extensions corresponding to the index n subgroups of Ay[¢], or equivalently, to the
points of order n in the Cartier dual J[n] (the duality is given by Proposition 2.8). If
D e Div(Cy) represents a point of order n in J[n], then there exists a function hp € k(Cg)*
such that div(hp) = nD — dm for some d € Z. The corresponding extension of k(C%) is
obtained by adjoining an n-th root of hp. Such extensions are of conductor m. The maximal
unramified subextension is obtained by adjoining n-th roots only of those hp for which
div(hp) —nD = dm with d = 0 mod n. These correspond to points in J[n] showing that the
maximal unramified subcover of a ¢-covering is an n-covering.

U

When nonempty, the sets Cov™(C') and Cov¥(C) are principal homogeneous spaces for
H'(J[n]) and H'(An[n]), respectively, acting by twisting. By geometric class field theory
the canonical pullback maps p : Cov"(J') — Cov"(C) and py : Cov?(JL) — Cov¥(C) are
bijections that are equivariant for the actions by H'(J[n]) and H'(Ay[n]). By Proposition 3.3
there is a canonical map u : Cov?(C') — Cov"(C'), which associates to a p-covering of C' the
maximal unramified intermediate covering of C. Let Covy (C) denote the image of w.

Given a @-covering 7 : Fy, — J¢, the torsor structures restrict to actions of the tori 7" < Ay,
and T < Jy on Fy, and J¢, respectively. The quotients F' = Fy,/T" and J* = J. /T are torsors
under J = A, /T" = J/T. The existence of these quotients in the category of varieties follows
from [Gro95, Theoreme 7.2], while the induced torsor structure can be established as in the
proof of [Bor96, Lemma 3.1]. Since the actions of 7" and T" are equivariant with respect to
7, there is an induced map 7’ : F' — J* which is a torsor under Ay[¢]/T"[¢] = J[n]. This
induces a map ¢ : Cov¥(J.) — Cov"(J"). Let Covl(J") denote the image of q. We record

the following.
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Lemma 3.4.
(1) The isomorphism Cov"(J) ~ H'(J[n]) restricts to Cov’(J) ~ ker(Y).
(2) The maps defined above fit into a commutative diagram,

Cov?(JL) 22 Cov?(C)

O
Cov"™(J') —— Cov"(C) .

In particular, p restricts to give a bijection p : Covy (J) — Cov (C).

Proof. The first statement follows from exactness in (ZI1)). The second follows from the
universal property of the fibered product. O

Using y-coverings we can give an alternative description of the e-pairing on Ay[¢] x J[n]
given in Proposition X8 Let (Y, ) be a @-covering of Cz. Let M = k(Y) and K = k(C%),
which we identify with the subfield 7*(K) < M. There are canonical isomorphisms 7 :
Aple] ~ Gal(M/m*K) and s : J[n] ~ (K* n M*™)/K*". The latter sends the class of a
divisor D to the class of a function h € K such that div(h) = nD — dm, for some integer d.
Kummer theory gives a bilinear pairing x : Gal(M/K) x (K* n M*")/K*™ — p,.

Lemma 3.5. For D; € Aylp] and Dy € J[n] we have e(Dy, D) = k(r(D1), $(D3)).

Proof. The analogous statement for the induced pairing on J[n] x J[n] is the main result
of [How96]. As described in Section 4 of op. cit. it suffices to prove the statement when k
is a finite field. Let D; € An[@](k) and D, € J[n](k). By possibly enlarging k if necessary
we can arrange that the D; are represented by k-rational divisors D; and, moreover, that
Ja[n](k) = Ju[n](k). Take g € k(C)* such that div(g) = nD; — dm. Then, as seen in the
proof of Proposition B3] g € M*". Let F : Jy, — Jy be the k-Frobenius. Then Jy[n](k)
ker(F'—1), so F'—1 factors through multiplication by n, and hence through ¢. Moreover, the
extension M /K extends to a Galois extension N/K with Gal(N/K) ~ Jo[F — 1] ~ Ju(k).
All of this fits into a commutative diagram

~

T (k) = Gal(N/K)

(F_l)/nl (F-1/¢ l

Tu(k)[n] —= Au[](k) —— Gal(M/K)

H(T(~)7S(Dz))l l

pin (k) +——=— Gal(K(g"/")/K).

The map from the top left to the bottom right is given by the Artin map of class field theory
and, hence, the composition 1°(k) — Ju(k) — p,(k) from the k-ideles of K to ju, (k) can be
computed with Hilbert norm residue symbols (see [Ser88, §6.30, p. 150]). Take a € I°(k)
to be an idele whose divisor class is equal to the class of D; in Jy(k) and b € I°(k) such
that (F' —1)/n[b] = [a] in Ju(k). To prove the lemma amounts to checking that e(D;, Ds)
is equal to the product of the Hilbert norm residue symbols, || PeC(k) (g,0)p. This can be

verified exactly as in the calculation of [How96l Section 3]. O
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3.2. Soluble coverings. For an isogeny ¢: A — B of semiabelian varieties and V a torsor
under B, let Covfol(V) denote the set of isomorphism classes of ¢-coverings U — V with
U(k) # . When k is a global field, let Sel?(V) denote the set of isomorphism classes of
¢-coverings of V' that are soluble everywhere locally. Define similarly Covy, (C'), Cov? (C),
Sel”(C) and Sel?(C).

Recall that for a nice curve C over k with modulus setup (n, m), J(k). denotes the kernel
of the composition Y od : J(k) — H*(J[n]) — Br(k).
Lemma 3.6. Covy(J) n Covly (J) = d(J(k).).

sol

Proof. Cov,(J) = d(J(k)) and Covy(J) = ker(T) by Lemma 3.4 O

sol

The reciproicty law in the Brauer group yields the following.

Corollary 3.7. If k is a global field and J(k,)s = J(k,) for all but at most one prime v,
then Sel™(J) < Covy (J).

This corollary shows that the subgroup Covy (J) < Cov™(J) is large enough to be useful
for arithmetic applications. We will derive analogous results for Covl:(C') and Covl(J*) as
corollaries to the following theorem.

Theorem 3.8. The group H'(J[n]) acts on the sets Cov"™(J*) by twisting. This gives rise
to simply transitive actions of:

(1) H'(J[n]) on Cov"™(J?), when [J?] is divisible by n in H'(J);
(2) H'(J[n]) on Cov"™(C), when [J'] is divisible by n in H*(J);
(3) ker(Y) on Cov?(J%), when [Ji] € pu(H' (Ay)) € H' (Jn);
(4) ker(Y) on Covi(C), when [J}] € pu(H' (An)) € H (Jn);
(5) J(k)/nJ (k) on Covl,(J"), when J'(k) # &;

sol

(6) d(J(k)e) on Covi,(J') n Covii(J?), when Ji (k) # &;

sol
and, assuming k is a global field, of
(7) Sel"(J) on Sel"(J*), when [J'] € nIII(J);
(8) Sel"(J) on Sel™(J*) nCovit(J*), when [J*] € nIlI(J) and for all but at most one prime
v of k we have J(ky)e = J(ky,) and J:(k,) # .

