
A Comparison of BWT Approaches to
Compressed-Domain Pattern Matching

Andrew Firth

Honours Project Report, 2002
Supervisor: Tim Bell

Abstract

A number of algorithms have recently been developed to search files compressed with the Burrows-Wheeler
Transform (BWT) without the need for full decompression first. This allows the storage requirement of data
to be reduced through the exceptionally good compression offered by BWT, while still allowing fast access
to the information for searching. We provide a detailed description of five of these algorithms: Compressed­
Domain Boyer-Moore (Bell et al. 2002), Bina1y Search (Bell et al. 2002), Suffix Arrays (Sadakane &
Imai 1999), q-grams (Adjeroh et al. 2002) and the FM-index (Ferragina & Manzini 2001), and also present
results from a set of extensive experiments that were performed to evaluate and compare the algorithms.
Furthermore, we introduce a technique to improve the search times of Binary Search, Suffix Arrays and
q-grams by around 20%, as well as reduce the memory requirement of the latter two by 40% and 31%,
respectively.

Our results indicate that, while the compressed files of the FM-index are larger than those of the other
approaches, it is able to perform searches with considerably less memory. Additionally, when only counting
the occurrences of a pattern, or when locating the positions of a small number of matches, it is the fastest
algorithm. For larger searches, q-grams provides the fastest results.

Contents

1 Introduction
1.1 Offline and Online Algorithms
1.2 Notation

2 The Burrows-Wheeler Transform
2.1 Decoding Implementation ..
2.2 Auxiliary Arrays
2.3 Compressing the BWT Output

3 BWT Search Algorithms
3.1 Compressed-Domain Boyer-Moore

3.1.1 Boyer-Moore
3.1.2 Modifications for the Compressed-Domain

3.2 Binary Search
3.3 Suffix Arrays
3.4 q-grams ...
3.5 FM-index ..

3.5.1 Searching
3.5.2 Compression and Auxiliaty Infonnation .

3.6 Algorithm Improvements
3.6.1 Binary Search, Suffix Arrays and q-grams .
3.6.2 Modified FM-index

4 Experimental Results
4.1 Compression Performance
4.2 Search Performance

4.2.1 Locating Pattems .
4.2.2 Counting Occurrences
4.2.3 Other Factors

4.3 Memoty Usage
4.4 An·ay Consttuction
4.5 Evaluation of Algorithm Improvements

4.5.1 Overwritten Arrays .
4.5.2 Modified FM-index

5 Conclusion
5.1 Future Work .

3

5
6
6

7
8
9

10

13
13
14
14
15
18
18
19
19
21
22
22
22

25
25
26
27
30
31
34
34
35
35
36

39
40

4 CONTENTS

Chapter 1

Introduction

The amount of electronic data available is rapidly increasing, pmily due to the phenomenal growth of the
lntemet, but also due to increases in other data sources such as digital libraries. This volume of data is
quickly surpassing storage capabilities, so finding efficient methods to store, organise and manage data is
becoming an important field of research.

Employing compression algorithms to reduce the amount of space that data occupies is one approach
for making it more manageable. The process of compression removes redundancies in a file by using
smaller bit patterns to represent the symbols most likely to be seen, so the file takes less space to store. Un­
fmiunately, it also removes much of the structure of the data, so that it can be harder to search and retrieve
information. The simple solution is a decompress-then-search approach that involves decompressing the
data before a search is perfmmed with a traditional pattern matching algorithm. The decompression pro­
cess, however, can be very time consuming. A better solution would allow a direct search of the compressed
data with minimal or no decompression. Searching without any decompression is called fully-compressed
pattern matching, or sometimes just compressed pattern matching. This process involves compressing
the pattern and matching it to the compressed text representation, but is often impossible, particularly
with compression algorithms that use different representations for a substring depending on the substring's
context. This is the case with adaptive compression algorithms, as well as some other coders, including
arithmetic coders. An alternative technique is compressed-domain pattern matching, which allows pmiial
decompression of the text to remove some of the obstacles of a fully-compressed algorithm, while still
providing the advantages of avoiding complete decompression.

A survey by Bell et al. (2001) showed that the majority of research in the area of fully-compressed
and compressed-domain pattem matching is based on the LZ (Lempel-Ziv) family of compression al­
gorithms (Amir et al. 1996, Farach & Thorup 1998, Navarro & Raffinot 1999), Huffman code (Ziviani
et al. 2000, Moura et al. 2000), and run-length encoding (Bunke & Csirik 1993, Bunke & Csirik 1995).
Other researchers have devised methods to search text that has been compressed using antidictionaries
(Shibata et al. 1999) or byte pair encoding (Shibata et al. 2001). In recent years, attention has also turned
toward the Burrows-WheelerTransfonn (BWT) (Burrows & Wheeler 1994), which provides a useful out­
put containing evety suffix of the text being compressed sorted into lexicographical order. This structure is
closely related to suffix arrays (Manber & Myers 1993) and suffix trees (Weiner 1973), which both supply
an efficient index for searching text.

Currently, BWT (described in detail in Chapter 2) is considered second only to PPM (Prediction by
Partial Match) (Ciemy & Witten 1984) for compression ratio, but has a decided advantage in terms of speed.
LZ-based methods, though fast, perform poorly in size reduction, leaving BWT as an ideal compromise.
Coupled with the promising ability to search its structure, it is an ideal tool in compressed-domain pattem
matching. While there have been a number of competitive algorithms developed to search text after it has
been compressed with the BWT algorithm, few comparisons have been provided. Thus, the main goal
of this project is to evaluate and compare the approaches that are available. The search algorithms are
described in Chapter 3, with Section 3.6 introducing modifications to four of the algorithms to improve
search time and, in some cases, reduce memory requirement. Chapter 4 provides the results from a set of
expetiments that evaluate the performance of the search algorithms.

5

6 CHAPTER 1. INTRODUCTION

1.1 Offline and Online Algorithms

Pattern matching algorithms have traditionally been separated into two classes: offline and online. An
offline approach constructs an index that is stored with the text and is subsequently used to process queiies.
This method requires additional storage space but generally increases search performance. Online pattern
matching approaches, on the other hand, only store the text; thus, all work must be perfmmed at query-time.

When discussing pattern matching in the compressed-domain, particularly with BWT algorithms, the
boundary between these two classes is not as clear. Some papers have defined Binary Search (Section 3 .2)
and q-grams (Section 3.4) as online approaches and Suffix Arrays (Section 3.3) as an offline approach.
Through the similarities outlined in Chapter 3, however, it is clear that all three should have the same
classification.

Further evidence of the uncertainty in the classifications come from the creators of the FM-index (Sec­
tion 3.5) who have argued that their approach is online and the rest are offline. Although the FM-index
must store additional indexing information with the BWT compressed file, the index construction may be
considered part of the compression process. At search time, even with the indexes available, further work
beyond a simple index lookup must be performed for each query, possibly leading to an online classifica­
tion. Furthermore, Binary Search, Suffix Arrays and q-grams also require indexes, and even though they
are constructed at query-time and stored temporarily in memory, they must be created before searching
begins. Once created, they may be used many times to locate patterns until the search program ends and
the indexes are removed from memory. In this sense, they could potentially be considered offline because
searching is separated from index construction.

For the purposes of this report, we consider an offline algorithm to be any algorithm that requires
information beyond the compressed representation of the text to be stored on disk. Thus, we consider the
FM-index an offline algorithm, with the remaining algorithms (Compress-Domain Boyer-Moore, Binary
Search, Suffix Arrays and q-grams), classified as online.

1.2 Notation

In this report, pattern matching will be referenced in tetms of searching for a pattern P of length m in a
text T oflength n. The number of times P occurs in the text is denoted by ace. The alphabet of the text
is L,, with I I I representing the size of the alphabet. Other symbols will be defined as they are used, with
Chapter 2, in particular, defining many of the arrays used to petform the Burrows-Wheeler Transform and
to perform searches.

Chapter 2

The Burrows-Wheeler Transform

The Burrows-Wheeler Transform is a process whereby the symbols in a text are permuted to an order that
can be efficiently compressed by some other means. In this permutation, symbols occmTing in a similar
context in the original text are located near each other. This is achieved by sorting the characters in the
text according to the context in which they appear, where the context of a character is the characters that
immediately follow it. Figure 2.1 illustrates this using a fragment of alice29. txt from the Canterbury
Corpus (Arnold & Bell 1997, Bell & Powell 2002), and shows contexts starting with ice followed by
a space. The characters in this context. are shown in the left column and when read from top to bottom
(lololllmllllllllotll) make up a small part of the BWT permutation for alice29. txt. Only a few
characters {l, o, m and t) occur in this range of contexts making it particularly suitable for compression
using move-to-front coding (Bentley et al. 1986), which represents recently occurring characters using a
smaller number of bits than other characters. This compression is discussed further in Section 2.3.

Construction ofthe BWT permutation can be visualized using Figure 2.2, which demonstrates the steps
using the text 'mississippi'. The first step is to produce the mattix in Figure 2.2(a), which contains all
cyclic rotations of the text. Next, this matrix is sorted to produce the matrix in Figure 2.2(b). Because
each row is a cyclic rotation of the original text, the character at the end of a row cyclically proceeds the
characters at the beginning, and thus, a row is the context of its last character. As a result, the last column of
the sorted mattix (reproduced in Figure 2.2(c)) is the BWT permutation for the text. This column is often
refeiTed to as L, with the first column, which contains all characters of the text in sorted order, referred to
as F. In practice, it is not necessa1y to construct these large n by n matrices. Instead, an array of length n
is used with each entry pointing to a separate symbol of the text and sorted according to the context of the
symbol that is referenced.

To aid the decompression process, it is common to transmit the position in the sorted column of the
first character of the original text so the decoder knows where to begin. For the mississipp'i example in
Figure 2.2, it is the fifth position, because that is the location of m in the first column of the sorted matrix.
Thus, the BWT output for the text mississippi is the pair {pssmipissii, 5}.

From just this pair it is possible to reconstruct the otiginal text. This process relies on the following
relationship between the first and last columns of the sorted matrix: The order in which corresponding
characters appear in the two columns are the same. For example, the first occurrence of s in F {line 8)
and the first occurrence in L {line 2) con·espond to the same s in the input text. Likewise, the second
occurrences (lines 9 and 3) also correspond to the same s of the text. Additionally, because each row is a
cyclic rotation of the text, we know that a character in the last column will be followed in the text by the
corresponding character in the first column of the same row.

Although the decoder only receives L, it is able to reproduce F by simply sorting the characters in
L. After this is done, it can begin decoding the text, starting with the character in the position that was
transmitted as part of the output pair. In our example, the first character ism in F[5]. Because this is the only
occuiTence ofm in the text, it must coiTespond to them in L[4]. As described previously, the next character
will be in the same row ofF, thus F[4] reveals the second character is i. This is the fourth appearance of
i in F, which corresponds to the fourth appearance in L (L[11]), allowing decoding to continue by locating
the next character, which is stored in F[11]. The remaining characters are decoded using contexts 9, 3, 10,

7

8 CHAPTER 2. THE BURROWS-WHEELER TRANSFORM

l ice again. 'No, I give it up,' Alice
o ice all talking together: she made o
l ice alone with the Gryphon. Alice di
o ice along--'Catch him, you by the he
l ice aloud, addressing nobody in part
l ice an excellent opportunity for cro
l ice and all her wonderful Adventures
m ice and rabbits. I almost wish I had
l ice appeared, she was appealed to by
l ice as he said do. Alice looked at t
l ice as he spoke. 'A cat may look at
l ice as it spoke. 'As wet as ever,' s
l ice as she picked her way through th
l ice asked in a tone of great curiosi
l ice asked. 'We called him Tortoise b
l ice asked. The Hatter shook his head
o ice at her side. She was walking by
t ice before, but she had read about t
l ice began in a loud, indignant voice
l ice began telling them her adventure

Figure 2.1: Sorted c.ontexts for the Burrows-Wheeler Transform.

8, 2, 7, 6 and 1. An efficient implementation of this inverse BWT operation is described in Section 2.1.

2.1 Decoding Implementation

The seminal BWT paper (Burrows & Wheeler 1994) provides an algorithm to perform the inverse BWT
operation in linear time by making an initial pass through the encoded string counting characters. A second
pass, in an order dictated by the counts, results in the original text. This is shown in Algorithm 2.1, where
the second parameter ofBWT-DECODE, index, is the position in F of the first character of the text. Note
that some variable names have been altered for consistency with other algorithms in this report. Figure 2.3
shows the values, using the mississippi example, for the arrays in this algorithm, as well as other arrays
used to search BWT.

After the second for loop (starting on line 5), C[i] contains the number of instances of the character
L[i] in L[l ... i- 1] and K[ch] contains the number of the times the character ch occurs in the entire text.
The following for loop iterates through all characters in the alphabet and populates M so that it has a
cumulative count of the values inK; that is, M[i] contains the sum of K[O ... i 1]. In effect, M stores
the positions of the start of all groups of characters in F. As a result, we do not need to explicitly store
F, and have constructed it in linear time rather than O(nlogn), which would be required to actually sort
the characters. Additionally, this saves memory and also has important implications in some of the search
algorithms, as described in Chapter 3. Finally, the last for loop reconstructs the original text in the array
T.

