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Abstract 

 

Mechanical ventilation (MV) is one of the most difficult, costly and variably delivered 

therapies for Acute Respiratory Distress Syndrome (ARDS) and respiratory failure patients in 

the intensive care unit (ICU). These patients experience severe widespread breathing 

problems and require MV for breathing support. However, conventional MV does not 

provide enough real-time information to guide or individualize therapy, and suboptimal MV 

settings increase the risk of further lung injury and complications.  

 

In particular, positive end expiratory pressure (PEEP) is applied during MV to aid recovery 

by improving gas exchange and prevent de-recruitment of lung units. However, selection of 

patient-specific, optimal PEEP remains widely debated, as no standard approaches exist for 

setting MV. Clinicians often use general approaches or experience to select PEEP, increasing 

the variability and risk of care, while reducing or eliminating any patient-specific aspect of 

care. Thus, physiological mathematical lung models of respiratory mechanics are required, if 

they are suitable to be used to optimise MV settings to improve critically ill patient outcomes.  

 

The aims of this research are to investigate and develop new, extended models of lung 

mechanics for ARDS and respiratory failure patients. In particular, to create model-based 

measures of the potential impact to healthy lung units of changing MV therapy parameters. 

This goal requires rapid forms of parameter identification to define patient-specific model 

parameters from clinical data that can be used as complementary metrics in guiding and 

individualising MV.  
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The first model, an airway branching model (ABM) was developed based on classical fluid 

mechanics models that are commonly used. Typically, they are not feasible for real-time 

applications. Thus, there is a need to develop an accurate, effective, yet simpler, ABM model 

that can be applied at the bed-side. To address this issue, a patient-specific airway branching 

(ABMps) model is developed to measure the airway pressure drop at every physiological 

airway branch with an extended patient-specific physiological dimension that is unique for 

each patient and can evolve over time with new data. With this patient-specific dimension 

(α), the ABMps is able to provide clinical insight on patient-specific physiological 

conditions. Using the retrospective clinical data from the Christchurch Hospital, it was found 

that α ranges from 0.45-0.66 for ARDS patients, which is smaller than normal healthy people 

indicating severity of condition. Hence, the airway condition of a patient can be characterised 

and evolve over time to provide useful patient-specific clinical guidance. 

 

Next, a model using only the expiratory data of the breathing cycle is developed and 

presented that is potentially useful during clinical respiratory mechanics monitoring to guide 

MV. In particular, the expiratory time constant parameter, (K), can provide unique 

information related to respiratory system elastance in MV patients. In this thesis, the 

extended model is tested using clinical data from ARDS patients and investigates the 

relationship between the expiratory time constant and model-based inspiratory respiratory 

system elastance. The goal is to use this relation to titrate patient-specific PEEP, which can 

help prevent the risk of lung over-distension and ventilation-induced injury.  

 

The third model extends the time varying elastance model to investigate the variability of this 

respiratory system elastance for MV patients. In this case, in Christchurch Hospital. With the 

proposed metric, a deeper understanding can be achieved that provides clinicians with more 
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information on how respiratory elastance varies between patients, PEEP, and ventilation time. 

This information is patient-specific and can be updated overtime, as well as used as a marker 

of patient condition.  

 

Estimating respiratory mechanics of MV patients is unreliable when patients exhibit 

spontaneous breathing (SB) efforts on top of any form of ventilator support. Most well-

known developed models are thus only suitable for fully sedated patients. Monitoring 

respiratory mechanics of SB patients requires invasive clinical protocols and equipment that 

are clinically too intensive to carry out. In this research, it was found that the variability of 

lung elastance in SB patients is due to an effective negative elastance produced by the SB 

effort that is created by the SB effort, but cannot be modelled directly. Thus, by extending the 

non-invasive time-varying elastance model to capture negative elastance, it can provide more 

consistent monitoring for SB patients by reviewing the distribution of negative elastance. 

This work thus extends capabilities of these models and quantified the level of SB efforts.  

 

Finally, due to the asynchrony, also known as reverse triggering, airway pressure can assume 

an unusual and unmodelled M-wave shaped airway pressure during the MV. This M-wave 

airway pressure is also due to the SB efforts, exhibited by patients, even when they are fully 

sedated. Hence, a model-based method to reconstruct the affected airway pressure curve is 

introduced that enables estimation of the true underlying respiratory mechanics of these 

patients, as well as quantifying SB efforts. Results show that this pressure wave 

reconstruction method was able to accurately identify the respiratory elastance, assess the 

level of SB effort, and quantify the incidence of SB effort without invasive protocols or 

interruption to care. Hence, this method is clinically useful for clinicians in determining 

optimal ventilator settings to improve patient care. 
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Overall, these tools and methods provide significant new ways to clinically manage MV 

patients in the ICU. Model-based methods offer the opportunity to protocolize and 

individualize care. Thus, the main outcomes of this work provide a step forward towards 

better, more consistent and patient-specific MV. 
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CHAPTER 1 

Introduction 

 

1.1  Acute Respiratory Distress Syndrome (ARDS) 

 

Acute respiratory distress syndrome (ARDS) is a severe form of Acute Lung Injury (ALI), 

where the lung experiences various types of injuries that lead to a respiratory failure. These 

injuries prevent the lung’s ability to exchange gas effectively, resulting in oxygen deficient 

blood, direct alveolar injury, pulmonary oedema and alveolar collapse (Ashbaugh et al. 1967; 

Bernard et al. 1994b; Kattwinkel et al. 2004; Kollef & Schuster 1995). Injuries in the lung 

also cause significant inflammation leading fluid to spill into the lung, resulting in a stiffer 

and smaller lung and reducing the overall lung volume to a so called baby lung (Gattinoni & 

Pesenti 2005; Ware & Matthay 2000). The sequel to all these effects is failure to deliver 

oxygen to other organs and tissues leading to further organ failure and increased risk of death.  

 

The cause of ARDS can be either direct or indirect. For example, pulmonary aspiration/near 

drowning, pneumonia, and smoke inhalation are several types of direct lung injury that can 

lead to ARDS. Similarly, ARDS can also be caused indirectly through the inflammatory 

response and stress due to sepsis, severe trauma to other body parts circulating fluid 

resuscitation , or massive blood transfusion (Burleson & Maki 2005; Ware & Matthay 2000).  

 

ARDS was first described in 1967 (Ashbaugh et al. 1967) and, since then, the definition of 

ARDS has evolved and varied until it was redefined in 1994 by the American-European 

Consensus Conference (AECC) (Bernard et al. 1994a). Based on this definition by the 

AECC, ARDS was characterised as the acute onset of respiratory failure, diffuse bilateral 
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infiltrates on chest radiograph, the absence of elevated left heart filling pressure determined 

either diagnostically with a pulmonary artery catheter (pulmonary artery occlusion pressure 

of < 18 mmHg) or clinically (absence of evidence of left arterial hypertension) (Bernard et al. 

1994b; Fanelli et al. 2013). If the ratio of partial pressure of arterial oxygen to the fraction of 

inspired oxygen (PaO2/FiO2) is less than 300 mmHg, the patient is diagnosed with acute lung 

injury  (ALI), and if the PaO2/FiO2 ratio is less than 200 mmHg, the patient is diagnosed with 

acute respiratory distress syndrome (ARDS) (Bernard et al. 1994b). However, confusion 

arose among clinicians regarding the AECC definition especially on the PF ratio cut off 

values of 300 and 200 mmHg (Costa & Amato 2013; Fanelli et al. 2013). Thus, the definition 

of ARDS has been revised with the aim to improve the current limitations of the AECC 

definition (Kattwinkel et al. 2004) .  

 

In 2012, ARDS was redefined, into what is now known as the Berlin definition. In particular, 

the term of Acute Lung Injury (ALI) has been removed to eliminate confusion (Kattwinkel et 

al. 2004). In the Berlin definition, it recommends to use of three categories of ARDS based 

on degree of hypoxemia; Mild ARDS (200 mmHg < PaO2/FiO2 ≤ 300 mmHg), moderate 

ARDS (100 mmHg < PaO2/FiO2 ≤ 200 mmHg), and severe ARDS (PaO2/FiO2 ≤ 100 mmHg). 

The acute time frame is also specified to be within 1 week. The lower the PaO2/FiO2 ratio, 

the less inspired oxygen getting into the blood, and thus the worse the patient’s condition.  

 

ARDS patients admitted to the intensive care unit (ICU) require mechanical ventilation (MV) 

for breathing support due to the severe arterial hypoxemia and difficulty in breathing 

(Ashbaugh et al. 1967). During the last several decades, ARDS has had a major influence on 

mortality and morbidity in ICU patients worldwide. It was reported that there are 

approximately 200,000 cases per year of ARDS in the USA (Rubenfeld et al. 2005; The 
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Acute Respiratory Distress Syndrome Network 2000) and the hospital mortality rate has been 

reported to be between 30% and 60% (Luhr et al. 1999; Manzano et al. 2005; Phua et al. 

2009; Reynolds et al. 1998; Sigurdsson et al. 2013). However, some studies have suggested 

that these mortality rates have been reduced due to the implementation of new protective 

ventilation strategies (Bernard 2005; Rubenfeld et al. 2005; Sigurdsson et al. 2013). These 

results elucidate the importance of having an optimal ventilator strategy to reduce the 

mortality rate in ARDS patients and equally reduce cost of the ICU stay at the same time.  

 

1.2  Mechanical Ventilation 

 

Since there is no specific treatment for ARDS patients, the only treatment that clinicians can 

offer is providing an environment that can aid and support ARDS patients’ recovery. 

Mechanical ventilation (MV) is currently the most prevalent treatment for ARDS patients in 

Intensive Care Unit (ICU). Although there are a range of clinical therapies suggested for 

ARDS patients, only a few of them have been proven to be clinically effective and only with 

little statistical significance (Ware & Matthay 2000). The idea of MV therapy is to assist 

patient and minimise the work of breathing (WOB) by maximising recruitment and 

oxygenation. MV provides the means of breathing support by partially or fully taking over 

the patients breathing effort. However, if ventilation settings are not properly adjusted, these 

patients are exposed to the risk of further lung injury and complications (Dreyfuss & Saumon 

1998; Slutsky 1999). Hence, setting MV is a delicate balance between too little support and 

the risk of further lung injury due to too much support.  

 

There are two primary, commonly used modes of MV typically used by clinicians. 

Specifically, pressure controlled ventilation (PCV) and volume controlled ventilation (VCV). 
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Under PCV, the Positive End-Expiratory Pressure (PEEP) and Peak Inspiratory Pressure 

(PIP) are set directly by the clinicians, and tidal volume (Vt) is as indirect result under this 

setting. Thus, the volume change during inspiration is a passive process. In contrast, under 

VCV, the PEEP and the Vt are chosen by the clinician. The Vt is set using a fixed flow rate 

since volume is the integral of flow rate with respect to time. The flow rate can be constant or 

varied during inspiration, and the PIP is an indirect result of these settings. Thus, the pressure 

change during inspiration is a passive process, in this latter mode. 

 

1.3  Mechanical Ventilation Parameters  

 

There are thus two main ventilator parameters that are clinically set, which are Positive End-

Expiratory Pressure (PEEP) and Tidal Volume (Vt). 

 

1.3.1  Tidal Volume (Vt) 

 

The tidal volume (Vt) is the volume of air delivered to the lung per breath. If it is too high, it 

will over-distend the lung and cause Ventilation Induced Lung Injury (VILI) (Caironi et al. 

2010; Chiumello et al. 2008; Slutsky 1999). In particular, VILI occurs as a result of excessive 

tidal volumes and is known as volutrauma, where VILI caused by excessive pressure is 

known as barotraumas (Chao & Scheinhorn 1996; Dreyfuss & Saumon 1992). Setting 

optimal tidal volume is important. If it is too low, it will result in an inadequate amount of 

oxygenation and atelectasis, which is damaging to the alveoli. In normal conditions, the goal 

is that Vt provides maximum gas exchange for minimum breathing effort.  Tidal volume 

relates to lung strain over the entire organ, where strain is ratio of tidal volume over 

functional residual capacity (Vt /FRC).  
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For ARDS patients, lung stress and strain may be higher compared to healthier people. Thus, 

large Vt provides higher strain with a higher risk of VILI for ARDS patients. Therefore, a 

study by ARDS network (The Acute Respiratory Distress Syndrome Network 2000) 

recommended using a lower Vt range to provide safe and lung protective strategies for MV 

patients. The study carried out by ARDS Network reported that patients ventilated with lower 

Vt (6ml-8ml/kg) resulted with lower mortality rate in ARDS patient cohort than those given 

12 ml/kg (The Acute Respiratory Distress Syndrome Network 2000). It is thus believed that 

low Vt can reduce VILI by decreasing plateau and peak pressures, and/or by stabilising 

alveoli (DiRocco et al. 2006). While most studies have similar results, there are still many 

debates about the use of low or high Vt for MV (Bruhn et al. 2011; Eichacker et al. 2002). 

 

1.3.2  Positive end expiratory pressure (PEEP) 

 

Positive end-expiratory pressure (PEEP) is applied during MV to prevent de-recruitment at 

the end of expiration by keeping unstable lung units open, and to recruit the new lung units, 

which improve oxygenation (Amato et al. 1998; Meade et al. 2008). PEEP represents the 

pressure at the end of expiration to which the lung is allowed to deflate and is greater than 

atmospheric pressure to hold open damaged lung units. The objective of PEEP is to increase 

the level of oxygenation by increasing the number of recruited alveoli by lifting the lung 

pressure at the end of expiration so that alveoli will remain open, and thus reducing the 

repetitive and damaging process of opening and collapse of these lung units to allow them to 

heal. 

 

Several studies (Briel et al. 2010; Mercat et al. 2008; Schirrmann et al. 2010) noted that with 

adequate PEEP during recruitment manoeuvres, the collapsed alveoli can be recruited to 
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improve oxygenation. However, if high pressure is applied, there are high risks of over-

distension of the already opened and still healthy alveoli. In some studies, it was found that 

compliance was lowest at highest PEEP which shows that overstretching did occur at this 

highest PEEP (Suh et al. 2003). Thus, using the highest PEEP possible is not the best solution 

for optimum ventilation therapy as it may cause more harm than good and contribute to VILI 

(Brower et al. 2004; Sundaresan & Chase 2012).  

 

There is currently no standard method for PEEP selection. Thus, clinicians often resort to 

choosing PEEP based on personal experience, intuition or generalised approach (Levy 2004). 

If too high, it risks injuring healthy lung units, and if PEEP is too low, it results in continuous 

recruitment and de-recruitment of ARDS affected alveoli and further damage. As patient 

condition is variable, these PEEP selection methods may under, or over-support patients, or 

both over time as patient condition evolves dynamically, resulting in suboptimal ventilation, 

further complicating patient condition and outcome (Pavone et al. 2007; Petersen 1983; 

Puybasset et al. 2000; Slutsky 1999; Villar et al. 2006). Thus, the optimal PEEP 

determination by clinicians remains an elusive goal. 

 

1.4  Problem in MV 

 

The major problem in MV therapy is the lack of standardised clinical protocols for adjusting 

MV settings for treating ARDS, as well in general. Currently, ventilator settings and 

protocols are strongly dependent on the experience of the clinicians, resulting in variable 

protocols with limited effectiveness over broad cohorts (Briel et al. 2010; Grasso et al. 2007; 

Hodgson et al. 2011; Meade et al. 2008). As a result, many major, general trials have failed. 

Incorrect ventilator settings can cause further lung injuries, such as barotrauma, volutrauma, 
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atelectasis and biotrauma (Chao & Scheinhorn 1996; Lipes et al. 2012; Tremblay & Slutsky 

1997). Thus, to minimise these negative effects that may negatively affect or significantly 

deteriorate the condition of ARDS patients, different approaches to setting MV need to be 

developed, proven, and implemented.  

 

While MV is the main therapy for ARDS patients, there are major concerns on the 

management of MV, especially around the length of time of using MV. The longer a patient 

remains on ventilator, the higher the chance of complications, including airway injury due to 

the endotracheal tube, as well as increased risk of ventilator-associated pneumonia (VAP). 

Several studies suggested that MV should be applied for the shortest period of time necessary 

to prevent impairment of lung function and other complications (Anzueto et al. 1997; Forel et 

al. 2012). In support, patients on MV have a mortality rate 4 times higher than non-MV 

patients (Dasta et al. 2005), which increases as length of MV increases. In addition, due to the 

length of stay in ICU, daily costs for MV patients were consistently greater compared to non-

MV patients, costing an estimated $1440 USD more per patient per day which is almost 

doubling the daily cost of an ICU patient (Davidson et al. 2014). Hence, the need for better, 

patient-specific protocols is patient-centered, as well as economic.  

 

MV therapy aims to maximise recruitment and oxygenation, while minimising the risk of 

VILI. Thus, the MV setting has to be as minimally invasive as possible by adjusting the 

optimal level of PEEP without compromising these goals. However, while the management 

strategy of ventilator still remains under debate (Amato et al. 1998), it is often difficult to 

achieve the primary goal of improving oxygenation with optimal MV settings, as well as 

ensuring that the lungs heal properly. The difficulty is compounded by the fact that each 

patient has a unique disease state and evolution. 
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One of the emerging methods to achieve the objective of optimal ventilator setting is through 

model-based methods (Sundaresan et al. 2011a; Yuta et al. 2004). Model-based methods are 

capable of providing unique insight to patient-specific condition and response to treatment. 

These methods are relatively non-invasive or non-additionally-invasive, and have shown 

promising outcome in guiding therapy (Chiew et al. 2011; Sundaresan et al. 2010; van 

Drunen et al. 2013). Thus, the motivation of this research is to develop model-based and 

patient-specific lung models that are able to analyse and aid clinicians in choosing the 

optimum MV settings based on patient-specific needs and response. 

 

1.5  Medical Imaging 

 

Medical imaging is an element in assessing the heterogeneity and impact of ARDS. They are 

thus needed to aid model development and validation. 

 

1.5.1  Computed Tomography 

 

Computed tomography (CT) scan has been widely employed to study ARDS patients since it 

allows the clinicians to assess and monitor patient’s lung condition (Gattinoni et al. 2006; Lu 

et al. 2001). For CT scans, Hounsfield units (HU) are used to describe the x-ray attenuation 

which is known as radio density that caused by different tissues. Based on the attenuation of 

individual pixels of the scan, the alveoli can be determined to be either recruited, de-recruited 

or overinflated (Sundaresan & Chase 2012). In particular, the study by Viera et al. (Vieira et 

al. 1998) using CT scans found that the threshold of -900 HU might be used in patients with 

ALI/ARDS at risk of MV induced lung barotrauma due to over-distended lung. Although CT 

scan is a useful tool to detect over-distended alveoli, it exposes the patient to potential risks 
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such as transporting patients out from the ICU and expose to additional radiation dosage 

(Brenner & Hall 2007; Gattinoni et al. 2001; Pesenti et al. 2001; Tubiana et al. 2008). Thus, 

the use of CT scan to guide MV treatment remains limited.  

 

1.5.2 Electrical Impedance Tomography 

 

Electrical Impedance Tomography (EIT) is another medical imaging that potentially suitable 

for bedside lung monitoring. It was first developed for medical monitoring by Barber and 

Brown (Barber & Brown 1984) and used a method by generating a cross-sectional image of 

lungs using the spatial distribution of electrical conductivity (Denai et al. 2010). Despite its 

advantages as a non-invasive bedside tool that can be used for continuous monitoring of MV 

therapy, it has limited spatial resolution, requires complex image reconstruction algorithms, 

and requires skilled operators to implement. It is an emerging, but non-invasive technology.  

 

1.6  Review of Mathematical Respiratory System Models 

 

In the literature, the development of mathematical models has been used with great success to 

delineate the physiology of the mechanical respiratory system. These models range from very 

simple lumped parameter models (Carley & Shannon 1988; Grodins et al. 1967; Trueb et al. 

1971) to highly complex finite element models (Donovan 2011; Tawhai et al. 2011; Tawhai 

et al. 2004). However, to date, most models are developed for educational purposes (Chase et 

al. 2006b; DiCarlo 2008) and only a few have been designed with a real-time, patient-specific 

therapeutic goals or outcomes in mind (Ben-Tal 2006). The following sections review several 

mathematical models that have been developed to provide physiological insight into lung 

conditions that have opened up new idea and knowledge in lung mechanics modelling. 
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1.6.1 Recruitment Model  

 

One of the most important strategies in MV is to recruit lung units to improve oxygenation 

and to also keep the lung open. Animal studies using in vivo microscopy showed that the 

ARDS affected alveoli can be characterised into three different types (Schiller et al. 2003). 

All the three types of alveoli demonstrated different recruitment pattern and compliance. 

Type 1 alveoli are characterised as the most heathy and normal alveoli, as the alveoli do not 

collapse at the end of expiration and do not change volume significantly during tidal 

ventilation. In contrast, Type 2 alveoli are defined as slightly to moderately affect by lung 

injury. Their sizes and shapes change significantly during tidal ventilation, and may collapse 

at the end of expiration. Type 3 alveoli are the most affected by the lung injury where large 

volume changes as pressure increases and collapse at the end of expiration. In addition, 

alveoli that demonstrate repetitive alveolar collapse and expansion (RACE) are larger than 

normal alveoli at peak inspiration. Thus, this specific aspect increases the size of the alveoli 

or over-distension (Schiller et al. 2001).  

 

Traditionally, the lung was assumed to expand by isotropic expansion of alveoli during 

recruitment  (Albaiceta et al. 2007; Hickling 2002). The recruitment of alveoli was 

interpreted using a static or dynamic pressure volume (PV) curve. Based on the PV curve, 

alveolar recruitment is assumed to occur at the lower inflection point (LIP), which was then 

followed by balloon-like expansion of recruited alveoli. The alveoli require an initially high 

pressure to overcome elastic forces before it start to expand and resulting with major volume 

change. Over-inflation of alveoli occurs at the upper inflection point (UIP), which resulting in 

sudden decrease of compliance due to the over-stretching effect. 
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However, this traditional theory does not agree to clinical in-vivo studies that have presented 

different mechanism of lung expansion.  Schiller et al. found (Halter et al. 2003) that normal 

healthy alveoli do not expand as pressure is increased, which contributes to a very little of 

volume changes. Thus, this result shows that balloon-like expansion is not the correct 

mechanism of lung volume change. Once alveoli are recruited, the volume does not change 

significantly for healthy units and some ARDS affected alveoli (Schiller et al. 2003).  

 

In addition, several studies observed that recruitment and de-recruitment occurs continuously 

for the entire breathing cycle especially between LIP and UIP which contribute to the 

hysteresis observed in PV curves (Cheng et al. 1995; Jonson et al. 1999). It is also shows that 

as PEEP increases, volume of the lung can increase for a given pressure which delineate that 

there is an additional recruitment occurs above LIP (Carney et al. 1999; Jonson et al. 1999). 

Thus, recruitment theory is more relevant in understanding the lung mechanics of ARDS 

patients. Figure 1.1 illustrates the different between traditional theory and the recruitment 

theory. 

 

From this recruitment theory, a recruitment mathematical model was developed by Hickling 

(Hickling 1998b). This recruitment model is based on recruitment and de-recruitment using 

threshold opening pressure (TOP) and threshold closing pressure (TCP). The model defined 

the relation between pressure and volume (PV) curve and recruitment status where the PV 

curve changes with recruitment. It has been added into several models to capture patient-

specific parameters that can guide clinicians in selecting the optimal setting of the MV 

(Schranz et al. 2012a; Sundaresan et al. 2009). This model is able to characterise ARDS lung 

physiology based on this concept of recruitment and simplified lung physiology. In particular, 

the lung can be modelled as a collection of alveoli or lung units with discrete layers that 
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subjected to superimposed pressure. The compartment of the bottom experiences higher 

superimposed pressure than the ones above due to the weight of the lung. Superimposed 

pressure is an additional pressure applied to the lung units by the gravitational force of the 

lungs above it. 

 

 

 

Figure 1.1: Alveolar expansion based on traditional and recruitment theory. (Top) Isotropic 

expansion of alveoli as isotropic balloon like based on traditional theory. (Bottom) 

Recruitment theory describes the alveolus is either open or closed. (Chiew 2013) 

 

 

In this recruitment model, the pressure at which alveoli will start to open and inflate is known 

as the Threshold Opening Pressure (TOP), whereas Threshold Closing Pressure (TCP) is 

known as the point when the alveoli start to deflate. Since recruitment and de-recruitment 

Traditional Theory 

Recruitment Theory 
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occur throughout the breathing cycle, the TOP and TCP are widely distributed along 

pressure, rather than the LIP and UIP as traditionally assumed (Crotti et al. 2001; Pelosi et al. 