Proof.

(1) First note that n-coverings are J[n]-torsors. As in [Sko0l, Section 2.2|, the low degree
terms of the Hochschild-Serre spectral sequence give an exact sequence

0 — H'(Galy, J[n]) — Hg (J*, J[n]) — H(Galy, H (J2, J[n])) 2 HX(Galy, J[n]).

There exists an n-covering of J% and the image of its class under ¢ is the obstruction to
the existence of an n-covering of J?. This obstruction coincides with the coboundary
of [J*] arising from the exact sequence 0 — J[n] — J — J — 0 (see [Sko0I Lemma
2.4.5]). In particular, if [J‘] is divisible by n, then Cov™(J*) # . In this case
H'(J[n]) acts simply transitively on Cov"(.J) by exactness of the sequence above.
(2) Tt follows from geometric class field theory that the map Cov”(J') — Cov"(C) given

by pullback is a bijection which respects the action of H'(J[n]), so () = @).
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(3) As in the proof of (d)), the condition [J!] € ¢.(H'(An)) < H'(Jn) ensures that
Cov?(Ji) is nonempty, and hence is a principal homogeneous space for H' (Ay[¢]).
The map ¢ : Cov¥(J) — Cov"(J") is a map of principal homogeneous spaces, com-
patible with the homomorphism s : H'(Au[p]) — H'(J[n]) coming from the coho-
mology of the exact sequence 1 — T"[p] — An[e] — J[n] — 0. The image of ¢ is
Covy (J"), while the image of s is ker(T).

(4) This follows from (B]) by pullback.

(5) If Ji(k) # &, then Cov”,(J?) # & (since in this case [J] = 0 in H'(.J) is divisible by
n). The difference of any two soluble n-coverings has trivial image in H'(J), hence
must lie in the image of the Kummer map d : J(k)/nJ (k) — H'(J[n]).

(6) By assumption J5 (k) # &, so Cov? (Ji) # &. Then ¢(Cov% (JL)) = Covy(J") N
Coviy,(J) is nonempty. The result now follows from (@) and (B) since d(J(k).) =

(3 {k)/m (k)  Ker(T). |

(7) Since [J*] € nIII(J), we have that Sel"(J*) # . One then argues as in (H) (every-
where locally) to see that the difference of two locally soluble n-coverings of J* gives
an element of Sel"(.J).

(8) First we claim that Cov?(J:) and, hence, Covl(J') are nonempty. As in the proof
of (), there exists a ¢-covering of (J% )z and the obstruction to Galois descent is
an element o € H*(An[p]). There is an exact sequence Br(k)[n] = H*(T"[¢]) —
H?(An[e]) — H?(J[n]) and the image of o in H*(J[n]) is the obstruction to the
existence of an n-covering of J’. We have assumed [J‘] € nIII(J), so o is the image
of an element from Br(k). However, o must vanish everywhere locally since we have
assumed J¢ is locally soluble. So o is trivial by the local-global principle for the
Brauer group.

Now suppose (F,7) € Sel”(J?). By () there exists some ¢ € H'(J[n]) such that
the twist & - (F,7) lies in Covy(J°). We will show that £ € ker(T) which, in light of
@), shows that (F,7) € Covi(J*). Thus, Sel"(J*) < Cov].(J') and the conclusion of
&) follows from ().

Let v be a prime such that J(k,)s = J(k,). Together (B) and (@) show that
Covg(J} ) © Cov(JL, ). Since res,(F,m) € Covyy(Ji ), @) implies that res, (&) €
ker(Y). Since J(k,)e = J(k,) for all but at most one prime, the reciprocity law in
the Brauer group gives that £ € ker(Y).

U
Corollary 3.9. Cov. (C) < Covy (C) and if k is a global field, then Sel"(C') < Covy, (C).

Proof. For the first statement we may assume Covy, (C) # &. Then C(k) # & and, hence,
JL(k), J' (k) # & and J(k). = J(k). So (B) and () show that CovZ,(J') = Covl(J'). Then
Covl,(C) < p(Covl,(J')) < p(Covi(J')) = Covl(C). To prove the second statement we
may assume Sel”(C') is nonempty. Then the hypothesis of Theorem B8] in case i = 1
is satisfied, so this together with Theorem (B.8)(T) shows that Sel"(J') = Covii(J'). The
result now follows by applying the pullback map as in the proof of the first statement. [J

(I < Covie(JH). If k is a

Corollary 3.10. If J(k). = J(k) and Div'(C) # &, then Cov",
) #= & and J(ky)e = J(ky).

global field and for all but at most one prime v of k, Div'(Cy,
Then Sel™(J*) < Covl(J").
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Proof. 1f Sel"(J') = & there is nothing to prove. Otherwise, the hypotheses of () is satisfied
since our assumption Div’(C},) # & implies J: (k,) # & by Lemma 213l Together (7)) and
) give the result. O

4. THE DESCENT SETUP

We recall the following definition from [BPS16] (where the defined object is referred to as
a fake descent setup).

Definition 4.1. Let C be a nice curve over k. A descent setup for C' is a triple (n,A, ()
consisting of a positive integer n not divisible by the characteristic of k, a nonempty finite
étale k-scheme A = Spec L, and a divisor B € Div(C x A) such that nf = m x A + div(fin)
for some m € Div(C) and fn € k(C x A)*.

If the divisor m appearing in the definition is effective, reduced and base point free, then
(n,m) is a modulus setup, which we say is associated to (n,A, ). For each § € A(k),
Bs € Div(C%) is a divisor such that nf5s —m is principal. So the class of f5 in J lies in J[n].

This gives rise to a map Resa Z/nZ — J[n] sending X35 a5 s to the class of }; ¢s35. There

is trace map Tr : Resa Z/nZ — Z/nZ whose kernel we denote by Res) Z/nZ. This fits into
a commutative and exact diagram,

(4.1) 0 —— ResQ Z/nZ — Resp Z/nZ —— Z/nZ — 0

| Lo |

00— I ——— T —=5 L 27— 0

Definition 4.2. We say that (n, A, 3) is an n-descent setup if the vertical maps in (L)) are
surjective and the divisors fs € Div(Cy) are effective and have no common support.

We note that if (n,A, ) is an n-descent setup, then the divisor m appearing in the
definition is base point free, as it is linearly equivalent to each of the nfs, which by assumption
have no common support. Thus (n, m) is a modulus setup.

The following examples show that all of the modulus setups considered in Section [2] are
associated to an n-descent setup. Details for [Example D.1| and [Example D.3| may be found

in [BPS16, Examples 6.9], while is considered in [Crel4].