Burrows & Wheeler (1994) also introduce a tramj'orm array that provides an alternative mechanism
for decoding the text. The array is constructed such that, for any character L[i], the preceding character in
the text is given by L[V[i]], that is:

Vi: 1 ::; i::; n, T[n- i +I]= L[Vi[inde.x]]

where V0[x] =x, Vi+ I [x] = V[Vi[x]], and index is the position in F of the first character of the text. Thus, V
simply stores the result of line 19 of Algorithm 2.1 in an array so that it can be accessed later, possibly in a
random order. For decompression, using the transform array has no advantages over the technique already

2.2. AUXILIARY ARRAYS 9

F L
mississippi imississipp p

2 imississipp 2 ippimississ 2 s
3 pimississip 3 issippimiss 3 s
4 ppimississi 4 ississippim 4 m
5 ippimississ 5 mississippi 5 i
6 sippimissis 6 pimississip 6 p
7 ssippimissi 7 ppimississi 7 i
8 issippimiss 8 sippimissis 8 s
9 sissippimis 9 sissippimis 9 s

JO ssissippimi JO ssippimissi 10 i
11 ississippim II ssissippimi II i

(a) (b) (c)

Figure 2.2: The Burrows-Wheeler Transform for the text mississippi: (a) cyclic rotations of the text; (b)
sorted matrix; (c) resulting BWT permutation (last column of the sorted matrix).

T F L c v w I Hr

2 i i s 0 8 7 4 8
3 s i s I 9 10 11 5
4 s i m 0 5 11 9 2
5 i m i 0 1 4 3 1
6 s p p l 7 1 10 10
7 s p i 1 2 6 8 9
8 i s s 2 10 2 2 7
9 p s s 3 11 3 7 4

10 p s i 2 3 8 6 6
11 i s i 3 4 9 1 3

Figure 2.3: Array values to perform and search the ButTOWS-Wheeler Transform ofthe text mississippi.

described, but the concept is an impotiant part of many search algorithms because it provides a mechanism
for decoding arbitrary length substrings of the text at random locations. The V transform array, however,
reconstmcts the text in reverse order. While this is acceptable when decoding the entire text (by populating
the resulting text array in reverse order), it is useless for decoding random substrings dUJing a search. With
this in mind, Bell et al. (2002) have defined the .forwards transform array, W, as follows:

Vi: 1 :":':: i::;: n,T[i] L[Wi[ind£X]j

where W0 [x] = x, w1+ 1 [x] W[W1[x]J, and ind£X is the position in F of the first character of the text. Con­
stmction of both V and W i.s shown in Algorithm 2.2 using theM array as previously defined. Algmithm 2.3
illustrates how W can be used to decode the text.

2.2 Auxiliary Arrays

Many of the search algorithms evaluated in this repmt also require the use of other arrays, known as
auxilimy arrays. They were defined by Bell et al. (2002) and Adjeroh et al. (2002) to provide a mapping
between the text and the sorted array, F. Figure 2.3 shows the values for these arrays using the text
mississippi.

10 CHAPTER 2. THE BURROWS-WHEELER TRANSFORM

Algorithm 2.1 Reconstruct the original text

BWT-DECODE(L, index)
1 fori,__ 0 to 255 do
2 K[i] ,__ 0
3 end for
4
5 for i ,__ 1 to n do
6 C[i] ,__ K[L[i]J
7 K[L[i]J t- K[L[i]J + 1
8 end for
9

10 sum,__ 1
11 for ch ,__ 0 to 255 do
12 M[ch] t--sum
13 sum ,__sum+ K[ch J
14 end for
15
16 it-index
17 for j ,__ n downto 1 do
18 TUJ f- L[i]
19 it- C[i] + M[L[i]J
20 end for

Algorithm 2.2 Construct the BWT transform arrays

BUILD-TRANSFORM-ARRAYS(L,M)
1 for i ,__ 1 to n do
2 V[i] ,__ M[L[i]J
3 W[M[L[i]JJ ,__ i
4 M[L[i]J ,__ M[L[i]J + 1
5 end for

Hr maps characters of the original text to their location in the sorted string F. It is defined as:

Vi: 1 :::; i:::; n, T[i] = F[Hr[i]]

I is the inverse of Hr and is defined as:

Vi: 1 :::; i:::; n, T[J[i]] = F[i]

Both arrays can be constructed in O(n) time, as shown in Algorithm2.4.

2.3 Compressing the BWT Output

The Burrows-Wheeler Transform does not actually produce any compression- the resulting permutation
has the same length as the input string. It does however, provide a string that can be efficiently compressed
by some other means. As revealed earlier in this chapter, the output of the transform usually contains
clusterings of a small ranges of characters. Although there are many possibilities for compressing this kind
of structure, only the two approaches we used for evaluating the search algorithms will be considered in
this report.

The search algorithms described in Chapter 3, excluding the FM-index, will work with any compression
scheme suitable for BWT because they do not take the compression technique into consideration and

2.3. COMPRESSING IBE BWT OUTPUT

Algorithm 2.3 Reconstruct the miginal text using the W array

BWT-DECODE1 (L,W,inde.;~:)
1 i <- inde.<
2 for j <- 1 to n do
3 i <- W[i]
4 TUJ <-L[i]
5 end for

BUILD-AUXILIARY-ARRAYS(W, inde:x)
1 i inde.<
2 for j I to 11 do
3 Hr[j]
4 /[i] ;- j
5 i ,_ W[i]
6 end for

11

must reverse the compression to retrieve the pe1muted string before searching can begin. For consistency
with other evaluations of Binary Search and Compressed-Domain Boyer-Moore, the implementation used
to evaluate these algorithms will employ the technique used by bsmp (Bell et al. 2002). This involves
three stages: The first passes the BWT output through a move-to-front coder (Bentley et al. 1986) to take
advantage of the clustering of characters. The resulting output is then piped into a run-length coder to
remove long sequences ofzeros. Finally, an order-0 arithmetic coder compresses the run lengths.

The compression for the FM-index is provided by a move-to-front coder, followed by a Multiple Table
Huffman coder (Wheeler 1997). Although this results in a lower compression ratio than bsmp, it is fuster
and allows random access into the compressed file, which pennits searching without reversing the com­
pression of the entire file. As well as the compressed text, auxiliary indexing infonnation is also stored to
improve search performance at the cost of the size of the resulting file. Fmiher details of the indexes are
given in Section 3.5.2.

12 CHAPTER 2. THE BURROWS-WHEELER TRANSFORM

Chapter 3

BWT Search Algorithms

The following sections provide a brief description of the methods available to search text that has been
compressed using the Burrows-Wheeler Transform. Excluding the FM-index (Section 3.5), they all operate
on the BWT-encoded permutation of the text, which means partial decompression is required to return a
compressed file to the appropriate structure before searching begins.

Section 3.6 introduces a technique to reduce the search times of Binary Search, Suffix Arrays and
q-grams, as well as reducing the memory requirement of the latter two algorithms. A modification to
the FM-index is also described with t~e aim of improving search time at the cost of a higher memory
requirement.

Compressed-Domain Boyer-Moore (Section 3.1) uses a technique that allows the text to be accessed
in the correct order without fully decompressing it with the inverse BWT operation, making the use of an
ordinary search algorithm possible. The remaining algorithms use the sorted contexts provided by BWT to
increase their search performance through a binary search technique.

Two more search algorithms (Sadakane 2000a, Sadakane 2000b) have often been referenced in recent
literature discussing compressed-domain pattern matching with BWT. They will not be evaluated as part
of this research, however, for the reasons discussed below. ·

Sadakane (2000a) introduced a data structure based on the compressed suffix array of Grossi & Vitter
(2000). The compression provided is not related to BWT, and instead refers to the ability to store the array
in O(n) space rather than O(n logn) as required by traditional suffix arrays. This compression is achieved
using a hierarchical structure where upper levels can be reconstructed from lower levels (that have fewer
entries) and therefore do not need to be explicitly stored. Because it does not involve BWT, the algorithm
will not be considered in this report

Sadakane (2000b) provides an algorithm for case insensitive searches of a BWT compressed text. This
algorithm is similar to Suffix Arrays (Section 3.3), and is trivial to implement by altering the function
for comparing symbols in both the encoder and search programs. When case sensitive comparisons are
necessary, the results from a case insensitive search need to be filtered to get the exact matches, increasing
the search time. Excluding the difference in symbol comparisons, Suffix Arrays and the case insensitive
search algorithm are identical, so the latter will not be considered further in this repoti.

3.1 Compressed-Domain Boyer-Moore

The Boyer-Moore algorithm (Boyer & Moore 1977) is cutTently considered to be one of the most efficient
pattern matching algorithms for searching an ordinary text file (Gusfield 1997). Using shift heuristics, it is
able to avoid making comparisons with some parts of the text and and can therefore produce a sub-linear
performance of O(m/n) in the best case, but in the worst case, deteriorates to O(mn) time complexity.
This requires access to the text in the coiTect order, so that after a file has undergone the Butiows-Wheeler
Transform, an ordinary Boyer-Moore search is no longer possible. Section 3.1.1 provides details of the
standard Boyer-Moore algotithm, with Section 3.1.2 describing the necessary changes, introduced by Bell
et aL (2002), for use with BWT.

13

14 CHAPTER 3. BWT SEARCH ALGORITHMS

3.1.1 Boyer-Moore

The Boyer-Moore algorithm scans the query pattern from right to left, making comparisons with characters
in the text. When a mismatch is found, the maximum of two precomputed functions, called the good-suffix
rule and bad-character rule, is used to determine how far to shift the pattern before beginning the next set
of comparisons. This shifts the pattern along the text from left to right, without missing possible matches,
until the required patterns have been located or the end ofthe text is reached.

The good-suffix rule is used when a suffix of P has already been matched to a substring of T, but
the next comparison results in a mismatch. Let the matched substring be t, and t' be the next rightmost
occurrence oft in P, such that the characters in the pattern to the left oft and t' are not the same. The
pattern is then shifted so that t' is aligned with the occurrence oft in the text. If t' does not exist, the pattern
is shifted to the right until a prefix of P is aligned with a suffix oft in T, or completely past t if no such
match exist. Figure 3.1(a) shows an example where a mismatch has been detected at P[S]. The good-suffix
is te, which occurs again in the pattem at P[2]. The shift produced by the good-suffix rule, shown in
Figure 3.1(b), aligns this occurrence with the previously matched substring in the text. Comparing then
continues from the rightmost character of the pattern. A table of shift distances for the good-suffix rule can
be computed before searching begins in 0(m) ammtised time and requires 0(m) space to store.

The bad-character rule proposed by Boyer & Moore (1977) has been improved, resulting in the extended
bad-character rule (Gusfield 1997), which usually provides larger shift distances. For the extended rule,
when a mismatch occurs at position i in P, let the mismatched character in T be c. The patten is shifted
so that cis aligned with the rightmost occurrence of c in P[l ... i 1], that is, to the rightmost occurrence
that is to the left of the mismatch. If c does not occur in P[l ... i 1], the pattern is shifted completely
past c. Figure 3.l(c) shows the shift proposed by the extended bad-character rule, where the mismatched
character inTis e, which occurs in the pattem to the left of the mismatch at P(3]. This results in a shift of
two characters so that these occun·ences of e now align. A table for the extended bad-character mJe can be
calculated before searching begins in O(m + I I I) time and requires 0(m + I I I) space.

3.1.2 Modifications for the Compressed-Domain

To be used in the compressed-domain, the Boyer-Moore algorithm must be able to access the text in the
correct order. For BWT compression, this is achieved by decoding parts of the text, as needed, through the
F array and Hr arrays as shown in Algorithm 3.1.

COMPRESSED-DOMAIN-BOYER-MOORE-SEARCH(P,F,Hr)

1 COMPUTE-GOOD-SUFFIX(P)
2 COMPUTE-BAD-CHARACTER(?)
3k~c--1

4 while k ::; n - m + 2 do
S i~c--m

6 while i > 0 and P[i] F[Hr[k+ i 2]) do
7 i~c--i-1

8 end while
9 if i 0 then

10 # Report a match beginning at position k- 1
11 k ~c-- k + <shift proposed by the good-st!tfix rule>
12 else
13 sa+- <shift proposed by the good-suffix rule>
14 sa+- <shift proposed by the extended bad-character rule>
IS k~c--k+MAX(sa,ss)
16 end if
17 end while

3.2. BINARY SEARCH 15

(a)

(b)

(c)

Figure 3.1: Examples of shifts proposed by the Boyer-Moore heuristics: (a) Matching the pattern iterate
against the text results in a mismatch at position 5 of the pattern; (b) Shift proposed by the good-suffix rule;
(c) Shift proposed by the extended bad-character mle.

3.2 Binary Search

The output of the Burrows-Wheelet· Transform is remarkable in that it provides access to a list of all
substrings of the text in sorted order. This makes it possible to use a binary search approach that operates
in O(m logn) time. The sorted list of substrings for the text mississippi is shown in Figure 3.2. This is
taken from the sorted matrix in Figure 2.2(b), but has the characters removed that occur cyclically after the
last character of the text. If a search pattern appears in the text, it will be located at the beginning of one
or more of these lines. Additionally, because the list is smied, all occurrences of a search pattem will be
located next to each other; for instance, si appears at the start of lines 8 and 9.

In practice, this structure is accessed through theM array, which stores the starting locations of each
group of characters in F, and thus provides a 'virtual index' to the first character of each row in the sorted
substring list. The remaining characters in a row are decoded as needed using the W transform array. A
row need only be decoded to perforn1 a string comparison as part of the binary search, and even then,
only enough is decoded to determine whether the line provides a match. This comparison is illustrated
in Algorithm 3.2, where i is the number of the row being compared to the pattem, P. If t is a string
representing that row, the return value of the function is 0 if Pis a prefix oft, negative if p < t and positive
if p > t.