2001). In this model, quasi-static volume is calculated at each airway pressure increment. 

During inflation, if the applied airway pressure from MV is higher than the TOP, the unit is 

recruited and assumes a lung volume. Each opened unit volume is added to form the inflation 

PV curve. In contrast, if the TCP exceeds the applied airway pressure, the lung unit collapses 

and loses the unit volume, which thus creates the deflation curve. The inflation and deflation 

curves then create the overall lung PV curve.  

 

Although the recruitment model by Hickling is able to capture basic characteristics of lung 

mechanics by simulating the relationship between pressure, volume, and the recruitment 

status of the lung units, this model is unable to predict the volume change resulting from a 

change in PEEP. Thus, with higher PEEP, it may overstretch and damage some healthy 

alveoli. 

 

Similarly, Sundaresan et al. (Sundaresan et al. 2009) developed a minimal model than applied 

the similar recruitment concept. This model accounts for stiffer, smaller volume nature of its 

mechanics as well as the basic mechanism by which the recruitment of lung for gas exchange 

and breathing can be increased. It is able to estimate and provide unique insight to patient-

specific lung condition based on calculation of the mean and standard deviation of the TOP 

and TCP. Despite its capability of monitoring patient-disease state, predicting recruitment for 

changes in PEEP, and to guide MV therapy, the minimal model designed only accounts for 

both two alveoli conditions, either recruited or de-recruited (Sundaresan et al. 2011a; 

Sundaresan et al. 2009). There is no measure of alveolar stress or strain that can lead to 

(local) lung damage due to excessive pressure. Thus, what will happen to the healthy alveoli 
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if the value of PEEP is increased to recruit collapsed alveoli? There is no clinical benefit in 

recruiting ARDS affected alveoli if the PEEP or pressure required damages healthy alveoli in 

less dependent region. Therefore, further insight into estimation of alveoli pressure may 

extend the model potential.  

 

1.6.2 Model-based LIP and UIP 

 

Another well-known method to assess the lung condition is to monitor the alveolar pressure 

using the static PV curve model. This model applies the concept of LIP and UIP in selecting 

appropriate PEEP level for MV setting (Albaiceta et al. 2008). Static PV curves have been 

extensively used in the treatment and management of patients with ARDS in the past 

(Albaiceta et al. 2003; Henzler et al. 2003; Suter et al. 1975; Venegas et al. 1998). It 

resembles a sigmoidal curve with no hysteresis which is unique for each patient. Thus, 

mathematical models such as the Venegas model (Venegas et al. 1998) which describes the 

shape of the sigmoidal curve can be used to identify the static PV curve (Albaiceta et al. 

2007). Based on the static PV curve, clinicians typically set PEEP such that it is between the 

LIP and UIP. However, the LIP and UIP can take on range of values and differ between 

models and between patients, as well as over time. They also do not offer one unique setting 

(Sundaresan & Chase 2012). Hence, selecting optimal PEEP based on the static PV curve is 

limited in clinical application, but offers some useful insights.  

 

1.6.3 Lumped parameter models 

 

Lumped parameter models, such as the single compartment linear lung model (LLM), are less 

computationally intense. These simpler models have shown clinical potential in monitoring 
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patient’s respiratory mechanics in real-time to guide clinical therapy (Avanzolini & Barbini 

1984; Lucangelo et al. 2007). The trade-off being that these simple models are not capable of 

providing high resolution information compared to more complex models. This model is 

extensively used this research because of its identifiability and ease of use, and will be 

discussed in details in Chapter 5. 

 

1.6.4 Finite Elements Models 

 

Finite element models of the respiratory system that have been developed offer significant 

understanding of the underlying physiology and offer detailed resolution of complex systems 

(Burrowes et al. 2005; Tawhai & Bates 2011; Tawhai et al. 2004). In addition, these models 

allow detailed estimation on pulmonary gas flow and realistic simulation of lung behaviour as 

each model can represent a unique geometry for a given patient (Burrowes et al. 2011; 

Kitaoka et al. 2007). However, finite element model is computationally intense and requires 

longer time to run a simulation which limits its capability to be used for bedside monitoring. 

 

1.6.5 Airway Branching Models 

 

Airway branching models (ABM) are able to capture physiologically relevant information. 

The ABM (Horsfield et al. 1971; Weibel 1963b) with the airway dimensions and pathways of 

the airway system have been used to predict respiratory pressure-flow responses (Pedley et al. 

1970). However, while anatomically accurate, these models require a-priori knowledge of the 

lung dimensions and can thus only be based on average lung dimensions in humans, which 

can limit application for patient-specific ARDS patients which have their own individual lung 

dimensions that change with disease state. All of these issues limit application in real-time 
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clinical settings. This model is also studied in this research and is presented in Chapter 3 as it 

offers some patient-specific potential developed in this thesis. 

 

A summary of several other model-based methods is listed in Table 1.1. Most of the models 

described were impractical to identify clinically and thus cannot be used to guide therapy due 

to the limited time, data and resources in ICU.  

 

Table 1.1: List of model-based methods in their respected categories  

 

No. Categories and Functions References 

1. Compartment Models (Bates 2009; Lucangelo et al. 2007; Ma 

& Bates 2010; Schranz et al. 2011) 

2. SLICE Methods (Guttmann et al. 1994; Zhao et al. 

2012a; Zhao et al. 2012b) 

3. Stress Index (Grasso et al. 2007; Ranieri et al. 2000) 

4. Stress Strain Approaches (Chiumello et al. 2008; Mead et al. 

1970; Sundaresan et al. 2011c) 

5. Alveolar and Surface Tension Models (Andreassen et al. 2010; de Ryk et al. 

2007; Kitaoka et al. 2007; Morris et al. 

2001; Reddy et al. 2011; Schirrmann et 

al. 2010) 

6 Spontaneous Breathing Models (Khirani et al. 2010; Schuessler et al. 

1997; Zhao et al. 2006) 

7. Mechanical Lung Models (Chase et al. 2006b; Kuebler et al. 

2007) 

 

1.7  Research Focus 

 

This research focuses on multi-scale respiratory system modelling that can be used to guide 

patient-specific MV therapy. The main objectives of this research are to investigate and 

develop new extended models of lung mechanics for ARDS patients by creating model-based 

measures of the potential impact of changing MV therapy parameters to healthy lung units. 
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These models will require a rapid form of parameter identification to define patient-specific 

model from clinical data, in real time, to be used as a complementary metric in guiding MV. 

From these results, patient-specific therapies can be created and the overall approach 

clinically validated in pilot trials. The thesis consists of 10 chapters as follows: 

 

 Chapter 1: Introduction 

 Chapter 2 presents the dynostatic algorithm (DSA) that allows the estimation of 

alveoli pressure during tidal ventilation.  

 Chapter 3 studies extensively on the airway branching model (ABM) and an extended 

model has been developed which allows the estimation of airway pressure drop at 

each bronchial generation with patient-specific airway dimension, α. Using this 

model, the airway condition of a patient can be characterised and thus, could provide 

clinically useful information to clinicians to guide patient-specific therapy.  

 Chapter 4 introduces the importance of estimation of lung elastance in respiratory 

system and discuss several models that estimate lung elastance. 

 Chapter 5 investigates on relation of expiratory time constant with respiratory system 

elastance in retrospective clinical cohorts.  

  Chapter 6 explores the variability of elastance in the clinical trial. 

 Chapter 7 focuses on negative elastance in spontaneously breathing patient. 

 Chapter 8 presents a reconstruction airway pressure model that able to eliminate the 

variability of elastance in clinical data. 

 Chapter 9 summarises and concludes the outcomes of this thesis. 

 Chapter 10 delivers possible future work for this research. 
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CHAPTER 2 

Dynostatic Monitoring of Clinical Data 

 

2.1 Introduction 

 

Estimation of the alveolar pressure is important during mechanical ventilation (MV) to assess 

and prevent the possibility of the over-distension condition of alveoli due to the excessive 

pressure delivered by the ventilator. One particular concern is that the supporting pressure to 

recruit collapsed lung may be too high, leading to ventilator induced lung injury (VILI) from 

over-distension of healthy alveoli. In particular, barotraumas is caused by excessive pressure 

delivered by the ventilator. Without assessment of alveolar pressure, clinical decision making 

is limited. To date, several studies have shown that maintaining alveolar pressure or plateau 

pressure below 30 cmH2O can protect alveoli from over-distension condition and mitigate the 

risk of VILI (Chiumello et al. 2008; Jaswal et al. 2014; Rouby et al. 2004). However, this 

approach limits the ability to use greater pressure when it may be safe.  

 

The application of such positive end expiratory pressure (PEEP) in ventilator settings has 

been shown to greatly improve oxygenation in ARDS patients (Amato et al. 1998; Halter et 

al. 2003; McCann et al. 2001; The Acute Respiratory Distress Syndrome Network 2000). 

However, higher levels of PEEP risk overstretching alveoli, especially for healthy, well-

aerated alveoli (Ricard et al. 2003). Furthermore, it was found that compliance was the lowest 

at highest PEEP which indicates that overstretching and associated nonlinear mechanics do 

occur at higher PEEP levels (Suh et al. 2003). Thus, using the highest PEEP possible is not 

the best solution for an optimum ventilation therapy as it may cause more harm than good. 
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Thus, it is essential for clinicians to be able to estimate alveolar pressure in MV patients in 

real-time, preferably breath to breath. 

 

2.2 Static Pressure Volume Curve  

 

One of the best methods to assess alveolar pressure is the static pressure volume (PV) curve. 

Static PV curves are also known as static compliance curves, and are sometimes used to 

determine the best treatment or selecting optimal positive end expiratory pressure (PEEP) 

(Caramez et al. 2009; Maggiore et al. 2003; Rouby et al. 2013). Dynamically, the pressure-

volume curves measured during inflation and deflation are different. This behaviour is known 

as hysteresis.  

 

In ARDS patients, the static PV curve can also be considered as recruitment curves (Hickling 

1998a) that describe the mechanical behaviour of the lungs and chest wall during inflation 

and deflation. They are calculated during stable airway conditions where there is no air flow 

within the respiratory airways and all viscoelastic forces are equilibrated resulting in reduced 

hysteresis (Henderson & Sheel 2012). The static PV curve is generally measured by three 

different methods: the super syringe technique, the constant flow method, and the multiple-

occlusion method (Harris 2005; Stenqvist 2003). However, it is static, and thus does not 

necessarily capture the dynamic, higher pressures and their effects. 

 

A static PV curve resembles a sigmoid curve with no hysteresis, and is distinctly unique for 

each patient. The most well-known model by Venegas et al. (Venegas et al. 1998) introduced 

the static PV curve as a sigmoid function that fit the overall static PV curve. It is generally 

characterised by an upper inflection point (UIP) and lower inflection point (LIP), as shown in 
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Figure 2.1. The LIP is defined as the point at which slope of the curves increases as the 

recruitment of alveoli increases rapidly. In contrast, the UIP is the point when alveoli begin to 

overstretch and resulting in a sudden decrease in compliance. However, this is a curve for the 

overall lung behaviour and does not capture the superimposed pressure effects of lung 

dependency or depth, and thus cannot capture the impact on alveoli at specific locales.  

 

 
 

Figure 2.1: Schematic of a static PV curve showing LIP and UIP (Bersten 1998) 

 

The LIP and UIP points provides guideline for clinicians to set PEEP (Albaiceta et al. 2008). 

It is suggested that PEEP should be set above LIP to avoid repetitive collapse of alveoli, and 

below UIP to prevent over-distension condition of alveoli (Brower et al. 2004; Ferguson et al. 

2005; Jonson et al. 1999; Mercat et al. 2008; Ward et al. 2002). However, this approach still 

offers a large range of potential values, where a single optimal and patient-specific PEEP 
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value cannot be determined (Sundaresan & Chase 2012). This outcome is a result of still 

leaving a subjective choice to the clinician.   

 

In addition, the location of the LIP and UIP are typically not identifiable during normal tidal 

ventilation (Lichtwarck-Aschoff et al. 2000). More importantly, the methods required to 

obtain the static PV curves are invasive (Lu & Rouby 2000; Servillo et al. 1997), time 

consuming, and cause interruption to MV therapy (Harris 2005; Kárason et al. 2001). These 

issues limit PEEP selection based on static PV loop in normal clinical situations, and it thus 

not practical to use in mitigating over-distension of healthy alveoli. As a result, Karason et al. 

(Karason et al. 2000) introduced the dynostatic algorithm (DSA) which is the most well-

known method to estimate this dyno-static alveoli pressure by producing the dynostatic curve 

during normal breathing condition (Karason et al. 2000; Sondergaard et al. 2003b). 

 

The DSA is a model-based method that can estimate a surrogate of alveoli pressure without 

the need of extensive protocol. In the DSA, the estimated alveoli pressure is based on the 

assumption that airway resistance is always the same during inspiration and expiration at 

isovolume, but not throughout inspiration or expiration (Stenqvist 2003). This assumption 

thus assumes the airway resistance is influenced by the airway geometry and at each airway 

location, the resistance at that point is the same. With this assumption, a surrogate of the 

alveolar pressure, dubbed as the dynostatic pressure, can be estimated during tidal ventilation. 

Thus, this dynostatic pressure at isovolume curve can be used as an alternative for the static 

PV curve.  
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In this chapter, two patients’ cohorts with different airway pressure and flow profile were 

studied using the DSA. These two cohorts will provide a better understanding of the 

algorithm, its performance, and potential for clinical application, and limitations.  

 

2.3 Methodology 

2.3.1 Dynostatic Algorithm Model (DSA) 

 

Proposed by Karason et al. (Karason et al. 2000), the DSA assumes the airway resistance 

during inspiration and expiration are the same at isovolume (Rinsp = Rexp). It thus assumes that 

the airway resistance is a physiological constant, depending on the location of where it is 

measured and that it is not flow dependent, which is a significant simplification. Figure 2.2 

shows an example of the quasi static pressure estimated using the DSA in relation to a 

dynamic pressure volume data during tidal ventilation.  

 

 

 

Figure 2.2: The DSA diagram and resulting quasi-static, single line pressure volume curve 

within the tidal ventilation. 
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Based on these assumptions, a surrogate of the alveolar pressure, known as dynostatic 

pressure (Pdyn), can be derived:  

𝑅𝑖𝑛𝑠𝑝 =  
𝑃𝑖𝑛𝑠𝑝 − 𝑃𝑑𝑦𝑛

𝑄𝑖𝑛𝑠𝑝
= 𝑅𝑒𝑥𝑝 =

𝑃𝑒𝑥𝑝 − 𝑃𝑑𝑦𝑛 

𝑄𝑒𝑥𝑝
 

(2.1) 

𝑃𝑑𝑦𝑛 =
𝑃𝑖𝑛𝑠𝑝 × 𝑄𝑒𝑥𝑝 −  𝑃𝑒𝑥𝑝 × 𝑄𝑖𝑛𝑠𝑝 

𝑄𝑒𝑥𝑝 − 𝑄𝑖𝑛𝑠𝑝
 

(2.2) 

 

where,  𝑄𝑒𝑥𝑝 is the expiration flow, 𝑄𝑖𝑛𝑠𝑝 is the inspiration flow, 𝑃𝑖𝑛𝑠𝑝 is the pressure during 

inspiration, and  𝑃𝑒𝑥𝑝 is the pressure during expiration.  

 

2.3.2 Patient data 

 

A preliminary model validation was performed using datasets obtained from two 

retrospective ARDS cohorts consisting of 10 patient datasets from Sundaresan et al. 

(Sundaresan et al. 2011a) and 10 patient datasets from Bersten et al. (Bersten 1998) (Cohorts 

1 and 2, respectively). Patients in Cohort 1 underwent a modified protocol-based recruitment 

manoeuvre, where these patients were ventilated with several different PEEP levels using a 

ramp flow profile (Sundaresan et al. 2011a). These patients were fully sedated and ventilated 

using Puritan Bennett PB840 ventilators (Covedin, Boulder, CO, USA) with volume control 

(tidal volume = 6-8 mL/kg), synchronized intermittent mandatory ventilation (SIMV) mode, 

throughout the trial.  

 

The airway pressure and flow profile where obtained using a pneumotachometer with a data 

acquisition module connected to the patient’s ventilation circuit Y-piece, sampling at 100Hz. 

Inspiratory volume was obtained through flow integration and drift correction. The end of 

expiratory lung volume (EELV) at each PEEP level was calculated through continuous 
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monitoring of the airway flow at every PEEP changes (Chiew et al. 2011). An example of 

airway pressure, flow rate and volume data from patient S1 is shown in Figure 2.3. The 

demographics and cause of ARDS for patients in Cohort 1 is presented in Table 2.1. 

 

 
Figure 2.3: Example of the Airway pressure data (Top), flow rate data (Middle) and volume 

data (Bottom) for Patient S1 in Cohort 1. 
 

Table 2.1:  Characteristics of the patients in Cohort 1 (Sundaresan et al. 2011a) 
 

Patient  Sex 
Age 
[years] 

Clinical Diagnostic 

S1 Female 61 Peritonitis, COPD 
S2 Male 22 Trauma 
S3 Male 55 Aspiration 
S4 Male 88 Pneumonia, COPD 
S5 Male 59 Pneumonia, COPD 
S6 Male 69 Trauma 
S7 Male 56 Legionnaires 
S8 Female 45 Aspiration 

S9 Male 37 H1N1,COPD 

S10 Male 56 Legionnaires, COPD 
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Patients in Cohort 2 were fully sedated and ventilated using Puritan Bennett 7200ae 

ventilators (Carlsbad, CA, USA) under volume control mode (tidal volume, Vt  = 8-10 

mL/kg) and a square-wave inspiratory flow. Airway pressure data was acquired using a 

(water manometer) strain gauge transducer (Bell and Howell 4-327-I; Trans America 

Delaval, Pasadena, CA, USA). Volumetric flow rate data was acquired using a heated, 

Fleisch-type pneumotachograph (HP-47034A, Hewlett-Packard, Palo Alto, CA, USA) 

(Bersten 1998). Trials were initially performed at baseline PEEP. Trials were then repeated at 

30 min intervals following random PEEP changes between 5 and 15 cmH2O. The final 60 s 

of data from each PEEP level was recorded. The end of expiratory lung volume 

corresponding to each PEEP level was also calculated. Each dataset included recordings of at 

least 3 different PEEP levels, as well as deflation to functional residual capacity (FRC) at 

PEEP = 0 cmH2O. The demographics and cause of ARDS for each patient in Cohort 2 are 

presented in Table 2.2. Figure 2.4 shows an example of airway pressure data, flow rate data, 

and volume data, for patient B10.  

 

Table 2.2:  Characteristics of the patients in Cohort 2 (Bersten 1998) 
 

Patient  Sex 
Age 
[years] 

Clinical Diagnostic 

B1 Male 74 Ruptured abdominal aortic aneurysm 

B2 Male 24 Lung contusion 
B3 Female 72 Legionnaire’s disease 
B4 Male 48 Pancreatitis 
B5 Female 68 Pulmonary embolus 
B6 Male 54 Aspiration 
B7 Male 73 Aspiration 
B8 Male 72 Pneumonia 

B9 Male 81 Aspiration 

B10 Male 47 Liver transplant 
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Figure 2.4: Example of Cohort 2 data from patient B10 for eight breathing cycles. Top: 

Airway pressure data. Middle: Flow rate data. Bottom: Volume data 

 

2.3.3  Data Analysis 

 

For each patient in this study, Pdyn was calculated for every breathing cycle at every PEEP 

using Equation 2.2. The median [Interquartile range (IQR)] of each tidal ventilation Pdyn were 

calculated for comparison. The corresponding maximum Pdyn at each PEEP is also calculated 

as a surrogate of maximum alveolar pressure during tidal ventilation.  

 

2.4 Results 

 

The pressure volume (PV) curves with alveoli pressure determined by the DSA for the two 

cohorts are presented in Figures 2.5 and 2.6. Pdyn results for Cohort 1 and Cohort 2 at each 

PEEP level are also tabulated in Tables 2.3 and 2.4, respectively. 
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Table 2.3:  Patient-specific dynostatic pressure (Pdyn) for Cohort 1 at each PEEP level 
 

Patient 
 𝑷𝒅𝒚𝒏 (cmH2O) 

PEEP 5 PEEP 10 PEEP 15 

 

S1 

 

Median 

[IQR] 

Maximum 

7.87  

[6.67-13.99]  

17.43 

12.61 

[11.24-17.73] 

20.72 

16.97 

[15.97-21.77] 

25.92 

 

S2 

 

Median 

[IQR] 

Maximum 

12.29 

[6.65-14.39] 

15.80 

14.71 

[12.87-18.22] 

20.86 

19.42 

[16.93-23.54] 

26.47 

 

S3 

 

Median 

[IQR] 

Maximum 

7.76 

[5.50-10.96] 

13.66 

12.61 

[10.66-16.35] 

18.66 

15.94 

[14.87-21.13] 

24.45 

 

S4 

 

Median 

[IQR] 

Maximum 

9.43 

[8.17-11.60] 

17.69 

13.30 

[11.81-15.34] 

19.23 

18.82 

[16.39-21.07] 

22.98 

 

S5 

 

Median 

[IQR] 

Maximum 

8.22 

[6.17-15.18] 

28.69 

13.25 

[10.91-17.31] 

28.06 

16.05 

[15.17-21.79] 

29.87 

 

S6 

 

Median 

[IQR] 

Maximum 

8.36 

[6.22-12.96] 

14.99 

13.61 

[10.96-17.20] 

19.49 

16.93 

[15.13-22.19] 

25.13 

 

S7 

 

Median 

[IQR] 

Maximum 

8.82 

[6.54-11.83] 

19.58 

15.23 

[11.59-21.59] 

28.87 

16.62 

[16.21-21.07] 

40.39 

 

S8 

 

Median 

[IQR] 

Maximum 

9.53 

[6.79-12.94] 

16.57 

13.38 

[10.95-17.38] 

20.43 

15.93 

[14.93-20.38] 

25.16 

 

S9 

 

Median 

[IQR] 

Maximum 

8.80 

[6.77-13.29] 

21.12 

13.33 

[10.76-16.92] 

22.38 

17.27 

[15.17-20.91] 

26.79 

 

S10 

 

Median 

[IQR] 

Maximum 

7.72 

[6.18-12.10] 

21.96 

17.06 

[12.23-21.40] 

25.98 

21.20 

[17.63-26.58] 

30.35 
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Figure 2.5: The PV curves and Pdyn trends from Cohort 1 at all PEEP levels for Top Left: 

Patient S1. Top Right: Patient S2. Bottom Left: Patient S3 and Bottom Right: Patient S8.  