D.1 Suppose C' is a double cover of P! which is not ramified over oo. Let A(k) be the set
of ramification points and take g to be the diagonal embedding of A in C' x A. Then
(2,A, ) is a 2-descent setup. Taking m be the pullback of oo € Div(P!) we recover
the modulus setup in [Example M.1]

D.2 Suppose C' is a genus 1 curve of degree n in P"! (or equivalently, a genus 1 curve
together with the linear equivalence class of a k-rational divisor of degree n). We
obtain an n-descent setup by taking A to be the set of n? flex points (i.e. points
x € C(k) such that n.z is a hyperplance section) and 3 to be the diagonal embedding
of A in C' x A. Taking m to be a generic hyperplane section recovers the modulus
setup in [Example M.2]

D.3 Suppose C is a nonhyperelliptic curve of genus > 2. We obtain a 2-descent setup for

C by taking A to be the Galg-set of odd theta characteristics. A theta characteristic
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is a line bundle # on C' whose square is the canonical bundle. By definition 6 is odd
if h°(X,0) = 1 mod 2, which implies in particular that § may be represented by an
effective divisor. By [BPS16| Proposition 5.8] there is some effective 5 € Div(C' x A)
such that [35] = d for 6 € A(k). We can take m to be an effective canonical divisor

and thus recover the modulus setup in

4.1. Descent maps. Let C be a nice curve over k with an n-descent setup (n, A, ) and
associated modulus setup (n,m). Let L denote the étale algebra corresponding to A, i.e.,
A = Spec L. Call a divisor on C' good if its support is disjoint from m and all 5.

Lemma 4.3. Let f, € k(C x A)* be as in Definition[4.1. FEvaluation of fn at good divisors
induces homomorphisms

fw : Pice, (k) = L*/L™", and fy: Pic(C) — L*/E*L*".

Proof. By Lemma and the moving lemma, all elements of Picg, (k) can be represented
by a good k-rational divisor and Pic(C) is the image of Picc, (k). Suppose D is a good
k-rational divisor and D = div(g) for some g € k(C)*. By Weil reciprocity fn(D) =
g(div(fa)) = g(nB —m x A) = N(g|la)tg(8)™ € k*L*™. This shows that the second map is
well defined. If the class of D is trivial in Pice, (k), then there is such a g with g|, = 1 (cf.

Lemma [2.5]), so that f,(D) e L*™. O

Dualizing (Z1]) and taking Galois cohomology yields a commutative and exact diagram,

(4.2) HY(T"[¢]) — H'(Au[]) — H'(J[n]) —— HX(T"[y

| b H

J S /kxn Lx/an Hl (RGZA;M) Bl"

n

This is related to the maps in Lemma and ¢-coverings as follows.
Theorem 4.4. For i € {0,1} there is an ay-equivariant map o, : Cov?(JL) — L*/L*™,
functorial in k and such that for any (Fn,m) € Cov?(J.) and P € w(Fy(k)) we have
am( ) fm< )

We prove the cases i = 0 and ¢ = 1 separately below, after making some remarks and
stating two corollaries that will be used in the following section. Proofs of the corollaries
follow the proof of the theorem.

Remark 4.5. The set of rational points on J& may be partitioned as

Ty = ] #(Fak).
(Fn,m)eCov? (JE)
The theorem says that the map fu : Picl, (k) = Ji(k) — L*/L*™ is constant on each of
the sets appearing in this partition and that the value on each is equal to the image of the
corresponding covering under o, .

Corollary 4.6. For i € {0,1} there is an a-equivariant map o' : Covy (J') — L* /KX L*™,
functorial in k and such that for any (F,m) € Covy(J') and P € w(F(k)) n Pic'(C) we have
ol (F,m) = fu(P).
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Corollary 4.7. There is an a-equivariant map o' : Covi(C) — L*/k*L*", functorial in k
and such that for any (X, ) € Covli(C) and P € n(X (k) we have o' (X, 7) = fu(P).

Remark 4.8. There are partitions of the sets of rational points

Cky= ] «X(k) and J(ky= ] =(F(k)

(X,m)eCov™(C) (F,m)eCov™(C)
By Corollary [3.9, Covi,(C) < Covy(C), so Corollary [{7 says that the map fun : C(k) —

sol
L*/k*L*™ is constant on each of the sets appearing in this partition and that the value on
each is equal to the image of the corresponding covering under the descent map. A similar
statement holds for J', provided Pic'(C) = J'(k), in which case Cov™(J*) = Cov™(J?) by
Lemma 34 and Corollary [310.

Remark 4.9. The subgroup J(k), = ker(Y od) < J(k) is the largest subgroup of J(k) on
which one can define a homomorphism f : J(k)e — L*/k*L*? such that f agrees with fy
on Pic’(C) and f o d agrees with a® o d as in Corollary [{.0. This follows from a diagram
chase in ([A2). Corollary 212 shows that J(k)s = J(k) when C is a nonhyperelliptic curve

defined over a local or global field and has 2-descent setup as in [Ezample D.3.  This is
rather surprising given that it is not generally true that J(k) = Pic’(C) and, moreover,

that J(k). = Pic’(C) for a hyperelliptic curve with 2-descent setup as in [Ezample D.1] (see
[PS97, Corollary 10.6]). It would be very interesting to determine how this extended map f
could be computed explicity over, say, a local field.

Proof of Theorem[{7] in the case i = 0. Let dy : Ju(k) — H'(An[p]) denote the connecting
homomorphism from the exact sequence 0 — Ay[¢] = Ay — Jn — 0. Under the identifi-
cation H'(An[¢]) = Cov?(Jy), the coboundary map dy, sends P € Jy(k) to the class of the
p-covering Ay, — Jy given by @ — ¢(Q) + P. So the following lemma proves Theorem 4]
in the case 1 = 0. U

Lemma 4.10. The composition Jy(k) m, HY (An[@]) =2 LX/L*™ is equal to fr.

Proof. Let D € Div,(C) be a good divisor representing P € J, (k). Choose a good divisor F €
Divy, (C5) such that nE— D = div(g) for some g € k(Cg)* with g|, = 1. This is possible since
Ju(k) is a divisible group. Then dy,(P) is represented by the 1-cocycle &, = [TE—E] € Ay[¢].
Note that div(°g/g) = n(°E — E). The image of ¢ under a : H(An[¢]) — H'(Resa i) is
represented by e(&,, 5), where e is the pairing defined in Proposition 2.8 From the definition
of the e pairing we have

(&, ) = fm("E = E)/(“g/9)(8) = 7b/b,
where b = fn(E)/g(B). Thus, the image of a(¢) under H'(Resa p1,) ~ L*/L*™ is represented
by 0" = fm(nE>/g(nﬁ> = fm(D + diV(g))/g(m x A+ diV(fm)) = fm(D)/g<m x A) = fm(D)a
where the last two equalities follow from Weil reciprocity and the fact that g|, = 1, respec-
tively. O

Proof of Theorem [[7) in the case i = 1. Given (Fy,p) € Cov¥(J}), let (Y, 7) € Cov¥(C) be

its image under the pullback map. As in the proof of Proposition the extension k(Yz)

contains n-th roots gs of fus for each 6 € A(k). Evidently div(?(gs)) = div(go(s)) for

any o € Galy, so by Hilbert’s Theorem 90 there is a function h € k(Y x A)* such that

div(gs) = div(hs). Then 7*f,/h" € k(Y x A)* has trivial divisor, so must equal some
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constant function ¢ € L* = k(A)*. The class of ¢ in L*/L*" is independent of the choice for
h. Thus we have a well defined map o' : Cov?(J}L) — L*/L*" sending (Fy, p) to the class
of c.