The use of the M array to index the substrings also allows an improvement on the 0(m log n) perfor­
mance of binary search by narrowing the initial range of the search. If cis the first character of the pattern,
the initial lower and upper bounds for a binary search are given by M[c] and M[c + 1 J 1. For instance,
in the example in Figure 3.2, if the search pattern begins with the letters, M tells us that it can only occur
between lines 8 and 11. This range contains rtT of the total number of rows on average and therefore

reduces the search time to O(m log on average.

Binmy Search on a BWT compressed file is illustrated in Algorithm 3.3 (extracted from Powell (2001))

16 CHAPTER 3. BWT SEARCH ALGORITHMS

i
2 ippi
3 issippi
4 ississippi
5 mississippi
6 pi
7 ppi
8 sippi
9 sissippi

10 ssippi
II ssissippi

Figure 3.2: Sorted substlings for the text mississippi.

and operates as follows: A standard binary search on the rangeM[c] ... M[c+ 1] -1 results in a match with
one occurrence of the pattern if any exists. It is also necessmy, however, to locate other occurrences. This
could be done by a simple linear search backward through the sorted substrings until the first mismatch
is found, as well as forward to find the first mismatch in that direction (thus, identifying the first and last
occurrence of the pattern). This would take O(occ) time, however, and would be rather time consuming
if there are many occurrences. Instead, it is more efficient to apply two further binary searches. The first
search locates the first substring that has P as a prefix and operates on the range M[c] ... p - 1, where p
is the location of the initial match. Like a standard binary search, each step compares the midpoint of
the range to the pattern, however, if the compalison function returns a negative value or zero, it continues
searching the range low .. . mid; otherwise, it searches the range mid+ 1 ... high. The second search locates
the last occurrence of P and is performed in the range p+ 1 ... M[c+ 1 J -1, but this time choosing the range
low ... mid- 1 for a negative comparison result and mid ... high for a positive or zero result. Although it
was not noted by Bell et al. (2002), a further improvement can be made by basing the ranges for the two
subsequent searches on mismatches of the initial search. The first operates in the range q ... p-:-- 1 where q
is the largest known mismatched row in the range M[c] ... p- 1. A similar range can be identified for the
second search.

Finally, after all occurrences have been found in the sorted matrix, the corresponding matches in the
text must be located. This is achieved using the I array. If the pattern matches lines i ... j of the sorted
matrix, which corresponds to F[i ... J], then the indices for the matches in the text are identified by I[i ... J],
because I maps between F and T.

Algorithm 3.2 String comparison function for Binary Search

BINARY-SEARCH-STRCMP(P, W,L, i)
1 m ,__ LENGTH(P)
2 j;-1
3 i ,__ W[i]
4 while m > 0 and L[i] = P[j] do
5 i ,__ W[i]
6 m;-m-1
7 J;-J+1
8 end while
9 ifm = 0 then

10 return 0
11 else
12 return P[j]- L[i]
13 end if

3.3. SUFFIX ARRAYS

Algorithm 3.3 Binmy Search algorithm

BINARY-SEARCH(P, W,L,J)
1 c+--P[l]
2 P' +--P[2 ... m]
3 low+--- M[c]
4 high+---M[c+l]-1
5
6 while low < high do
7 mid+--- (/ow+high)/2
8 cmp +--- BINARY-SEARCH-STRCMP(P',W,L,W[mid])
9 switch cmp

10 case = 0: break
11 case > 0 : low +--- mid+ 1
12 case < 0 :high +---mid
13 end switch
14 end while
15
16 if cmp = 0 then
17 p+--mid
18 h+---p-1
19 while low< h do
20 m +--- (/ow+h)/2
21 if BINARY-SEARCH-STRCMP(P', W,L, W[m]) > 0 then
22 I ow +--- m + 1
23 else
24 h +--- m
25 end if
26 end while
27 if BINARY-SEARCH-STRCMP(P', W,L, W[low])-# 0 then
28 low +--- mid # No matches in low ... mid- 1
29 end if
30
31
32
33
34
35
36
37
38
39
40
41
42
43

1<---p+I
while I < high do

m +---(!+high+ 1)/2 # Round up
ifBINARY-SEARCH-STRCMP(P',W,L,W[m]) 2:0 then

1+---m
else

high+--- m -I
end if

end while
if BINARY-SEARCH-STRCMP(P', W,L, W[high])-# 0 then

high +---mid # No matches in mid+ 1 ... high
end if

44 return {![low ... high]}
45 else
46 return{} # No matches found
47 end if

17

18 CHAPTER 3. BWT SEARCH ALGORITHMS

3.3 Suffix Arrays

Sadakane & Imai (1999) provide an algorithm for efficiently creating a suffix array (Manber & Myers 1993)
for a text from the BWT permutation of that text. A suffix array is an index to all substrings of a text sorted
in the lexicographical order of the substrings, and therefore allows patterns to be located in the text through
a binary search of the index. This array is very similar to the sorted context structure used by Binary
Search (Section 3.2) but Suffix Arrays indexes the decoded text, whereas Binaty Search uses W to index
the corresponding encoded substrings in L. Additionally, Binary Search uses W to decode the substrings
as needed, but Suffix Arrays must decode the entire text before searching begins. For this reason, Suffix
Arrays cannot actually be considered a compressed-domain pattern matching algorithm and may be better
classified as an indexed-decompress-then-search approach.

The suffix array is simply the I array defined in Section 2.2. Sadakane & Imai (1999), however, de­
scribe an implementation where I is constructed at the same time as the text is decoded. This is shown in
Algorithm 3.4 as a modification to Algorithm 2.1, which only decodes the text.

Algorithm 3.4 Modification to Algorithm 2.1 to construct a suffix array as the text is decoded

12 i +---index
13 for j +--- n downto 1 do
14 I[i]+---}+1
15 ifl[i] = n + 1 then
16 I[i] f- 1
17 T[j] +--- L[i]
18 i +--- C[i] + M[L[i]J
19 end for

Pattern matching with this structure can be pe1formed in a manner similar to that of the Binary Search
approach. In fact, the steps described in Algorithm 3.3 can be reused, with only alterations to the calls to
BINARY-SEARCH-STRCMP. These calls are replaced with:

SUFFIX-ARRAY-STRCMP (F' ,L,J[x])

where x is the same as that of W[x] in the conesponding line of the original algorithm. This string com­
parison function for Suffix Arrays is much simpler than that of Binary Search because the text has already
been decoded and is referenced directly. It differs from an ordinary string comparison that might be found
in a standard programming language librmy in that it also reports that a match exists if the first string (the
pattern) is a prefix of the second- they are not required to have the same length.

3.4 q-grams

Adjeroh et al. (2002) describe their q-gram approach in terms of sets and set intersections. For exact
pattern matching, however, the most efficient implementation of these operations is very similar to the
Binary Search approach (Section 3.2).

A q-gram is a substring of a text, where the length of the substring is q. For example, the set of 3-grams
for the text abraca is { abr ,bra,rac,aca}. For exact pattern matching, we construct all m length q-grams
(the m-grams) of the pattern and the text. Intersecting these two sets produces the set of all matches.
If instead we wish to perform approximate matching, the size of the q-grams depends on the allowable
distance between the pattern and a matching string. Approximate pattern matching, however, will not be
considered further in this report.

There is just one m-gram of a pattern, which is simply the pattem itself. Construction of the required
m-grams of the text is also straightforward and can be performed in O(n) time. This involves the use of the
F and Hr arrays, which are used to be generate the q-grams for any given q as follows:

Vi: 1:::; i:::; n-- q+ 1,Q~[i] =F[Hr[i]J .. . F[Hr[i + q -1]]

3.5. FM-INDEX 19

Although this definition does not list the q-grams in sotied order, sorting can be petformed efficiently
by reordeting them according to the values in the I auxiliary array. For example, the text abraca has
I = {6, 1,4,2,5,3}. Thus, for q = 3, the sorted q-grams are {Qf[1],Qf[4],Qf[2],Qf[3]}, with 5 and 6
being ignored because they are greater than n- q + 1.

Because the set of q-grams for the pattern contains only one item and the q-grams for the text can
be obtained in sorted order, the intersection of these two sets can be petformed using binary search with
the single string from the pattem's set used as the search pattern. The implementation of this search is
almost identical to that ofBinaty Search, and Algotithm 3.3 may be reused with modifications to only the
BINARY-SEARCH-STRCMP calls. These calls are replaced with:

QGRAM-STRCMP(F',Hr,F,J[x])

where xis the same as that of W[x] in the corresponding line of the original algotithm. In this respect, it is
more closely related to Suffix Arrays (Section 3.3) because both use the I array in place of W to determine
the position for a comparison. Like Binaty Search, however, it is the job of the string comparison function
to decode the required text, whereas Suffix Arrays need only provide a basic comparison of two sttings
because the text is decoded before searching begins. The q-gram approach to string compatison is shown
in Algmithm 3.5 and decodes the text using Hr and F following the q-gram definition given previously.

Algorithm 3.5 String comparison function for q-gram search

QGRAM-STRCMP(P,Hr,F,i)
1 m +--- LENGTH (P)
2}+---1
3 i+--i+1
4 while m > 0 and F[Hr[i]] = P[j] do
5 i+--i+1
6 m+---m-1

7 }+---}+1
8 end while
9 ifm = 0 then

10 return 0
11 else
12 return P[J]- F[Hr[i]]
13 end if

3.5 FM-index

Fenagina & Manzini (2000) proposed an Opportunistic Data Structure, so named because it reduces the
storage requirements of the text without loweting the query petformance. It uses a combination of the
BWT compression algorithm and a suffix array data structure to obtain a compressed suffix array. Indexing
is added to the resulting structure to allow random access into the compressed data without the need to
decompress completely at quety-time. The discussion in that paper, however, is purely theoretical and
major problems prevent its implementation. In particular, it must be run on a machine with a RAM of word
size logn. A more practical implementation that does not have the same asymptotic worst case behaviour,
but works well in general, has been desctibed by Ferragina & Manzini (2001). This implementation,
referred to as the FM-index by the authors because it provides a Full-text index and requires only Minute
storage space, is described here and evaluated in Section 4.

3.5.1 Searching

Searching with the FM-index is petformed through two key functions: COUNT and LOCATE. Both use
the Occ function, which for Occ(c,k) returns the number of occun·ences of the character c in L[1 ... k].

20 CHAPTER 3. BWT SEARCH ALGORITHMS

This can be calculated in 0(1) time using the auxiliary information stored within the compressed file, as
described in Section 3.5.2. The Occ function is an important feature of the FM-index because it allows
random entries of the LF array (which is identical to the V array described in Section 2.1 and will be
refened to as V from now) to be calculated as needed. Thus, unlike the other algorithms in this chapter, the
transform arrays need not be constructed in their entirety before searching begins. When required, an entry
V[i] is calculated as M[c]+ Occ(c, i)- 1, where c = L[i]. This is equivalent to line 19 of Algorithm 2.1.
Note that the fonnula given in Ferragina & Manzini (2001) uses an anay defined as C. For clarity and
consistency with other algorithms, we refer to it as M (Section 2.1), where C[i] = M[i]- 1. Access toM is
described in Section 3.5.2

COUNT identifies the starting position sp and ending position ep of the pattern in the rows of the sorted
matrix. The number of times the pattern appears in the text is then ep- sp + 1. This takes O(m) time and
is illustrated in Algorithm 3.6. The algorithm has m phases, where, at the i-th phase, sp points to the first
row of the sorted matrix that has P[i ... m] as a prefix and ep points to the last row that has P[i ... m] as a
prefix. Thus, after the m phases, the first and last occurrences of the pattern are referenced.

Algorithm 3.6 Counting pattern occurrences with the FM-index

COUNT(P,M)
1 i+--m
2 c +--P[m]
3 sp +--M[c]
4 ep +--M[c+ 1]-1
5
6 while sp ~ ep and i ;::: 2 do
7 c +-- P[i- 1]
8 sp +--M[c]+ Occ(c,sp 1)
9 ep +-- M[c]+ Occ(c,ep) -1

10 i+--i-1
11 end while
12
13
14

if ep < sp then
return ep- sp + 1

else
15 return 0
16 end if

LOCATE takes the index of a row in the smied matrix and retums the starting position of the con·e­
sponding substring in the text. Thus, an iteration over the range sp ... ep identified by COUNT, calling
LOCATE for each position, will result in a list of all occurrences of the pattern in the text. The locations
are also calculated using the auxilimy information, as shown in Algorithm 3.7. For a subset of the rows
in the sorted matrix, known as marked rows, their location in the text is stored explicitly. The technique
for determining which rows are marked and how they are represented is discussed in Section 3.5.2. The
location of row i is denoted by pos(i), and if it is a marked row, the value is available directly. If i is not
marked, however, V is used to locate the previous character, T[pos(i)- 1], in the text. This is repeated v
times until a marked row, iv, is found, and therefore pos(i) = pos(iv) + v. In fact, pos(i) will have the same
value as I[i], so we are simply storing a subset of the I array.

In many respects, the search algorithm of the FM-index is very similar to that of Binary Search (Sec­
tion 3.2), but where Binary Search first locates one instance of the pattern in the sorted matrix and then
uses another two binary searches to locate the first and last instances, the FM-index uses an incremental
approach, identifying the first and last occurrences of the suffixes of the pattem, increasing the size of
the suffix until the locations have been found for the entire pattern. Additionally, lines 8 and 9 of Algo­
rithm 3.6 effectively perform mappings using the V array rather than Was used by Bina1y Search. Because
the pattem is processed backwards, it is necessary to construct the text in reverse, which can be achieved
using V. Also, Binary Search is able to repmi the location in the text of a match with one array lookup
to the I auxiliary array, instead of the more complex operations employed by the LOCATE function, which

3.5. PM-INDEX

Algorithm 3.7 Locating the position of a match in the original text using the FM-index

LOCATE(i)
li'+-i
2 Vf- 0
3 while row i' is not marked do
4 c +- L[i']
5 m +- Occ(c,i')
6 i' +-M[c]+m-1
7 v+-v+1
8 end while
9 returnpos(i') +v

effectively reconstructs patis of I as needed.