 

0 10 20 30
0

0.5

1

1.5

 Pressure, cmH
2
0

 V
o

lu
m

e
, 
L

 

 

0 10 20 30

 Pressure, cmH
2
0

 

 PEEP 5 cmH
2
O

PEEP 10 cmH
2
O

PEEP 15 cmH
2
O

P
dyn

 at PEEP 5 cmH
2
O

P
dyn

 at PEEP 10 cmH
2
O

P
dyn

 at PEEP 15 cmH
2
O

0 10 20 30
0

0.5

1

1.5

 Pressure, cmH
2
0

 V
o

lu
m

e
, 
L

0 10 20 30

 Pressure, cmH
2
0

 

 
PEEP 5 cmH

2
O

PEEP 10 cmH
2
O

PEEP 15 cmH
2
O

P
dyn

 at PEEP 5 cmH
2
O

P
dyn

 at PEEP 10 cmH
2
O

P
dyn

 at PEEP 15 cmH
2
O



29 
 

Table 2.4:  Patient-specific dynostatic pressure (Pdyn) for Cohort 2 at each PEEP level 
 

Patient 
 𝑷𝒅𝒚𝒏 (cmH2O), Median [IQR] and Maximum 

PEEP 5 PEEP 7 PEEP 10 PEEP 12 PEEP 15 

B1 

Median 

[IQR] 

Maximum 

5.73 

[4.99-11.40] 

23.92 

8.47 

[7.61-11.29] 

28.03 

- 

12.49 

[11.95-15.22] 

38.63 

- 

B2 

Median 

[IQR] 

Maximum 

4.96 

[4.73-6.79] 

16.89 

- 

10.28 

[9.49-12.00] 

19.27 

- - 

B3 

Median 

[IQR] 

Maximum 

5.89 

[5.14-10.86] 

28.99 

8.12 

[7.42-11.35] 

31.87 

10.27 

[9.79-13.45] 

32.09 

- - 

B4 

Median 

[IQR] 

Maximum 

6.01 

[5.59-8.76] 

23.14 

10.00 

[9.57-13.14] 

25.82 

10.90 

[10.21-13.68] 

24.16 

- - 

B5 

Median 

[IQR] 

Maximum 

5.91 

[4.47-18.14] 

23.32 

12.87 

[6.90-21.99] 

25.43 

19.56 

[9.64-23.22] 

26.36 

20.47 

[15.72-23.82] 

28.35 

- 

B6 

Median 

[IQR] 

Maximum 

4.30 

[4.12-4.86] 

26.01 

6.77 

[6.47-7.65] 

28.53 

9.13 

[8.94-10.15] 

26.44 

11.16 

[11.02-11.58] 

26.75 

- 

B7 

Median 

[IQR] 

Maximum 

5.99 

[5.06-8.22] 

16.14 

8.71 

[7.42-12.30] 

19.59 

11.01 

[10.07-13.98] 

22.46 

13.43 

[12.51-15.56] 

27.67 

- 

B8 

Median 

[IQR] 

Maximum 

6.14 

[5.35-9.92] 

19.34 

9.20 

[7.80-13.59] 

20.60 

- 

14.02 

[12.88-16.86] 

27.88 

- 

B9 

Median 

[IQR] 

Maximum 

- - 

11.42 

[9.86-17.02] 

31.50 

17.54 

[15.04-22.95] 

36.49 

18.86 

[16.97-22.46] 

44.18 

B10 

Median 

[IQR] 

Maximum 

5.74 

[5.00-11.24] 

23.92 

    8.47 

[7.61-11.29] 

28.03 

11.04 

[10.11-14.41] 

37.19 

12.48 

[11.95-15.22] 

38.63 

- 

B11 

Median 

[IQR] 

Maximum 

4.70 

[4.41-5.72] 

16.17 

6.84 

[6.55-7.63] 

21.67 

9.02 

[8.86-10.68] 

24.57 

- - 

B12 

Median 

[IQR] 

Maximum 

6.13 

[4.79-14.37] 

26.51 

- 

11.21 

[9.57-18.01] 

30.30 

- 

16.93 

[14.17-21.78] 

34.23 
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Figure 2.6: The PV curves and Pdyn trends from Cohort 2 at all PEEP levels for Top Left: 

Patient B1. Top Right: Patient B3. Bottom Left: Patient B3 and Bottom Right: Patient B12. 
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2.5 Discussion 

 

The DSA model is capable of on-line monitoring of Pdyn without added invasive respiratory 

manoeuvre. This information is important, especially for assessing patient-specific ARDS 

lung condition and their response to MV settings. These disease states and responses to 

therapy are patient-specific, and can be highly variable over time as condition evolves. Thus, 

it is imperative to have real-time assessment. 

 

For safety, some studies have suggested that during tidal ventilation, the alveolar pressure or 

plateau airway pressure should be maintained below 30 cmH2O to prevent barotrauma 

(Chiumello et al. 2008; Jaswal et al. 2014; Rouby et al. 2004). Table 2.3 shows that for most 

patients included in Cohort 1, the maximum estimated Pdyn does not exceed 30 cmH2O, 

except for Patients S7 and S10 at PEEP of 15 cmH2O. These results show that Patients S1-S6, 

S8 and S9 may be safely ventilated at PEEP = 15 cmH2O However, Patients S7 and S10 

should be ventilated at a lower PEEP value of 10 cmH2O to avoid the potential pressure 

induced injury (Chiumello et al. 2008). 

 

In contrast to Cohort 1, it was found that the patients in Cohort 2 experienced higher overall 

Pdyn when PEEP is set above 7 cmH2O. Four of 10 patients had peak Pdyn over 30 cmH2O 

when PEEP is 7 cmH2O. Of note, the ventilation tidal volume in Cohort 2 was set at 8-10 

ml/Kg, which is ~25% higher than the tidal volume settings in Cohort 1. This higher tidal 

volume setting contributed to higher peak Pdyn at lower PEEP settings. Thus, a possible 

hypothesis is that patients can be ventilated with lower tidal volume with increased frequency 

to maintain adequate minute ventilation, which has also been reported (Imai et al. 2001; 
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Meade et al. 2008). However, these results also indicate the trade-off between tidal volume 

and pressure, and flow pattern that make this problem more complex than a simple limit.  

It can be seen in Figures 2.5 and 2.6 that Pdyn increases with PEEP and follows a sigmoidal 

curve that is similar to the static compliance curve (Venegas et al. 1998). Pdyn is a surrogate 

of the alveolar pressure. Thus, Pdyn trends in this study should follow the characteristics of a 

standard static compliance curve, as expected. In addition, combining Pdyn at different PEEP 

levels, the location of LIP and UIP can potentially be identified, which may be useful for 

optimal PEEP selection (Albaiceta et al. 2008). Hence, this approach could enable more 

quantified PEEP selection. 

 

While the static compliance curve characteristics were apparent in both Cohorts 1 and 2, 

there are differences in Pdyn trends between Cohort 1 and Cohort 2, as shown in Figures 2.4 

and 2.5. For Cohort 1, three Pdyn curves at different PEEP can be connected and form one 

sigmoidal curve similar to a static compliance curve as described by Venegas et al. (Venegas 

et al. 1998). Comparatively, Cohort 2 exhibit different characteristics where all three Pdyn 

curves can form 3 independent sigmoidal curves. It can be seen that the Pdyn trend shifted to 

the left when the patient is ventilated at higher PEEP. This shift observed in Cohort 2 also 

implies that patients respiratory system compliance increases with PEEP, and this observation 

can be translated into PEEP induced time-dependent alveoli recruitment (Bates & Irvin 

2002). However, this trend is not always observed, suggesting patient specificity of response 

to MV.  

 

Sundaresan et al. (Sundaresan et al. 2011a), Chiew  et al. (Chiew et al. 2011), Crotti et al. 

(Crotti et al. 2001), and Pelosi et al. (Pelosi et al. 2001) have showed similar trends, noting 

that the ventilation pressure has reached above alveoli threshold opening pressure, leading to 
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recruitment. This recruitment then leads towards reducing the overall threshold opening 

pressure for recruited lung units, increasing compliance. Equally, there is also a protocol 

difference between Cohorts 1 and 2 for the duration of each PEEP level is maintained. In 

Cohort 1, each PEEP level is only maintained for 10 to 15 breathing cycles, compared to 

Cohort 2 where every PEEP level is maintained for 30 minutes. Thus, in Cohort 1, there may 

not be sufficient time for time dependent recruitment (Bates & Irvin 2002), whereas Cohort 2 

allows time-dependent recruitment and has more than sufficient time for stabilisation, which 

in turn changes the observed underlying respiratory mechanics. 

 

The DSA has shown the potential to provide useful information in guiding mechanical 

ventilation. However, it is not without flaws. One of the main limitation of the DSA is that 

the assumption of equal resistance during inspiration and expiration at isovolume may not be 

entirely valid in some or many cases leading to incorrect decisions (Mols et al. 2001). 

Poiseuille equation shows that airway resistance is also dependent on the flow profile 

(Damanhuri et al. 2012), and it is clear that the inspiration flow profiles are different to 

expiration in both Cohorts 1 and 2. Thus, one would not expect this assumption to hold, and it 

may be very poor depending on the flow profile used on inspiration.  

 

Furthermore, the DSA cannot be applied for all ventilator modes, as stated in (Sondergaard et 

al. 2003a). Next, the DSA can only provide information on the overall lung condition, which 

is not specific, as the lung consists of many branches and lung units, each with their own 

structure, shape, and interaction with pressure and flow. Thus, a more patient-specific model 

is required that could give more information on the lung at the specific branches that include 

the airway resistance and alveolar pressure information.  
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2.6 Summary 

 

The DSA is the first on-line monitoring method proposed in calculating alveolar pressure for 

ARDS or MV patients. It has potential to guide clinicians in selecting the best PEEP based on 

the measurement of the alveolar pressure without additional invasive equipment or protocols 

needed. However, the ability of this method to guide therapy is limited because it does not 

provide or include information about airway resistance. It thus cannot offer further insight 

into patient-specific condition (Kárason et al. 2001; Mols et al. 2006). In Chapter 3, a patient-

specific airway branching model (ABMps) is presented. Prior airway branching models 

(ABM) have not been patient-specific or applied in real-time. This model seeks to bridge this 

gap and combine the DSA and ABM models to estimate the pressure drop due to airway 

resistance in detail. The model will provide unique insight and understanding into the topic 

on the airway resistance during mechanical ventilation. 
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CHAPTER 3 

Airway Branching Model 

 

3.1 Introduction 

 

One widely used model that is able to capture physiologically relevant information of lung 

morphology is the airway branching model (ABM) (Horsfield et al. 1971; Weibel 1963a). 

The ABM using known airway dimensions and pathways of the airway system has been used 

to predict respiratory pressure-flow responses (Pedley et al. 1970). The ABM models the 

human lung as a bifurcating tree with 23 generations physiologically and the alveoli are 

present in all generations beyond approximately generation 17 where gas exchange occurs 

(Soong et al. 1979). It is an idealized model of observed anatomy to which fundamental fluid 

mechanics can be applied. 

 

In the ABM, a pressure drop occurs after each branch is due to the resistive components of 

the airway wall and the head loss (Burrowes et al. 2005; Katz 2012). By estimating the 

pressure drop for each of these airway branches, the alveoli pressures can be estimated for a 

given ABM structure and model input. This outcome provides the opportunity to monitor 

‘regional’ specific alveoli pressures that could be used to understand healthy and damaged 

alveoli pressure, and thus potentially to prevent over-distension of the lung that could lead to 

lung injury.  

 

In practice, the ABM has been used to estimate respiratory pressure-flow responses in non-

critically ill subjects (Horsfield et al. 1971; Katz et al. 2011; Pedley et al. 1970; Weibel 

1963a). However, ABM models are very general. They use a set of global airway dimensions 
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that do not reflect patient-specific conditions and have not been validated in critically ill 

patients with respiratory failure. These issues limit bedside application of this model in 

monitoring or titrating mechanical ventilation. 

 

As mentioned in Chapter 2, the dynostatic algorithm (DSA) is currently the most well-known 

method to estimate alveoli pressure by producing the dynostatic curve during typical, 

dynamic breathing conditions (Karason et al. 2000; Sondergaard et al. 2003b). However, the 

ability of this method to guide therapy is limited because it does not provide or include 

information about airway resistance. It thus cannot offer further insight into patient-specific 

or alveoli-specific condition (Karason et al. 2001; Mols et al. 2006). Therefore, the proposed 

patient-specific airway branching model (ABMps) seeks to bridge this gap and merge the 

DSA and ABM models to estimate the pressure drop using the physiological dimensions of 

human airways. 

 

In particular, this study develops the ABMps to capture patient-specific airway pressure 

changes and unique patient-specific clinical information that is not available from the general 

ABM or DSA. Three models are presented: 1) the general ABM; 2) the dynostatic algorithm; 

and 3) the patient-specific ABMps. These models seek to add the patient and/or condition 

specificity that the DSA lacks, while retaining the ability to capture alveolar pressures. It thus 

introduces a mixture of novel elements to the overall modelling approach.  

 

The models are compared in a retrospective analysis using clinical data from critically ill 

mechanical ventilation patients to validate the overall approach. Weibel’s well-known model 

(Weibel 1963a) includes alveolar volume. However, this work is seeks to capture alveolar 
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pressures and thus does not include alveolar volume, which is a difference in the two 

analyses. This work has been published as a journal article (Damanhuri et al. 2014).  

 

3.2 Methodology 

3.2.1 General Airway Branching Model 

 

The general ABM is a symmetrical branching tree with physiological airway branching 

dimensions (Damanhuri et al. 2012). Most of the general ABMs assume that the airway 

generations go up to 23 generations (Katz 2012; Pedley et al. 1970). In this study, the general 

ABM models the trachea as generation 0 and the alveoli are located at generations 17-23. 

Figure 3.1 shows the schematic ABM structure and the physical dimensions at every branch 

generation are shown in Table 2 (Pedley et al. 1970). It is assumed that the airway 

dimensions are kept constant during inspiration.   

 

 

 

 

 

 

Figure 3.1: The airway tree structure in which airways are specified by generation number, 

beginning with trachea (Bates 2009) 

 

This modelling approach captures head loss as part of Poiseuille model used. Poiseuille flow is 

defined (Bates 2009; West 2012) :  

Generation 0 

Generation 1 

Generation 2 

Generation 3 
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∆𝑃𝑛 =
128𝜇𝐿𝑄

𝜋𝐷4
 

 (3.1) 

 

where μ, is the dynamic viscosity of air (1.9x10
-5

 Pa·s /1.9x 10
-7

cmH2O·s), L is the length of 

the particular airway branch, D is the diameter of the particular airway branch and Q is the 

flow rate of airway branch. 

 

Table 3.1: Physical measurements of bronchial paths (Pedley et al. 1970). 

 

Branch Generations 
Diameter 

(mm) 

Length  

(mm) 

Reynolds 

number 

-1 (ETT) 

 

9 

 

330 

 

390 

 

0 (Tracheal) 

 

18 120 775 

1 

 

12.20 48 573 

2 

 

8.30 19 427 

3 

 

5.60 8 307 

4 

 

4.50 13 198 

5 -16 

 

3.50 – 0.60 10.70 – 1.70 123 – 0.60 

17 – 22 

 

0.57 – 0.43 1.50 – 0.63 0.56 – 0.41 

23 

 

0.40 0.50 0.02 

 

Head loss is defined as a pressure drop along the branching system that consists of major and 

minor losses (Katz et al. 2011).  The major loss is defined as the pressure drop in the straight 

sections of the airway branching system (Katz et al. 2011) : 

∆𝑃𝑚𝑎𝑗𝑜𝑟 = 𝑓
𝐿𝑉2

2𝐷
 

 (3.2) 

 

The model thus assumes that laminar flow exists in the branches since the diameter for all 

branches is less than 30 mm with Reynolds  number less than 2000 (Burrowes et al. 2005; 
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Horsfield & Woldenberg 1989; Katz 2012). Thus, the laminar flow friction factor (f) is 

defined: 

𝑓 =  
64

𝑅𝑒
 

 

(3.3) 

where Re is the Reynolds number based on the branch diameter: 

𝑅𝑒 =  
𝜌𝑉𝐷

𝜇
 

 (3.4) 

 

where 𝑉 is the velocity of the flow of the airway branch. The velocity of the flow can be 

defined in terms of flow rate: 

𝑉 =  
4𝑄

𝜋𝐷2
 

 (3.5) 

 

Hence, substituting Equations 3.3, 3.4 and 3.5 into Equation 3.2, the major head loss can be 

derived: 

𝑃𝑚𝑎𝑗𝑜𝑟 =
128𝜇𝐿𝑄

𝜋𝐷4
 

 (3.6) 

 

Equations 3.1 and 3.6 show that pressure drop due to Poiseuille flow and the major loss are the 

same, as expected. 

 

In this specific model, estimates from (Damanhuri et al. 2012) incorporate minor loss 

information due to the bifurcation of each branch starting from generation 1, as shown in 

Figure 3.2. Every time the branch bifurcates to the next generation, there is a change in the 

velocity distribution. Thus, this airway resistance and minor loss will contribute to the 

pressure drop over the bronchial paths. 
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Figure 3.2: The Poiseuille pressure drop, 𝛥𝑃n, and minor loss pressure drop, ΔPminor at each 

of the branching respiratory system for ABMps. 

 

In addition to the resistance component of the bronchial part, there is an additional resistance 

in the endotracheal tube (ETT). All of the patients in this study had ETT with the same 

dimensions. The length of the ETT was 330 mm and the diameter was 9 mm (Straus et al. 

1998; Sundaresan 2010). The resistance induced by the ETT is added to the overall model 

results. In all cases, the ETT dimensions can be assumed to be known with no loss of 

generality.  

 

The ETT is at generation -1, the trachea at generation 0, and then continuing to the remaining 

generations up to generation 23. With the added ETT in the ABM model, the total pressure 

drop due to the resistance component, minor loss and the artificial conducting airway can be 

modelled: 

∆𝑃𝐴𝐵𝑀 = ∆𝑃𝑛 + ∆𝑃𝑚𝑖𝑛𝑜𝑟 (3.7) 

 

where  

∆𝑃𝑛 =
128𝜇

𝜋
∑

𝐿𝑛𝑄𝑛

2𝑛𝐷𝑛
  4

23

𝑛=−1

 

(3.8) 
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∆𝑃𝑚𝑖𝑛𝑜𝑟 =
8𝐾𝐿𝜌

𝜋2
∑

𝑄𝑛
2

𝐷𝑛
  4

23

𝑛=−1

 

(3.9) 

 

where KL is the minor loss coefficient (= 2) (Munson et al. 1990), ρ is the density (1.25 

kg/m
3
), n represents the airway branch generation, Ln is the length of the particular airway 

branch, and Dn is the diameter of the particular airway branch. The flow rate of airway branch 

(Qn) is assumed to be half of the previous generation flow rate based on an even split between 

the two branches. 

 

This combined model is unique for this clinical application (Damanhuri et al. 2012). 

However, it is entirely general based on the data in Table 3.1 and fixed structure.  

 

3.2.2 Dynostatic Algorithm Model (DSA) 

 

In this study, another method of pressure drop estimation is performed by using the 

dynostatic algorithm (Sondergaard et al. 2003a; Sondergaard et al. 2003b). This dynostatic 

model as proposed by Karason et al. (Karason et al. 2000) has been explained in detail in 

Chapter 2. Thus, the pressure drop (∆𝑃𝐷𝑆𝐴) during inspiration is estimated: 

∆𝑃𝐷𝑆𝐴   =  𝑃𝑖𝑛𝑠𝑝 −  𝑃𝑑𝑦𝑛 (3.10) 

 

where 𝑃𝑖𝑛𝑠𝑝 is the pressure during inspiration and Pdyn is the dynostatic pressure. 
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3.2.3 Patient-Specific Airway branching model (ABMps) 

 

This general ABM presented is extended to account for patient-specific physiological 

conditions observed in measured pressure and volume data. The ABMps airway pressure 

drop is defined:  

∆𝑃𝐴𝐵𝑀𝑃𝑆
= ∆𝑃𝑛𝑃𝑆

+ ∆𝑃𝑚𝑖𝑛𝑜𝑟𝑃𝑆
 (3.11) 

 

A patient-specific multiplier (α) can be used to uniformly alter the bronchial diameter defined 

in Table 2 to better match the observed data. Incorporating this factor into Equations 3.8 and 

3.9, yields Equations 3.12 and 3.13, respectively. 

∆𝑃𝑛𝑃𝑆
=

128𝜇

𝜋
∑

𝐿𝑛𝑄𝑛

2𝑛𝛼4𝐷𝑛
  4

24

𝑛=0

 

(3.12) 

 

∆𝑃𝑚𝑖𝑛𝑜𝑟𝑃𝑆
=

8𝐾𝐿𝜌

𝜋2
∑

𝑄𝑛
2

𝛼4𝐷𝑛
  4

24

𝑛=0

 

(3.13) 

 

where α is defined as patient-specific relative of airway diameter and is limited to α = [0.45, 

1.50]. If α = 1.0, the patient will follow the general airway dimensions proposed by 

(Horsfield et al. 1971). If α is < 1.0, the patient-specific airway is relatively smaller than the 

Horsfield model (Horsfield et al. 1971), perhaps indicating that airway constriction. Finally, 

if α >1.0, the patient has an effectively larger airway. Larger and smaller airways in this 

context imply differences in resistance in the observed data. Hence, they may also capture 

relative over-distension with pressure, as well as patient-specific state. 
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To estimate a patient-specific α, ∆𝑃𝐴𝐵𝑀𝑃𝑆
 is assumed to be the same as ∆𝑃𝐷𝑆𝐴, where ∆𝑃𝐷𝑆𝐴 

is the most currently well-accepted method to estimate alveoli pressures. Hence, substituting 

Equations 3.12 and 3.13 into Equation 3.11, a patient-specific α can be derived: 

𝛼 = √
128𝜇

𝜋∆𝑃𝐷𝑆𝐴 
∑

𝐿𝑛𝑄𝑛

2𝑛𝐷𝑛
  4

24

𝑛=0

+  
8𝐾𝐿𝜌

𝜋2∆𝑃𝐷𝑆𝐴 
∑

𝑄𝑛
2

𝐷𝑛
  4

24

𝑛=0

4

 

(3.14) 

 

Patient-specific α values are identified through a minimal difference algorithm. Figure 3.3 

shows the flow chart in determining patient-specific α.  

  

 

 

 

 

 

 

 

 

Figure 3.3: A flowchart on selecting the optimal α for each patient in ABMps model. 

 

The value for α for each patient and PEEP value was calculated using measurements 

of ∆𝑃𝐷𝑆𝐴, and 𝑄𝑛 and values of Ln, and Dn, from Table 2 in Equation 3.13. Thus, a different α 

value is obtained for each PEEP level and for each patient. The area under the curve (AUC) is 

Analytically solve Equation (3.14) to find α for each patient at each 

PEEP levels using known variables 

Evaluate the  ∆𝑃𝐴𝐵𝑀𝑃𝑆 using Equation (3.13), (3.12) and (3.11) based 

on the α value over all patients for each PEEP level 

Compare the AUC between ∆𝑃𝐷𝑆𝐴 and ∆𝑃𝐴𝐵𝑀𝑃𝑆 at each PEEP level 

by calculating the minimum average of APE  

Select the optimal α value for each patient that could be applied at all 

PEEP levels based on the least minimum average error 

Known Variables 

∆𝑃𝐷𝑆𝑀, Ln, Dn, 𝑄𝑛 
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the area under the pressure drop curve for all the three models. The AUC of pressure drop 

with respect to time for a single inspiration cycle shown in Figure 6 provides a good single 

value measure of the pressure drop when identifying the patient-specific α. The AUC of 

∆𝑃𝐴𝐵𝑀𝑃𝑆
 is compared with AUC of ∆𝑃𝐷𝑆𝐴  for all patients at each PEEP level by calculating 

the minimum average of the absolute percentage error (APE). This comparison ensures the 

model is not over fit to the data but that patient-specific aspects are used to capture and 

represent the fundamental trend. 

 

3.2.4 Patient Data  

 

To compare the three models, retrospective data from 10 acute respiratory distress syndrome 

(ARDS) patients in the Christchurch Hospital Intensive Care Unit (ICU) was used, with the 

data acquisition process detailed in Chapter 2 (Sundaresan et al. 2011a).  The details for each 

patient are shown in Table 3.2.  

 

Table 3.2:  Summary of patient auto-PEEP settings (Sundaresan et al. 2011b). 

Patient  Sex 
Age 

[years] 
Clinical Diagnostic 

Auto-PEEP  

[cmH2O] 

S1 Female 61 Peritonitis, COPD 10 

S2 Male 22 Trauma 12 

S3 Male 55 Aspiration 10 

S4 Male 88 Pneumonia, COPD 10 

S5 Male 59 Pneumonia, COPD 12 

S6 Male 69 Trauma 11 

S7 Male 56 Legionnaires 7.5 

S8 Female 45 Aspiration 12 

S9 Male 37 H1N1,COPD 12 

S10 Male 56 Legionnaires, COPD 3 
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3.2.5 Data Analysis 

 

To assess model performance, the pressure drop or, more specifically, the area under the 

pressure drop curve (AUC) for inspiration breathing cycle was estimated and compared for 

all three models. AUC was used instead of the sum square error due to its unique ability to 

capture the pressure drop trend shape, as well as its maximum magnitude. Significance tests 

were carried out using paired Wilcoxon rank-sum test.  

 

3.3 Results 

 

The estimated airway resistance for each branch generation is presented in Figure 3.4 for 

each patient. The AUC for all 10 ARDS patients and all 3 models are shown in Table 3.3. It 

is clear that the general ABM has a very large difference compared to the DSA (p<0.05). 

Table 3.4 shows the patient-specific α that relates to the patient specificity and disease state. 

The α values for COPD patients were significantly lower than the other patients in the cohort 

(rank-sum p<0.0001, Kolmogorov-Smirnov p=0.001), indicating a more resistive airway, as 

expected from critically ill ARDS and respiratory failure patients with stiffer and damaged 

lung units. 

 

Figure 3.5 shows the trend of α values for all patients over PEEP = 5 cmH2O, 10 cmH2O and 

15 cmH2O. Figure 3.6 compares the pressure drop curve for one breathing cycle for patient 

S1, as an example, for all three models at PEEP = 5 cmH2O, 10 cmH2O and 15 cmH2O, with 

patient-specific α = 0.57. Figure 3.7 shows the pressure and volume curve for all the three 

models for the same patient and α value in Figure 3.6.  
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Figure 3.4: Airway resistance for each branch for every patient of the ABMps model. 