Now suppose D € Div'(C) is a good divisor. For each P € C'(k) in the support of D choose
some P’ € Y (k) such that 7(P’) = P and set D’ = Y, ordp(D)P’ € Div(Y). Let o € Galy.
Since D is k-rational we can write 7(D’) = >, ordp(D)P, with 7(P,) = P. The restriction
of m to the open subscheme Yy =Y — 7~ (m) is an An[p]-torsor over Cy = C' —m. Thus, for
each P € Supp(D) and o € Galy, there is a unique vp, € Ay[p](k) such that vp, - P’ = P..
Set v, = > pordp(D)yp,, which we interpret as a 1-cocycle taking values in Ay[¢]. Since
7(D') = D, 7, represents the class in H'(An[¢]) of the torsor p~([D]) < Fy.

From the relation defining ¢ we have fy(D)/c = fnom(D’)/c = h(D')". This represents a
class in H'(Resa 1) given by the 1-cocyle

ne =7 (h(D)/A(D') = h(° D) /(D) = | [[h(rp, - P')/h(P")] P

P

By Lemma 3] this can be expressed in terms of the extended Weil pairing of Proposition 2.8
as

Noe = 1_[ 6(7P,crvﬁ)ordp(D) =e€ (707 5) .
P

This also represents the image of 7, under the map o : H'(Ay[p]) — H'(Resa u,). Thus,
fa(D)/c = fu(D)/a? ( ws ) is equal to a(p~([D])). In particular, fo(D) = a'(Fy,p)
whenever the fiber p~!([D]) contains a k-point. This is the property stated in the theorem.

Let us show that a, is ap-equivariant. Suppose (Y, m¢) is the twist of (Y,7) by £ €
H'(k, Au[¢]). By definition there is an isomorphism v : (Yz); — Y; such that m o = m¢
and “Y(z) = & - Y(x) for any o € Galg, where &, € Ay[p] ~ Aut(Y;/Cy). Let h,c and
he, ce be as in the definition of ). We must show that c¢/c and a(§) give the same class
in L*/L*" ~ H'(Resa jtn). We have cehf = i fo = (mo)*fa = c(hoyp)". Thus, c¢/c =
(h(¥(Q))/he(Q))", for any Q € Y¢(k) where this expression is defined and nonzero. So the
class of c¢/c in L*/L*"™ ~ H'(Resa p,,) is represented by the 1-cocycle

o (w)( @ ) (" %3?”)(%2?%))0
- (* <'<a@§§>§h(a ') Giian) - (i)

J

05/0 c?gg
= 6(&7’6) = a(§J>>
where the final line follows from Lemma as above. O

Proof of Corollary[7-.8. If two elements of Cov¥(J%) have the same image in Covl(J), then
their images under of, differ by an element in k*/(L*" n k*). This follows from the ex-

actness of (£2) and ap-equivariance of o’ . Thus there is a unique map «' fitting into the
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commutative diagram

i (k) —2 Cov?(Ji) —2m </

§ I |

Pict(C') —%s Cov™ (J1) —2s LX /X L*7

Ji

Here the maps dy, and d are defined by dy(P) = [An 2 Q — ©(Q) + P € J'] and d(P) =
[J3Q — nQ + P e J']. Note that in the case i = 0 these agree with the usual connecting
homomorphisms. The map s is induced by the canonical map Pice, (k) — Pice(k), and is
surjective by Lemma 2.13. Theorem (4.4l shows that the composition along the top row is the
map fn of Lemma 3l Hence, the same is true of the bottom row. Thus o has all of the
required properties. 0

Proof of Corollary[.7. The pullback map p : Covji(J') — Covii(C) is a bijection by Lemma
B4 Define o' (X, 7) = o' (F, 7) where (X, ) is the pullback of (F, 7). The required proper-
ties follow immediately from Corollary E.6l O

5. FAKE SELMER SETS

When £ is a global field with completions k, the map f,, induces a commutative diagram,

(5.1) Pic(C) o L~

kX[ Xn

| |-

. H fm,v X
[, Pic(Ch,) [T0a

kX (L®ky) X1

Definition 5.1. Suppose k is a global field. For any integer i, the fake Selmer set of J* is
the set

Selfn (J') :={le L*/k*L*" : tes,(I) € funu(Pic'(Cy,)), for allv } .
The fake Selmer set of C' is the set
Selfn (C) :={le L*/k*L*™ : res,(l) € funo(C(ky)), for all v} .

Theorem 5.2. Suppose C' is defined over a global field. IfSel{;“LO(C) =, then Sel"(C) = .
Proof. By Corollary B.9, Covy (Ck,) < Covy(Cy,) for each v and Sel"(C) < Covy (C). By

sol

Corollary 7 we have fu(C/(k,)) = o' (Cov™,(Cy,)). Thus o (Sel*(C))  Selln (C). O

sol

Theorem 5.3. Suppose C is defined over a global field and Div* (Cy,) # & for all primes v
of k. If Selln (J') = &, then Sel"(J') = &.

Proof. As noted in the proof of LemmaR.ITwe have O¢(z) = (x, [J']). So the assumption on
Div!(Cy,) implies that Pic®(Cy,) = J(ky)s = J(k,). Thus the hypothesis of Corollary B.10lis
satisfied and so Sel”(J!) = Cov?(J'). The property of a! given in Theorem L4 together with
Corollary gives that fu,(Pic'(Cy,)) = a'(Covl(J})). It follows that a'(Sel”(J)) <

sol

Sel/™ (J'), which gives the result. O
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Remark 5.4. The conclusion of the theorem implies that J' represents a nontrivial element
in HI(J)/nI(J), not just in III(J). Together with well known properties of the Cassels-
Tate pairing this allows one to deduce better lower bounds for ILI(J) and hence better upper
bounds for the rank of J(k). This is illustrated in the example in Section [G 1]

Remark 5.5. When C' has a descent setup as in|[Fxample D. 1| and |Exzample D.2 a proof of
Theorem [5.3 can be found in [Crel3, Prop. 5.4] and [Creldl, Theorem 5.2], respectively.