3.5.2 Compression and Auxiliary Information

21

The compression process used by the FM-index is different from the other algorithms in this chapter. This
is to allow random access into the compressed file. Additional indexing infotmation is also stored with
the compressed file, so that the search algorithm may perfotm the Occ function efficiently and report the
location of matches.

To compress the text, the BWT permuted text, L, is created and partitioned into segments of size f!sb

known as superbuckets, with each superbucket being partitioned into smaller segments of size f!b known as
buckets. The buckets are then compressed individually using Multiple Tables Huffinan coding (Wheeler
I997). Ferragina & Manzini (2001) performed extensive expetiments with the FM-index and found that
16 kilobyte superbuckets and I kilobyte buckets provide a good compromise between compression and
search performance in general, so these are the values used for the evaluation in this report.

For each superbucket, a header is created that stores a table of the number of occurrences of all charac­
ters in the previous superbuckets. That is, the header for superbucketSi contains the number of occurrences
for each character c E I in S1 ... Si-1· Each bucket has a similar header, but contains character counts for
the buckets from the beginning of its superbucket. Thus, Occ(c,k) can be calculated in O(I) time by
decompressing the bucket containing L[k] and counting the occurrences in that bucket up to L[k], then
adding the values stored for c in the conesponding superbucket and bucket headers. To increase search
performance, a bucket direct01y has also been proposed. This directory records the statiing positions in the
compressed file of each bucket, so that any bucket may be located with a single directory lookup.

This auxiliary information can also be compressed because, as described in Section 2, the L array often
has clusterings of characters, which means that the range of characters in each superbucket will usually
be small. A bitmap is stored to identifY the characters appearing in each superbucket. Thus, a header
only needs to contain counts for characters that are recorded in the conesponding superbucket's bitmap.
Furthennore, variable integer coding may be used to reduce the space required for the entries that are
stored.

One further stmcture that must be considered contains the information about the marked rows that
identity the location in the text of some of the rows in the sorted matrix. Empirical results have shown that
marking 2% of the rows provides a suitable compromise between storage requirements and search speed
when using a superbucket size of 16 kilobytes and a bucket size of 1 kilobyte (Ferragina & Manzini 2001).
Ferragina & Manzini (200 I) have also outlined a number of marking schemes that decide which of the rows
should be marked. One possibility marks rows at evenly spaced intetvals, where the interval is determined
by the percentage of rows that are marked. However, they chose to implement an alternative scheme, which
was also used for the evaluation in this repoti, to make the search algorithm simpler even though it performs
poorly in some circumstances. It takes advantage of the fact that each character in the alphabet appears
roughly evenly spaced throughout an ordinary English text. The character, c, that appears in the text with
the frequency closest to 2% is selected, and any row ending with cis marked by storing its conesponding
location using log n bits. This simplifies the searching because, if i is a marked row, pos(i) is stored in entry

22 CHAPTER 3. BWT SEARCH ALGORITHMS

Occ(c, i) of the marked rows, whereas the former strategy requires extra information to be calculated or
stored to relate a marked row to the position where its value is stored. The latter strategy, however, relies
heavily on the structure of the text and performance deteriorates significantly if characters are not evenly
spaced.

Finally, we note that the search algorithm also requires access to the M array. Although the original
paper does not define how M is accessed, because it only contains I I: I entries, it is possible to store Mas
part of the auxiliary information. Alternatively, it could be constructed with a single pass over the auxiliary
information before searching begins.

3.6 Algorithm Improvements

This section describes possible improvements to the search algorithms, with the goal of reducing search
time or memory requirement. Section 3.6.1 introduces overwritten arrays to achieve both of these goals
and Section 3.6.2 proposes a modification to the FM-index to reduce search time at the cost of memory
usage. The effect of these modifications is investigated in Section 4.5.

3.6.1 Binary Search, Suffix Arrays and q-grams

Through a simple modification to the Binary Search, Suffix Arrays and q-grams algorithms, it is possible
to reduce search time, and for the latter two, reduce memory usage. This modification uses a concept called
overwritten arrays to increase efficiency.in the construction of the I array.

The original code, used by q-grams, for creating I from W is shown in Algorithm 2.4. During one
iteration ofthe for loop, the i-th element of W is read and a value is stored in the i-th element of I. Those
elements are not required by subsequent iterations, and in fact for q-grams, after completing the loop, W
is not needed at all. Thus, it is possible to write the entry for I[i] in W[i], avoiding the need to allocate
a separate area of memory for a second array. Furthermore, as we shall see in Section 4.5.1, due to a
reduction in the number of cache misses during the creation of I, this modification also increases the speed
at which the array is created. ,

In a similar manner, Suffix Arrays is able to create I by writing over C. Binary Search, which also uses
Algorithm 2.4 to create], requires Was part of the searching process, and therefore cannot overwrite it. In
Section 4.5.1 however, we find that it is still more efficient than the original approach to recreate W after
the initial copy is overwritten by I. This provides the faster performance of the optimisation, but unlike the
other algorithms, does not reduce memmy usage.

3.6.2 Modified FM-index

To locate the position of a match in the text, the FM-index uses a linear search backwards through the text
until it finds a row of the sorted matrix for which the position is stored (see Section 3 .5.1). With 2% of the
text marked, this will require O.Oln steps on average, and because each step requires multiple disk accesses,
it is a particularily inefficient approach. Data that is read from disk for each step includes: entries in the
bucket directmy, bitmaps and possibly a bucket and superbucket header, as well as an entire bucket that
must also be partially decompressed.

A possible speed increase could result from caching, in memory, the data that is read from disk to
avoid reading some data multiple times. For large searches, however, a more substantial improvement
is likely to result from copying all data into memory before searching begins. Although this technique
will undoubtedly copy data that is never used, it will be read from disk in a sequential manner, which is
considerably faster than the random access used if the information was retrieved individually when needed.
The implementation of the Modified FM-index that is used in the experiment in Section 4.5.2 takes this
approach by reading all the data and storing it in memory in an uncompressed format (without pe1forming
the reverse BWT transform on L). This is an attempt to compromise between the efficiency of the online
algorithms, which access all data from memory, and the efficiency of the FM-index, which does not need
to create any indexes at search time.

3.6. ALGORITHM IMPROVEMENTS 23

As well as a potential speed increase, the modification has the added advantage of reducing the size
of the compressed file. Because there is no need to provide random access into the compressed file, it is
unnecessaty to store the bucket directory. Additionally, the L array does not need to be compressed in a
manner that allows random access. Thus, the Huffman coder used by the FM-index may be replaced by
the technique used by the online algorithms (see Section 2.3). This technique employs an arithmetic coder,
which provides better compression than a Huffman coder (Witten et al. 1999). Furthermore, without the
random access to the headers, we are able to store a value in a header as the difference between it and the
corresponding value in the previous header. The differences are compressed using the delta code, much
like the compression of an inverted file (Witten et al. 1999). Like the original FM-index, however, a bitmap
is used to avoid storing an entry in a header for a character that does not occur in the corresponding bucket.

24 CHAPTER 3. BWT SEARCH ALGORITHMS

Chapter 4

Experimental Results

Extensive experiments were conducted to compare the compression performance and search performance
ofthe algorithms in Chapter 3, with the results outlined in the following sections. Results for a decompress­
then-search approach (using the standard Boyer-Moore algorithm described in Section 3.1.1) have also been
included to provide a reference point. Boyer-Moore was selected as the reference because it is cmTently
considered to be one of the most efficient pattern matching algorithms for searching an ordinary text file
(Gusfield 1997).

The implementations ofBinaty Search, Suffix Arrays and q-grams used in the experiments employ the
optimisation technique introduced in Section 3.6.1, with Section 4.5 illustrating the improvement provided
by the optimisation. Section 4.5 also explores the performance of the Modified FM-index, which was
described in Section 3.6.2.

All experiments were conducted on a 1.4GHz AMD Athlon with 512 megabytes of memory, running
Red Hat Linux 7 .2. The CPU had a 64 kilobyte first level cache and a 256 kilobyte second level cache.

Unless stated otherwise, searching was performed on bible. txt, a 3.86 megabyte English text file
from the Canterbury Corpus (Arnold & Bell 1997, Bell & Powell 2002). For most experiments, patterns
were randomly selected from the set of words that appear in the text being searched. It is important to note,
however, that the selected words may have been substrings of other words. These substrings were also
located by the search algorithms. For the experiment on pattern length (Section 4.2.3), the search patterns
were not restricted to English words and could be any string that appeared in the text and had the required
length.

Each experiment was run 50 times. Graphs show the mean of the 50 samples and, where appropriate,
etTor bars have been included to indicate one standard error above and below the mean. Search experiments
used a different set of patterns for each sample unless it was impossible to obtain enough patterns; for
instance, when testing the effect of the number of occurrences (Section 4.2.1), large occurrence values did
not have more than one pattern.

4.1 Compression Performance

Table 4.1 compares the compression ratio of bzip2 (Seward 2002), a production-quality compression
program that uses BWT, with that of the FM-index and bsmp (the compression approach used by all search
algorithms in this report, excluding the FM-index). Results are shown for the text files in the Canterbury
Corpus.

In most cases, bzip2 provided the best compression, closely followed by bsmp. The exception was
E. coli where bsmp was marginally better. This file contains genetic data, which has little structure, and
thus is only compressible due to the ability to store the characters in two bits (because the alphabet has a
size of four) instead of the eight bits used in the uncompressed file. In this situation, the technique used by
bsmp of compressing the entire file in one block has a lower overhead than that ofbzip2, which segments
the file into 900 kilobyte blocks and compresses each block independently of the others.

In all cases, the FM-index produced the largest files. Their size, on average, was more than one bit

25

26 CHAPTER 4. EXPERIMENTAL RESULTS

Compression Ratio
File Size bzip2 bsmp FM-i

alice29 .txt 152,089 2.27 2.56 3.52
asyoulik.txt 125,179 2.53 2.85 3.79
bible. txt 4,047,392 1.67 1.79 2.58
cp.html 24,603 2.48 2.72 4.26
E.coli 4,638,690 2.16 2.12 2.69
fields.c 11,150 2.18 2.43 3.88
grammar.lsp 3,721 2.76 2.92 4.65
lcetlO.txt 426,754 2.02 2.30 3.30
plrabnl2.txt 481,861 2.42 2.74 3.57
worldl92.txt 2,473,400 1.58 1.60 2.66
xargs.l 4,227 3.33 3.54 5.24
mean 2.31 2.51 3.65

Table 4.1: Compression achieved by algorithms based on the Bunows-Wheeler Transfmm. Size is in bytes
and compression ratio is in bits per character.

per character larger, which is due to the additional indexing information that is stored (see Section 3.5.2).
This compares favourably, however, to mg (Witten et al. 1999), another offline system for compressing
and indexing text. mg uses an inverted file for indexing, which, for bible. txt, occupies 14.4% of the
space of the original file. In contrast, the index structure of the FM-index occupies less than 10%. The
FM-index also saves a small amount of space by compressing the text with BWT, as opposed to the word­
based Huffman coder used by mg. Overall, the FM-index uses 0.68 bits per character less than mg when the
auxiliary files ofmg are ignored, and 1.56less, when they are included.

Table 4.2 shows the time taken by the three compression approaches to compress and decompress the
files in the Large Collection of the Canterbury Corpus. Results for the smaller files of the Canterbuty Col­
lection were also examined and revealed the same trends. Due to their small sizes, however, t~e recorded
times were often negligible, and thus, the results from these files have been omitted here.

Little effort has been spent in optimising bsmp, so it perfonns poorly when consideting compression
time. This is not a major concem because the main goal of the project is to examine search performance,
which is not affected by the one-off cost of compression. Additionally, a high quality implementation
could improve the compression time significantly without affecting the capability of the search algmithms.
Furthennore, sorting the suffixes of the text is the slowest part of bsmp. For files less than 900 kilobytes,
the sorted order of the suffixes is identical to that ofbzip2 (because bzip2 also compresses the entire file
in one block for files of this size), so that if the same smting implementation was used, compression times
would be comparable.

In all cases, bzip2 recorded the best compression time. The FM-index was slightly slower, partly
because it is not as highly optimised as bzip2, but also because of the additional time required to create
the necessary indexing infmmation.

For this project, decompression time is the more important measurement, because all of the search
methods require as least partial decompression for searching. When decompressing, the performance of
bsmp was substantially closer to that of the FM-index, with most of the difference caused by the slower
nature of an arithmetic coder (used by_ bsmp) over a Huffman coder (used by the FM-index). Again, the
highly tuned bzip2 significantly outperfonned the other two approaches.

4.2 Search Performance

Search performance is often repmted in terms of the number of comparisons required for a search. As
shown in Chapter 3, the algorithms based on binaty search (Binary Search, Suffix Arrays, q-grams and
the FM-index), require O(m log &J) comparisons. The remaining two algorithms- Compressed-Domain

4.2. SEARCH PERFORMANCE 27

Compression Time Decompression Time
File Size bzip2 bsmp FM-i bzip2 bsmp FM-i

bible. txt 4,047,392 3.29 48.62 6.98 0.98 4.05 1.68
E.coli 4,638,690 4.01 64.45 6.96 1.39 5.53 2.17
world192.txt 2,473,400 2.06 33.14 4.24 0.66 2.39 0.95

Table 4.2: Speed of the compression and decompression algorithms. Size is in bytes and times are in
seconds.