 

 
Figure 3.5: Comparison of all α values for all patients vs PEEP for ABMps. 
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Table 3.3: AUC of airway pressure drops for Sundaresan’s patients (Sundaresan et al. 

2011a), with PEEP = 5, 10 and 15 cmH2O for general ABM, ABM-specific and DSA. 
 

Patient Auto-

PEEP 

 

(cmH2O) 

PEEP 

 

 

(cmH2O) 

Optimal 

α 

ABMpsAUC  

(cmH2O.s) 

General 

ABM AUC 

 

(cmH2O.s) 

DSA AUC 

 

 

(cmH2O.s) 

Error = 

AUC(ABMps-DSA)  

(%) PEEP 5 

cmH2O 

PEEP 10 

cmH2O 

PEEP 15 

cmH2O 

S1 10 

5 0.51 5.35 5.10 5.18 0.37 5.35 0.14 

10 0.54 4.22 4.02 4.09 0.35 4.02 0.09 

15 0.57 3.44 3.28 3.33 0.36 3.33 0.06 

S2 12 

5 0.63 3.11 3.03 2.79 0.50 3.11 0.13 

10 0.64 2.99 2.91 2.68 0.49 2.91 0.10 

15 0.63 3.18 3.10 2.86 0.45 2.86 0.19 

S3 10 

5 0.62 2.89 2.84 2.62 0.42 2.89 0.11 

10 0.63 2.63 2.58 2.38 0.41 2.58 0.08 

15 0.63 2.73 2.68 2.47 0.38 2.47 0.15 

S4 10 

5 0.45 10.0 9.66 10.30 0.40 10.00 0.21 

10 0.47 8.20 8.05 8.36 0.40 8.05 0.16 

15 0.50 6.59 6.52 6.77 0.41 6.77 0.15 

S5 12 

5 0.46 8.82 8.45 7.92 0.41 8.82 0.42 

10 0.50 6.76 6.48 6.07 0.39 6.48 0.23 

15 0.54 4.79 4.59 4.30 0.37 4.30 0.26 

S6 11 

5 0.63 3.03 2.92 2.92 0.46 3.03 0.07 

10 0.64 2.82 2.72 2.72 0.44 2.72 0.04 

15 0.64 2.80 2.70 2.70 0.44 2.70 0.03 

S7 7.5 

5 0.66 1.80 1.84 1.83 0.34 1.80 0.03 

10 0.64 1.98 2.03 2.02 0.35 2.03 0.02 

15 0.59 2.81 2.88 2.86 0.34 2.86 0.03 

S8 12 

5 0.56 3.76 3.69 3.71 0.37 3.76 0.04 

10 0.58 3.27 3.20 3.22 0.36 3.20 0.03 

15 0.58 3.09 3.15 3.11 0.36 3.11 0.02 

S9 12 

5 0.53 5.96 6.02 6.01 0.48 5.96 0.04 

10 0.58 4.42 4.46 4.45 0.49 4.46 0.02 

15 0.60 3.74 3.78 3.77 0.49 3.77 0.01 

S10 3 

5 0.59 3.76 3.62 3.70 0.47 3.76 0.07 

10 0.61 3.32 3.20 3.27 0.45 3.20 0.06 

15 0.62 3.15 3.04 3.10 0.46 3.10 0.04 

Mean   0.58    0.41 4.12 0.07 

[IQR]   [0.54-0.63]    [0.37-0.46] [3.20-4.42] [0.03-0.15] 

 

Table 3.4: Patient-specific α vs disease state. 
 

Number 

of 

Patients  

Clinical Diagnostic Range of α 

5 COPD 0.45 – 0.62 

2 Aspiration 0.56 – 0.63 

2 Trauma 0.63 – 0.64 

1 Legionnaires 0.59 – 0.66 
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a) 

 

   b) 

 

  c) 

  

Figure 3.6: Comparison of airway pressure drop for one breathing cycle for patient S1 with COPD for 

general ABM, ABMps, and DSA with α = 0.57. Plot of general ABM, ABMps, and DSA at (a) PEEP = 

5cmH2O (b) PEEP = 10cmH2O, and (c) PEEP = 15cmH2O. 

 

 

    a)   PEEP = 5 cmH2O 

 

    b)   PEEP = 10 cmH2O 

 

    c)   PEEP = 15 cmH2O 

 
Figure 3.7: Comparison of pressure volume curve for patient S1 with COPD for general ABM, ABMps, 

DSA, and actual inspiration with α = 0.57. 
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3.4 Discussion 

 

It can be observed in Figure 3.4 that the airway resistance is higher at the trachea (generation 

0) and 5
th

 generation branch for all patients. Initially, the resistance starts to drop from 

generation 0, which is the trachea, up to generation 4. The resistance starts to rise at 

generation 5 as the length of the bronchial tube is higher at this generation compared to the 

previous branches (Pedley et al. 1970). Airway obstructions increase the airway resistance, as 

seen in Figure 3.3, where for COPD patients, S1, S4, S5, S9 and S10, the airway resistances 

were higher compared to the healthy human and other patients. With the increased airway 

resistance in COPD patients, these results clearly show that a higher resistance results in the 

higher airway pressure drop observed, and thus the consequent reduced volume. This 

estimation of airway resistance by the ABMps cannot be done by using the DSA model and 

highlights a useful feature of this approach.  

 

With the patient-specific α value, the airway resistance can be estimated, which leads to 

estimating the pressure drop. Furthermore, the airway resistance for each patient is different 

and shows that airway resistance is higher for COPD patients as expected until their auto-

PEEP pressure is exceeded opening new lung volume. Thus, this ABMps can be used to 

detect the disease state independently or automatically, which could not be done by the DSA.    

 

The estimated airway pressure drop using the patient-specific ABMps with α value was 

significantly different from the pressure drop estimated using the general ABM (p<0.05). 

Table 3.3 shows that AUC pressure drop in the general ABM typically exhibited very large 

differences for all patients at all PEEP levels compared to the DSA with p<0.05. In contrast, a 

good comparison is observed between the AUC of pressure drops in ABMps and DSA in 
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Tables 3.3 and Figure 3.6. This result clearly shows that the general ABM does not capture 

the observed mechanics of critically ill mechanical ventilation patients despite it being a mix 

of classical mechanics and measured behaviour (Damanhuri et al. 2012). However, if it is 

extended with patient-specific α, it is a far better representation of the patient-specific airway 

dimension. In addition, these patient-specific aspects dominate the differences from the 

general ABM modelling approach to matching the patient-specific DSA results. This last 

result matches the inter-patient variability noted in MV patients as a whole, and shows the 

need for a patient-specific approach to estimated model-based alveolar pressures in this 

cohort. 

 

Figure 3.6 illustrates an example of estimated pressure drops for Patient S1 between general 

ABM, ABMps and DSA models. With α = 0.57 at PEEP = 15 cmH2O, the AUC of pressure 

drop for Patient S1 in ABMps and DSA yields the same result of 3.33 cmH2O.s, where the 

general ABM yields a far lower 0.36 cmH2O.s. This difference indicates that the ABMps was 

able to predict the same airway pressure drop as the DSA by incorporating the α term that 

was unique for each specific patient’s branching system. Equally, the general ABM, as 

defined in Table 3.2, is not capable of accurately capturing the observed mechanics in 

mechanical ventilation patients with significant respiratory dysfunction and failure. This 

difference, and small α < 1.0 value are due to the respiratory failure status of these patients 

limiting lung volume and creating a stiffer, smaller, and thus more resistive lung. 

 

From Tables 3.3 and 3.4, it is also noted that all α values for all patients are less than 1.0. 

Therefore, all pulmonary paths have a smaller diameter than the expected diameters from 

Table 3.2.  This finding reflects the clinical condition of these patients. In particular, patients 

with restrictive airway conditions, such as Chronic Obstructive Pulmonary Disease (COPD), 



51 
 

have constricted airways and respiratory failure by definition. Thus, α is smaller 

comparatively (α =0.45-0.62) than would be assumed for a healthy individual, per Table 3.2. 

Smaller α values also occurred in aspiration patients (α =0.56-0.63) where the restrictive 

airway condition of the lung is developed due to the entrance of foreign materials into the 

bronchial generations. Thus, with the use of α, the ABMps is not only able to capture similar 

alveolar pressure as DSA but is it also able to track patient disease state over time as shown 

in Table 3.4 and Figure 3.5. The greater airway resistance modelled with α < 1.0 results in 

higher pressure drops at the alveoli, as expected, and is thus a better match with the DSA. In 

addition, ARDS patients are often associated with regional airway collapse (Halter et al. 

2007) at higher branch generations, which will also greatly alter the airway resistance (Pedley 

et al. 1970) and supports the overall interpretation presented for these patient-specific results.  

 

Equally, the inspiration pressure volume curve for the general ABM and the ABMps can be 

modelled and compared with the DSA curve and the actual dynamic inspiration pressure 

volume curve, as shown in Figure 3.7. The general ABM does not capture alveoli pressure 

like the DSA in critically ill patients. The general ABM would look a lot like the inspiration 

curve in Figure 3.7 and shifted slightly to lower pressure.  This outcome occurs because the 

∆𝑃 drops are 10 times smaller than the ∆𝑃 drops in the ABMps in Table 3.3. Thus, the 

general ABM was not effective at capturing the estimated alveoli pressure volume curve in 

this cohort.  

 

Both the ABMps and DSA take into account the airway resistance that occurs in the lung and 

leads to the airway pressure drop. Furthermore, the ABMps is designed with minor loss and 

patient-specific airway dimensions based on the α value, that is unique for each patient. 

Hence, in Figure 3.6 the pressure volume curve for the ABMps is very similar to the DSA as 
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PEEP increases from 5 cmH2O to 15 cmH2O with the patient-specific α = 0.57. Although the 

ABMps had smaller error in comparison to the DSA at lower PEEP, this inspiration pressure 

volume curve could still be applied as a guidance tool for clinicians to provide a better 

solution for mechanically ventilated patients. 

 

Although the ABMps estimates pressure drops at every physiological airway branch, there 

are limitations to its predictive capability. This ABMps assumes that the bifurcations run 

throughout the entire generations from the 1
st
 generation up to the 23

rd
 generation based on 

physiological measurements and assumption by referring to the Weibel et al. model, which 

has been used widely in deterministic studies (Katz 2012; Pedley et al. 1970; Weibel 1963a). 

However, this assumption may not be applied in real scenarios if one or more of the bronchial 

paths are blocked as in COPD. 

 

Nevertheless, the ABMps with the patient specific α value is capable to show that every 

patient has α < 1.0, which reflects that patient’s pulmonary paths have a reduced equivalent 

diameter that results in a different resistance as compared to the healthy human physiological 

measurements. This reduced equivalent diameter thus is a surrogate that captures the 

(variable) clinical condition of each patient and potential smaller volume. For example, 

COPD patients have a blockage of bronchial portions of the lungs that reduce volume. In 

contrast, respiratory failure or ARDS patients may experience a similar total loss of lung 

volume due to collapsed alveoli distributed throughout the lung. However, in both cases, 

adjustment to MV settings may be needed to try to recruit this lost volume, and, equally, in 

both cases, additional pressure is the typical mechanism used for this recruitment.   
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In this research, the ETT dimensions were the same across all patients. However, while ETT 

dimensions may vary between patients, the ABMps remains capable of estimating this 

pressure drop so that an accurate estimation of the pressure drop in the deep bronchial paths 

can be used for predicting the alveolar pressure drop. The ETT dimensions are typically 

known, and were consistent in this research, thus maintaining the ability to estimate this 

alveolar pressure drop, which is important if it is to be used to avoid and prevent further lung 

injury due to the provision of excessive pressure. Simply, there is no loss of generality from 

the consistent and typical adult ETT dimensions used here. 

 

Although an average value of minor loss coefficient is used in this model, the ABMps was 

able to capture the pressure drop in the airway branching system. In addition, at the very low 

flows at the later generations, the contributions to pressure drop of these minor loss 

coefficient constants are almost negligible (Katz et al. 2011). Thus, the use of this average 

value of minor loss coefficient and an ETT specific loss capture much of the loss seen. 

Equally, while a distribution of loss coefficients based on anatomical studies could be used, it 

cannot be validated given the limited measurements of pressure and flow available in 

pulmonary medicine. Thus, given these points, an average value is used because it captures 

the overall losses and pressure drops, even if intermediate pressures may not be fully 

accurate, and thus provides a good estimate of alveolar pressure, which is the main goal of 

this model. 

 

With the use of α, the ABMps was able to capture similar alveolar pressure as the DSA with 

further insight of patient-specific airway dimensions during mechanical ventilation. However, 

due to limited patient data, the application of α as a surrogate of patient-specific condition 

was not fully validated, although the concept was demonstrated. In particular, as a patient 
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recovers from ARDS, the regional collapsed alveoli may be recruited, resulting in a change in 

patient airway condition that would be seen in a change in the effective value of α. Thus, the 

clinical utility of patient-specific α in tracking patient disease state warrants further 

investigation over larger cohorts given this initial set of results. 

 

3.5 Summary 

 

In this chapter, the study assesses the efficacy of a physically derived ABM to capture 

clinical data. The ABM significantly underestimates the total pressure drop from trachea to 

the alveoli. Thus, with a patient-specific airway branching model, it is able to assess the 

pressure drop of the airway more accurately using clinically available airway pressure and 

flow measurements. Using this model, the airway condition of a patient can be characterised 

and thus, could provide clinically useful information to clinicians to guide patient-specific 

therapy. This results show that even though the ABMps model is derived via classical simple 

Poiseuille flow and minor loss equations, the extension to a patient-specific airway 

dimension, α, produced consistent trends and compared well to the DSA model as the current 

standard for estimating alveolar pressures. This α value can be easily calculated at the bedside 

in a similar fashion to offer additional insight beyond the DSA with respect to potential to 

recruit volume (increase in α after a change in treatment) and to monitor patient condition. 

Overall, these results provide a general model framework that can be customised to each 

patient at the bedside to help guide care. The results justify further prospective trials to assess 

the clinical utility of patient-specific value of α in assessing patient condition. 
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CHAPTER 4 

Application of Lung Elastance in Mechanical Ventilation 

 

4.1 The concept of lung elastance 

 

One of the important metrics that can be used in managing mechanical ventilation (MV) is 

monitoring the lung elastance of ARDS patients. Elastance changes with patient condition 

since injured lung tissue, combined with a build-up of fluid, affects the resulting elasticity of 

the lungs (Gattinoni & Pesenti 2005). Elastance is a measure of the tendency of the lung to 

recoil to its original form and is the reciprocal of compliance. In particular, ARDS affected 

lungs have relatively higher elastance and significantly more hysteresis compared to healthy 

lungs, and has been used in other studies to assess the level of lung injury (Suarez-Sipmann et 

al. 2007; The ARDS Definition Task Force 2012).  

 

Other studies have shown that a more optimal MV setting occurs when the lung is inflated at 

the minimum inspiratory elastance (Carvalho et al. 2007; Chiew et al. 2011; Lambermont et 

al. 2008; Suarez-Sipmann et al. 2007). Specifically, lung volume is achieved with minimal 

added pressure, which implies maximum oxygenation for a minimum change in lung pressure 

or stress. Thus, models that capture patient-specific lung elastance (1/compliance) and 

recruitment can provide insight into otherwise un-measurable metrics of lung condition, 

thereby aiding clinical decision making (Chase et al. 2006a; Chiew et al. 2011; Sundaresan et 

al. 2011a; Sundaresan et al. 2009).  
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In addition, considering how elastance changes within the breath and throughout patient care, 

provides a new clinical perspective. Thus, it provides a non-invasive method that could 

provide real-time monitoring of lung condition based on measurement of lung elastance. 

Since this approach adds no additional sensors or cost, and provides a useful measure, it 

could be used to guide clinicians in PEEP titration to obtain optimal MV settings.  

 

In this chapter, two model-based methods are introduced to estimate lung elastance in ARDS 

patients. 

 

4.2 Elastance estimation using single compartment lung model 

 

Lumped parameter respiratory system models offer a simple and relatively inexpensive 

method of assessing lung mechanics and/or gas exchange, and thus, for capturing essential 

respiratory dynamics. Lumped parameter models can be computationally implemented 

directly at the bedside and are thus clinically viable. One of the most commonly used lumped 

parameter models is the single compartment lung model (Mead & Whittenberger 1953). The 

single compartment lung model, as shown in Figure 4.1, is modelled as a combination of an 

elastic and resistive component that uses readily measurable airway pressure (Paw), lung 

volume (V), and air flow (Qaw) to estimate the overall respiratory elastance (Ers) and overall 

respiratory resistance (Rrs) (Bates 2009) .  

 

Using standard mechanics, the respiratory system model can be defined: 

𝑃𝑎𝑤 (𝑡) =  𝑅𝑟𝑠𝑄𝑎𝑤(𝑡) +  𝐸𝑟𝑠𝑉(𝑡) +  𝑃0 (4.1) 
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where 𝑃0 is the offset pressure. 𝑃0 is usually zero at atmospheric pressure but it will change 

when PEEP is applied and can also account for Auto-PEEP (Bates 2009). The airway 

pressure (𝑃𝑎𝑤 ) comprises the sum of the pressure drop due to the resistance component of the 

endotracheal tube (ETT) and patient’s branching airway (Damanhuri et al. 2014), the pressure 

required to overcome the elastic tendencies of the lung tissues, and the offset pressure. 

Patient-specific respiratory elastance (Ers) reflects the lung stiffness and can be identified 

from measured data. Thus, a lower Ers indicates a more compliant lung. 

 

 

Figure 4.1: The single compartment schematic diagram of the lung mechanic system. 

 

The physiological relevance of the identified model parameters depends on the simplifying 

assumptions of the model. In this model, the integral-based method (Hann et al. 2005) is used 

to identify the parameters 𝐸𝑟𝑠 and 𝑅𝑟𝑠 that best fit Equation 4.1 using the measured 

inspiratory pressure (Paw) and air flow (Qaw) from each breathing cycle. Integral-based 

𝐸𝑟𝑠 

𝑅𝑟𝑠 

𝑉(𝑡) 

∆𝑃(𝑡) 

𝑄𝑎𝑤(𝑡), 𝑃𝑎𝑤(𝑡) 
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parameter identification is similar to multiple linear regression, where using integrals 

significantly increases robustness to noise (Chiew et al. 2011; Hann et al. 2005). 

∫ 𝑃𝑎𝑤(𝑡) =  𝑅𝑟𝑠 ∫ 𝑄𝑎𝑤(𝑡) +  𝐸𝑟𝑠 ∫ 𝑉(𝑡) + ∫ 𝑃0 
(4.2) 

 

Chiew et. al (Chiew et al. 2011) based their model development on a concept of minimal 

elastance during recruitment of the lung. During each breathing cycle, as pressure rises for a 

given PEEP level, Ers is decreasing as new lung volume is recruited faster than pressure can 

build up in the lung. This response indicates recruitability of the lung. If there is little or no 

recruitment, Ers rises with pressure, which indicates that the inspiratory pressure was unable 

to recruit new lung volume, leading to increased stress and risk of ventilator induced lung 

injury (VILI). Thus, the already recruited lung is stretched and possibly damaged. Hence, by 

monitoring patient-specific and breath-specific respiratory elastance during changes in PEEP 

level can provide insight into patient condition, help guide MV setting of PEEP, and prevent 

lung injury.  

 

4.3 Time varying elastance model 

 

Time varying elastance (Edrs), as proposed by Chiew et. al (Chiew et al. 2011), is an 

extension of respiratory system elastance (Ers) with the aim of providing a higher resolution 

metric for use in guiding optimal PEEP selection. It is an in-breath-specific respiratory 

elastance over an inspiratory time period that can potentially provide further unique insight 

into patient-specific lung condition and response to MV settings (Carvalho et al. 2006; Chiew 

et al. 2011; Kárason et al. 2001). Furthermore, the minimum value of Edrs during PEEP 

titration can aid, as with Ers, in identifying an optimal patient-specific PEEP to help the 
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patient reduce the work of breathing (WOB) and maximise recruitment of the lung without 

further lung injury (Marini et al. 1985; Otis et al. 1950).  

 

By calculating the value of Edrs over each breath, it is possible to identify the change of 

respiratory elastance within a breathing cycle as a function of PEEP and pressure over that 

breath. A decreasing value of Edrs over a breath indicates recruitment over pressure build up, 

while an increasing value of Edrs suggests poor recruitment (Chiew et al. 2011). By 

identifying the time-variant of Edrs over each breath, it allows the clinicians to see the 

changes in lung dynamically with each breathing cycle as pressure increases and thus 

provides a more detailed view of patient lung condition. This type of information cannot be 

provided by the calculation of a single value of Ers averaged over a breath. Thus, the 

estimation of Edrs provides more information and higher resolution in patient monitoring. 

 

To investigate the variability of respiratory elastance, the modified single compartment lung 

model is used. This model incorporates Edrs to capture patients-specific and breath-specific 

respiratory mechanics, including those with spontaneous breathing (SB) effort. This model 

also proposes negative and positive components for the respiratory elastance (Chiew et al. 

2015), when considering SB efforts, where the positive component within a short time period 

during inspiration is assumed to be effectively constant over the breath. In contrast, the 

negative component is variable depending on how strongly the patient initiates the breathing 

cycle, representing a significant patient-and breath- specific, unknown that is typically an 

unmeasurable quantity without significant, added and invasive sensors.  

 

The single compartment lung model in Equation 4.1 includes all resistive and elastic 

components of the respiratory system for a fully sedated patient (Bates 2009). To account for 
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patients with spontaneous breathing respiratory mechanics, the term, respiratory elastance 

(Ers), is replaced with a time-varying elastance (Edrs) that is comprised of 3 subcomponents 

including: the cage elastance (Ecw), the demand elastance (Edemand) and the lung elastance 

(Elung). These terms are then defined: 

𝐸𝑑𝑟𝑠(𝑡) =  𝐸𝑐𝑤(𝑡) +  𝐸𝑑𝑒𝑚𝑎𝑛𝑑 (𝑡) +  𝐸𝑙𝑢𝑛𝑔(𝑡) (4.2) 

 

𝑃𝑎𝑤(𝑡) =  (𝐸𝑐𝑤(𝑡) +  𝐸𝑑𝑒𝑚𝑎𝑛𝑑 (𝑡) + 𝐸𝑙𝑢𝑛𝑔(𝑡))𝑉(𝑡) + 𝑅𝑟𝑠𝑄(𝑡) (4.3) 

 

𝑃𝑎𝑤(𝑡) =  𝑃𝑐𝑤(𝑡) + 𝑃𝑑𝑒𝑚𝑎𝑛𝑑 (𝑡) + 𝑃𝑙𝑢𝑛𝑔(𝑡))𝑉(𝑡) + 𝑃𝑟𝑠 

 

(4.4) 

where Elung is a measure of the elastic properties of the lung or the collection of alveoli. Elung 

decreases if overall alveoli recruitment outweighs the pressure build-up. Elung will increase if 

the overall alveoli are stretched with lesser or no further recruitment (Chiew et al. 2011). 

Thus, Elung is the representation of true lung mechanics that captures the patient-specific 

response to MV in each breathing cycle and thus also provides an indication of the patient 

disease state (Chiew et al. 2015). The elastic properties of the chest wall (Ecw) in Equations 

4.3-4.5 consist of the stiffness contribution mode by the rib cage and intercostal muscles. 

This elastance subcomponent can be assumed not to vary with disease-state and is thus 

considered a patient-specific constant (Chiumello et al. 2008). Finally, Edemand represents the 

unmeasured patient-specific inspiratory demand, which varies depending on patient-specific 

and breath-specific effort. This elastance is negative (Edemand <0) as it represents the reduced 

apparent elastance seen in measured Paw and Qaw that is due to the patient-specific and 

breath-specific inspiratory effort creating a pressure reduction in the measured Paw delivered 

by the ventilator that is used or needed to open the lung. Table 4.1 provides a further 

nomenclature.  
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Table 4.1: List of abbreviation 
 

 Units Definition 

Paw cmH2O Airway pressure 

Ppl cmH2O Pleural pressure (oesophageal pressure) 

Pcw cmH2O Chest wall pressure 

Pdemand cmH2O Demand pressure 

Plung cmH2O Lung pressure during MV 

Prs cmH2O Pressure drop due to respiratory system resistance 

Ers cmH2O/l Respiratory system elastance 

Ecw cmH2O/l Cage elastance 

Edemand cmH2O/l Demand elastance 

Elung cmH2O/l Lung elastance 

Rrs cmH2O/l Respiratory system resistance 

Rlung cmH2O.s/l Lung resistance 

Rcw cmH2O.s/l Chest wall resistance 

 

 

A schematic representation of this extended compartment model is shown in Figure 4.2. 