5.1. Descent on J. The results of [BPS16, Section 10] show that from knowledge of
Sel/™ (J) one can often determine Sel™(.J). For this to work one must at least have that
a(Sel"(J)) is contained in the image of L*/k*L*" (cf. (A2)) or, equivalently, Sel"(J) <
ker(Y) = Covp (J). This can be ensured by imposing hypotheses on C such as [BPS16, Hy-
pothesis 10.1] that the map Pic’(C) — J(k)/nJ (k) is surjective both globally and locally.
The results of Section 2 allow us to extract information concerning Sel”(.J) in a number of
cases where [BPS16, Hypothesis 10.1] does not hold.

Theorem 5.6. Suppose C is defined over a global field k and J*(k) # &. Let N be the
number of primes v such that coker(Pic(Cy,) — J(k,)/2J(k,)) # 0. Suppose that either of
the following holds

(1) C is a nonhyperelliptic curve with a 2-descent setup as in[Example D.5, or
(2) C is a hyperelliptic curve with a 2-descent setup as in[Example D.1 and N < 1.
Then

dimg, ((Sel*(J))) < dimg, Self% _(J) + max{0, N —1}.

Remark 5.7. The kernel of a : H'(J[2]) — H'(Resa po/p2) can be computed from the
Galois action on A, thus allowing us to extract upper bounds for dimg, (Sel?(J)) as well.

Proof. For each prime v, let M, := coker(Pic’(Cy,) — J(k,)/2J(k,)) and let T be the
(finite) set of primes where M, is nontrivial. In the nonhyperelliptic case we have ¢ = g — 1
by Corollary 212, so J(k,)s = J(k,) for all primes v. In the hyperelliptic case the assumption
N < 1implies J(ky)e = J(k,) fails for at most one prime v. In both cases Sel"(J) < Covy(J)
by Corollary B.71

For v ¢ T we have Pic’(Cy,) = J(ky)s = J(ky) and fu(Pic®(Cy,)) = a®(Cov™,(Ji,)) by
Lemma and Theorem EL6. So if T = ¢, then we have a(Sel"(J)) < Sel/™ (J) and the
result holds.

Let use assume N = #7T > 0. Let K, := a(d(J(k,))), Ay := fu(Pic’(Cy,)). Identifying
J(ky)/2J (k,) with its image under d and using Lemma [£.10] we obtain a commutative diagram
of Fa-linear maps

8612(J) E— @veT J(kv)/zj(kv) — @UET M,

LR T
a(Sel*(J)) Deer Ko Doer Ko/Do

The maps O¢, of (ZI3) induce an isomorphism @M, — @ Br(k,)[2] ~ FY. Since J*(k) #
&, [J'] € HY(J)[2]. Therefore, there is a lift n of [J'] to H'(J[2]). Given & € Sel*(J) let
b=¢&ue.neBr(k) and for v e T let x, € J(k,) be such that d(z,) = res,(§). Compatibility

of the Tate pairing with the Weil pairing cup product (as noted in the proof of Lemma 2.TT])
20




gives res,(b) = {d(x,), [(J")r]) = Oc,, (z,). Therefore global reciprocity in Br(k) implies
that the image of Sel®(.J) in @ M, ~ FY is contained in a hyperplane. Since the vertical
map on the right is surjective, this shows that the rank of the composition along the bottom
row of the diagram is at most N — 1. On the other hand, the kernel is Sel/™ (.J). O

Here is an instance where we can prove that J(k,) # Pic’(Cy, ).

Lemma 5.8. Suppose that C' is a curve of genus g and either
(1) k is a local field such that J'(k) = &, or
(2) C is defined over a global field K and k = K, is the unique completion of K such
that Pic'(Cy,) = &. Assume further that Div? ' (Cy,) # & for all primes v.

Then coker(Pic’(Cy) — J(k)/2J(k)) # 0.

Proof. The map O is related to the Tate pairing by the rule O¢(x) = {(x,[J']). The
assumption in (1) is that [.J'] is nontrivial in H*(.J), so the result follows from nondegeneracy
of the Tate pairing. In case (2), the second assumption implies that the Cassels-Tate pairing
is alternating by [PS99, Corollary 11]. If J'(k) # &, then J' € ITI(J) and [PS99, Theorem
11] shows that J' pairs nontrivially with itself, a contradiction. Hence the hypothesis of (1)
is satisfied. O

6. EXAMPLES

Computations in this section were performed with the Magma Computer Algebra System
described in [BCPI7].

6.1. Example of explicit descent on J'.
Theorem 6.1. Let C' denote the genus 3 curve in IP% gien by the vanishing of
ot + 523y 4+ 9232 + 92%y? + 922y 2 + xy® — SxyPz — 8x2® — 6yt — 3yPz — 8y?2? — 2y2® — 327

and let J be the Jacobian of C'. Then, assuming the generalized Riemann hypothesis, J(Q) ~
Z and TI(J)[2°] ~ Z/27Z x Z/2Z. Furthermore, the curve C' has points everywhere locally,
but has no Q-rational divisors of odd degree.

Remark 6.2. There are examples of smooth plane quartics having points everywhere locally,
but no rational divisors of odd degree given in [Bre86|. These examples exploit the fact that
the plane quartic in question admits a finite morphism to a genus 1 curve. As the Jacobian
of the curve in Theorem [6.1 is absolutely simple, such techniques do not apply.

Proof of Theorem [6.1l. C has real points and the polynomial defining C' has good reduction
at all primes other than ¢ = 760567. The point (0: 1948 : 1) € C(F,) is smooth, and for all
other primes p, C(F,) # & (for p > 37 this follows from the Weil bounds). So by Hensel’s
lemma C' and, hence, J' have points everywhere locally. This implies that Pic?(C) = J¢(Q)
and Pic*(Cq,) = J%(Q,) for all primes p and d > 0.

Using Magma we compute that |J(F2)| = 25 and |J(F3)| = 57. Since these orders are
relatively prime, we have J(Q)is = 0. A search for points of small height on C' over Q(+1/2)
yields

Di=(W2-2:-v2+1:1) and D, = (-1:~2/2:1)
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Then D = Trgg),0(D1 — D) is a Q-rational divisor of degree 0 on C' representing a point
P e J(Q). The image of P under the reduction map J(Q) — J(FF;) is nontrivial. So P has
infinite order and, hence, J(Q) has rank at least 1.

To proceed further we compute Sel/™ (J°) and Sel/™ (J') for the descent setup and mod-
ulus setup as in [Example D.3| and [Example M.3| taking A to be the set of bitangents to C'
and /3 to be the diagonal embedding of A into Div(C) x A. The algebra L has degree 28
and, moreover, its Galois group is isomorphic to GSpg(F2), showing that the representation
Galg — GSp(J[2]) is surjective. A Magma computation (assuming GRH) gives that O,
has trivial class group. The function f;, can be written as a ratio of linear forms fy, = /Iy,
with [ € L|z,y, z] and Iy € Q[z,y, z]. Since Oy, has trivial class group, we can scale [ by an
element of L* such that the coefficients of ¢ are integral and generate the unit ideal in Op.