Boyer-Moore and the decompress-then-search approach evaluated here (both based on Boyer-Moore), use
0(1fi) comparisons. These two formulae only consider the actual searching process, however, and ignore
the requirements of some algorithms to create indexes or decompress the text before searching begins. A
better measure of search time would be O(n+sm log JTI) and O(n+ ~),respectively, where sis the number

of searches performed, and the additional O(n) term covers the decompression and indexing steps, which
operate in linear time. An exception is the FM-index, which creates the necessary indexing information at
compression time; thus, its entire search process operates in O(sm log JTI) time.

The actual performances of the algorithms vary greatly depending on which arrays are used for index­
ing and how they are constructed. These differences are hidden by the 0-notation, so that an empirical
evaluation is important for a meaningful comparison. In Section 4.2.1 we evaluate the performances when
locating pattems and explore reasons for the differences between algorithms. Section 4.2.2 discusses the
situation where it is only necessaty to count the number of times a pattern occurs in the text, without need­
ing to identify the locations of the occurrences. Finally, in Section 4.2.3, we explore additional factors that
affect search times, that is, file size, pattern length and file content.

4.2.1 Locating Patterns

Excluding the FM-index, the search algorithms require the compression of the move-to-front coder, run
length coder and arithmetic coder to be reversed, as well as temporary arrays to be constructed in memory
before searching begins. Once created, however, the arrays may be used to execute many searches. Thus,
multiple searches during one run of a search program will not take the same amount of time as the equiv­
alent number of searches on separate occasions. Situations where multiple searches may be useful include
boolean queries with many te1ms, or interactive applications where users refine or change their queries.
Figure 4.1(a) shows the results from an experiment where the number of searches executed during a run of
the search programs were varied. Figure 4.1(b) shows the same data, but focuses on a smaller range of the
results.

Figure 4.1(a) indicates that Binary Search, Suffix Arrays and q-grams had virtually constant perfor­
mances regardless of the number of patterns involved. In fact, further experiments with larger numbers
of pattems revealed that times increased by just 1.2 milliseconds per 100 patterns. This is because of the
small number of comparisons required for a search and means that almost all of the time recorded was
used to construct the required arrays before searching began. From Figure 4.1(b), we see that q-grams was
consistently the faster of these three algorithms, closely followed by Bin my Search. The differences exist
because of the time taken to construct the various indexing arrays that each algorithm requires, and this is
discussed further in Section 4.4.

The search times for the decompress-then-search and Compressed-Domain Boyer-Moore algorithms
increased linearly as the number of pattems increased. For a small number of pattems, the decompress­
then-search approach was slower than Compressed-Domain Boyer-Moore because of the overhead of com­
pletely decompressing the text before searching begins. It was the more efficient algorithm, however, when
there are a larger number of searches perf01med. This is because it has direct access to the text to make
comparisons, whereas the compressed-domain version must decompress the required substrings before a
comparison can be made, and with more searches, more comparisons are required. Figure 4.1(b) shows that
the overhead of the comparisons outweighed the initial savings of Compressed-Domain Boyer-Moore when
more than three searches were performed. It also shows that for a small number of pattems, Compressed-

28 CHAPTER 4. EXPERIMENTAL RESULTS

180
~~ ;<·" ··Compressed-Dotnaln Boyer-Moore

160
-+-Binary Sear~h

·--a~-- SutnK Arrays

· q-gratns

140 --+f-FM-Index

-+-Oer:ompress-thell-search

120

"' 'C c 100 0
<.>

"' ~
"' 80
E
i=

60

40

20

0 20 40 60 80 100 120 140 160 180 200

Number or Search Patterns

(a)

14T,===============~----------------------------------~-----,
·--.-H······· Compressed-Domain Boyer-Moore

12

10

i c 8
0
u

"' ~
~ 6
F

4

2

--+-Binary Search

~---~-- SUffD(Nrays

q-grarns

-M-Ft.1-tndex

--e-oecompress-therr-search

0+-~--------.-----------.---------~.----------.-----------.-----------4

0 5 10 15 20 25 30

Number or Search Patterns

(b)

Figure 4.1: (a) Search times for multiple patterns; (b) Magnified view of the search times.

4.2. SEARCH PERFORMANCE

14T.=================~--,
compressed-Domain BoyEr-Moore

--+-Binary Search

1 2
__ ,._ sumx Arrays

10

~ c 8
8 .,
~
., 6

~

0

q-gram3
--w-FM-IndeK

----e-- Decompress-then-searcn

500 1000 1500 2000 2500

Number or Occurrences

Figure 4.2: Search times for patterns with vmious numbers of occurrences in the text.

3000

29

Domain Boyer-Moore was more efficient than Suffix Array and Binary Search, and for a single pattern,
provided almost the same perfmmance as q-grams. At best, decompress-then-search provided a similar
performance to Suffix AITays.

These results differ from those of Bell et al. (2002) which reported that, at best (for one pattern),
decompress-then-search took almost twice as long as Binary Search. They also found that it was not until
approximately 20 patterns that decompress-then-search became more efficient than Compressed-Domain
Boyer-Moore. After consulting the authors of that paper, it was determined that an eiTor in the decompres­
sion part of their decompress-then-search program was reducing its performance significantly, and that the
results given here are more accurate.

Finally, we note that the FM-index had the best pe1formance on average until10 patterns were involved.
For a single search, it took only 0.5 seconds on average because, unlike the other algorithms, there is no
need to construct any indexes before searching begins. Without the indexing information in memory,
however, pe1formance deteriorated significantly as the number of patterns increased, and for more than 25
patterns, it had the worst performance on average.

From the error bars in Figure 4.1 (a), we can see that the performance of the FM-index was highly
variable. Variations in the other algorithms were insignificant, so error bars, which in most cases were
not even visible, have been omitted from the results. The inconsistency of the FM-index is caused by
the technique used to locate the positions of matches. If the matching row of the sorted matrix is not
marked, the FM-index must iterate backwards through the text until a marked row is found (see Section 3).
When the search pattern appears in the text many times, this inefficient location process is executed often,
resulting in a poor performance overall. Thus, when a set of randomly selected words contained a pattern
that occurred in the text often, its results were significantly slower than the mean. For example, the outlier
at 160 patterns occmTed because one of the samples of 160 words contained the word 'an' which appears
in the text (including matching substrings of other words) 61,509 times. Locating all occurrences of this
string took 269 seconds. Searches using smaller numbers of patterns exhibit less variation because there is
a lower probability of selecting a frequently occurring pattern when only a few patterns are required.

This relationship between the number of occurrences of a pattern and search time is illustrated clearly
in Figure 4.2. It shows that search times for the FM-index increased rapidly as the number of occurrences
increased. It also shows that the other algorithms had constant pe1fmmances.

The dramatic effect on the FM-index caused by the number of occurrences of a pattern is illustrated
further in Figure 4.3. Here, the search patterns were restricted to those that occurred only once in the

30

50

45

40

35

~ 30
c
0
<> .. 25 e ..
E 20 I=

15

10

5

CHAPTER4. EXPERINfENTALRESVLTS

500 600

Number of Search Patterns

·· ··}<······ CornJJressed-Oornaln Boyer-Moore

---+--- Binary Seurch

--ri:i---· Suffix /<nays

q-grarns

~F~.1-!ndex

----e-- 0 e compress-then-search

700 800 900 1000

Figure 4.3: Search times for multiple single-occurrence patterns.

text. The FM-index increased slowly at a constant rate, with all other algorithms exhibiting the same
performance that was shown in Figure 4.l(a). In this situation, the FM-index was consistently the fastest
algorithm when searching for fewer than 600 patterns, at which point q-grams became the better option.

We also need to consider efficiency when searching for a single pattern. Figure 4.l(b) shows that, on
average, the FM-index significantly outperformed the other algorithms. It is not guaranteed to be the best
in all situations, however, because, as described previously, if the pattern appears many times, locating all
occurrences will take a considerable amount of time. When considering algorithms that offer consistent
performances, Compressed-Domain Boyer-Moore and q-grams jointly provided the fastest results. Again,
differences among the algorithms are caused by time taken to construct the various indexing arrays that
each algorithm requires.

4.2.2 Counting Occurrences

For some applications, it may only be necessary to detetmine the number of times that a pattern appears in
a text, or perhaps, to determine whether it exists at all. An example of such an application is an Internet
search engine that returns any page containing a specified pattern, possibly ranked by the number of times
the pattern appears. Figure 4.4 shows the results of an experiment where the search programs were only
required to count occurrences, with results plotted against the number of patterns that counts were obtained
for.

Excluding the FM-index and Binary Search, the results were identical to those in Figure 4.l(a), where
matches were also located. Even when match positions are not required, decompress-then-search and
Compress-Domain Boyer-Moore must still pass through the entire file to count the appearances. Suffix
Arrays and q-grams identify the positions of matches using just a single array lookup for each occurrence,
so in this case where the positions are not required, they only avoid simple lookup operations and therefore
showed no noticeable improvement in their performances.

As described previously in this chapter, the process that the FM-index uses to locate matches is inef­
ficient due to the linear search required for each occurrence. Thus, the FM-index improved substantially
when locating matches was unnecessary, and in fact, returned the counts almost instantly regardless of the
number of patterns. Binary Search also experienced a significant improvement in this situation, so that
in this experiment it was the second fastest algmithm, ahead of q-grams by approximately one second.
Because the only function of the I array in Binary Search is to detetmine the positions of matches, it is
unnecessary to construct I when the positions are not required, thereby saving a considerable amount of

4.2. SEARCH PERFORMANCE 31

50

40
'&;'
'1:1 c
0

~ 30
.!e.

"' s
I=

2().

10

0
0 20 40 60 80 100 120 140 160 180 200

Number or Search Patterns

Figure 4.4: Times for counting occutTences of multiple patterns.

time.

4.2.3 Other Factors

Until now, the expetiments in this section have only been repotted for bible. txt, a 3.86 megabyte English
text file. The petfotmance of many algorithms can vary considerably, however, if a file of a different size
is used, or if the file type is altered. Additionally, the length of the search pattem affects the perfmmance
of some algorithms. The following sections outline the results of experiments in which the effects of these
factors were explored.

File Size

To determine the effect file size has on the performance of the algorithms, an experiment was run in
which searches were executed on files of various sizes. The files were created by concatenating the 1990
'LA Times' files on Disk 5 of the TREC collection (TREC 2002) and truncating to the required sizes.
Results from the experiment are shown in Figure 4.5 and reveal that regardless of file size, the FM-index
completed a search, on average, almost instantly. Of course, these results are still dependent on the number
of occun·ences of the pattem and the FM-index will petform poorly if the pattern appears often.

The search times of the other algorithms increased linearly as the file size increased. For small sizes, the
algorithms all had similar results. With larger files, however, two groups begin to form: decompress-then­
search had a similar performance to Suffix Arrays regardless of file size, and Binary Search, Compressed­
Domain Boyer-Moore and q-grams also had similar performances. In fact, even the performances within
the groups diverged. With larger file sizes, however, the search times are larger, and the differences,
which were all less than a second, were insignificant. The reason that the rate of increase varied among
the algorithms is that each requires a distinct set of indexing atTays for searching and those arrays have
different construction times (see Section 4.4 for further details).

Figure 4.5 shows only the time required for a single search. Regardless of file size, multiple searches
had no noticeable effect on Binary Search, Suffix Arrays and q-grams because the number of comparisons
they require is logarithmically proportional to the file size. As indicated in previous experiments, this small
number of comparisons led to an efficient perfonnance when searching for a large number of patterns.
Likewise, the effect of multiple searches on the FM-index was consistent for any file size. Decompress­
then-search and Compressed-Domain Boyer-Moore, however, took longer with larger files because the

32 CHAPTER 4. EXPERIMENTAL RESULTS

60tr================.--------------------------------------~
······H······ Compressed~Domaln Boyer~Moors

--+--Binary Search

·-··M--· SUtflX Nrays

50 q-grams

--1t-- FM-ICldex

--+-- Decompress-then-.search

0 6 10 16 20 26 30

File Size (megabytes)

Figure 4.5: Search times for files of various sizes.

number of comparisons they perfmm is directly proportional to the file size.
Although it is not shown in Figure 4.5, search time increased dramatically when the memory require­

ment of the search program exceeded the resources of the computer because parts of the memory were
continually swapped to the hard drive. For example, q-grams requires 576 megabytes of memory for a
64 megabyte file (see Section 4.3). This exceeded the available memory of the computer and required a
phenomenal457 minutes to locate a single pattern. As described in Section 4.3, the FM-index has a ve1y
low memory requirement, and is therefore able to avoid this problem.

File Type

The performances of the algorithms on alternatives file types were evaluated and compared to the plain
English text file used in earlier experiments. The alternative files were:

11 E. Coli, which is available from the Canterbury Corpus and contains genetic data that has an alpha­
bet size of four.

11 An HTML File, which was obtained by concatenating the HTML files in the jdk1. 4. 0 documenta­
tion (Sun Microsystems 2002), then truncating the resulting file to an appropriate size.