 

 

Figure 4.2: The measured airway pressure consists of 4 pressure components: 1) Pressure 

drop due to airway resistance (Prs), 2) pressure in the lung compartments (Plung), 3) and 4) 

pressure change in the pleural space (Pcw + Pdemand). 
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Pcw and Pdemand are the pressure components generated from Ecw and Edemand. Combining these 

pressure components will thus give information on the pleural pressure (Ppl), which is the 

pressure change in the pleural space (chest wall). Plung is the pressure in the lung during MV 

and Prs is the pressure drop due to the conducting airway. Again, all these terms are also 

shown in Table 4.1. 

 

In a fully sedated patient, Edrs values were always positive (Edrs > 0) and had similar elastance 

to ARDS patients (Carvalho et al. 2008; Chiew et al. 2011; Suarez-Sipmann et al. 2007) as 

there was no external energy input from SB efforts. However, if the patient exhibits 

spontaneous inspiratory effort, this value will reduce Edrs (t) to become negative due to 

Edemand (Edemand < 0). The negative value of Edemand will decrease the overall values of Edrs and 

result in variability in the overall respiratory elastance. As patient demand aids breathing 

effort, the effective overall airway pressure is thus reduced from sedated state (Damanhuri et 

al. 2015). In any given breathing cycle, the time-varying Edrs of Equation 4.3 captures all 

three elastance components together, and thus a general conceptual and modelling approach 

is created in this analysis. 

 

It is important to note that Edrs, is an overall, effective elastance. It is assessed as the change 

in pressure for a given tidal volume of flow. Thus, lower effective elastance implies less risk 

of lung damage (Carvalho et al. 2007; Chiew et al. 2011). This non-invasive model-based 

monitoring and analysis method is hypothesized to be able to capture new insight into the 

dynamic respiratory mechanics, particularly for SB patients during fully controlled or 

partially assisted MV modes. This model is validated to investigate further on the negative 

elastance in SB patients using clinical data, and is presented in Chapter 7.  
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4.4 Summary 

 

Lung elastance is an important parameter used to quantify the condition and response to 

therapy of a patient suffering from respiratory failure. With the estimation of the lung 

elastance (Ers), the effect of PEEP on lung elastance has a potential for guiding MV therapy. 

The time varying elastance model provides more robust method to determine the dynamic 

lung condition in fully sedated and SB patients. The estimation of Edrs allows a more true 

measurement of dynamic lung elastance over the inspiration cycle that cannot be provided by 

a single average value of Ers. 
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CHAPTER 5 

Expiratory Time Constant Model Using Clinical Data 

 

5.1 Introduction 

 

Respiratory system models can provide real-time information on patient condition and 

response to treatment based on mechanical ventilation (MV) airway pressure (Paw) and flow 

(Qaw) data (Chiew et al. 2011; van Drunen et al. 2014). However, most respiratory mechanics 

models require specific data profiles and specialised, often invasive and/or interruption of 

care, protocols for model identification (Oostveen et al. 2003; Schranz et al. 2012a; Schranz 

et al. 2011; Stahl et al. 2006). These models also focused only on data collected during 

inspiration, and data during expiration are essentially neglected. Recent research conducted 

by Al Rawas et al. (2013) and van Drunen et al. (2013) on expiratory data had found high 

correlation between the inverse expiratory time constant and respiratory system elastance in 

both human and experimental animal trials. These finding have led to a potential to use of the 

expiratory data during clinical respiratory mechanics monitoring to guide MV.  

 

In particular, the study by van Drunen et al. (van Drunen et al. 2013) has shown that the 

inverse of expiratory time constant parameter (K) provides potential ability to track changes 

in disease state throughout therapy (van Drunen et al. 2013). In this animal study, trends in K 

were comparable to respiratory elastance trends obtained using the invasive end-of 

inspiratory pause method (Estatic) that interrupts care, as well as respiratory elastance derived 

from the single compartment lung model (ErsIB). These outcomes are shown in Figure 5.1.  
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The top of Figure 5.1 shows the result from a phase 2 condition, which is defined as a 

progression from a healthy state to an induced ARDS state at a constant PEEP, where the 

bottom figure shows the results of phase 3, which is an induced ARDS state staircase 

recruitment manoeuvre (RM). In both phases, ErsIB, Estatic, and K followed similar trends. 

Hence, these results show that the expiratory time constant model was able to identify trends 

and fundamental changes in respiratory mechanics, as determined by the invasive end-

inspiratory pause method and the single compartment linear lung model. 

 

 

 

Figure 5.1: Top Respiratory system mechanics monitoring during phase 2, disease 

progression for animal data 1. Bottom Respiratory system mechanics monitoring during phase 

3, disease state recruitment manoeuvre for animal data 1. Note that values of K have been 

scaled for clarity and serve only as an indication for trend comparison. 
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This chapter extends the investigation on the relation of expiratory time constant with 

respiratory system elastance using retrospective clinical cohorts (Bersten 1998; Sundaresan et 

al. 2011a). These data are comprised of step-wise recruitment manoeuvres (RM) with PEEP 

changes to provide a variation of respiratory system elastance response to different PEEP 

levels (Chiew et al. 2011). These respiratory system elastance variations thus provide a 

unique platform to investigate the relation of expiratory time constant with respiratory system 

elastance. Importantly, information on respiratory system elastance response to PEEP has 

shown clinical potential for guiding PEEP titration (Carvalho et al. 2007; Carvalho et al. 

2008; Carvalho et al. 2013; Lambermont et al. 2008; Suarez-Sipmann et al. 2007; Suter et al. 

1978; Zhao et al. 2010a). Thus, a good correlation between these metrics will imply that the 

expiratory time constant can also be used to titrate PEEP under similar assumptions (van 

Drunen et al. 2013) using easily measured, non-invasive data, and without interrupting care. 

 

5.2 Methodology 

5.2.1 Expiratory Time Constant Model 

 

The expiration process is defined as a passive process, where the lung and chest wall are 

elastic and have a tendency to return to their equilibrium positions after being actively 

inflated during inspiration. The single compartment lung model, as mentioned earlier in 

Chapter 4, is only focused on the inspiration cycle because inspiration and expiration are two 

different physiological processes that must be considered separately when determining lung 

properties (Möller et al. 2010). The equation of respiratory system is repeated here for clarity 

as: 

𝑃𝑎𝑤 (𝑡) =  𝑅𝑟𝑠𝑄𝑎𝑤(𝑡) +  𝐸𝑟𝑠𝑉(𝑡) +  𝑃0 (5.1) 
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Thus, the expiratory time constant model is derived from the single compartment lung model, 

but focuses on expiration data. van Drunen et al. (2013) proposed a method of calculating the 

inverse of time constant parameter (K) during the expiration cycle time.  

 

It is important to note that expiration is a passive process that unloads the inspired tidal 

volume over a resistance at a constant ventilator applied end expiratory pressure (𝑃𝑎𝑤= PEEP) 

with 𝑃0 = PEEP (Möller et al. 2010). Thus, Equation 5.1 in expiration becomes: 

𝑃𝐸𝐸𝑃 =  𝑅𝑟𝑠𝑄𝑎𝑤(𝑡) +  𝐸𝑟𝑠 ∫ 𝑉(𝑡)𝑑𝑡 +  𝑃𝐸𝐸𝑃 
(5.2) 

 

Differentiating Equation 5.2 yields: 

0 =  𝑅𝑟𝑠

𝑑𝑄𝑎𝑤(𝑡)

𝑑𝑡
+ 𝐸𝑟𝑠𝑄𝑎𝑤(𝑡) 

(5.3) 

 

By dividing Equation 5.3 with 𝑅𝑟𝑠, a simple differential equation is yielded: 

0 =
𝑑𝑄(𝑡)

𝑑𝑡
+ 

𝐸𝑟𝑠

𝑅𝑟𝑠
𝑄𝑎𝑤(𝑡) 

(5.4) 

 

Hence, the expiratory time constant model derived from the single compartment lung model 

is defined: 

𝑄𝑎𝑤(𝑡) =  𝑄0𝑒
𝑡

𝜏⁄ = 𝑄0𝑒−𝐾𝑡 (5.5) 

 

where 𝑄0 is the value of maximum expiratory flow and τ = 1/K = 𝑅𝑟𝑠/𝐸𝑟𝑠 is the time constant 

for this model during expiratory time (Al-Rawas et al. 2013).  
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Figure 5.2: Example of how expiratory flow profiles over time may be used to determine 

changes in a patients’ disease state, assuming Rrs is constant. 

 

If 𝑅𝑟𝑠 is assumed constant (Chiew et al. 2011), the parameter K is directly proportional to 𝐸𝑟𝑠 

where an increasing K implies a stiffer lung as ARDS progresses, as illustrated in Figure 5.2. 

 

5.2.2 Patient Data 

 

This model is assessed using two retrospective clinical ARDS cohorts, consisting of 10 

patient-datasets from Sundaresan et al. (Sundaresan et al. 2011a) and 12 patients-datasets 

from Bersten et al. (Bersten 1998), denoted Cohorts 1 and 2, respectively. The associated 

protocols have been described in detail in Chapter 2.  
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5.2.3 Analysis 

 

The expiratory time-constant model parameter, K, is calculated continuously for every 

breathing cycle at each PEEP level for both cohorts (Bersten 1998; Sundaresan et al. 2011a) 

based on flow rate and airway pressure data respectively. Validation is performed by 

comparing trends of the estimated K values during expiration cycle to trends of Ers/Rrs and Ers 

during inspiration cycle that derived from the single compartment lung model. Results of K, 

Rrs, Ers/Rrs, and Ers are recorded in Median and Inter-Quartile Range (IQR). Furthermore, 

performance was assessed by calculating the Pearson correlation coefficient (R
2
) where trend 

comparisons between the estimated K for expiration, and both Ers/Rrs and Elung for inspiration 

were made. Good correlation results will indicate similarity as often assumed. In contrast, 

poor correlation results will show the need to treat them separately.  

 

5.3 Results 

 

Correlation between K and inspiration derived Ers are compared and shown in Figure 5.3 for 

both Cohorts 1 and 2. The Pearson correlation for K- Ers for Cohort 1 is R
2 

= 0.568, Cohort 2 

is R
2
 = 0.184 and the overall value is R

2
 = 0.435. Figure 5.4 illustrates the correlation 

between K and inspiration derived Ers/Rrs for both Cohorts 1 and 2 with a correlation results 

K- Elung/Rlung is R
2
 = 0.340 for Cohort 1 and R

2
 = 0.002 for Cohort 2 and R

2
 = 0.078 all 

together. The Median and Inter-Quartile Range (IQR) of Ers, Rrs, Ers/Rrs and, K for each data 

set from both cohorts are tabulated in Tables 5.1 (Cohort 1) and 5.2 (Cohort 2), respectively.  

 

Figure 5.5 and 5.6 present the changes of Ers comparing to expiratory time constant K with 

PEEP increase for both Cohort 1 and Cohort 2. Figure 5.7 compares the trend of Rrs between 
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a Chronic Obstructive Pulmonary Disease (COPD) patient and a non COPD patient for all 

PEEP levels from Cohort 1. Figure 5.8 shows the trend comparison of expiration time 

constant, K, inspiration Ers and inspiration Ers/Rrs between Patient S1 from Cohort 1 and 

Patient B10 in Cohort 2 for all PEEP levels at every breathing cycle. The model-fitting for 

airway flow and pressure between measured and calculated values for dataset S3 are depicted 

in Figure 5.8. 

 
Figure 5.3: Correlation plots of K vs Ers for both all data sets with R

2
 = 0.568 for Cohort 1 

and R
2
 = 0.184 for Cohort 2 and R

2
 = 0.435 for both Cohorts at all PEEP levels. 
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Figure 5.4: Correlation plots of K vs Ers/Rrs for both all data sets with R

2
 = 0.340 for Cohort 1 

and R
2
 = 0.002 for Cohort 2 and R

2
 = 0.078 for both Cohorts at all PEEP levels. 

 

Table 5.1: Median and IQR of Ers, Rrs, Ers/Rrs, and, K of each dataset from Cohort 1 

(Sundaresan et al. 2011a). 
 

 Median [IQR] 

Dataset Ers(cmH2O/L) 𝑹𝒓𝒔(cmH2O.s/L) 𝑬𝒓𝒔/𝑹𝒓𝒔(1/s) 𝑲(1/s) 
S1 32.54 

[27.51-37.24] 

10.65 

[9.59-15.87] 

2.53 

[1.74-3.76] 

1.33 

[1.30-1.34] 

S2 23.13 

[21.31-26.17] 

7.66 

[7.55-8.25] 

3.03 

[2.50-3.46] 

1.31 

[1.29-1.34] 

S3 20.70 

[18.05- 26.81] 

6.70 

[6.17-7.45] 

2.86 

[2.33-4.37] 

1.34 

[1.27-1.41] 

S4 25.04 

[19.38-27.04] 

19.68 

[16.10-23.07] 

1.15 

[1.04-1.42] 

0.93 

[0.51-1.50] 

S5 44.54 

[42.32-49.21] 

16.11 

[11.54-23.98] 

2.52 

[2.03-3.72] 

2.37 

[1.93-3.01] 

S6 24.84 

[24.49-30.22] 

5.65 

[5.26-6.40] 

4.32 

[3.80-5.77] 

1.62 

[1.44-1.68] 

S7 59.70 

[47.16-81.18] 

4.59 

[4.22-5.09] 

11.74 

[10.27-19.25] 

3.98 

[3.52-4.44] 

S8 29.11 

[27.51-32.20] 

7.24 

[6.66-9.25] 

3.65 

[3.03-4.37] 

1.81 

[1.76-2.01] 

S9 27.97 

[25.07-30.09] 

6.45 

[6.21-10.86] 

3.83 

[2.44-4.62] 

1.57 

[1.49-1.72] 

S10 37.18 

[36.36-41.86] 

5.75 

[5.57-8.06] 

6.42 

[4.61-7.11] 

2.15 

[1.75-2.27] 

Median 

[IQR] 

29.40 

[24.63-37.47] 

7.78 

[6.02-12.72] 

3.50 

[2.18-5.37] 

1.57 

[1.33-1.99] 
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Table 5.2: Median and IQR of Ers, Rrs, Ers/Rrs, and K of each dataset from Cohort 2 

(Bersten 1998). 
 

 Median [IQR] 

Dataset Ers(cmH2O/L) 𝑹𝒓𝒔(cmH2O.s/L) 𝑬𝒓𝒔/𝑹𝒓𝒔(1/s) 𝑲(1/s) 
          B1 26.23 

[23.47-36.62] 

7.67 

[7.61-7.82] 

3.06 

[2.99-3.43] 

1.18 

[1.14-1.21] 

B2 15.32 

[15.034-16.28] 

7.09 

[6.27-7.59] 

2.18 

[2.15-2.34] 

0.94 

[0.91-0.95] 

B3 32.76 

[30.99-36.63] 

12.69 

[8.83-15.43] 

2.59 

[2.02-4.18] 

1.22 

[1.13-1.26] 

B4 18.27 

[17.478-19.29] 

7.48 

[4.04-11.02] 

3.04 

[1.75-4.32] 

1.49 

[1.31-1.67] 

B5 21.12 

[20.54-21.36] 

7.09 

[5.24-8.33] 

2.86 

[2.47-4.09] 

1.39 

[1.27-1.49] 

B6 33.46 

[32.39-33.70] 

9.95 

[5.33-11.82] 

3.39 

[2.85-5.94] 

1.98 

[1.77-2.10] 

B7 17.18 

[16.26-18.67] 

3.71 

[2.23-4.70] 

5.32 

[3.41-8.68] 

1.16 

[1.07-1.19] 

B8 17.40 

[16.98-20.14] 

11.02 

[10.88-11.30] 

1.55 

[1.50-1.84] 

0.86 

[0.85-0.89] 

B9 32.23 

[29.53-35.21] 

6.69 

[6.49-8.35] 

4.39 

[3.93-5.39] 

1.24 

[1.19-1.28] 

B10 28.90 

[25.43-32.91] 

5.68 

[3.78-7.61] 

5.78 

[3.34-8.71] 

1.20 

[1.17-1.25] 

B11 17.40 

[17.18-18.75] 

3.04 

[1.60-3.15] 

5.64 

[5.49-11.70] 

1.16 

[1.14-1.17] 

B12 24.03 

[23.29-24.77] 

9.70 

[6.80-16.57] 

2.55 

[1.46-3.40] 

1.36 

[1.35-1.45] 

Median 

[IQR] 

23.10 

[17.59-31.48] 

7.43 

[4.88-9.40] 

3.42 

[2.48-4.40] 

1.20 

[1.13-1.34] 

 
Figure 5.5: Ers-PEEP and K-PEEP plot for Cohort 1. Top Ers range for 10 patients in Cohort 1 

with PEEP increase. Bottom K range for 10 patients from Cohort 1 with PEEP increase. 

0 5 10 15 20 25 30
10

20

30

40

50

60

 PEEP, cmH
2
O

 E
rs

, 
c

m
H

2
O

/l

0 5 10 15 20 25 30
0

1

2

3

4

 PEEP, cmH
2
O

 K
, 
1

/s



73 
 

 
Figure 5.6: Ers-PEEP and K-PEEP plot for Cohort 2. Top Ers range for 12 patients in Cohort 2 

with PEEP increase. Bottom K range for 12 patients from Cohort 2 with PEEP increase. 
 

 

Figure 5.7: Comparison of Rrs between dataset S3 which is a non COPD patient with dataset 

S4 which is a COPD patient for all PEEP levels. 
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Figure 5.8: Left Trend comparison of expiration time constant, K, inspiration Ers/Rrs and 

inspiration Ers/Rrs for one breathing cycle for patient S1 from Cohort 1 for all PEEP levels. 

Right Trend comparison of expiration time constant, K, inspiration Ers/Rrs and inspiration 

Ers/Rrs  for seven breathing cycle for patient B10 from Cohort 2 for all PEEP levels. 

0 10 20 30
1

1.2

1.4
 K

, 
1
/s

0 10 20 30
1

1.2

1.4

0 10 20 30
25

30

35

40

45

 E
rs

, 
c
m

H
2
O

/L

0 10 20 30
25

30

35

40

45

0 10 20 30

2

4

6

8

10

 PEEP (cmH
2
O)

 E
rs

/R
rs

, 
1
/s

0 10 20 30

2

4

6

8

10

 PEEP (cmH
2
O)

Patient S1 Patient B10



75 
 

 
Figure 5.9: (Top) Model-fitting between measured airway pressure and calculated airway 

pressure based on the lung elastance model for Patient S3 at PEEP = 10 cmH2O one 

breathing cycle. (Bottom) Model-fitting between measured airway flow and calculated airway 

flow for Patient S3 at PEEP = 10 cmH2O for one breathing cycle. 

 

5.4 Discussion 

 

The expiratory time constant K has shown a moderate correlation with Ers with R
2
= 0.568 in 

Cohort 1 and weak correlation with R
2
= 0.184 in Cohort 2, as shown in Figure 5.3. 

Comparatively, the correlation of K with the inspiration Ers /Rrs also shows a weak correlation 

of R
2
= 0.340 for Cohort 1 and a poor R

2
= 0.002 for Cohort 2, as depicted in Figure 5.4. These 

results contradict to the findings by Al Rawas et al. (2013) and the animal study by van 

Drunen et. al (2013) that showed K has good correlation with respiratory elastance estimated 

using inspiratory data. This result indicates that although K is defined as Ers/Rrs, it does not 
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must be considered separately when determining lung mechanics properties (Möller et al. 

2010). In particular, the difference in mechanics may be due to comparing the actively driven 

volume increase of inspiration with passive volume reduction in expiration.  

 

For the result shown in Figure 5.8, the calculated airway pressure using the inspiration single 

compartment lung model has resulted in a good fit with the measured airway pressure from 

the ventilator for data set S3 from Cohort 1, where the Median and IQR of the absolute 

percentage fitting error are 1.74 [0.79 - 2.79]%. However, a moderate fitting error is found in 

the calculated airway flow versus measured airway flow in this patient data set with Median 

and IQR of 8.60 [10.23-27.33]%. This error is due to noise that occurs early in the expiration 

flow cycle, as shown in Figure 5.8, thus resulting in poor model fitting at the beginning of 

expiration. However, a much better model fit occurred for the remaining expiration cycle. 

Thus, this result implies that by using the single compartment lung model, it follows the same 

trend as the measured data, but the K and Ers/Rrs values are different. 

 

Results for Ers can be seen in Figures 5.5 and 5.6, showing the parameter changes in response 

to PEEP change. Decreasing Ers which suggests overall lung recruitment with PEEP, whereas 

with increasing Ers, it shows that the lung becomes stiffer, thus no further recruitment 

happened in the lung, suggesting lung over-distension (Carvalho et al. 2007; Carvalho et al. 

2006; Suarez-Sipmann et al. 2007). It can be seen that from the beginning of the RM, at 

ZEEP, Ers is relatively high for all patients from Cohort 1. As PEEP rises, it is observed that 

Ers drops but increases again at PEEP = 25 cmH2O. This behaviour shows that recruitment 

occurs at lower to middle value of PEEP and that the lung is over-stretching when the PEEP 

increases to higher values. In contrast, it can be observed in Figure 5.6, that Ers increases as 

PEEP increases for Cohort 2. Hence, these results show that there is a possibility of over-
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stretching of healthy lung units in this cohort even the lung is ventilated at a lower PEEP 

levels and airway pressures due to the heterogeneity of ARDS across all patients (Stenqvist 

2003).  

 

These results show that monitoring patient-specific Ers during PEEP changes has the potential 

to be used in optimum PEEP titration for the ARDS patients (Chiew et al. 2012; Chiew et al. 

2011). It also shows that Cohort 2 may not be recruitable or already ventilated at too higher 

PEEP. Thus, if K had high positive correlation with Ers, as it did for Cohort 1, it could 

potentially be used to titrate PEEP, especially during partial ventilation support. 

 

Overall results in this study contradict the findings in the animal study by van Drunen et al. 

(2013). The study by van Drunen et al. (2013) showed that K has a similar trend with Ers in 

experimental ARDS animal trials (van Drunen et al. 2013). However, this study using human 

data showed otherwise. In particular, van Drunen et al.  (2013) had higher tidal volumes (Vt) 

of 10-12 mL/kg during MV. Higher Vt during ventilation allows more air to enter into the 

lung, thus allowing the respiratory system elastic properties to potentially be better identified. 

Equally, higher Vt will thus provide better flow data resolution during the expiration cycle. 

Compared to the animal study by van Drunen et al. (van Drunen et al. 2013), both human 

patient cohorts in this study have comparatively lower tidal volumes, limiting the data 

available during expiration. Note that these lower Vt values are well validated as a safe 

threshold (Brochard et al. 1998; Parsons et al. 2005; The Acute Respiratory Distress 

Syndrome Network 2000). Thus, for use in humans, controlled expiration would be required 

to get the best resolution and value of K that better reflects and correlates with Ers (Möller et 

al. 2010). 
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The discrepancy estimated parameter K is comparatively lower than in the studies conducted 

by Al Rawas et al. (Al-Rawas et al. 2013) and van Drunen et al. (van Drunen et al. 2013). 

One of the possibilities is that, the low variation, or ranges of parameter K, was not able to 

provide a platform for comparison between these two parameters of K and Ers. It can be seen 

that K has not shown significant changes as PEEP increases, as observed in Figures 5.5 and 

5.6 for both cohorts, especially for Cohort 2. In particular, Cohort 1 consists of 5 to 7 

different PEEP levels per patient, whereas Cohort 2 only consists of 3 relatively closely 

PEEP levels. Thus, there may be not enough PEEP variation in Cohort 2 in particular. In 

addition, single compartment model estimated respiratory elastance is a lumped parameter 

model and there may be several hidden variables and components that might be needed to 

better define respiratory system elastance (Bates 2009). 