By [BPS16, Theorem 10.9], Sel{a“i{e(J ) is contained in L(S,2), the unramified outside S
subgroup of L* /Q* L*? for § = {2,760567, c0}. Since L has class number 1, we can determine
representatives in L* for L(S,2) from the S-unit group of L (cf. [BPS16, Proposition 7.3]).
The order of J(Q,)/2J(Q,) can be computed from the splitting of p in L. This gives an
upper bound for the size of the image of J(Q,) under f,. For both nonarchimedean primes
p € S, the differences of images of points in C'(Q,) already generate a subgroup whose order
meets the upper bound, hence must be the image of J(Q,). The subgroup of L(S,2) mapping
into the images of J(Q,) for p € S has Fy-dimension 3 and contains Sel/™ (.J). Since the
representation Galg — GSp(J[2]) is surjective, [BPS16, Theorem 10.14] gives the inequality
dimF2 Sel2(J) < d1mF2 SelfakC(J) < 3.

The local image f(C(Q,)) is unramified for p outside S by [BPS16l Lemma 12.13]. Since
fm is a homomorphism, the local image fu(J'(Q,)) is the coset of fu(J(Q,)) containing
fu(C(Q,)). Tt follows that Sell™ (J') < L(S,2). Moreover, fu(J'(Q,)) for p € S are easily
obtained by translating the fu(J(Q,)) already computed. It turns out that the image of
L(S,2) in (L ®Q,)"/Q5 (L ® Qy)** does not intersect fu(J*(Qy)). Hence, Sell™ (J') = &.
By Theorem [5.3] we have Sel2(J 1) = ¢, In particular, the computation shows that there are
no 2-coverings of J! with Qy-points and Q,-points for all p outside S.

Since C' has points everywhere locally, the Cassels-Tate pairing on III(J) is alternating

by [PS99], Corollary 12]. It induces a nondegenerate alternating pairing on the finite group
L (7)[2]
2y
The Q(v/2)-points on C' above show that J2(Q) # &. Since 2[J'] = [J?] in III(.J), we
conclude that [J'] € III(J)[2]. The fact that Sel®(J') = & implies, moreover, that [J]
gives a nontrivial element of 2%11((‘];)[[25] (cf. Theorem B.§[7)). We conclude that II(.J)[2%]
admits a direct summand isomorphic to Z/2Z x Z/27. From the exact sequence

0 — J(Q)/2J(Q) — Sel*(J) — TI(J)[2] — 0
we therefore obtain that J(Q) ~ Z and HI(J)[2%°] ~ Z/27Z x Z/2Z. O

which consequently has square order (see, for example, [Crel3 Corollary 4.6]).

6.2. Descent on .J. The following theorem gives an example where we compute Sel?(.J),
despite the fact that [BPS16, Hypothesis 10.1] does not hold.

Theorem 6.3. The genus 3 curve C IP’?Q defined by the vanishing of

ot 203y 4+ 203 2 + 4a?y? + 20ty z + 4a? 22+ 3ayP + 2wy r - day 2 + 328 4 2y 4 5y +y B 4227
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has the following properties.

(1) C(Q,) # & for all p # 3, 0.

(2) Pic*(Cg,) = 2.

(8) Pic®¥(Cr) = &.

(4) J = Jac(C) has rank(J(Q)) = 1.

Proof. The verification of (1) is straightforward. To show Pic®(Cq,) = & for p = 3,
it suffices to check that C' has no points over @, or any extension of QQ, of degree 3. For
this we simply list the finitely many extensions and check locally solubility over each. We
use the descent setup and modulus setup as in [Example D.3| and [Example M.3| taking A to
be the set of bitangents to C' and 3 to be the diagonal embedding of A into Div(C) x A.
The algebra L has degree 28 and splits as a product of 2 quadratic fields (both isomorphic
to Q(v/—15)) and 3 octic fields. Let RY = coker(J[2] — Resa pa/u2). As described in
[BPS16l 12.6.6] we compute the Galois action on the bitangents, from which we find that

dimg, J[2](Q) = dimp, R¥(Q) = 2 and dimp, (Resa p2/p2)(Q) = 4. From the exact sequence
0 — J[2](Q) — (Resa pa/112)(Q) — R¥(Q) — H'(Q, J[2]) = H'(Q, Resa prz/p12)

we conclude that « is injective over Q.

There are points P, = (n: 1:0), P, = (n:0:1) e C(Q(n)), where n is a primitive
cube root of unity. The torsion subgroup of J(Q) is 2-primary, as can be seen by computing
#J(IF,) for small primes of good reduction. The divisor D := Trq, (P — P») represents
a point [D] € J(Q) which maps to an element of order 18 in J(IF;), showing that [D] has
infinite order. Thus we have a lower bound 3 < dimg, Sel®(.J). Moreover, the points P; show
that Div?(C) # & and so the conditions of Theorem [5.6] are satisfied.

The curve C' has good reduction outside Sy := {3, 5, 1613} so by [BPS16, Theorem 10.9],
Sel/™ (J) is contained in L(S,2), the unramified outside S subgroup of L*/k*L*? for § =
{2,3,5,1613,0}. We compute L(S,2) as described in [BPS16, Proposition 7.3]. Since the
largest discriminant of a factor of L is of order 10%®, this can be done without assuming GRH.
For pe T = {2,5,1613} we compute the local images fu(Pic"(Cg,)) = fu(J(Q,)) following
the strategy of [BPS16, Remark 11.6] (i.e., compute the images of random points until the
dimension of the subgroup they generate meets an upper bound determined in advance from
the action of the decomposition group on the bitangents). The subgroup Sr < L(S,2)
satisfying these local conditions at all primes in 7 has dimension 5.

From the action of the decomposition group at p = 3 on the bitangents we determine
that J(Q3)/2J(Q3) and its image under « o d have dimension 3. However, computing the
images of differences of random elements of Pic*(Cg,) under f,, we are only able to generate
a subgroup Hj of dimension 2. The subgroup Sy g, of Sy restricting to H3 has dimension 2.

We now consider two cases. If the map Pic’(Cq,) — J(Qs3)/2J(Q3) is surjective, then
Hs has codimension 1 in fy(Pic’(Cg,)), so dimg, Sel/™ (J) < dimg, S7.5, + 1 = 3 and The-
orem applies with N < 1 to give dimg, Sel*(J) < dimg, Sel/~ (J) < 3. If the map
Pic’(Cg,) — J(Q3)/2J(Qs) is not surjective, then Hs = fu(Pic®(Cy,)), so dimg, Sell™ (J) <
dimg, St 1, = 2 and Theorem .6 applies with N < 2 to give the upper bound dimg, Sel?(.J) <
dimg, Sel/™ (J) +1 < 3.