11 A Java Source File, which was obtained by concatenating the Java files, also in the j dk1. 4. 0 docu­
mentation.

Experiments showed that, in most cases, the perfmmances of the algorithms were insensitive to file
type. The exception was the FM-index when searching genetic data. Due to the small alphabet, short
patterns have higher frequencies in genetic data than other files. Thus, the inefficiency of the FM-index
when locating patterns that appear often was accentuated with the genetic file.

Ferragina & Manzini (2001) performed an experiment with the FM-index using a file containing a
concatenation of both HTML and Java files from the documentation of j dk1. 3. 0. They reported that the
time required to locate a match in this type of file was significantly higher than for other files they tested.
They suggested that this was caused by the marking technique (described in Section 3.5.2), which assumes
that the occurrences in the text of a given character are evenly spaced, and speculated that this assumption is
probably not valid for HTML and Java files. We ran further experiments using the documentation of other
j dk versions and found that j dk 1 . 2 . 2 and j dk 1 . 3 . 1 had pelformances consistent with those of other

4.2. SEARCH PERFORMANCE 33

aTT-------------------------------------r==============~
· ··-~\-····Compressed-Domain Boyer~ Moore

-+--Binary Search

··-•- sumx Arrays

5 - q-grams

---w-- f=M-Index

--e- Oecompress-then-sean:h

2

0 20 40 60 80 100 120 140 160 180 200

Pattern Length (characters)

Figure 4.6: Search times for patterns of various lengths.

file types in our previous experiments, while j dki. 4. 0 was only marginally slower. It is likely that their
anomalous results were caused by irregularities in the occurrences of the character chosen by the marking
scheme, but the problem only exists in specific files and is not indicative of all files containing HTML and
Java code.

Pattern Length

The length of the search pattem also had a considerable effect on the efficiency of some of the algorithms.
The results of an experiment illustrating this effect are shown in Figure 4.6.

The experiment revealed that Binary Search, Suffix Arrays and q-grams were unaffected by pattern
length. Interestingly, for patterns of length one, these three algorithms do not require any comparisons.
This is due to the use of theM array, which can be used to identify the first and last positions in the sorted
array of any character with only two array lookups (see Section 3.2) and thus, the location of any pattern
containing just one character. This is not reflected in the experimental results because there are remarkably
few comparisons required even for large patterns.

Search times for decompress-then-search and Compressed-Domain Boyer-Moore were reduced ini­
tially as the pattern size increased, but eventually reached an asymptote. Both algorithms are based on
Boyer-Moore, which requires 0(~) comparisons to execute a search. Thus, as m increased, the time was
reduced. Before searching begins, however, the text must be decompressed, or arrays must be constructed.
Therefore, no matter how large the pattern is, search time cannot drop below the time required to complete
the initial setup. Furthennore, when searching for patterns of length one, decompress-then-search was
more efficient then Compressed-Domain Boyer-Moore. In Section 4.2.1, it was shown that decompress­
then-search has benefit~ when many comparisons are required, which is the case for small values of m.

The efficiency of the FM-index also increased with pattern length, but for a different reason. Search
times to locate all occurrences of patterns with lengths one and two are not displayed on the graph but
were, on average, 218 seconds and 77 seconds, respectively. Section 4.2.1 showed that the FM-index is
highly dependent on the number of occurrences of the search pattern. A small pattern is likely to appear in
the text more often then a longer one, so sho11 pattems usually produce a poor perfonnance. For example,
a pattern with a length of one is just a single character from the alphabet and is used often throughout the
text. A pattern with a length of 100 will fonn a large part of a sentence and is unlikely to be repeated again
in the text.

34 CHAPTER4. EXPERIMENTALRESULTS

4.3 Memory Usage

The experiment on file size in Section 4.2.3 showed that the memmy requirement of an algorithm is im­
portant to its performance because searching becomes incredibly inefficient when it exceeds the resources
of the computer.

Excluding the FM-index, the search algorithms require the use of a number of indexing arrays that are
created before searching begins and are stored temporarily in memory. The size of many of these arrays is
proportional to the length of the text. The smaller aiTays (K and M), of size 0(1 L 1), do not require much
memory and will be ignored here.

The arrays that are actually used to perform searches will be referred to as search arrays. Others, which
are only used to aid the construction of the search arrays, will be referred to as construction arrays. One
further categmy is overwritten arrays (Section 3.6.1), which is actually a subset of construction arrays.
When creating a search array from an overwritten aiTay, the elements of the overwritten array are accessed
in the same order as the search array is created. Thus, it is possible to wiite values for the search aiTay in
place of the entries in the overwritten array. As well as saving memory, this provides a significant improve­
ment to the search time due to a reduction in cache misses, as desciibed in Section 4.5.1. Furthetmore, in
Section 4.2.3 we found that the memory usage is proportional to file size, and that if the memmy resources
of the computer are exceeded, searching becomes impractically slow. Thus, with the reduced memory re­
quirement, it is possible to efficiently search larger files that would have otherwise surpassed the memory
limit.

The arrays used by each algorithm are listed in Table 4.3 and are separated into the categories that
describe their purpose. The different purposes lead to two measurements of memory usage - the search
requirement, which includes only the search arrays; and the the maximum requirement, which specifies
the largest amount of memmy used concurrently and usually involves most of the construction aiTays and
search arrays. Although the maximum usage dictates the overall search performance, as long as the search
requirement is below the resource limit, multiple searches may be performed efficiently after the necessary
search arrays are available.

The values for both types of memmy requirements are also given in Table 4.3 and assume that arrays
storing characters (F, L and T) use 1-byte entries and the remaining arrays store 4-byte integers. For
decompress-then-search and Binary Search, the maximum requirement consists of all of arrays that they
use. The other online algorithms can achieve an optimal maximum requirement through the use of overwrit­
ten arrays and by freeing memory as soon as it is no longer needed. For q-grams and Compressed-Domain
Boyer-Moore, this process involves freeing L after K has been created. Compressed-Domain Boyer-Moore
must also create Hr and then free W before beginning the construction of F. Furthermore, C and W must
be implemented as overwritten arrays for Suffix Arrays and q-grams, respectively.

Thus, the online algorithms have a maximum memmy requirement between 6n and 9n bytes and a
search requirement between n and 9n bytes. These requirements are viable for small files; for example, 36
megabytes is needed at most, to search the 4 megabyte file used in many of the experiments in this chapter.
A larger 128 megabyte file, however, would need more than a gigabyte of memory in the worst cases. In
contrast, the offline approach of the FM-index uses just one kilobyte regardless of file size because it is
able to search with only one bucket decompressed at a time. The remaining data is stored on disk until it is
needed.

Section 4.2.2 described an application that does not need to locate the position of matches, but instead
counts the number of occurrences of a pattern. In this situation, Binary Search was able to operate without
the I array, reducing both the maximum memory usage and memory required for searching to 5n bytes.

4.4 Array Construction

Previous expeiiments in this chapter have shown that the total operation time of an algorithm is highly
dependent on the time required to create the indexing arrays used by that algorithm. In fact, for Binary
Search, Suffix Arrays and q-grams, the total operation time is almost entirely due to array construction.
The FM-index is an exception because it constructs the necessaty indexes during the compression stage to
save time when searching, and will therefore be ignored in this section.

4.5. EVALUAI10N OF ALGORITHM IMPROVEMENTS 35

Search Construction Memory for Maximum
Algorithm Arrays Arrays Searching Memmy

Decompress-then-search T L,W n 6n
Compressed-Domain BM F,Hr L,W 5n 8n
Binary Search I,L,W 9n 9n
Suffix Arrays I,T C,L 5n 6n
q-grams F,Hr,I L,W 9n 9n
FM-index 1 Bucket 1 KB 1 KB

Table 4.3: Memmy requirements of the search algorithms.

Figure 4.7 shows the arrays used by each algorithm and indicates the time required to construct them
from the compressed bible. txt file. The average time to search for one pattern is indicated in grey,
although for some algorithms this search time was insignificant and is not visible on the diagram. All
indicated times increased linearly as file size increased, with the ratios between array construction times
remaining constant for all sizes.

All algorithms require L, the BWT pennutation of the file that was compressed. The construction of
L involves reading the compressed file from disk, then reversing the arithmetic coding, run length coding
and move-to-front coding that was originally used to compress L. Each algorithm also uses K and M, both
of which can be created relatively quickly in comparison to other arrays. They are primarily used in the
construction of W or C and have therefore been included in the cost of those arrays.

Usage of the remaining arrays va1ies, and is the cause of the difference in performances of the algo­
rithms. In particular, decompress-then-search and Suffix Arrays both use T. While producing T, however,
Suffix Arrays simultaneously creates I. This takes additional time but makes searching considerably more
efficient (see Section 4.2.1) so that the first search, and subsequent searches, were performed almost in­
stantly. In contrast, the first search by decompress-then-search took almost the same amount of time as
the construction of I in Suffix Arrays, so that the time to search for a single pattern was similar for both
algorithms. With the availability of I, however, multiple pattern searches were more efficient.with Suffix
Arrays. A similar situation occurs between Compressed-Domain Boyer-Moore and q-grams. Both use Hr,
but q-grams constructs I at the same time to increase search perfmmance later. For reasons discussed in
Section 4.5.1, the cost of creating Hr is lower than that ofT which means that, even though they also
require F, Compressed-Domain Boyer-Moore and q-grams were more efficient for a single search than
decompress-then-search and Suffix Arrays.

The last algorithm is Binmy Search. It also constructs I to make searching more efficient, but performs
comparisons while searching using W instead of the Hr or T arrays used by other algorithms. Because the
most efficient approach for creating I involves ove1writing W, it is is necessary for Binary Search to create
a second copy of W (see Section 3.6.1). This additional time to construct the second copy made it slower
than the algorithms that use Hr, but it was still more efficient than those that use T.

4.5 Evaluation of Algorithm Improvements

In Section 3.6, we proposed some modifications to improve the perfmmance of four of the search algo­
rithms. These modifications are evaluated in the following sections, with Section 4 .5.1 exploring the effect
of overwritten arrays on Binary Search, Suffix An·ays and q-grams, and Section 4.5.2 assessing the perfor­
mance of the Modified FM-index.

4.5.1 Overwritten Arrays

Overwritten arrays were introduced in Section 3.6.1 as a mechanism for reducing the maximum memory
requirement of Suffix Arrays and q-grams by writing the I array over C or W. Table 4.3 shows that,
when using overwritten aJTays, their maximum memory requirements are 6n and 9n, respectively. Without
ove1writing however, the additional storage of I, which requires 4n bytes, produces a total requirement of

36 CHAPTER 4. EXPERIMENTAL RESULTS

File Binary Search Suffix Arrays q-grams
Size Original Optimised Original Optimised Original Optimised

1 1.14 1.00 1.21 1.01 1.17 0.98
2 2.26 1.95 2.45 1.96 2.32 1.90
4 4.59 3.88 5.12 4.03 4.71 3.81
8 9.63 8.04 11.21 8.74 9.91 7.91

16 19.9 15.95 23.63 17.97 20.25 15.61
32 44.78 34.04 53.10 38.23 46.42 33.38

Table 4.4: Search times for the original and optimised versions of Binary Search, Suffix Arrays and
q-grams. File size is in megabytes and time is in seconds.

1 On bytes for Suffix Arrays and 13n bytes for q-grams. Thus, overwritten arrays provide a saving of 40%
and 31%, respectively.

It was also noted that overwritten arrays increased the search petformance of the algorithms. Further­
more, it was shown how the concept can be included in Binary Search to improve its performance as well.
Table 4.4 illustrates the effect of the optimisation on these three algorithms when searching the files used
in Section 4.2.3 for the file size experiment. For the results shown, there was an average improvement of
17% for Binary Search, 22% for Suffix Arrays and 21% for q-grams, with the improvements increasing as
file size increased.

To understand to reason for this improvement, it is first useful to consider the cause of the variation in
construction times of the different arrays. Although all anays are constructed in O(n) time, the actual times
differ considerably. This is largely due to the order in which the arrays are created. When constructing
anays in a sequential manner (C, F, Hr and T), that is, statiing with the first element and progressing
through the following elements in order (or, in the case ofT, in the reverse order from the last element),
blocks of the array are read into the CPU cache and can be accessed and modified from there. Creation
by means of a non-sequential manner (I and W) results in many cache misses, affecting performance
considerably because the memory must be accessed for almost evety element produced. For instance,
the code that produces Hr and I (shown combined in Algorithm 2.4) is almost identical, but, without
overwriting optimisation, execution took 0.80 and 1.63 seconds respectively. There is also considerable
variation among sequentially created anays. For instance, the 0.80 second creation time of Hr was slower
than that ofF or C, which took 0.08 and 0.20 seconds respectively. Although Hr is created sequentially, its
values are calculated from the entries in W, and those entries are accessed non-sequentially, again resulting
in a significant number of cache misses. Even slower was the 1.37 second construction time ofT which is
created by non-sequentially accessing two atTays: L and C.

Thus, a substantial gain is available by avoiding non-sequential use of anays. This leads to the concept
of overwritten anays for constructing I, which, using its original algorithm, is created non-sequentially by
random access to the infmmation in W. Section 3.6.1 showed that it is possible to write the elements of I
over those of W, meaning that only one array is accessed during the construction of I. Even though that
anay is used non-sequentially, the cache misses will be reduced substantially, thus decreasing the amount
of data that must be read from memory. For the text bible. txt, this reduced the construction time of I
from 1.37 seconds to 0.87 seconds, and thus, provides a significant improvement to search performance
when incorporated in the Binary Search, Suffix Anays and q-grams algorithms.