 

In this study, a higher airway resistance in the lung can be seen in patients who suffer from 

Chronic Obstructive Pulmonary Disease (COPD), which is shown in Table 5.1. It can be seen 

from Table 5.1 that COPD patients from Cohort 1 (datasets S1, S4, S5, S9, S10) have higher 

resistance in the lung (Rrs) compared to other non-COPD patients (using a Wilcoxon rank 

sum test, p<0.005). The Median and Inter-Quartile Range [IQR] of Rrs for COPD is 11.00 

[6.68-17.22] cmH2O.s/L, while for non-COPD is 6.80 [5.66-7.86] cmH2O.s/L. This higher 

resistance in COPD patients is due to the effectively smaller airway diameter resulting from 

this condition that lead to a higher airway resistance when portions of airways are fully or 

partially collapsed in COPD (Damanhuri et al. 2014). This effect can be seen in COPD 

patient (S4) in Figure 5.7, where higher Rrs exists due to the obstructed airways at lower 

pressures and PEEP, as compared to the non-COPD patient (S3). These differences are also 

expected clinically.  
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Since K= Ers/Rrs, an increasing airway resistance would result in a low value of K. Significant 

variations in Rrs may thus lead to poor direct correlation between K and Ers (van Drunen et al. 

2013). Equally, these patients were found to have decreased K, as expected clinically, where 

a patient with COPD requires more time for expiration, which will lead to an increased 

expiratory time constant (~ 1/K) (Lourens et al. 2000).  

 

Cohort 1 and Cohort 2 are also clinically fundamentally different because of the difference in 

flow profiles used in MV. For some cases, K were relatively unchanged with PEEP, as shown 

in Figure 5.8 compared to the value of Ers or Ers/Rrs for dataset S1 and dataset B10. Similarly, 

the Median and Inter-Quartile Range [IQR] of K for Cohort 1 is 1.57 [1.33-1.99] 1/s, while 

Cohort 2 is a much tighter, more constant with 1.20 [1.13-1.34] 1/s across all PEEP levels. 

These results may be due to the fact that the same expiration flow pattern exists in both 

cohorts thus resulting in relatively constant values of K. In addition, it can also be seen from 

Figure 5.8 for S1 and dataset B10, that the trend of K does not follow either Ers or Ers/Rrs for 

both cohorts. This lack of correlation using the clinical data may also be a subject-specific 

response due to the increasing severity of ARDS collapsing airways within the lungs, thereby 

increasing the resistance of the conducting airways (Rrs) as mentioned previously in 

(Gattinoni & Pesenti 2005).  

 

Furthermore, this different result may also be due to the different protocols applied in these 

two studies (Al-Rawas et al. 2013; van Drunen et al. 2013). A better relationship and 

correlation between K and PEEP might be obtained by designing a clinical protocol where Vt 

is varied between low and high values at constant PEEP. Equally, controlled expiration cycle 

might be considered. In addition, variations in Rrs may lead to a lower correlation between K 

and Ers (van Drunen et al. 2013). Based on the results, as tabulated in Tables 5.1 and 5.2, it 
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was found that airway resistance varies across all patients. Thus, a larger study cohort would 

be needed to further validate this expiratory time constant model.  

 

Although K has shown a poor correlation for Cohort 2, it still delivered a good indication for 

COPD patients in Cohort 1 due to the higher airway resistance in the lung. Thus, potential 

application for K remains in diagnosing and provide further insight into lung condition in 

COPD patients. Furthermore, with specific ventilation profiles and a specific clinical 

protocol, K can be extended to determine real-time lung parameters using only expiration 

data.  

 

In particular, this application can be important in spontaneously breathing (SB) patients, 

where these patients have individual breathing effort that alters the lung mechanics on 

inspiration, but are similar in expiration (Grinnan & Truwit 2005). There are some techniques 

to measure the lung mechanics of SB patient such as the oesophageal balloon-catheter 

technique (Bates 2009). However, this technique is not suitable for clinical practice as it 

requires the balloon to be inserted into the patient and used in care, making it uncomfortable, 

invasive and interruptive of care for the patient (Khirani et al. 2010). Thus, the application of 

expiratory time constant in SB patients also warrants further investigation. 

 

5.5 Summary 

 

In summary, this research has shown that variations in lung resistance may lead to a lower 

direct correlation between inverse respiratory time constant, K and respiratory system 

elastance, Ers. The reason can be due to discrepancy of K and difference in clinical protocol 

that limits tidal volume safety threshold that can affect parameter identification process. 



81 
 

Thus, the ability of using K as a severity indicator or patients’ response to MV remains 

limited. Future investigation into this method is required before any implementation of the 

model parameter K should be considered, especially for SB patients where expiratory 

consistency can negate the effect of variable, patient-specific inspiratory efforts 
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CHAPTER 6 

Variability of Elastance in Pilot Clinical Data of ARDS Patients 

 

6.1 Introduction 

 

Experimental animal studies (Chiew 2013; Chiew et al. 2015; van Drunen et al. 2014) have 

shown that breath-to-breath model-based respiratory mechanics estimation can provide 

unique clinical information and insight into the condition. In particular, van Drunen et al. 

(van Drunen et al. 2014) and Chiew et al. (Chiew 2013) monitored the progressive changes in 

respiratory mechanics during oleic acid induced ARDS experimental models. They found that 

the respiratory elastance changes, as expected, from lower to higher values  when the lungs 

become more injured and stiffer with induced ARDS again, as expected (Carvalho et al. 

2007; Carvalho et al. 2006). These were the first results to observe these changes 

continuously, in real-time. Thus, monitoring the changes and variation of respiratory 

mechanics can be useful in the clinical situation, such that clinicians can intervene for 

treatment before the condition escalates. 

 

During mechanical ventilation, patients may exhibit spontaneous breathing even effort during 

fully controlled ventilation modes, when the patient is heavily sedated. Hence, ventilators are 

now incorporated with more advanced detection systems and protocols in an attempt to 

provide better patient ventilator interaction. However, these systems do not significantly 

reduce asynchronous patient-ventilator interactions. 

 

One of the ventilation modes commonly used in the Christchurch hospital is the synchronised 

intermittent mandatory ventilation mode (SIMV). This ventilation mode provides mandatory 
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breathing cycles to the patients, and it also provides a means for patient ventilator 

synchronisation by allowing patient triggering of the breath. It is thus a hybrid system mixing 

fully controlled and patient driven breathing support. With patient triggering and/ or 

spontaneous breathing effort, respiratory mechanics in these patients become more variable, 

particularly because the patient-specific inspiratory effort is not typically measured or known. 

This variability can then mask the respiratory mechanics based on the known ventilator 

inputs, so that the actual respiratory elastance trend cannot be identified accurately. Thus, this 

variability may affect management of MV guided by respiratory mechanics. Hence, 

understanding the underlying variability in respiratory mechanics will enable clinicians to 

understand when observed variability is within or outside expected natural variation, and thus 

in selecting optimal MV setting. 

 

This study thus aims to quantify the variability in model-based respiratory mechanics 

(elastance and resistance). A time-varying elastance model is used to estimate the respiratory 

mechanics of patients included in a prior prospective pilot clinical trial. The variability of 

dynamic elastance (Edrs) across all PEEP in MV patients was analysed. The goal is to provide 

a fundamental understanding of the patient-ventilator natural variability, leading to a 

definition of what level of variability is natural and what level constitutes a significant level 

of change in respiratory mechanics due to other factors. 

 

6.2 Methodology 

6.2.1 Patient Data and Analysis 

 

A clinical trial, Clinical Utilisation of Respiratory Elastance (CURE), is being carried out in 

the intensive care unit (ICU) of Christchurch, New Zealand. All patients are ventilated using 
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a Puritan Bennet PB840 ventilator (Covidien, Boulder, CO, USA) The airway pressure and 

flow curves for each patient were recorded and analysed using a time-varying elastance 

model proven on sedated, MV patients (Chiew et al. 2011).  

 

In this trial, several recruitment manoeuvres (RM) are performed by the attending clinician 

throughout the duration of MV. Prior to the study, written informed consent was obtained, 

and the trial and the use of the data were approved by the New Zealand South Regional 

Ethics Committee. The trial number is ACTRN12613001006730. Table 6.1 shows the patient 

details for those included in this study. 

 

Table 6.1: Characteristics of the patients 
 

Patient No. Gender Age Clinical Diagnostic 

1 Female 53 Faecal peritonitis 

2 Male 71 Cardiac surgery and contracted hospital acquired 

pneumonia 

3 Male 60 Pneumonia 

4 Male 36 Pneumonia 

5 Male 61 Pneumonia 

 

6.2.2 Inclusion and Exclusion Criteria 

 

The inclusion and exclusion criteria for CURE trial patients are defined: 

Inclusion Criteria 

1. Patient on Mechanical Ventilation. 
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2. Patient requiring invasive ventilation (Intubation or tracheotomy). 

3. Patients diagnosed with all degrees of ARDS severity (Partial Pressure of arterial 

blood gas oxygen per Fraction of Inspired Oxygen (PF Ratio) < 300 mmHg as per 

Berlin Definition (The ARDS Definition Task Force 2012), by intensive care 

clinicians. 

4. Arterial line in situ. 

 

Exclusion Criteria 

1. Patients who are likely to be discontinued from MV within 24 hours. 

2. Patients with age less than 16. 

3. Patients who have moderate or severe traumatic brain injury, and/or a measured 

intracranial pressure ≥ 20 cm H2O, 

4. Any medical condition associated with a clinical suspicion of raised intracranial 

pressure. 

5. Patients who have a high or spinal cord injury with loss of motor function. 

6. Patients who have significant weakness from any neurological disease. 

7. Patients who have acute severe pancreatitis and are expected to be ventilated for more 

than 10 days. 

8. Patients who have a pneumothorax. 

9. Patients who have asthma as the primary presenting condition. 

10. Patients who are moribund and/or not expected to survive for more than 72 hours. 

11. Patients whose care may be compromised if given increased sedation and/or muscle 

relaxants for the purpose of assessing lung recruitment. 

12. Lack of clinical equipoise by intensive care unit (ICU) medical staff managing the 

patient. 
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Termination criteria 

1. Mean arterial pressure (MAP) less than 60 mmHg for more than 5 minutes. 

2. Desaturation less than 88% for more than 5 minutes. 

3. Lack of clinical equipoise by the clinician E.g. When a patient has a low blood 

pressure and thought to be intolerant of PEEP changes. 

 

These criteria ensure a focus on the ARDS and respiratory failure patients most likely to 

benefit from patient-specific optimise MV therapy.  

 

6.2.3 Data Acquisition 

 

The CURE trial uses a software system (CURE Soft) developed using the JAVA platform 

(Szlavecz et al. 2014). CURE Soft applies the information of patient’s measured airway 

pressure and flow data to estimate respiratory mechanics parameters using an extended single 

compartment model that captures time-varying respiratory elastance model. This estimated, 

patient-specific model-based data is used to provide information on patient lung condition, 

disease progression and response to MV treatment (Chiew et al. 2011).  

 

6.2.4 Time Varying Elastance Model 

  

To investigate on the variability of elastance in ARDS patients, the time-varying elastance 

model is applied, which has been described in detail in Chapter 4. It is repeated here for 

clarity as: 

𝑃𝑎𝑤(𝑡) = 𝑅𝑟𝑠 ×  𝑄(𝑡) + 𝐸𝑑𝑟𝑠 × 𝑉(𝑡)  (6.1) 
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𝐸𝑑𝑟𝑠(𝑡) = 𝐸𝑐𝑎𝑔𝑒 + 𝐸𝑑𝑒𝑚𝑎𝑛𝑑 +  𝐸𝑙𝑢𝑛𝑔 

 

 (6.2) 

6.2.5 Data Analysis 

 

In this study, the area under the curve of Edrs (AUC Edrs) for every breathing cycle is 

estimated and analysed in each MV patient. A total of 97,944 breathing cycles in 3 

ventilation days were studied in this data set. The variability of AUC Edrs for each patient was 

quantified. For each patient, the median and interquartile range (IQR) of AUC Edrs were 

calculated. The median and IQR captures the centre and width of variability for a given 

patient. Robust coefficient of variation (RCV = median absolute deviation/median) of AUC 

Edrs was also calculated. A lower RCV indicates lower variability where as higher RCV 

indicates higher variability (Wysocki et al. 2006). 

  

In addition, the distribution and variability of AUC Edrs is also presented in cumulative 

distribution functions (CDF), which are useful as they show the entire distribution that is 

often summarised as median and IQR, providing further and complete insight into the 

distribution.  

 

6.3 Results 

6.3.1 Variability by ventilation days and PEEP 

 

Tables 6.2 and 6.3 show the summary of patients’ AUC Edrs distribution by ventilation day 

and by PEEP level. Due to the extensive number of data points per patient, only the first 3 
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days of the data were analysed for each patient. Figures 6.1 and 6.2 show the corresponding 

box-whiskers plot for each patient by day and by PEEP level. 

Table 6.2: The IQR of AUC Edrs and RCV for all five patients by ventilation days.  
 

Patient 

No. 

No. of 

breaths 

analysed 

AUC Edrs Median [IQR] (cmH2O.s/l) and RCV Total 

AUC Edrs Median 

[IQR] (cmH2O.s/l) 

and RCV 

Day 1 Day 2 Day 3 

1 5417 27.45 

[19.97-30.79] 

0.23 

7.41 

[2.38-16.36] 

1.04 

20.80 

[16.68-23.74] 

0.20 

18.25 

[9.98-23.57] 

0.44 

2 5857 8.39 

[3.49-15.69] 

0.62 

5.14 

[4.23-6.33] 

0.35 

3.96 

[3.49-4.55] 

0.29 

4.66 

[3.71-6.81 

0.26 

3 6582 14.76 

[14.02-15.48] 

0.21 

3.52 

[2.74-13.43] 

1.41 

18.70 

[16.83-19.76] 

0.11 

15.04 

[11.17-17.88] 

0.35 

4 7310 17.94 

[15.81-18.86] 

0.14 

17.46 

[16.83-18.03] 

0.05 

20.42 

[20.12-20.72] 

0.02 

18.40 

[17.22-20.34] 

0.10 

5 7482 20.50 

[18.06-22.36] 

0.13 

17.67 

[16.16-19.68] 

0.20 

20.15 

[19.66-20.79] 

0.04 

19.72 

[17.45-21.15] 

0.14 

 

Table 6.3: IQR of AUC Edrs and RCV for all five patients for all PEEP levels.  
 

Patient 

No. 

PEEP Levels (cmH2O) 

AUC Edrs Median [IQR] (cmH2O.s/l) and RCV 

1 PEEP 12 

14.85 

[10.25 - 16.83] 

0.26 

PEEP 16 

10.27 

[3.47– 19.94] 

0.85 

PEEP 19 

28.89 

[16.16-33.41] 

0.32 

PEEP 21 

28.63 

[35.86-37.85] 

0.15 

PEEP 23 

41.43 

[40.78-41.96] 

0.06 

2 PEEP 11 

11.97 

[6.21-18.13] 

0.43 

PEEP 13 

15.84 

[15.99-19.23] 

0.10 

PEEP 15 

4.35 

[3.56-6.91] 

0.76 

PEEP 19 

21.34 

[20.65-22.77] 

0.44 

PEEP 21 

23.67 

[23.34-25.54] 

0.06 

3 PEEP 10 

3.55 

[3.00-4.20] 

0.42 

PEEP 12 

2.77 

[2.32-3.35] 

0.49 

PEEP 15 

14.34 

[13.28-21.67] 

0.50 

PEEP 17 

15.93 

[6.56-24.53] 

0.57 

PEEP 19 

8.30 

[2.62-16.78] 

1.02 

4 PEEP 19 

21.53 

[18.93 – 22.55] 

0.13 

PEEP 21 

17.74 

[16.16-18.44] 

0.10 

PEEP 23 

18.25 

[17.29-19.28] 

0.09 

PEEP 26 

17.60 

[16.93-18.16] 

0.04 

PEEP 31 

23.30 

[22.83-24.64] 

0.05 

5 PEEP 13 

17.73 

[16.46-18.95] 

0.14 

PEEP 15 

17.35 

[14.95-20.89] 

0.22 

PEEP 17 

20.17 

[19.69-20.80] 

0.04 

PEEP 21 

22.23 

[20.73-23.00] 

0.08 

PEEP 22 

20.46 

[18.41-22.18] 

0.12 
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Figure 6.1: The distribution of AUC Edrs by ventilation days (Left) and by PEEP level (Right) 

for (Top) Patient 1. (Middle) Patient 2 (Bottom) Patient 3.  

-50

0

50

100

150

1 2 3

 Day

 A
U

C
 E

d
rs

,c
m

H
2
O

.s
/l

-50

0

50

100

11 12 13 14 15 16 17 18 19 21 23

 PEEP,cmH
2
O/l

 A
U

C
 E

d
rs

,c
m

H
2
O

.s
/l

-50

0

50

100

1 2 3

 Day

 A
U

C
 E

d
rs

,c
m

H
2
O

.s
/l

-50

0

50

100

11 12 13 14 15 16 17 18 19 20 21

 PEEP,cmH
2
O/l

 A
U

C
 E

d
rs

,c
m

H
2
O

.s
/l

-50

0

50

100

1 2 3

 Day

 A
U

C
 E

d
rs

,c
m

H
2
O

.s
/l

-50

0

50

100

10 11 12 13 14 15 16 17 18 19 21

 PEEP,cmH
2
O/l

 A
U

C
 E

d
rs

,c
m

H
2
O

.s
/l



90 
 

  

  

 

Figure 6.2: The distribution of AUC Edrs by ventilation days (Left) and by PEEP level (Right) 

for (Top) Patient 4 and (Bottom) Patient 5.  

 

Figures 6.3 and 6.4 show the airway pressure and AUC Edrs for Patients 1 and 3, where 

asynchrony events occurred during MV that resulted in a sudden change of AUC Edrs. In 

contrast, Figure 6.5 depicts an airway pressure and AUC Edrs for Patient 2 that shows a 

smooth and transient AUC Edrs with no trace of asynchrony events, which were not evident 

for patient and time period.  
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Figure 6.3: Airway pressure and AUC Edrs plots for Patient 1 containing asynchrony events 

which resulting with a sudden change of AUC Edrs indicating an asynchrony event has 

occurred 

 

 
 

Figure 6.4: Airway pressure and AUC Edrs plots for Patient 3 containing asynchrony events 

which resulting with a sudden change of AUC Edrs indicating an asynchrony event has 

occurred. 
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Figure 6.5: Airway pressure and AUC Edrs plots for Patient 2 which shows a constant airway 

pressure, resulting in a smooth and transient AUC Edrs. 

 

6.3.3 Cumulative distribution functions (CDF) of AUC Edrs by patients 

 

Figure 6.6 presents the cumulative distribution functions (CDF) of AUC Edrs across all PEEP 

levels for each patient. The CDFs of Patient 1 and 4 are shown in Figure 6.7, along with 

dashed lines indicating the 95% confidence intervals of AUC Edrs in each patient. 
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Figure 6.6: Cumulative distribution function (CDF) plot of AUC Edrs for all five patients at 

all PEEP levels. 

 

 

Figure 6.7: Cumulative distribution function (CDF) plot of AUC Edrs for Patient 1 and Patient 

4 at all PEEP levels. The dashed line show the 95% confidence interval (5th and 95th 

percentile) of AUC Edrs. 
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6.3.4 Breath to breath variability 

 

Breath to breath variability of AUC Edrs in Patients 1-3 are presented in a Poincare´ plot in 

Figures 6.8, 6.9 and 6.10, respectively. The Poincare´ plots show the distribution of AUC Edrs 

for all the three days. A linear line in each figure distinguishes the location of between AUC 

Edrs i and AUC Edrs i+1 relative to a 1:1 line defining their equality with no breath-breath 

variability. The width around the 1:1 line indicates breath-breath variability. 

 

   

Figure 6.8 Poincare´ breath to breath plot of AUC Edrs for Patient 1 by (Left) Day 1 (Middle) 

Day 2 (Right) Day 3. 

   

Figure 6.9: Poincare´ breath to breath plot of AUC Edrs for Patient 3 by (Left) Day 1 (Middle) 

Day 2 (Right) Day 3. 
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Figure 6.10: Poincare´ breath to breath plot of AUC Edrs for Patient 4 by (Left) Day 1 

(Middle) Day 2 (Right) Day 3.  

 

6.4 Discussions 

6.4.1 Variability by ventilation days and PEEP levels 

 

Tables 6.2 and 6.3 and the corresponding Figures 6.1 to 6.2 show the variability of AUC Edrs 

elastance with respect to mechanical ventilation days and PEEP. It can be clearly seen that 

the AUC Edrs varies at each day and PEEP level. Specifically, Patients 1 and 3 have higher 

RCV values of 1.04 and 1.41 on day 2 of ventilation, respectively. In contrast, Patient 4 has 

the least variability for all 3 days of ventilation with RCV ranges from 0.02 to 0.14.  

 

Furthermore, the AUC Edrs varies at PEEP level for each patient. Specifically, for Patient 1, 

the highest variability of elastance was observed at PEEP = 16 cmH2O with RCV value of 

0.85. Patient 2 also has a highest variability of elastance of RCV = 0.76 at PEEP = 15 cmH2O 

whereas Patient 3 has the highest RCV value of 1.02 at PEEP = 19 cmH2O. 

 

These variability changes were observed in ventilation days, as expected, due to recovery or 

worsening of the patient’s condition, and would likely be observed over clinically relevant, 
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but shorter time frame. However, not all patients exhibit similar behaviour compared to fully 

controlled ventilation modes with little patient-induced spontaneous breathing effort. Equally, 

the per-patient variability was equally wide in Figure 6.6-6.7 

 

6.4.2 Variability by patients 

 

Patients included in this study are all ventilated using SIMV volume control mode. During 

controlled ventilation, these patients exhibits variability in lung elastance, as shown in 

Figures 6.1 and 6.2. For example, Patients 1 and 3 have significantly higher variability due to 

the asynchronies that existed during synchronized intermittent mandatory ventilation (SIMV) 

mode, as shown in Figure 6.3 and 6.4, respectively. Asynchrony happens when the patient’s 

breathing effort is not synchronised with mechanical ventilation’s breathing support. 

However, it happens more frequently during non-invasive ventilation or partially assisted 

modes, where the patient is breathing spontaneously and the ventilator support is triggered by 

patient respiratory effort (Epstein 2011; Tobin et al. 2001; Vignaux et al. 2009). Hence, the 

choice of SIMV ventilated patients in this specific study. 

 

Asynchrony events can be regards as a significant mismatch between airway pressure and 

flow. Thus, this mismatch also affects the estimation of respiratory system mechanics, where 

the respiratory elastance can be under or overestimated compared to synchronised breathing 

cycles. In some cases, the estimated elastance can overshoot to a very high value as compared 

to normal airway pressure (Poole et al. 2014), as depicted in Figure 6.4 in Patient 3. This 

overshoot can be seen as the model capturing the external force generated from patient- 

specific and breath-specific spontaneous breathing efforts. Similarly, Patient 1 exhibits a SB 

effort although the patient was in fully sedated condition. This resulting with a constantly 
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asynchrony airway pressure as shown in Figure 6.3, that reduced the value of the elastance, 

limiting the calculation of accurate values of the lung elastance. 

 

Occasional AUC Edrs spikes that were observed in Patients 1 and 3 in Figures 6.3 and 6.4 

indicate that asynchronous events occur at any time throughout the ventilation period. This 

asynchrony events resulting with a variability in the respiratory elastance. Due to the 

asynchrony, the range of variability in AUC Edrs measurement in Patient 1 and 3 is higher 

with the RCV of 0.44 and 0.35, respectively. Thus, these results show that there is 

spontaneous variability and underlying variability. Due to the breath to breath variability in 

SB efforts, there is large variability due to the resulting  negative component of the 

respiratory elastance in Equation 6.2 (Chiew et al. 2015). This negative component of 

elastance will be further discussed in Chapter 7.   

 

In contrast, a smooth and transient AUC Edrs is observed in Patient 2 (Figure 6.5). 

Specifically, there is no pressure mismatch and thus no asynchrony events. Thus, these results 

clearly validate the idea that asynchrony events play a significant role in the observed, model-

based variability in breath-specific elastance in each patient.  

 

6.4.3 Distribution and variability of median AUC Edrs all patients at all PEEP 

 

From the CDF of all patients in Figure 6.6, it can be concluded the variability of AUC Edrs 

increases per patient. It can also be seen that Patient 1 is significantly different in median 

from all other patients (p<0.005) and significantly different in variability compared to all 

patients (p< 0.005). Examining the median and IQR of Patient 1, it shows that Patient 1 has 

higher ranger of AUC Edrs with 18.25 [9.98 - 23.57] cmH2O.s/l across all PEEP levels. For 
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example, the 95% confidence interval (5
th

 and 95
th

 percentile) value is significantly larger in 

Patient 1 than Patient 4 (p < 0.005) as in Figure 6.7, although both patients have almost 

similar median value of 18.25 cmH2O.s/l and 18.40 cmH2O.s/l respectively. In contrast, 

Patient 4 has a comparatively smaller range in the 5
th

 to 95
th

 range of AUC Edrs. This result is 

as expected, as Patient 1 exhibits a significant asynchrony compared to Patient 4. These 

results show that the central tendency of AUC Edrs is the same, but that the shape of the 

distribution can vary differently, patient-to-patient, clearly capturing patient-specific 

differences in condition and response to MV.  