In either case we have the upper bound dimg, Sel?(J) < 3 which coincides with the lower

bound obtained from the point search. Thus rank(J(Q)) = 1. O
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Remark 6.4. The computation outlined in the proof above shows that the maps PicO(C@p) —
J(Qp)/2J(Q,) are either surjective for all p, or fail to be surjective for both p = 3 and p = .
In fact the latter is the case. To prove this one one can compute fm(PiCO(CQp)) algorithmically
as described in [BPS16l, Section 11.1] for either p = 3 or p = . This shows that the set
Stn, ~ TJ27 x 7)27. computed is equal to Sell™ (J). Since J(Q)/2J(Q) has dimension 3
and injects into Sel*(J) we conclude that J(Q) # Pic’(C).

7. THE SET Covy,(C') FOR GENUS 1 AND HYPERELLIPTIC CURVES

Suppose C' is a nice curve over k with a modulus setup (n, m) associated to an n-descent
setup. In this section we show how the sets Cov]i(C') and Covii(J') generalize known con-
structions in the situations of [Example D.1]and [Example D.2| For genus 1 curves this allows
us to relate the existence of p-coverings to the period-index problem.

7.1. Existence of p-coverings. The following theorem gives, for a modulus setup asso-
ciated to an n-descent setup, several conditions that are equivalent to the existence of an
element in Covy (C).

Theorem 7.1. Suppose (n,m) is a modulus setup for C associated to an n-descent setup
(n,A,B) and let ¢ : Ay — Ju be the isogeny in (2.7). The following are equivalent.

(1) The class of JL in H'(Jy) is divisible by ¢.

(2) There exists a @-covering of J..

(8) There exists a p-covering of C.

(4) Cov?(C) # .

(5) Covy (C) # .

(6) Covl(JY) # &.

(7) There exists an n-covering w : X — C with the property that 7 Ps is linearly equiva-
lent to a k-rational divisor, for some 6 € A(k).

(8) The mazimal unramified abelian covering of Cy. of exponent n descends to k and the
image of the k-rational divisor class ©* (s in Br(k) under the map ©x of (2.13)) lies
in the image of the map Y of (2I1)), for every maximal unramified abelian covering

m: X — C of exponent n and every § € A(k).
Before giving the proof we state and prove two lemmas.

Lemma 7.2. Suppose (n,m) is a modulus setup associated to an n-descent setup (n, A, )
and that  : X — C is an n-covering. The class of (X, ) in Cov"(C) lies in Covy(C) if

and only if m* s is linearly equivalent to a k-rational divisor, for some 6 € A(k).

Proof. Suppose 7 : X — (' lifts to a ¢-covering Y — C. The subfield k£(X) < k(Y)
corresponds to the subgroup p, = T"[¢] € An[p]. The extension k(X) < k(Y) is therefore
obtained by adjoining to k(X) an n-th root of a function f such that div(f) = nD — 7*dm,
for some d € Z and f € k(X)*. Furthermore, we can arrange that d = 1. Indeed, we must
have ged(n, d) = 1, otherwise there would be a proper unramified intermediate extension of
k(X) < k(Y). Hence m*m = nD + div(f) for some D € Div(X) and f € k(X)*. Recall
that n8 —m x A = div(fa). So, for any 6 € A(k), the function h := f/7*(fus) € k(Xz)*
has divisor n(D — 7*3;). Since adjoining an nth root of h to k(X) gives an unramified
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intermediate field of k(X7) < k(Y%), we must have h € k(X7)*". This shows that D — 7*3;
is principal.

For the other direction, suppose D € Div(X) is a k-rational divisor linearly equivalent to
7*B5. Then div(m* fr5) = nm*Bs — 7*m = nD — 7w*m + div(f), for some f € k(X7)*. Thus,
the divisor nD — 7*m € Div(X) is principal and k-rational. By Hilbert’s Theorem 90 it is
the divisor of some k-rational function g € k(X)*. Let Y — X be the covering obtained by
adjoining an n-th root of g to k(X). Over k we see that k(Y is the compositum of k(X7)
and k(C%)({/fms), s0 Y — C is a p-covering of C. O

Lemma 7.3. Suppose m : X — C is an n-covering and w, : X, — C s the twist by the
cocycle z € Z*(J|n]). Let ©x and Oy, denote the maps from [ZI3) and let T denote the

map in (2II). For any 6 € A(k),
T([2]) = Ox.(72Bs) — Ox(7*fs).

Proof. There is an isomorphism of coverings p : X, — X with the property that po p~! =
T,, € Aut(X/Cg) is translation by z, € J[n], for every o € Gal,. Let W = 735 and
W' = p*(W) = n*f8s. These represent Galois invariant divisor classes, hence, for any
o € Gal, there are functions f, € k(X,)* and g, € k(X)* with div(f,) = °W — W and
div(g,) = "W’ — W'. The classes in Br(k) of W and W' are given by the 2-cocycles

oy = 17

o, T fa_T

both of which take values in % . Since f, /p*g, € %", the computation
Uor) _  Oor) :U( fr ) fo  P*gor “(p*gr)
N A R e )

coboundary

and  af, ) = Ir 9o
’ gCTT

a/(a,'r) p* <a/(a,'r

shows that Oy, (W) — Oy (W) is represented by the 2-cocycle n € Z2(Galy, k) defined by

M) — “(p*9:) _ 7gr0%p

T p*(gs)  9grop
Using that (p~!)* is the identity on k < k(") and that “pop~! = T, we have 1, ) = % :
We recognize this as the Weil pairing 1) = €,(?Pr, 2,), where P. € J[n] is the class

represented by the divisor "85 — 85 (see Lemma [BH). The cocycle P, € Z'(Galy, J[n])
represents d(1) where ¢ is the coboundary map in (ZII]). So 7)) represents the e-pairing
cup product 0(1) U, [2] = [2] u. d(1) = T([2]) by Lemma 210 O

Proof of Theorem[7.. There exists a @-covering of (JL)z. The Galois descent obstruction
to defining this over k is the image in H?*(k, An[¢]) of the class of this covering under the
map

HC (Galy, H' ((J3)5 Anle])) — H2(Galy, Au[e])

from the Hochschild-Serre spectral sequence (cf. [SkoO1l Section 2.2]). This class coincides
with the image of [J1] under the coboundary map arising from the exact sequence

0— Aule] = An — Ju — 0
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(see [SkoO1l Lemma 2.4.5]). This proves the equivalence of (Il) and (2)), while the equivalence
of ) and (@) follows from geometric class field theory. The equivalences [B) < @) < (H)
< ([6) follow immediately from the definitions, and ([B]) < () is given by Lemma [T2

It remains to prove () < (§). An n-covering m : X — (' is a k-form of the maximal
unramified abelian covering of exponent n, which we may assume exists. Then, for any
5,8 € A(k) the divisors 7*3s and 7*3s are linearly equivalent. Indeed 3; — Bs represents a
class in J[n]. It follows that the class of 7*fs in Pic(Xy) is fixed by Galg. The image of this
class in Br(k) is trivial if and only if the class can be represented by a k-rational divisor.
Since the set of all isomorphism classes of n-coverings of C' is a principal homogeneous
space for H'(.J[n]) under the action of twisting, the equivalence of ([7l) and (&) follows from
Lemma [7.3] O

7.2. Hyperelliptic curves. Suppose (2,m) is a modulus setup for C' : 22 = f(z,y), a

double cover of P! as in [Example D1}

(1) Given a pair of symmetric bilinear forms (A, B) such that disc(Az—By) = f(z,y) the
Fano variety of maximal linear subspaces contained in the base locus of the pencil
of quadrics generated by (A, B) may be given the structure of a 2-covering of J!.
Theorem 22 and the discussion of Section 5 in [BGW17] shows that the isomorphism
classes of 2-coverings of J! that arise in this way are precisely those in CovZ(J').