4.5.2 Modified FM-index

The Modified FM-index (Section 3.6.2) was designed to increase the speed of searching through a reduction
in the time taken to locate the position of matches. ln Section 4.2.1, we reported that the FM-index took
269 seconds to locate all 61,509 appearances of 'an' in bible. txt. The Modified FM-index achieves a
significant improvement and required just 118 seconds to perform the same task. For pattems with lower
numbers of occurrences, however, the difference in perfmmance was not as great. Fmther experiments
revealed that when the pattern occuned less than one thousand times, the Modified FM-index was actually

4.5. EVALUATION OF ALGORITHM IMPROVEMENTS

Time (seconds)
I' II I I I I II I' I I I I I I I' I I
0 l 2 3 4

Decompress-then- s e at·ch ~L;===================~c;=l T::;:;;=====:::;;;=::;-IL..JI
Compressed-Domain BM ~L~========~TJ=::=IH~r===~I:;:FI~:...,I

L w II lw I Binaty Search

Suffix Arrays

q-grams

L cIT & I I
L TJ IHr& I IFI

37

Figure 4.7: Time taken by each algorithm to construct the required indexing arrays. Regions shaded grey
indicate the search time for a single pattem.

160
-><--· FM-Inde<

--f--- Modified FM·lndc><

140

120

Vi
~ 100

~
s 80

"' E
i=

60

40

20

0 20 40 60 80 100 120 140 160 180 200

Number or Search Patterns

Figure 4.8: Search times with multiple patterns for the original FM-index and Modified FM-index.

slower. This is due to the overhead of the initial work performed by the Modified FM-index to read the
data into memmy and decompress it before searching begins. Furthermore, it is likely that most searches
would require fewer than than one thousand matches to be located, and we therefore anticipate that the
modification will decrease performance for general use.

Figure 4.8 compares the search performance of the original and modified versions based on the number
of searches petformed. The data shown for the original FM-index is same as that in Figure 4.1. The
graph reveals that, while there was some improvement when searching for a large number of patterns with
the Modified FM-index, it was not substantial. Fmihermore, like the original version, performance of the
Modified FM-index varied greatly because of its dependence on the number of occurrences of the search
pattern, and thus searching was still unacceptably slow for patterns that appeared often.

Additionally, for small numbers of patterns, the Modified FM-index was slower than the original ver­
sion. Again, this is due to the overhead of reading all the data into memory when only a small number
of occurrences are being located. It is worth noting however, that for a single pattern, a search took 2.60
seconds on average, which is still 25% faster than q-grams, the most effiecient online algorithm.

In Section 3.6.2, we also repotied that the Modified FM-index achieves better compression than then
the original FM-index because it is unnecessary to store a bucket directory, and because of the ability to
compress Land the bucket headers with more effective techniques. For the files listed in Table 4.1, the
Modified FM-index has an average compression ratio of 3.12 bits per character. While this is a 0.53 bits

38 CHAPTER 4. EXPERIMENTAL RESULTS

per character improvement over the otiginal approach, it is still substantially worse than that ofbzip2 and
bsmp due to the indexing information that must be stored.

Finally, we consider the memory requirement of the Modified FM-index. The entire L array must be
kept in memory, requiring n bytes. It is also necessary to store an array containing the information for the
marked rows. With 2% of the rows marked, there are 0.02n entries in this array, each stored in a 4-byte
integer, and thus, contributing 0.08n bytes to the memmy usage. The other structures that are keep in
memory are the bucket and superbucket headers. Each header has I I I entries and, assuming the alphabet
has 256 character, requires 1024 bytes. There will be 1 6~4 bucket headers and 16~84 superbucket headers,
giving a total of 1.0625n bytes for all headers. Thus, the overall memory usage for the Modified FM-index
is 2.1425n bytes for both the maximum and searching requirements. When compared to the requirements
of other algorithms, shown in Table 4.3, we can see that it is considerably larger than the constant one
kilobyte used by the original FM-index, but is almost one third of the maximum requirement of the best
online algorithms. Fut1hermore, in situations where search time is reduced, if there is enough memory
available, it is worthwhile exploiting the modification to efficiently utilise resources.

Chapter 5

Conclusion

We have provided an evaluation of five approaches to searching BWT compressed files: Compressed­
Domain Boyer-Moore, Bina1y Search, Suffix Arrays, q-grams and the FM-index. A qualitative summary
of their characteristics is given in Table 5.1. Ratings for the search pe1formance of the FM-index are based
on its average pe1fonnance for the given situation.

The FM-index is an offline approach, which means that it creates indexing information that it stores
with the compressed file at compressio'n time. This information is used to increase search performance,
and allowed the FM-index to achieve the fastest results, on average, when searching for a small number of
patterns. Its use of the indexes to locate the positions in which the matches occur in the text is inefficient,
however, and for a pattern that appeared in the text often, or for a large number of searches, which also
involved locating a large number of matches, it was the slowest approach.

The remaining algorithms can be classified as online because they store only the compressed data. This
approach requires less storage space than the offline approach, and in fact, provides a compression ratio
similar to that of production-quality compression programs. To perform a search, however, it is necessary to
create indexing structures, in the fonn of temporary arrays, in memory. After the arrays have been created,
Binary Search, Suffix Arrays and q-grams are able to perform many searches almost instantly using a
binary search technique that requires only O(m log 11) comparisons per search. The slowest aspect of these
algorithms is therefore the constmction of the indexing arrays. In Section 3 .6.1, we introduced a technique
that reduced this constmction time for the three algorithms by around 20%. With this improvement, q­
grams was always the fastest online algorithm. For a single search, Compressed-Domain Boyer-Moore
provided similar results; however, unlike the other three online algorithms, its perfmmance deteriorated
significantly as the number of searches increased.

The biggest disadvantage of the online algorithms is their memory usage. In Section 3.6.1, we pro­
vided an approach for creating the indexing arrays that reduces the memory requirements of Suffix Arrays
and q-grams by 40% and 31%, respectively. However, q-grams, which consistently produced the fastest
search times, still requires 911 bytes of memory, where 11 is the size of the uncompressed file. For a small
decrease in speed, the Suffix Anays algmithm, which requires only 611 bytes, provides a useful alternative.
Even this amount of memory is excessive for large files, however, and if the memory requirement exceeds
the available resources of the computer, the algorithms become impractically slow. In contrast, the FM­
index accesses the necessary indexing information from disk only when it is needed, and therefore uses
remarkably small amounts of memory, even for large files.

Finally, we note that the FM-index is particularly suited to applications that only require the appear­
ances of a pattern to be counted, rather than also locating the positions in which they occur. Because it .
avoids the inefficient location process, the FM-index is able to return counts almost instantly, regardless of
the number of patterns that the counts are obtained for. Binary Search also works better for this style of
application, because it requires fewer indexing arrays to be constmcted. Creating fewer aiTays saves time,
so its performance surpassed that of q-grams, but it was still significantly slower than the FM-index.

39

40 CHAPTERS. CONCLUSION

Memory Single Multiple Single
Algorithm Compression Usage Search Searches Count

Compressed-Domain BM high high moderate slow moderate
Binary Search high high moderate fast moderate
Suffix AITays high high moderate fast moderate
q-grams high high moderate fast moderate
FM-index moderate low fast slow fast
decompress-then-search high high moderate slow moderate

Table 5.1: Summa1y of algorithm characteristics.

5.1 Future Work

Currently, the memory usage of the online algorithms is dependent on the size of the input file. If the file
exceeds a particular size, the memory requirement of the search programs can exceed the resources of the
computer and searching becomes extraordinarily inefficient. The problem could be avoided, however, by
introducing a blocking technique similar to that ofbzip2 (Seward 2002), where the input file is segmented
into blocks, and each block is permuted and compressed independent of the others. Thus, when searching,
it would be necessary to bring only one block into memmy at a time so that memory usage is dependent
on the block size instead of file size. Furthermore, Seward (2002) has shown that there is li.ttle advantage,
in terms of compression ratio, to using block sizes larger than 900 kilobytes. Searching a blocked file with
Binary Search, Suffix Arrays or q-grams; however, requires individual searches to be applied to each block
separately, and it also would be necessary to consider matches that cross block boundaries.

Our evaluations have only considered exact pattern matching approaches where a matching substring
must be identical to the search pattern. A common variation is approximate pattern matching. A k­
approximate match occurs when the edit distance between the search pattem and a substring in the text
is less thank. The edit distance is calculated from the number of character insertions, deletions and substi­
tutions required to change one string to the other (Navarro 2001). Adjeroh eta!. (2002) describe a technique

that allows the k-approximate problem to be solved with q-grams in O(n +I I I log I I I+ 11~2 log rfj + ak)
time on average, with o: ~ n. Due to the similarities between q-grams, Binmy Search and Suffix Arrays
that were identified in Chapter 3, it is likely that this approximate matching technique of q-grams could
be adapted for the two additional algorithms. Once developed, an evaluation of these pattern matching
variants would also be useful.

Acknowledgements

I would like to thank Tim Bell for his guidance throughout the year, Paolo Fenagina for his help in under­
standing the finer details of the FM -index and Stacey Mickelbart for providing technical writing assistance.
Thanks also go to my family for the supp01t they have given me, and to the 2002 COSC fourth year stu­
dents, who made this year enjoyable.

Bibliography

Adjeroh, D., Mukhetjee, A., Bell, T., Powell, M. & Zhang, N. (2002), 'Pattern matching in BWT­
compressed text', Proceedings, Data Compression Conference p. 445.

Amir, A., Benson, G. & Farach, M. (1996), 'Let sleeping files lie: Pattern matching in Z-compressed files',
.Joumal of Computer and System Sciences 52, 299-307.

Arnold, R. & Bell, T. C. (1997), A corpus for the evaluation of Jossless compression algorithms, in 'De­
signs, Codes and Cryptography', pp. 201-210.

Bell, T., Adjeroh, D. & Mukherjee, A. (2001), Pattern matching in compressed text and images, Technical
report, Department of Computer Science, University of Canterbury.

Bell, T. & Powell, M. (2002), 'The Canterbury Corpus', http: //corpus. canterbury. ac .nz.

Bell, T., Powell, M., Mukherjee, A. & Adjeroh, D. (2002), 'Searching BWT compressed text with the
Boyer-Moore algorithm and binary search', Proceedings, Data Compression Conference pp. 112-
121.

Bentley, J. L., Sleator, D. D., Tarjan, R. E. & Wei, V. (1986), 'A locally adaptive data compression scheme',
Communications of the ACM29(4), 320-330.

Boyer, R. & Moore, J. (1977), 'A fast string searching algorithm', Communications of the ACM
20(10), 762-772.

Bunke, H. & Csirik, J. (1993), 'An algorithm for matching tun-length coded strings', Computing 50, 297-
314.

Bunke, H. & Csirik, J. (1995), 'An improved algorithm for computing the edit distance of tun-length coded
strings', Information Processing Letters 54, 93-96.

Burrows, M. & Wheeler, D. (1994), A block-sorting Jossless data compression algorithm, Technical report,
Digital Equipment Corporation, Palo Alto, California.

Cleary, J. & Witten, I. (1984), 'Data compression using adaptive coding and partial string matching', IEEE
Transactions on Communications COM-32, 396-402.

Farach, M. & Thotup, M. (1998), 'String matching in Lempei-Ziv compressed strings', Algorithmica
20, 3 88-404.

Ferragina, P. & Manzini, G. (2000), 'Opportunistic data sttuctures with applications', Proceedings, 41st
IEEE Symposium on Foundations of Computer Science, FOCS 2000 pp. 390-398.

Ferragina, P. & Manzini, G. (200 1), 'An experimental study of an opportunistic index', Proceedings, I 2th
ACM-SIAM Symposium on Discrete Algorithms, SODA 2001 pp. 269-278.

Grossi, R. & Vitter, J. (2000), 'Compressed suffix arrays and suffix trees with applications to text indexing
and string matching', Pmceedings, 32nd ACM Symposium on Theory of Computing pp. 397-406.

41

42 BIBLIOGRAPHY

Gusfield, D. (1997), Algorithms on strings, trees, and sequences: computer science and computational
biology, Cambridge University Press.

Manber, U. & Myers, G. (1993), 'Suffix arrays: A new method for on-line string searches', SIAM Journal
of Computing 22(5), 935-948.

Moura, E. S., NavatTo, G., Ziviani, N. & Baeza-Yates, R. (2000), 'Fast and flexible word searching on
compressed text', ACM Transactions on Information Systems 18(2), 113-139.

Navarro, G. (2001), 'A guided tour of approximate string matching', ACM Computing Sun,eys 33(1), 31-
88.

Navarro, G. & Ra:ffinot, M. (1999), 'A general practical approach to pattern matching over Ziv-Lempel
compressed text', Proceedings, Combinatorial Pattern Matching, LNCS 1645 pp. 14-36.

Powell, M. (2001), Compressed-Domain Pattem Matching with the Burrows-Wheeler Transform, Honours
report, Department of Computer Science, University of Canterbury.

Sadakane, K. (2000a), 'Compressed text databases with efficient query algorithms based on the compressed
suffix array', Proceedings, ISAAC 2000 pp. 410-421.

Sadakane, K. (2000b), Unifying Text Search and Compression Suffix Sorting, Block Sorting and Suffix
Arrays, PhD thesis, Graduate School oflnformation Science, University of Tokyo.

Sadakane, K. & Imai, H. (1999), 'A cpoperative distributed text database management method unify­
ing search and compression based on the Burrows-Wheeler Transform', Proceedings, Advances in
Database Technology, LNCS 1552 pp. 434-445.

Seward, J. (2002), 'The bzip2 and libbzip2 official home page',
http://sources.redhat.com/bzip2/index.html.