 

6.4.4 Breath to breath variability  

 

Furthermore, Figures 6.8-6.10 show a Poincare´ plot for breath to breath analysis in Patients 

1, 3, and 4 for the 3 ventilation days. The patients are chosen based on the RCV value with 

Patients 1 and 3 having a higher variability, whereas, in contrast, Patient 4 has a much  lower 

variability. In the Poincare´ plot, the first AUC Edrs (AUC Edrs i) for the first breath (Poincare´ 

plot) is represented on the x-axis, and the AUC Edrs of the following breath (AUC Edrs i+1) is 

plotted on the y-axis. The Poincare´ plot also demonstrates that if the AUC Edrs i+1 is less than 

AUC Edrs i, this then indicates that the elastance is decreasing for the next breath. A consistent 

decreasing trend would indicate improving patient condition, shown in such figures as a bias 

around the 1:1 line. 

 

It can be seen from Figure 6.10 that the variation or Poincare´ plots for Patient 4 for all 3 days 

is almost a straight line, especially on Day 3 with RCV = 0.02. Although a few points exist 

outside the linear line, the majority of the points are within a 90% range that has much less 
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variability in elastance for Patient 4, which agrees with a small RCV value of 0.10, and 

indicates the clear per-patient differences that may be seen.  

 

In contrasts, the Poincare´ plots for Patient 3 in Figure 6.9 demonstrate that the distribution of 

data are scattered away from the linear line. This elucidates the breath to breath variability of 

elastance in Patient 3 is higher with a RCV value of 0.35. Similarly, the same results apply to 

Patient 1, with breath to breath variability of data points are scattered away from the liner 

line. The much higher variability in AUC Edrs in Patients 1 and 3 is expected, due to the much 

more frequent, stronger and more variable SB effort produced by both patients. This outcome 

can be seen from Figures 6.8 and 6.9, where there exists data points of AUC Edrs in the 

negative regions, which further validates the idea the negative values of elastance that 

decrease the overall values of Edrs and, in this case, results in negative values of Edrs(t) and far 

greater variability in overall respiratory elastance. The investigation of the negative elastance 

SB effort will be discussed in detail in Chapter 7. 

 

Specifically, for Patient 1, on day 2, some of the AUC Edrs data points lie above the linear line 

as shown in Figure 6.8. This implies that AUC Edrs i is greater than AUC Edrs i+1 which 

elucidates that the lung condition is getting worse for every consequence breaths. However, 

on day 3, some of the AUC Edrs points lie under the linear line which show that the AUC Edrs i 

is lesser than AUC Edrs i+1. Thus, this result indicates that the lung condition of Patient 1 has 

improved.  
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6.5 Summary 

 

In this chapter, this research quantified the variability identified and estimated respiratory 

mechanics properties used to potentially guide ventilation care in sedated patients. With this 

information, it could guide ventilation in PEEP titration to the optimal elastance which could 

protect the lung from over-distension condition. Clinically, results on the variability of 

elastance have shown significant implications for managing PEEP titration for MV patients. 

However, due to patient-specific breathing effort, it produced a negative elastance, resulting 

with a variability in elastance. The asynchrony is also known as another factor that 

contributes to the variability in elastance. Thus, Chapter 8 will then introduce a model-based 

that could re-construct the pressure that has been reduced due to the asynchrony problem, and 

improving the estimation of the accurate value of the lung elastance. 
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CHAPTER 7 

Lung Elastance Monitoring for Spontaneously Breathing Patient 

 

7.1 Introduction 

 

Most of the lung models that have been developed are only effective for fully sedated patients 

(Brochard et al. 2012; Hickling 1998a; Sundaresan et al. 2009). They cannot be applied 

directly to the spontaneously breathing (SB) patients due to the different lung mechanisms 

between fully sedated and SB patient. In particular, they add input energy in the form of 

negative pressure due to their muscles opening the chest cavity and allowing air to enter. This 

SB input cannot be accurately modelled at this time and cannot be predicted accurately. 

However, because there are a significant number of patients on mechanical ventilation (MV) 

who have some level of SB effort, it will be valuable to develop and integrate a metric that 

allows analysis of the true respiratory mechanics in SB patients (Kallet & Branson 2007). 

 

SB patients have individual breathing efforts aside from the ventilator support (Grinnan & 

Truwit 2005). These efforts modify the measurable airway pressure and/or flow waveforms, 

which can significantly alter the identified lung mechanics. The main obstacle is to be able to 

find a metric that able to detect the presence of the SB effort and to then identify or estimate 

the level of SB effort exerted by the patient. A suitable method might thus quantify the effort 

from sudden or unnatural changes in the pressure or flow waveforms, or may require direct 

measurement of the SB patient’s muscular movement, as seen in invasive measurements in 

the NAVA system (Chiew et al. 2013).  
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There are some techniques that have been applied to directly measure or attempt to monitor 

the breathing effort made by SB patients. One of the most well-known methods is the 

balloon-catheter technique used to measure the oesophageal pressure, which is the surrogate 

of the pleural pressure (Ppl) (Khirani et al. 2010; Talmor et al. 2008). However, this technique 

is not suitable for clinical practise as it requires the balloon to be inserted into the patient and 

used to interrupt breathing. It is thus a very intrusive measurement and not feasible for 

regular clinical use despite its potential to accurately measure SB effort and thus potentially 

optimise and guide MV for SB patients with ARDS (Guérin & Richard 2012). 

 

Another approach to measure the SB effort is by monitoring the electrical activity of the 

diaphragm (Eadi) of the ventilated patient. This measurement captures muscle activity as a 

surrogate for this SB input. It can thus provide a better monitoring of patient-ventilator 

synchrony in SB patients (Moorhead et al. 2013; Piquilloud et al. 2011). However, there is a 

potential of tidal volume leak in this, also invasive, measurement that can affect the 

measurement of the SB effort (Moorhead et al. 2013). In addition, this measurement requires 

an additional expensive sensor that must be very accurately positioned.   

 

In Chapter 6, it was mentioned that one of the reasons of the variability is due to the negative 

elastance effectively caused by un-modelled the SB effort. This negative elastance is 

hypothesised to be due to a positive lung volume intake through the SB effort induced 

negative pressure in the lung compartment (Chiew et al. 2015). Thus, in this chapter, a non-

invasive model-based method, based on time varying respiratory system elastance, is 

implemented to review the distribution of negative elastance in SB patients to quantify its 

potential level and impact.  
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7.2 Methodology 

7.2.1 Patient Data 

 

In this study, this model is assessed using clinical data from Clinical Utilisation of 

Respiratory Elastance (CURE) study patients. The associated protocols have been described 

in detail in Chapter 6, along with demographics and ethics approval details, so they are not 

covered here.  

 

7.2.2 Spontaneously Breathing Respiratory Model 

 

The model is based on the time varying elastance model described in details in Chapter 4, and 

repeated here for clarity as:  

𝑃𝑎𝑤(𝑡) = 𝑅𝑟𝑠 ×  𝑄(𝑡) + 𝐸𝑑𝑟𝑠 × 𝑉(𝑡) 

 

 (7.1) 

𝐸𝑑𝑟𝑠(𝑡) = 𝐸𝑐𝑎𝑔𝑒 + 𝐸𝑑𝑒𝑚𝑎𝑛𝑑 +  𝐸𝑙𝑢𝑛𝑔 

 

 (7.2) 

During inspiration, Q is positive leading to an increasing integrated volume (V). In SB 

patients, Edemand represents the change in elastance due to patient-specific SB effort. Thus, 

this elastance, Edemand, has a negative value due to the diaphragm contracting and the 

intercostal muscles that move the rib cage upwards, which both increase the volume of the 

chest compartment. This increase, creates a negative pressure gradient that draws air into the 

lungs and is the sole mechanics of breathing in healthy individuals. As patient demand aids 

the breathing effort, the effective overall pressure based on Equation 7.1, is therefore 

reduced, leading to a reduced identified value of elastance. 
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7.3 Data analysis 

 

In this study, the area under the curve (AUC) for the time-varying elastance, Edrs, is estimated 

for each SB patient. The results are reported as median and interquartile range (IQR) for 

continuous data with CURE collecting a total of 82 hours.  

 

7.4 Results 

 

Figures 7.1-7.3 present the distribution of positive and negative AUC Edrs for all 5 patients. 

For the same patients, the 5
th

, 25
th

, 59
th

, 75
th

, and 95
th

 percentiles of the negative and positive 

AUC Edrs data are also tabulated in Table 7.1. Separating the positive and negative values 

into two plots allows easier quantification at these elastance values. A negative AUC 

indicates the entire elastance Edrs profile was less than 0. This behaviour occurs when as seen 

in Figure 7.4. The vast majority have AUC Edrs > 0 as expected. 

 

Table 7.1: Negative and positive AUC Edrs (5th, 25th, 59th, 75th, 95th percentile) for all 

5 patients. 
 

Patient Negative AUC Edrs 

 

Positive AUC Edrs 

 

 5
th

 25
th

 50
th

 75
th

 95th 5th 25
th

 50
th

 75
th

 95th 

1 -7.76 -3.03 -1.65 -0.70 -0.18 2.51 12.15 18.94 23.85 31.63 

2 -16.81 -3.89 -2.08 -0.92 -0.23 2.91 3.73 4.67 6.85 16.70 

3 -11.52 -1.76 -0.66 -0.19 -0.03 2.40 10.85 14.99 17.90 21.15 

4 -6.08 -3.22 -2.27 -0.69 -0.16 14.87 17.20 18.36 20.34 21.43 

5 -6.02 -2.27 -0.98 -0.47 -0.19 14.50 17.47 19.73 21.16 24.57 
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Figure 7.1: The distribution of positive (upper) and negative (lower) values of AUC Edrs by 

hour for (Top) Patient 1 and (Bottom) Patient 2. The positive and negative values are 

combined for the entire distribution.  
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Figure 7.2: The distribution of positive (upper) and negative (lower) values of AUC Edrs by 

hour for (Top) Patient 3 and (Bottom) Patient 4. The positive and negative values are 

combined for the entire distribution.  
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Figure 7.3: The distribution of positive (upper) and negative (lower) values of AUC Edrs by 

hour for Patient 5. The positive and negative values are combined for the entire distribution. 

 

 

Figure 7.4: The Edrs for a single breath for Patient 3 that shows the negative and positive 

values of Edrs. 
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7.5 Discussion 

 

In this study, it was observed that all 5 patients had some negative AUC Edrs, as shown in 

Figures 7.1-7.3. Negative elastance occurs when negative pressure is generated in the 

patient’s pleural space causing air volume to enter the lung. As pleural pressure decreases due 

to patient’s inspiratory demand, the airway pressure or flow changes. More specifically, Edrs 

will be less than zero when patient breathing demand is high at the beginning of inspiration, 

and will gradually decrease in magnitude as patient demand decreases during the breath. A 

negative AUC of Edrs occurs when this negative area outweighs the positive area when Edrs < 

0, as seen in Figure 7.4. 

 

Table 7.1 shows the negative and positive data of the AUC Edrs. It can be seen that that the 

95
th

 percentile of the positive AUC Edrs was above 25 cmH2O.s/l for Patient 1, although this 

patient exhibits a negative elastance due to SB efforts. ARDS patients have been shown to 

have higher respiratory elastance with Edrs > 25 cmH2O/l (The ARDS Definition Task Force 

2012). These results show that, the proposed AUC Edrs metric is able to capture mechanics 

similar to those observed in ARDS patients when fully sedated in MV, giving confidence of 

the clinical relevance of the AUC Edrs value used here. For the other patients, the 95
th

 

percentile of AUC Edrs were below than 25 cmH2O/l, which suggests that the patients in this 

SB study were more compliant than that of fully sedated ARDS patients lungs, as might be 

expected for SB patients with less intrusive ventilation (Chiew et al. 2014). 

 

The AUC Edrs for SB patient is dependent on the initial pleural pressure or the magnitude of 

negative Edemand. Thus, a lower AUC Edrs may indicate that a patient has comparatively higher 

individual breathing effort than others, and obviously more than a sedated patient. Thus, the 
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AUC Edrs metric is able to uniquely capture the information of SB patients without the use of 

invasive protocols.  

 

Specifically, for Patient 4, the negative AUC Edrs occurred only at 3 and 15 hours. The 

existence of the negative elastance might be due to the ventilator setting of the patient during 

this time when the ventilation mode was switched to an assisted spontaneous breathing 

(ASB) mode. As expected, Patients 1 and 3 have the largest distribution of negative AUC Edrs 

values due to the larger number of asynchrony events they experienced, which were 

discussed previously in Chapter 6.   

 

This model can thus be generalised over the SB and sedated MV patients based on the Edrs 

value, where negative Edrs relates to SB effort and reduced AUC Edrs can also indicate SB 

efforts. Thus, the Edrs value and trajectory can be used as a simple, real-time indicator to 

assess patient-specific disease state and response to MV specifically for SB patients 

monitoring.  

 

7.6 Summary 

 

This proposed spontaneous breathing model monitoring is able to capture unique dynamic 

respiratory mechanics specifically for spontaneously breathing patient without additional 

measuring equipment or interruption of care. Thus, with this metric, it is able to guide 

clinicians in setting the optimal mode of the ventilation that meet the patient’s demand. 

  



110 
 

CHAPTER 8 

Processing of Pressure Waves for Respiratory Mechanics 

Estimation by Spontaneously Breathing Efforts 

 

8.1 Introduction 

 

Estimation of respiratory mechanics can enable individualised mechanical ventilation (MV) 

therapy (Lauzon & Bates 1991; Lucangelo et al. 2007). However, most of the mathematical 

lung models developed are only suitable for fully sedated patients (Brochard et al. 2012; 

Sundaresan et al. 2011a; Talmor et al. 2008; Talmor et al. 2006). Others are also too complex 

for use as a bedside application (Donovan 2011; Kitaoka et al. 2007; Tawhai & Bates 2011; 

Tawhai et al. 2004).  

 

Current bedside respiratory models are limited and cannot be applied directly to 

spontaneously breathing (SB) patients. These patients exhibit modified airway pressure and 

flow profiles due to their own variable inspiratory effort (Grinnan & Truwit 2005). These 

modified airway pressure and flow are variable and heterogeneous in level and appearance, 

rendering the underlying pulmonary mechanics of SB patients difficult to identify correctly 

from measured airway pressure and flow data alone. However, due to the significant number 

of patients on MV who demonstrate intermittent SB effort, as seen in Chapter 6 and 7, it is 

essential to have a mathematical model that can be applied to analyse respiratory system 

mechanics in SB patients. 
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In particular, this specific problem arises when a patient exhibits SB effort on top of a 

ventilator supported breathing cycle. This phenomenon is known as reverse triggering 

(Akoumianaki et al. 2013), which results in a consistent occurrence of ‘entrainment’ in 

observed airway pressure waveforms. This ‘entrainment’ can be denoted as an M-wave due 

to its shape, as shown in Figure 8.1. This M-wave pressure curve creates a significant 

problem in identifying accurate values for respiratory system elastance and airway resistance 

(Chiew et al. 2011). Hence, it is important to have a method to overcome the impact of these 

M-waves and provide a more consistent estimation of the underlying and SB unaffected 

respiratory system mechanics for clinical monitoring.  

 

  

Figure 8.1: Left: Normal airway pressure Right: M-wave airway pressure.  

 

During volume controlled ventilation, if the patient breaths on top of a ventilation support, 

the patient’s breath-specific inspiratory effort induces a reduction in airway pressure that the 

model sees as reduced respiratory elastance due to the same volume being delivered for less 

pressure (Alencar et al. 2002; Chiew et al. 2015). This M-wave pressure curve creates a 

significant problem in identifying accurate values for the true, underlying respiratory system 
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elastance and airway resistance as this input is not known or modelled (Schranz et al. 2012b). 

Hence, it is important to have a method to overcome the impact of these M-waves and 

provide a more consistent estimation of the underlying respiratory system mechanics for 

clinical monitoring especially for SB patients.  

 

In addition to reducing the impact of M-waves, it is essential to have a metric that detects the 

presence of these M-waves and quantifies how much breathing effort is exerted by the patient 

during reverse triggering. Currently, there are no metrics that quantify SB effort during MV 

without using highly invasive oesophageal pressure catheters (Benditt 2005; Khirani et al. 

2010; Talmor et al. 2006).  

 

Clinically, these SB efforts need to be assessed to determine if the MV mode needs to be 

adjusted or adapted to patient breathing effort for better patient-ventilator interaction 

(Piquilloud et al. 2011). Thus, a metric that can act as a surrogate of SB effort and its 

contribution in altering the airway pressure waveform is required, clinically, as well as for 

model-based methods. An automated, model-based approach would also offer first ever 

quantification of the incidence and severity of SB efforts and asynchrony. 

 

In this chapter, a model-based method is used to reconstruct the M-wave affected airway 

pressure curve. This method hypothesizes that the true, underlying respiratory mechanics do 

not change significantly breath to breath at a given pressure level, as is already evident in 

sedated patients without SB efforts. This method aims to provide a more consistent 

respiratory mechanics monitoring through reconstruction of the ‘actual’ airway pressure. 

Using the reconstructed pressure and the M-wave affect pressure, metric to identify breath 
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and patient-specific effort is developed. This information is capable of providing new clinical 

insight to patient condition and response to treatment.  

 

8.2 Methodology 

8.2.1 Clinical data 

 

Data recorded from a clinical trial carried out in the intensive care unit (ICU) of Christchurch, 

New Zealand were used in this study, with the data acquisition process detailed in Chapter 6 

(Szlavecz et al. 2014).  

 

Table 8.1: Characteristics of the patients. 
 

Patient No. Gender Age Clinical Diagnostic 

    

1 Female 53 Faecal peritonitis 

2 Male 71 Cardiac surgery and contracted hospital acquired 

pneumonia 

3 Male 60 Pneumonia 

4 Male 36 Pneumonia 

5 Male 61 Pneumonia 

 

8.2.2 Time Varying Respiratory Elastance Model 

 

Model-based time-varying elastance is identified breath-to-breath using a single compartment 

lung model which has been described in detail in Chapter 4 in Equations 4.1 and 4.2 (Chiew 

et al. 2015; Lauzon & Bates 1991). These two equations are 

𝑃𝑎𝑤(𝑡) = 𝑅𝑟𝑠𝑄(𝑡) +  𝐸𝑟𝑠(𝑡)𝑉(𝑡) +  𝑃0  (8.1) 

 

∫ 𝑃𝑎𝑤 (𝑡)𝑑𝑡 = 𝑅𝑟𝑠 ∫ 𝑄(𝑡)𝑑𝑡 +  𝐸𝑟𝑠(𝑡) ∫ 𝑉(𝑡) 𝑑𝑡 +  ∫ 𝑃0  𝑑𝑡  (8.2) 
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Then, an average lung resistance (Rave) is calculated based on the value of Rrs for every PEEP 

level and it is substituted into Equation 7.3 where the dynamic elastance, Edrs is defined as a 

time-varying lung elastance and identified using (van Drunen et al. 2014): 

𝐸𝑑𝑟𝑠(𝑡) =  
𝑃𝑎𝑤(𝑡) −  𝑃0 − (𝑅𝑎𝑣𝑒𝑄(𝑡))

𝑉(𝑡)
 

 

 (8.3) 

 

For each breathing cycle, the area under the curve of Edrs (AUC Edrs) is then calculated as a 

surrogate of respiratory elastance (Chiew et al. 2015). 

 

8.2.3 Pressure Reconstruction Method  

 

Patients with the ability to breathe spontaneously, even if sedated, create abnormal airway 

pressure waveforms shaped like an “M” (Akoumianaki et al. 2013), as shown in Figure 8.2. 

The lower pressures and M-wave curves result in a significantly lower identified elastance 

since pressure is reduced by patient-specific induced inspiratory effort for the same volume 

delivered. In Figure 8.2, the respiratory system elastance and airway resistance for the normal 

airway pressure (left) are 25.85 cmH2O/l and 10.22 cmH2O·s/l, respectively. In contrast, 

direct application of Equation 8.1 using the M-wave airway pressure results in an elastance of 

13.70 cmH2O/l and a resistance of 12.91 cmH2O.s/l. Thus, to provide a more consistent 

clinically useful result, to identify the true, underlying mechanics, unaffected by patient-

specific inspiratory effort, a simple pressure wave reconstruction method to remove or reduce 

the impact of SB efforts or measured airway pressure waveforms is necessary. 
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Figure 8.2: Left: Normal airway pressure provides well-fit model. Right: M-wave causing 

poor model fit.  

 

The proposed pressure reconstruction method identifies and compares both the maximum 

peaks of the inspiration pressure waveform (Figure 8.3). Point b1 is defined as five data 

points after the end of inspiration, while a1 is defined as five data points after point b1. These 

two points will be used as a reference point to determine the gradient of the airway pressure 

during expiration (Figure 8.3b). A line that connects a1 and point b1 is extrapolated to point 

c1, which has the same pressure value as the maximum pressure for the breath (c2 on Figure 

8.3c). Point c1 and the maximum peak c2 are connected by a line that connects the peak and 

end inspiratory gradient. Figure 8.3 shows the sequence of how the airway pressure 

reconstruction is performed. This method is also applicable when the peak pressure occurs 

after the asynchrony event, and is the second peak. In that case, the process is reversed. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
 

Figure 8.3: The steps on the reconstruction process (a) The M-wave airway pressure. (b) The 

maximum peak, point a1 and point b1 are identified. (c) The slope of  point a1 and point b1 is 

extrapolated until point c1, which has the same pressure value as the maximum peak. (d) The 

estimated final result of the reconstruction airway pressure. 

 

 

8.2.4 Assessing Spontaneous Breathing Effort  

 

The overall goal of the reconstruction method is to reduce the pressure drop created by the 

patient-specific inspiratory effort that reduces the measured airway pressure. The enclosed 
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area, shown in Figure 8.4 (A2), is hypothesized to be a surrogate of patient-specific 

inspiratory effort that could be used to assess the strength of SB efforts.  

 

 
Figure 8.4: The area of the missing pressure, A2 is shaded with dark colour.  

 

The area of the M-wave over PEEP pressure is identified as A1 and it has reduced pressure 

compared to the reconstructed curve, resulting in a lower overall time varying elastance 

(AUC Edrs). However, by adding the area of a missing pressure (A2), the effect of the patient-

specific breathing effort is reduced, leading to a higher value of identified elastance. Thus, 

the percentage of spontaneous breathing effort can be defined: 

SB effort =
A2

A1 +  A2
 × 100% 

  

 (8.4) 

where it is important to note that A1 and A2 are independent of the PEEP level, which is 

15cmH2O in Figure 8.4. 

 

Furthermore, from Equation 8.3, an accurate value of Edrs can be estimated and defined:  
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𝑃𝐴1
+ 𝑃𝐴2

−  𝑅𝑎𝑣𝑒𝑄(𝑡)

𝑉(𝑡)
=  𝐸𝑑𝑟𝑠_𝑟𝑒𝑎𝑙 

 (8.5) 

 

Where 𝑃𝐴1
is the unreconstructed pressure, 𝑃𝐴2

 is the pressure of the missing A2, and Edrs_real is 

the accurate value of the respiratory elastance after the reconstruction process. If the 

resistance is constant and the volume controlled ventilation mode is set to have a fixed flow 

pattern to deliver set tidal volume, then 𝑅𝑎𝑣𝑒𝑄(𝑡) can be assumed constant. Due to the SB 

breathing effort, Edrs is lower compared to normal breathing pressure, as only the 𝑃𝐴1
 

component of pressure is present, yielding: 

𝑃𝐴1

𝑉(𝑡)
−  

𝑅𝑎𝑣𝑒𝑄(𝑡)

𝑉(𝑡)
=  𝐸𝑑𝑟𝑠_𝑙𝑜𝑤 

 (8.6) 

 

Edrs is expected to be lower when there is additional unmodelled and unmeasurable energy 

input from the patient due to their SB effort, to add air volume. Therefore, it takes less 

pressure from the ventilator to achieve the target volume. Accounting for this difference 

using 𝑃𝐴2
 yields: 

(
𝑃𝐴1

𝑉(𝑡)
+

𝑃𝐴2

𝑉(𝑡)
) −  

𝑅𝑎𝑣𝑒𝑄(𝑡)

𝑉(𝑡)
=  𝐸𝑑𝑟𝑠_𝑙𝑜𝑤 +  𝐸𝑑𝑟𝑠_𝑆𝐵 

 (8.7) 

 

If the term 𝑅𝑎𝑣𝑒𝑄(𝑡) is assumed to be constant, Edrs relies heavily on the change of pressure. 