(2) Section 3 of [BS09] gives an explicit construction of a collection of 2-coverings of C'
from the set Hj (notation as in [BS09]). Comparing Lemma with the proof of
[BS09, Theorem 3.4] shows that the collection of coverings they produce is precisely
Cov2 (0).

(3) In [Crel3] Section 6] a set Covgeod(J'/k) is defined; from that definition and point (2)
above it follows that this set coincides with CovZ(J'). See also [Crel8, Lemma 2.3]
for a direct proof that Covged(J/!/k) coincides with the set described in (1) above.

7.3. Genus 1 curves. For a genus 1 curve C there is a natural identification C' = J*, and C
can be endowed with the structure of a torsor under its Jacobian J. We define the index of C
to be the least positive degree of a k-rational divisor on C' and the period of C' to be the order
of the class [C] in H'(E). The index I and period P of C' are known to satisfy P | I | P?,
and over number fields all pairs of integers (P, I) satisfying these relations are known to
occur [CS10]. The following result gives an interpretation of the equivalent conditions of
Theorem [Tl in terms of period and index of the n-coverings of C'.
The proof of the following theorem is given at the end of this section.

Theorem 7.4. Let [C] be a torsor under an elliptic curve E with underlying curve C. The
following are equivalent.
(1) There exists a torsor [C"] € HY(E) of index dividing n* such that n[C'] = [C].
(2) The curve C' admits a modulus setup (n,m) withn = deg(m) such that [J1}] is divisible
by ¢ in H' (Jy).

Remark 7.5. In [Crel6] it is shown that condition ([2)) is satisfied when C' is a locally soluble
curve over a global field k and the action of Galy, on J[n] is sufficiently generic. In particular,
when k = Q, it holds when n = p" is any prime power with p > 7.

From the proof one extracts the following, which shows that the set Covy, (C) of this paper

coincides with the set Cov{(C') defined in |Crel4], Definition 3.3].
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Corollary 7.6. Let C be a genus 1 curve with a modulus setup (n,m) with n = deg(m).
The set Covit(C) consists of those n-coverings D — C' such that the index of D divides n?.

Our proof of Theorem [Z.4] will make use of the following interpretation of the elements of
H'(E[n]) taken from [CFOT0S].

Definition 7.7. A torsor divisor class pair (T, Z) consists of a E-torsor T and a k-rational
divisor class Z € Picr(k). Two torsor divisor class pairs (T, Z) and (T',Z") are isomorphic
if there is an isomorphism of torsors s : T — T' such that s*Z' = Z.

The automorphism group of the pair (¥, n.0g) can be identified with E[n], and every pair
(T, Z) with deg(Z) = n can be viewed as a twist of (£, n.0g) ([CFOT08, Lemmas 1.7 and
1.8]). It follows that the torsor divisor class pairs of degree n, viewed as twists of (E,n.0g),
are parameterized by the group H'(E[n]).

Lemma 7.8. Suppose (T",Z") is a torsor divisor class pair representing a lift of the class
of (T, Z) under the map n, : H'(E[n?]) — HY(E[n]). The Brauer classes associated to
the k-rational divisor classes Z' and Z satisfy n|Z'] = [Z] in Br(k). In particular, Z is
represented by a k-rational divisor if Z' is.

Proof. Suppose the class of (T, Z') is represented by a 1-cocycle &, € Z*(E[n?]). Let f,, g, €
k(E)* be functions such that div(f,) = & [n]*0p — [n]*0p and div(g,) = 7 1.0 — n.0g.
Comparing divisors we see that we may scale by a constant to arrange that fI' = g, o [n].
Moreover, using that &, is a cocycle, we see that the coboundaries of the 1-cochains (o — f,)
and (o — g,) give 2-cocycles F, G € Z%(k") satisfying F" = G.

To prove the lemma one shows that I and G represent the Brauer classes corresponding to
Z" and Z, respectively. By [CEFOT 08| Prop. 1.32], the pair (g,, n&,) denotes a lift of n&, to the
theta group corresponding to the torsor divisor class pair (F,n.0g). Then |[CFOT08, Prop.
2.2] shows that [G] = [Z]. In the same way we see that (f,,&,) gives a lift of &, to the theta
group corresponding to (E, [n]*0g) ~ (E,n?.0g) and so [F] = [Z']. O

Proof of Theorem [7.]. We may assume n > 1.

(@ = ([@). Suppose () holds and let Z" € Pic"2(C” ). Consider the torsor divisor class pair
([C"], Z"). The image of this class under n, : H'(E[n?]) — H'(E[n]) is represented by a pair
(IC], Z). By Lemma[T.8 Z € Pic"(C). By Riemann-Roch Z determines a map C' — P!
(which is an embedding for n > 2 and a double cover for n = 2). By Bertini the divisor class
Z contains a reduced and effective and base point free divisor m of degree n. Then (n,m)
is a modulus setup for C' with n = deg(m). Let A := {x € C(k) : n.v ~ m} and take 3 to
be the diagonal embedding of A in C' x A. Then (n,m) is associated to the n-descent setup
(n, A, B), which agrees with that described in [Example D.2]

The pair (C’, Z') corresponds to an n?-covering of F, which we may assume factors through
the n-covering of E determined by (C, Z). In particular, there is a commutative diagram

E+sFE- "3 F
where s and s’ are isomorphisms defined over k which determine the E-torsor structures on

C and C'. Now [m] = Z = [s*n.0g], so we must have s*0g = 5 for some 6 € A(k). On
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the other hand, Z’ is the class of s*n?.0p = s™[n]*0p = 7*s*0p = 7'*F5. As this class is
represented by a k-rational divisor, Theorem [Tl shows that [J1] is divisible by ¢.
(@) = (). Then m is ample and base point free and, hence, determines a model of C

as a degree n curve in P"1. Let (n,A, ) be the n-descent setup as in By

Theorem [7.1] there is an n-covering 7 : ' — C such that 7*f; is linearly equivalent to a

k-rational divisor for some § € A(k). The genus 1 curve C” is endowed with a torsor structure
so that n[C'] = [C] in H'(E). Moreover, the index of [C’] divides deg(7*3;) = n?. O
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