Shibata, Y., Kida, T., Fukamachi, S., Iakeda, M., Shinohara, A., Shinohara, T. & Arikawa, S. (2001),
'Speeding up pattem matching by text compression', Transactions of Information Processing Society
of Japan 42(3), 370-384.

Shibata, Y., Takeda, M., Shinohara, A. & Arikawa, S. (1999), 'Pattern matching in text compressed by
using antidictionaries', Proceedings, Combinatorial Pattern Matching, LNCS 1645 pp. 37-49.

Sun Microsystems (2002), 'Java Development Kit', http: I /java. sun. com/j2se/index. html.

TREC (2002), 'Official webpage for TREC - Text REtrieval Conference series.
http: I /tree. nist. gov'.

Weiner, P. (1973), 'Linear pattern matching algorithm', Proceedings, 14th IEEE Symposium on Switching
and Automata Theory 21, 1-11.

Wheeler, D. (1997), 'Upgrading bred with multiple tables',
ftp://ftp.cl.cam.ac.uk/users/djw3/bred3.ps.

Witten, I. H., Moffat, A. & Bell, T. C. (1999), Managing Gigabytes: Compressing and Indexing Documents
and Images, second edition edn, Morgan Kaufman.

Ziviani, N., Moura, E. S., Navarro, G. & Baeza-Yates, R. (2000), 'Compression: A key for next generation
text retrieval systems', IE'EE Computer 33(11), 37-44.

	Abstract
	Contents
	Chapter 1
	1.1 Offline and Online Algorithms
	1.2 Notation

	Chapter 2
	2.1 Decoding Implementation
	2.2 Auxiliary Arrays
	2.3 Compressing the BWT Output

	Chapter 3
	3.1 Compressed-Domain Boyer-Moore
	3.2 Binary Search
	3.3 Suffix Arrays
	3.4 q-grams
	3.5 FM-index
	3.6 Algorithm Improvements

	Chapter 4
	4.1 Compression Performance
	4.2 Search Performance
	4.3 Memory Usage
	4.4 Array Construction
	4.5 Evaluation of Algorithm Improvements

	Chapter 5
	5.1 Future Work

	Bibliography

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 20.37, 727.47 Width 38.80 Height 28.13 points
 Origin: bottom left

 1
 0
 BL

 Both
 AllDoc

 CurrentAVDoc

 20.3691 727.4653 38.7982 28.1287

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 42
 41
 42

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 55.29, 689.64 Width 28.13 Height 23.28 points
 Mask co-ordinates: Horizontal, vertical offset 63.05, 626.59 Width 27.16 Height 26.19 points
 Mask co-ordinates: Horizontal, vertical offset 1.94, 605.25 Width 11.64 Height 28.13 points
 Mask co-ordinates: Horizontal, vertical offset 4.85, 202.72 Width 28.13 Height 29.10 points
 Mask co-ordinates: Horizontal, vertical offset 520.87, 372.46 Width 12.61 Height 30.07 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 55.2875 689.637 28.1287 23.2789 63.0471 626.5899 27.1587 26.1888 1.9399 605.2509 11.6395 28.1287 4.8498 202.7195 28.1287 29.0986 520.866 372.4616 12.6094 30.0686

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 5
 42
 5
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 485.95, 575.18 Width 66.93 Height 47.53 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 485.9476 575.1823 66.9269 47.5278

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 7
 42
 7
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 508.26, 570.33 Width 0.97 Height 0.97 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 508.2566 570.3325 0.97 0.9699

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 7
 42
 7
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 23.28, 215.33 Width 18.43 Height 21.34 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 23.2789 215.3289 18.4291 21.3391

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 13
 42
 13
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 538.33, 813.79 Width 20.37 Height 21.34 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 538.3252 813.7913 20.3691 21.339

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 17
 42
 17
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 537.36, 812.82 Width 62.08 Height 24.25 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 537.3552 812.8213 62.0771 24.2489

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 19
 42
 19
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 521.84, 143.55 Width 70.81 Height 144.52 points
 Mask co-ordinates: Horizontal, vertical offset 516.99, 175.56 Width 20.37 Height 48.50 points
 Mask co-ordinates: Horizontal, vertical offset 541.24, 797.30 Width 47.53 Height 40.74 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 521.8359 143.5522 70.8067 144.5233 516.9862 175.5607 20.369 48.4977 541.235 797.302 47.5278 40.7381

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 21
 42
 21
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 4.85, 701.28 Width 17.46 Height 45.59 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 4.8498 701.2765 17.4592 45.5879

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 21
 42
 21
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 23 to page 23
 Mask co-ordinates: Left bottom (3.53 7.76) Right top (34.57 43.65) points

 0
 3.5273 7.7596 34.5659 43.648

 23
 SubDoc
 23

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 22
 42
 22
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 23 to page 23
 Mask co-ordinates: Left bottom (567.07 95.06) Right top (596.17 140.64) points

 0
 567.0713 95.0556 596.17 140.6435

 23
 SubDoc
 23

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 22
 42
 22
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 22 to page 22
 Mask co-ordinates: Left bottom (60.75 341.42) Right top (61.72 341.42) points

 0
 60.7547 341.4243 61.7246 341.4243

 22
 SubDoc
 22

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 22
 42
 21
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 537.36, 807.00 Width 26.19 Height 32.98 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 537.3552 807.0016 26.1888 32.9785

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 23
 42
 23
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 5.82, 807.97 Width 92.15 Height 30.07 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 5.8197 807.9715 92.1458 30.0686

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 24
 42
 24
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 416.11, 759.47 Width 127.06 Height 59.17 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 416.1108 759.4738 127.0641 59.1673

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 24
 42
 24
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 0.97, 807.00 Width 645.02 Height 31.04 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 0.97 807.0016 645.0202 31.0386

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 25
 42
 25
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 3.88, 806.03 Width 84.39 Height 32.98 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 3.8798 806.0316 84.3861 32.9785

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 26
 42
 26
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 138.70, 772.08 Width 164.89 Height 56.26 points
 Mask co-ordinates: Horizontal, vertical offset 5.82, 702.25 Width 39.77 Height 64.99 points
 Mask co-ordinates: Horizontal, vertical offset 544.14, 804.09 Width 58.20 Height 29.10 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 138.7036 772.0832 164.8924 56.2574 5.8197 702.2464 39.7682 64.987 544.1449 804.0917 58.1973 29.0987

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 27
 42
 27
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -2.91, 708.07 Width 33.95 Height 121.24 points
 Mask co-ordinates: Horizontal, vertical offset 41.71, 806.03 Width 43.65 Height 29.10 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 -2.9099 708.0662 33.9484 121.2444 41.7081 806.0316 43.648 29.0987

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 28
 42
 28
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 5.82, 718.74 Width 20.37 Height 36.86 points
 Mask co-ordinates: Horizontal, vertical offset 535.42, 803.12 Width 75.66 Height 31.04 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 5.8197 718.7357 20.3691 36.8583 535.4153 803.1218 75.6565 31.0386

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 29
 42
 29
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 31 to page 31
 Mask co-ordinates: Left bottom (502.08 4.85) Right top (567.07 36.86) points

 0
 502.0843 4.8498 567.0713 36.8583

 31
 SubDoc
 31

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 30
 42
 30
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 31 to page 31
 Mask co-ordinates: Left bottom (551.55 5.82) Right top (597.14 146.46) points

 0
 551.552 5.8197 597.1399 146.4632

 31
 SubDoc
 31

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 30
 42
 30
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 30 to page 30
 Mask co-ordinates: Left bottom (59.78 348.21) Right top (61.72 349.18) points

 0
 59.7847 348.2139 61.7246 349.1839

 30
 SubDoc
 30

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 30
 42
 29
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -1.94, 799.24 Width 622.71 Height 41.71 points
 Mask co-ordinates: Horizontal, vertical offset -4.85, 696.43 Width 33.95 Height 82.45 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 -1.9399 799.2419 622.7113 41.7081 -4.8498 696.4267 33.9484 82.4462

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 31
 42
 31
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 1.94, 784.69 Width 615.92 Height 51.41 points
 Mask co-ordinates: Horizontal, vertical offset -1.94, 688.67 Width 47.53 Height 102.82 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 1.9399 784.6926 615.9216 51.4076 -1.9399 688.6671 47.5278 102.8152

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 32
 42
 32
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 3.88, 698.37 Width 32.01 Height 87.30 points
 Mask co-ordinates: Horizontal, vertical offset 270.62, 783.72 Width 484.01 Height 52.38 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 3.8798 698.3666 32.0085 87.296 270.6175 783.7227 484.0077 52.3776

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 33
 42
 33
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 567.42, 165.86 Width 60.14 Height 73.72 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 567.4238 165.8611 60.1372 73.7166

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 33
 42
 33
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -0.97, 793.42 Width 92.15 Height 42.68 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 -0.97 793.4222 92.1458 42.678

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 34
 42
 34
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 529.60, 801.18 Width 107.67 Height 42.68 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 529.5956 801.1819 107.665 42.678

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 35
 42
 35
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 32.01, 807.00 Width 60.14 Height 34.92 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 32.0085 807.0016 60.1372 34.9184

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 36
 42
 36
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 525.72, 790.51 Width 93.12 Height 40.74 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 525.7157 790.5123 93.1157 40.7381

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 37
 42
 37
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 456.85, 304.56 Width 134.82 Height 163.92 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 456.8489 304.5648 134.8238 163.9225

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 37
 42
 37
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 9.70, 803.12 Width 90.21 Height 31.04 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 9.6995 803.1218 90.2059 31.0386

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 38
 42
 38
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 110.57, 780.81 Width 538.33 Height 57.23 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 110.5749 780.8128 538.3252 57.2274

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 39
 42
 39
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 9.70, 801.18 Width 65.96 Height 37.83 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 9.6995 801.1819 65.957 37.8283

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 40
 42
 40
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -1.94, 765.29 Width 647.93 Height 76.63 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 -1.9399 765.2935 647.9301 76.6265

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 41
 42
 41
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -12.61, 566.45 Width 58.20 Height 73.72 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 -12.6094 566.4527 58.1973 73.7166

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 1
 42
 1
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 532.51, 799.24 Width 73.72 Height 32.98 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 532.5054 799.2419 73.7166 32.9785

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 3
 42
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 496.62, 796.33 Width 131.91 Height 36.86 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 496.6171 796.3321 131.9139 36.8583

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 5
 42
 5
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 438.42, 660.54 Width 138.70 Height 126.09 points
 Mask co-ordinates: Horizontal, vertical offset 328.81, 713.89 Width 209.51 Height 127.06 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 438.4198 660.5383 138.7036 126.0942 328.8148 713.8859 209.5103 127.0641

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 6
 42
 6
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 414.17, 624.65 Width 118.33 Height 109.60 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 414.1709 624.65 118.3345 109.6049

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 6
 42
 6
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 166.83, 772.08 Width 41.71 Height 30.07 points
 Mask co-ordinates: Horizontal, vertical offset 187.20, 808.94 Width 37.83 Height 17.46 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 166.8323 772.0832 41.7081 30.0686 187.2014 808.9415 37.8283 17.4592

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 9
 42
 9
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 324.94, 101.84 Width 69.84 Height 68.87 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 324.935 101.8441 69.8368 68.8668

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 10
 42
 10
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 0.00, 774.99 Width 292.93 Height 64.99 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 0 774.9931 292.9265 64.987

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 14
 42
 14
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -0.97, 774.02 Width 627.56 Height 59.17 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 -0.97 774.0231 627.5611 59.1673

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 15
 42
 15
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 109.60, 779.84 Width 219.21 Height 54.32 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 109.6049 779.8428 219.2099 54.3175

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 39
 42
 39
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset -13.58, 652.78 Width 640.17 Height 183.32 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 -13.5793 652.7787 640.1704 183.3215

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 42
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move left by 8.50 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1228
 330
 Fixed
 Left
 8.5039
 0.0000

 Both
 31
 CurrentPage
 54

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 0
 42
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move left by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1228
 330
 Fixed
 Left
 5.6693
 0.0000

 Both
 31
 CurrentPage
 54

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 2
 42
 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move left by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1228
 330
 Fixed
 Left
 5.6693
 0.0000

 Both
 31
 CurrentPage
 54

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 2
 42
 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move left by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1228
 330
 Fixed
 Left
 5.6693
 0.0000

 Both
 31
 CurrentPage
 54

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 4
 42
 4
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move right by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1228
 330
 Fixed
 Right
 5.6693
 0.0000

 Both
 31
 CurrentPage
 54

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 2
 42
 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move left by 2.83 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1228
 330
 Fixed
 Left
 2.8346
 0.0000

 Both
 31
 CurrentPage
 54

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 2
 42
 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move left by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1228
 330
 Fixed
 Left
 5.6693
 0.0000

 Both
 31
 CurrentPage
 54

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 6
 42
 6
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move left by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1228
 330
 Fixed
 Left
 5.6693
 0.0000

 Both
 31
 CurrentPage
 54

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 12
 42
 12
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move left by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1228
 330
 Fixed
 Left
 5.6693
 0.0000

 Both
 31
 CurrentPage
 54

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 14
 42
 14
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move left by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1228
 330
 Fixed
 Left
 5.6693
 0.0000

 Both
 31
 CurrentPage
 54

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 38
 42
 38
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move left by 5.67 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1228
 330

 Fixed
 Left
 5.6693
 0.0000

 Both
 31
 CurrentPage
 54

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0e
 Quite Imposing Plus 3
 1

 18
 42
 18
 1

 1

 HistoryList_V1
 qi2base