Hence, the elastance difference due to the SB effort can be defined: 

𝐸𝑑𝑟𝑠_𝑆𝐵 =  
𝑃𝐴2

𝑉(𝑡)
 

 (8.8) 

 

Given that V(t) is the same in both cases, it can be said that:  

𝑃𝐴2
∝  𝐸𝑑𝑟𝑠_𝑆𝐵 

 

 (8.9) 
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Therefore, 𝐸𝑑𝑟𝑠_𝑆𝐵is a good surrogate of SB effort specific to a particular breath and patient. 

This approach thus creates a unique, new and non-invasive estimate of SB effort with no 

additional measurement or intervention required.  

 

Finally, the work done by breathing can be determined using: 

𝑊𝑂𝐵 = ∫ 𝑃𝐴1
(𝑉)𝑑𝑉

Δ𝑉

 
 (8.10) 

 

Equation 8.10 can then be modified to utilise the lines shown in Figure 8.5, yielding:  

% 𝑜𝑓 𝑊𝑂𝐵𝑆𝐵 = ∫
𝑃𝐴2

𝑃𝐴1
+  𝑃𝐴2

(𝑉)𝑑𝑉
Δ𝑉

× 100% 
 (8.11) 

 

8.2.5 Data analysis 

 

In this study, the Edrs for every breathing cycle of each patient is normalised and the AUC Edrs 

is calculated both with and without pressure reconstruction, to prove the concept for different 

PEEP levels in 5 patients for all 275 breathing cycles recorded. It is hypothesized that the true 

underlying mechanics change little, if at all, from breath-to-breath at a given PEEP level, 

matching results from sedated patients with no SB effort (Chiew et al. 2011; Chiew et al. 

2015). Intermittent and variable SB efforts thus add variability to identified elastance and 

mechanics. The variability in AUC Edrs for the reconstruction method was also determined 

and compared with the AUC Edrs for the unreconstructed pressure by using the robust 

coefficient of variation (RCV = median absolute deviation/median), to compare the resulting 

variability in each metric over several breaths.  
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8.3 Results 

 

Figure 8.6 shows the reconstructed airway pressure and the calculated AUC Edrs values for 

Patient 1 at PEEP of 15 cmH2O. Figure 8.6 shows that many observed airway pressure waves 

were the typical airway pressure waveform expected from fully sedated patients. However, 

there are some breaths that exhibit M-wave characteristics. The highest AUC Edrs values were 

associated with the least effected pressure waves.  Ers and Rave were calculated to determine 

the AUC Edrs using Equation 8.3. The Edrs curves are shown in Figure 8.7 for two of these 

breaths, one M-wave and one normal, and the difference in area under the Edrs curve between 

the normal wave and M-wave can be observed. 

 

 
Figure 8.5: Top: The unreconstructed with M-wave airway pressure and reconstructed airway 

pressure for Patient 1 PEEP = 15 cmH2O. Bottom: The AUC Edrs for both airway pressures at 

PEEP = 15 cmH2O for Patient 1. 
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Figure 8.6: Example of airway pressure curve and Edrs curves for Patient 1 Top: The M-wave 

and normal pressure curve at PEEP = 15 cmH2O. Bottom The Edrs curves for the M-wave and 

reconstructed M-wave and normal wave breaths normalized to the same inspiratory time at 

PEEP = 15 cmH2O. Reconstruction improves estimate towards unaffected breath. 

 

Figure 8.7 illustrates the reconstructed pressure volume (PV) curves for Patient 1 at a PEEP 

of 15 cmH2O that captures the behaviour exhibited in the breath that was free from SB 

efforts. Figures 8.8 and 8.9 show unreconstructed airway pressure, reconstructed airway 

pressure, and the comparison of AUC Edrs for each PEEP level for Patients 1 and 4. 
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Reconstruction inevitably leads to higher modelled pressure and higher elastance, and thus, in 

this case, less variability in the calculated AUC Edrs. Figures 8.8 and 8.9 also show the 

surrogate inspiratory breathing effort based on Equation 8.4.  

 

Table 8.2 summarises the calculated AUC Edrs and breathing effort for all 275 breathing 

cycles. A total of 81 cycles (~30%) were affected with the M-waves across all patients. The 

results between unreconstructed pressure and reconstructed pressure were compared. The 

RCV is calculated and compared for each PEEP level per patient and tabulated in Table 8.2. 

Figure 8.10 depicts the distribution plot for % of WOB against % of SB effort across all 

patients at all PEEP levels. 

 
 

Figure 8.7: The PV curve of Patient 1 at PEEP 15 cmH2O for M-wave (blue line) and 

reconstructed curves (red line). 
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Figure 8.8: The AUC Edrs and for M-wave and reconstructed airway pressure and the 

surrogate inspiratory effort that added by the Patient 1 using reconstruction method for Left: 

PEEP = 15 cmH2O and Right: PEEP = 17 cmH2O. 
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Figure 8.9: The AUC Edrs and for unreconstructed and reconstructed airway pressure, and the 

surrogate inspiratory effort that added by the Patient 4 using reconstruction method for Left: 

PEEP = 19 cmH2O and Right: PEEP = 22 cmH2O. 

 

 

Figure 8.10: Plot of % of WOB against % SB effort across all patient breaths at all PEEP 

levels. 
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Table 8.2: The AUC Edrs and RCV for unreconstructed M-wave and reconstructed M-wave, and the percentage of SB surrogate for 5 

patients at different PEEP levels 

 
Patient PEEP 

(cmH2O) 

Breathing 

cycle 

M-wave 

cycle 

Unreconstructed 

AUC 

Edrs(cmH2O·s/l) 

Reconstructed 

method AUC Edrs 

(cmH2O·s/l) 

SB Effort 

(%) 

WOB 

(%) 

RCV for 

AUC Edrs 

(M-wave) 

RCV for  

AUC Edrs 

(Reconstructed) 

1 15 29 15 21.99 

[18.37-24.06] 

22.95 

[21.38-24.09] 

0.00 

[0.00-11.38] 

0.06 

[0.00-6.60] 

0.14 0.08 

 17 33 19 20.69 

[19.10-24.28] 

23.95 

[22.71-24.99] 

10.95 

[0.00-14.79] 

4.56 

[0.01-7.74] 

0.14 0.05 

2 15 30 7 16.73 

[16.38-17.06] 

16.95 

[16.69-17.24] 

1.13 

[0.98-1.43] 

1.53 

[0.75-1.78] 

0.02 0.01 

 17 18 8 22.01 

[21.08-23.49]] 

22.48 

[20.84-23.70] 

0.76 

[0.00-1.22] 

0.75 

[0.10-1.09] 

0.07 0.07 

3 13 32 5 18.88 

[18.05-19.59] 

19.16 

[18.36-19.92] 

0.62 

[0.22-0.92] 

0.43 

[0.25-0.62] 

0.05 0.04 

 14 31 5 15.24 

[15.00-15.57] 

15.56 

[15.28-15.82] 

0.00 

[0.00-0.24] 

0.33 

[0.10-0.56] 

0.03 0.03 

4 19 29 4 22.80 

[22.57-23.11] 

22.80 

[22.61-23.12] 

0.00 

[0.00-0.14] 

0.33 

[0.19-0.41] 

0.03 0.02 

 22 31 6 15.56 

[14.77-16.20] 

15.89 

[15.02-16.24] 

0.00 

[0.00-0.12] 

0.22 

[0.08-0.39] 

0.04 0.04 

5 17 21 8 19.98 

[18.98-20.31] 

20.22 

[19.22-20.61] 

0.66 

[0.41-0.77] 

0.76 

[0.53-1.12] 

0.05 0.05 

 21 21 4 22.18 

[22.02 – 22.82] 

22.77 

[22.51-23.25] 

1.15 

[0.91-1.75] 

1.31 

[1.00-1.71] 

0.03 0.03 

Median 

[IQR] 

   19.21 

[16.30-22.47] 

20.41 

[16.68-22.81] 

0.45 

[0.00-1.15] 

0.54 

[0.18-1.21] 

0.05 

[0.03-0.07] 

0.04 

[0.03-0.05] 
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8.4 Discussion 

 

SB efforts by MV patients during volume controlled ventilation will alter airway pressures 

and affect identified respiratory mechanics. In this study, it was observed that all patients 

exhibit different levels of rate and severity of SB affected breaths, despite being sedated and 

ventilated in a fully controlled ventilation mode. When M-waves occur, the AUC Edrs is 

reduced since the same volume is delivered for apparently less input air pressure, thus 

reducing observed, but not physiological, pulmonary elastance (Figure 8.5). AUC Edrs rises to 

a consistent value reflecting the true, underlying passive respiratory mechanics when fully-

sedated airway pressure waveforms resume.  

 

These results suggested that the variance in AUC Edrs can be used to determine the presence 

of SB efforts. Since it is not clinically desirable to use additional invasive measuring tools or 

induce further sedation to suppress patient muscle activity (Kress et al. 2000; Ostermann et 

al. 2000), a method is required to re-construct the M-wave airway pressure to approximate a 

normal breath. In this proof of concept analysis, a reconstruction method is introduced and 

compared with the unreconstructed pressure, as in Figures 8.6-8.9. The goal is to estimate the 

true underlying mechanical properties, which might be expected to be relatively constant over 

a short period or at a set PEEP level, as seen in sedated patients (Chiew et al. 2011; Chiew et 

al. 2015). 

 

Figure 8.6 shows a specific example of two breaths, where one would expect the underlying 

respiratory mechanics to be very similar. However, directly solving Equation 8.3 yielded very 

different results for Edrs, despite the lack of change assumed in the patient’s pulmonary 

physiology. Using the reconstruction method, the Edrs curve for the M-wave breaths have 
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almost the same shape as the normal wave, and thus the AUC Edrs for the reconstructed and 

SB-free pressure wave have almost the same area. These results show how a very simple 

reconstruction method can be used to accurately estimate the underlying lung mechanics, 

despite SB efforts.  

 

M-wave affected airway pressure was observed in more than 50% of the total breathing 

cycles for both PEEP levels in Patient 1 (34/62, Table 8.2). It can be seen that most 

reconstructed airway pressure waveforms have approximately the same height and area, 

resulting in a more consistent estimation of the AUC Edrs, and thus the underlying respiratory 

mechanics, as seen in Figure 8.8. The RCV of AUC Edrs for Patient 1 is higher for 

unreconstructed waveforms with RCV= 0.14 at both PEEP 15 cmH2O and PEEP 17 cmH2O, 

compared to the reconstruction method with RCV = 0.08 at PEEP = 15 cmH2O and RCV = 

0.05 at PEEP = 17 cmH2O. Thus, the reconstruction method yields the expected, more 

constant value of AUC Edrs due to greater reconstruction or restoration of the pressure “lost” 

to SB efforts as compared to unreconstructed cases.  

 

Using the reconstructed airway pressure, the area of missing pressure (A2) due to patient 

induced SB effort can be calculated. In particular, it carries breath-specific SB effort that 

cannot be quantified without the use of invasive oesophageal pressure measurements (Benditt 

2005; Khirani et al. 2010; Talmor et al. 2006). Overall, as A2 increases, it indicates increased 

SB effort, as A2 is directly proportional to SB effort as shown in Equation 8.9. Hence, A2 can 

be used as a surrogate of the magnitude of SB.  

 

This value also has potential clinical benefit as it could be used to guide clinicians in real 

time to improve patient-ventilator interaction. A second use would be deciding whether to 
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extubate or re-sedate the patient. These decisions are otherwise clinically difficult and 

variable, and thus much more subjective decisions in clinical practise, which can lead to 

greater variability in care.  

 

Patients 2-5 exhibit relatively minor SB efforts compared to Patient 1 (Table 8.2). This lower 

incidence of SB effort results in a lower missing area (A2) in those patients. Patients 2-5 have 

more consistent breathing, more consistent pressure waveforms, and a lower rate of M-waves 

compared to Patient 1 for the sections of data used. Thus, the AUC Edrs of reconstructed 

airway is almost equal to AUC Edrs of the unreconstructed airway. For example, this outcome 

can be seen in Table 8.2 with the RCV values of unreconstructed pressure for Patient 5 is 

similar to the RCV values of reconstructed pressure across all PEEP levels. Hence, these 

results show that the reconstruction method is robust when there is a relative lack of SB 

effort.  

 

These results also show how reverse triggering occurs randomly and not all patients exhibit 

similar rates or levels. The reconstruction method does not negatively affect the outcomes for 

patients that do not have significant SB efforts. Hence, the process could be safely embedded 

within algorithms that track pulmonary elastance without the need for a secondary algorithm 

to diagnose SB effort prior to implementation. Moreover, pressure reconstruction inevitably 

leads to higher pressure for the affected M-wave, as seen in Figure 8.7. The reconstruction 

ultimately leads to a PV curve that provides a better fit to PV curves for breaths that are 

unaffected by SB efforts. This result shows how this simple pressure reconstruction is able to 

provide a reasonable estimate of the pressure wave that could be expected in the absence of 

SB effort.  
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Figure 8.10 shows the distribution data of % of SB effort against the % of WOBSB which 

leads to a highly correlated value with R = 0.94 across all patients. This result elucidates a 

trend between the % SB effort and % WOBSB. The trend indicates that by implementing the 

pressure reconstruction method, SB effort and the WOBSB of MV patient can be determined 

without having to use invasive sensors or procedures, and without having to interrupt care.  

 

8.5 Limitations  

 

Although the reconstructed airway pressure can estimate the elastance for a spontaneously 

breathing patient, there are limitations to its predictive capability. In particular, SB can occur 

at any time during MV, and the variation of M-waves may differ depending on the ventilation 

mode. This proof of concept study is thus, a first step to explore the possibility of this type of 

very simple reconstruction method, which could be expanded to other ventilation modes as 

desired. Thus, more patient data are required to show the full robustness of the reconstruction 

method. However, this small data set of patients approach was sensible to test the method and 

exhibit the potential benefit in M-wave analysis in SB patients.  

 

Conversely, the latter results imply the importance of measuring SB effort to potentially 

provide clinicians with an indicator to fine tune ventilator for better patient-ventilator 

interaction or weaning process. The weaning process is a critical phase in respiratory therapy 

and a difficult clinical decision (Boles et al. 2007; Esteban et al. 1994). Recent studies have 

shown that MV patients who have the ability to breath by themselves have a higher chance of 

recovery and higher success rate in weaning (Kogler 2009; Marini 2011; Putensen et al. 

1999). Thus, this simple reconstructed airway pressure and proof of concept analysis could 



130 
 

open up new options in deciding the optimal, or at very least, consistent, patient condition to 

extubate or re-sedate the patient, which is crucial in MV therapy.  

 

8.5 Summary 

 

This proof of concept study presents a novel, computationally simple method to reconstruct 

airway pressure to better estimate respiratory mechanics and quantify the level of patient-

specific SB effort at every breath. This simple reconstruction method is easy to implement 

without requiring additional sedation or intense clinical protocols, and is computationally 

simple enough for real-time implementation. This method reduces variability in estimated 

mechanical properties that arise from patient-specific SB efforts, and do not represent 

variability in the underlying lung mechanics. Clinically, this method could have impact in 

guiding MV and provide unique information that can potentially be used for clinicians in 

deciding the optimal ventilator settings and improve patient’s condition. 
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CHAPTER 9 

Conclusion 

 

This thesis developed and validated model-based and patient-specific methods for assessing 

lung mechanics that provide further insight into lung mechanics of mechanically ventilated 

(MV) Acute Respiratory Distress Syndrome (ARDS) patients. Four unique models are 

developed based on physiologically relevant and mechanically accurate components using 

clinical data that are able to describe patient-specific conditions and could be used to guide 

MV therapy. These models and validation provides a foundation on which model-based MV 

can be created and clinically implemented. 

 

In Chapter 2, a well-known model-based method, the dynostatic algorithm (DSA), is applied 

to estimate the alveolar pressure of the lung based on the dynostatic curve by using the 

retrospective clinical data. The estimated alveoli pressure is based on assumption that airway 

resistance is always the same during inspiration and expiration at isovolume. The estimation 

of alveolar pressure allows insight into the lung condition and prevents the lung from over-

stretched due to the higher PEEP that applied during MV therapy.  

 

Chapter 3 presents a novel model based method patient-specific airway branching model 

(ABMps) based on individual physiological measurement by using a classical simple 

Poiseuille flow and minor loss equations. The ABMps was applied to retrospective clinical 

data and showed how to estimate the airway pressure drop at each bronchial generation using 

patient-specific physiological measurement. This model can be generated from data measured 

at the bedside with the extension to a patient-specific airway dimension, α. The α value 

relates to the patient condition, where, for example, it was found in Chronic Obstructive 
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Pulmonary Disease (COPD) patients that α ranges from 0.45 – 0.62, which relates to the 

smaller effective diameter of the airways that result mathematically from the lung blockage 

that occurs in COPD. In this chapter, the results of ABMps are compared with the well-

accepted DSA by using the same retrospective clinical data. Results show that it is able to 

capture similar alveolar pressure as the DSA while providing significant further insight into 

patient-specific airway dimensions and patient condition. Hence, the ABMps offers 

significant potential to guide clinicians in setting an optimal MV, is non-invasive, and can be 

personalized. 

 

Chapter 5 extends the investigation on the relation of the parameter K in the expiratory time 

constant model with respiratory system elastance by using data from the expiration breathing 

cycle of ARDS patients. The model used retrospective clinical data from two different 

cohorts to identify the variation of respiratory elastance and parameter K in response to 

different PEEP levels. It was found that significant variation in lung resistance leads to a poor 

correlation between K and respiratory system elastance.  However, K has delivered a good 

indicator for COPD patients. Thus, K has potential in tracking the changes in disease state for 

MV patients in real-time, and could be directly used with COPD patients now. 

  

Chapter 6 focused on quantifying the variability of dynamic respiratory (Edrs) elastance in 

ARDS patients using a time-varying elastance model. To investigate the variability of 

respiratory elastance, clinical data from ARDS patients who underwent a specific clinical 

protocol were used. The area under the curve of Edrs (AUC Edrs) is estimated and analysed 

based on ventilation days, PEEP levels and breath to breath variability. It was found that due 

to patient-specific breathing effort, it produced a negative elastance resulting in increased 

variability in Edrs. Equally, monitoring the variability of Edrs can highlight for clinicians the 
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presence of moderate and smaller spontaneous breathing (SB) efforts in MV patients leading 

to adjustments in care. Furthermore, with the information on elastance variability, it could 

guide clinicians in managing PEEP titration for MV patients.  

 

Due to the SB efforts that occurred in MV patients, it is essential to develop a non-invasive 

model that is able to monitor the respiratory mechanics of SB patients. These SB patients 

modify their airway pressure and flow due to their own, variable, inspiratory effort. As 

mentioned in Chapter 6, the variability of lung elastance happened due to the negative 

elastance that causes by the SB effort. Thus, Chapter 7 reviews the distribution of negative 

elastance of SB patients by using a non-invasive time-varying elastance model. The resulting 

metrics of negative elastance due to SB effort provides an indicator, capable of providing 

unique information to guide MV for spontaneously breathing patients, who make up an 

increasing number of MV patients. 

 

Finally, Chapter 8 presents an airway pressure reconstruction method that is able to 

reconstruct the missing pressure that was due to the SB effort. The missing area of the 

measured airway pressure is hypothesized to be a surrogate of the patient-specific and breath-

specific inspiratory effort, which can be used to assess the strength of SB efforts. By using 

the clinical data from ARDS patients, this simple pressure reconstruction method has 

demonstrated that it is able to deliver with a quality clinical metric that able to measure the 

respiratory system properties of a SB patient and measure the surrogate of the SB effort, that 

latter can be useful for clinicians in deciding whether to extubate or re-sedate the patient.  

 

Overall, the patient-specific models and metrics presented in this thesis provide unique 

capability in providing new clinical insight into patient-specific and even breath-specific lung 
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condition and patient-specific response to MV settings. The models have been tested using 

clinical data from different cohorts and have shown promising results that will be useful in 

guiding MV decision making in an ICU for both fully sedated and SB patients. Thus, the 

modelling approach discussed in this thesis shows great potential to be used as the foundation 

for clinical decision support tool for managing and optimizing patient-specific MV setting. 
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CHAPTER 10 

Future Work 

 

The models and metrics presented in this thesis have created a good platform to deliver 

optimized ventilation therapy for ARDS patients. However, further optimization and 

extensive clinical study can, and should, be implemented to fully validate the ability of these 

models and the robustness of the system.  

 

10.1 Additional Monitoring Tools for Model Validation 

 

In this thesis, the models and metrics developed have presented clinical potential to guide 

optimal MV setting. However, validation of the clinical relevance and physiological insight 

of a model-based approach is currently limited. Specifically, the ABMps model could capture 

patient-specific airway pressure changes and unique patient-specific clinical information 

(Damanhuri et al. 2014). However, the current findings warrant further investigation. Thus, it 

would be a significant advantage to have additional lung imaging methods such as Computed 

Tomography (CT) scans, to provide better information and physiological insight on the 

airway branching and bifurcations on each patient. With these measurements, the models can 

be further and better validated, and this level of validation would more strongly encourage 

and support the model’s clinical application to guide MV. 

 

Furthermore, additional monitoring tools, such as in-vivo microscopy, Electrical Impedance 

Tomography (EIT) (Denai et al. 2010; Zhao et al. 2010b) and lung ultrasound (Bouhemad et 

al. 2007; Peris et al. 2010), allows the recruitment of collapsed of lung units to be directly 
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observed in real-time. Hence, with the results from the models and methods developed will 

have their predictive capability and clinical potential directly validated by clinically well-

accepted, more direct, but invasive measurements.  

 

10.2 Clinical Protocol and Data Collection 

 

Further investigation and validation could also be applied to the expiratory time constant 

model using the CURE clinical data. Previously, van Drunen et al. (van Drunen et al. 2013) 

studied the model based on animal data only. Based on results in Chapter 5, the model using 

human data showed different results for the correlation between the expiratory time constant, 

(𝐾) and lung elastance, (𝐸𝑟𝑠) for two different cohorts. Thus, by using a standard clinical 

protocol, the larger clinical cohort may provide more consistency in results between K and 

𝐸𝑟𝑠 and settle this discrepancy. To investigate the expiratory time constant model further, a 

clinical protocol could be designed where the tidal volume (𝑉𝑡) is varied between low and 

higher values at a constant PEEP.  

 

In addition, recruiting more ARDS patients for clinical trials remains the main focus for 

model-based studies. A non-invasive clinical protocol that is suitable for data collection has 

been put forward in Chapter 6. This protocol has several unique features that are designed for 

this purpose.  

 

In particular, this thesis has discussed that SB effort can occur at any time during MV, which 

has been explained in Chapter 8. The airway pressure reconstruction is able to estimate the 

respiratory mechanics of SB patients. However, the variation application of SB efforts may 

differ depending on clinical protocol and ventilation mode. Thus, a standard protocol that 
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specifically designed to monitor SB effort would be of significant utility. With more SB 

patient data, it can show the full robustness of the airway reconstruction method.  

 

Protocol standardisation will not only improve data sample size, the significant data samples 

can indirectly lead to a development of a virtual patient database. This database will lead to 

more comprehensive study in model-based MV. It may also provide further clinical or 

physiological insight via machine learning or other modelling and/or analytics.   

 

10.3 COPD patients  

 

The patient-specific ABM model (ABMps) (Damanhuri et al. 2014) has shown its capability 

for assessing airway pressure drops in ARDS patients with the specific airway dimension, 𝛼 

that relates to patients disease state. The results presented in this thesis found that patients 

suffering from COPD had smaller effective diameter for these physiological measurements 

compared to other ARDS patients, as discussed in Chapter 3. Furthermore, it also showed in 

Chapter 5 that COPD patients have higher airway resistance due the smaller effective 

diameter of the lung branches because the airway blockages in COPD increase airway 

pressure drop in the lung. Thus, larger cohorts consisting of COPD patients may provide 

more significant results that are potentially useful in diagnosing and providing further insight 

into lung condition in COPD patients.  
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